| /* |
| * Freescale GPMI NAND Flash Driver |
| * |
| * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. |
| * Copyright (C) 2008 Embedded Alley Solutions, Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/clk.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/pinctrl/consumer.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_mtd.h> |
| #include "gpmi-nand.h" |
| |
| /* Resource names for the GPMI NAND driver. */ |
| #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" |
| #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" |
| #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" |
| #define GPMI_NAND_DMA_INTERRUPT_RES_NAME "gpmi-dma" |
| |
| /* add our owner bbt descriptor */ |
| static uint8_t scan_ff_pattern[] = { 0xff }; |
| static struct nand_bbt_descr gpmi_bbt_descr = { |
| .options = 0, |
| .offs = 0, |
| .len = 1, |
| .pattern = scan_ff_pattern |
| }; |
| |
| /* We will use all the (page + OOB). */ |
| static struct nand_ecclayout gpmi_hw_ecclayout = { |
| .eccbytes = 0, |
| .eccpos = { 0, }, |
| .oobfree = { {.offset = 0, .length = 0} } |
| }; |
| |
| static irqreturn_t bch_irq(int irq, void *cookie) |
| { |
| struct gpmi_nand_data *this = cookie; |
| |
| gpmi_clear_bch(this); |
| complete(&this->bch_done); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Calculate the ECC strength by hand: |
| * E : The ECC strength. |
| * G : the length of Galois Field. |
| * N : The chunk count of per page. |
| * O : the oobsize of the NAND chip. |
| * M : the metasize of per page. |
| * |
| * The formula is : |
| * E * G * N |
| * ------------ <= (O - M) |
| * 8 |
| * |
| * So, we get E by: |
| * (O - M) * 8 |
| * E <= ------------- |
| * G * N |
| */ |
| static inline int get_ecc_strength(struct gpmi_nand_data *this) |
| { |
| struct bch_geometry *geo = &this->bch_geometry; |
| struct mtd_info *mtd = &this->mtd; |
| int ecc_strength; |
| |
| ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) |
| / (geo->gf_len * geo->ecc_chunk_count); |
| |
| /* We need the minor even number. */ |
| return round_down(ecc_strength, 2); |
| } |
| |
| int common_nfc_set_geometry(struct gpmi_nand_data *this) |
| { |
| struct bch_geometry *geo = &this->bch_geometry; |
| struct mtd_info *mtd = &this->mtd; |
| unsigned int metadata_size; |
| unsigned int status_size; |
| unsigned int block_mark_bit_offset; |
| |
| /* |
| * The size of the metadata can be changed, though we set it to 10 |
| * bytes now. But it can't be too large, because we have to save |
| * enough space for BCH. |
| */ |
| geo->metadata_size = 10; |
| |
| /* The default for the length of Galois Field. */ |
| geo->gf_len = 13; |
| |
| /* The default for chunk size. There is no oobsize greater then 512. */ |
| geo->ecc_chunk_size = 512; |
| while (geo->ecc_chunk_size < mtd->oobsize) |
| geo->ecc_chunk_size *= 2; /* keep C >= O */ |
| |
| geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; |
| |
| /* We use the same ECC strength for all chunks. */ |
| geo->ecc_strength = get_ecc_strength(this); |
| if (!geo->ecc_strength) { |
| pr_err("wrong ECC strength.\n"); |
| return -EINVAL; |
| } |
| |
| geo->page_size = mtd->writesize + mtd->oobsize; |
| geo->payload_size = mtd->writesize; |
| |
| /* |
| * The auxiliary buffer contains the metadata and the ECC status. The |
| * metadata is padded to the nearest 32-bit boundary. The ECC status |
| * contains one byte for every ECC chunk, and is also padded to the |
| * nearest 32-bit boundary. |
| */ |
| metadata_size = ALIGN(geo->metadata_size, 4); |
| status_size = ALIGN(geo->ecc_chunk_count, 4); |
| |
| geo->auxiliary_size = metadata_size + status_size; |
| geo->auxiliary_status_offset = metadata_size; |
| |
| if (!this->swap_block_mark) |
| return 0; |
| |
| /* |
| * We need to compute the byte and bit offsets of |
| * the physical block mark within the ECC-based view of the page. |
| * |
| * NAND chip with 2K page shows below: |
| * (Block Mark) |
| * | | |
| * | D | |
| * |<---->| |
| * V V |
| * +---+----------+-+----------+-+----------+-+----------+-+ |
| * | M | data |E| data |E| data |E| data |E| |
| * +---+----------+-+----------+-+----------+-+----------+-+ |
| * |
| * The position of block mark moves forward in the ECC-based view |
| * of page, and the delta is: |
| * |
| * E * G * (N - 1) |
| * D = (---------------- + M) |
| * 8 |
| * |
| * With the formula to compute the ECC strength, and the condition |
| * : C >= O (C is the ecc chunk size) |
| * |
| * It's easy to deduce to the following result: |
| * |
| * E * G (O - M) C - M C - M |
| * ----------- <= ------- <= -------- < --------- |
| * 8 N N (N - 1) |
| * |
| * So, we get: |
| * |
| * E * G * (N - 1) |
| * D = (---------------- + M) < C |
| * 8 |
| * |
| * The above inequality means the position of block mark |
| * within the ECC-based view of the page is still in the data chunk, |
| * and it's NOT in the ECC bits of the chunk. |
| * |
| * Use the following to compute the bit position of the |
| * physical block mark within the ECC-based view of the page: |
| * (page_size - D) * 8 |
| * |
| * --Huang Shijie |
| */ |
| block_mark_bit_offset = mtd->writesize * 8 - |
| (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) |
| + geo->metadata_size * 8); |
| |
| geo->block_mark_byte_offset = block_mark_bit_offset / 8; |
| geo->block_mark_bit_offset = block_mark_bit_offset % 8; |
| return 0; |
| } |
| |
| struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) |
| { |
| int chipnr = this->current_chip; |
| |
| return this->dma_chans[chipnr]; |
| } |
| |
| /* Can we use the upper's buffer directly for DMA? */ |
| void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) |
| { |
| struct scatterlist *sgl = &this->data_sgl; |
| int ret; |
| |
| this->direct_dma_map_ok = true; |
| |
| /* first try to map the upper buffer directly */ |
| sg_init_one(sgl, this->upper_buf, this->upper_len); |
| ret = dma_map_sg(this->dev, sgl, 1, dr); |
| if (ret == 0) { |
| /* We have to use our own DMA buffer. */ |
| sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE); |
| |
| if (dr == DMA_TO_DEVICE) |
| memcpy(this->data_buffer_dma, this->upper_buf, |
| this->upper_len); |
| |
| ret = dma_map_sg(this->dev, sgl, 1, dr); |
| if (ret == 0) |
| pr_err("DMA mapping failed.\n"); |
| |
| this->direct_dma_map_ok = false; |
| } |
| } |
| |
| /* This will be called after the DMA operation is finished. */ |
| static void dma_irq_callback(void *param) |
| { |
| struct gpmi_nand_data *this = param; |
| struct completion *dma_c = &this->dma_done; |
| |
| complete(dma_c); |
| |
| switch (this->dma_type) { |
| case DMA_FOR_COMMAND: |
| dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); |
| break; |
| |
| case DMA_FOR_READ_DATA: |
| dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); |
| if (this->direct_dma_map_ok == false) |
| memcpy(this->upper_buf, this->data_buffer_dma, |
| this->upper_len); |
| break; |
| |
| case DMA_FOR_WRITE_DATA: |
| dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); |
| break; |
| |
| case DMA_FOR_READ_ECC_PAGE: |
| case DMA_FOR_WRITE_ECC_PAGE: |
| /* We have to wait the BCH interrupt to finish. */ |
| break; |
| |
| default: |
| pr_err("in wrong DMA operation.\n"); |
| } |
| } |
| |
| int start_dma_without_bch_irq(struct gpmi_nand_data *this, |
| struct dma_async_tx_descriptor *desc) |
| { |
| struct completion *dma_c = &this->dma_done; |
| int err; |
| |
| init_completion(dma_c); |
| |
| desc->callback = dma_irq_callback; |
| desc->callback_param = this; |
| dmaengine_submit(desc); |
| dma_async_issue_pending(get_dma_chan(this)); |
| |
| /* Wait for the interrupt from the DMA block. */ |
| err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); |
| if (!err) { |
| pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type); |
| gpmi_dump_info(this); |
| return -ETIMEDOUT; |
| } |
| return 0; |
| } |
| |
| /* |
| * This function is used in BCH reading or BCH writing pages. |
| * It will wait for the BCH interrupt as long as ONE second. |
| * Actually, we must wait for two interrupts : |
| * [1] firstly the DMA interrupt and |
| * [2] secondly the BCH interrupt. |
| */ |
| int start_dma_with_bch_irq(struct gpmi_nand_data *this, |
| struct dma_async_tx_descriptor *desc) |
| { |
| struct completion *bch_c = &this->bch_done; |
| int err; |
| |
| /* Prepare to receive an interrupt from the BCH block. */ |
| init_completion(bch_c); |
| |
| /* start the DMA */ |
| start_dma_without_bch_irq(this, desc); |
| |
| /* Wait for the interrupt from the BCH block. */ |
| err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); |
| if (!err) { |
| pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type); |
| gpmi_dump_info(this); |
| return -ETIMEDOUT; |
| } |
| return 0; |
| } |
| |
| static int __devinit |
| acquire_register_block(struct gpmi_nand_data *this, const char *res_name) |
| { |
| struct platform_device *pdev = this->pdev; |
| struct resources *res = &this->resources; |
| struct resource *r; |
| void __iomem *p; |
| |
| r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); |
| if (!r) { |
| pr_err("Can't get resource for %s\n", res_name); |
| return -ENXIO; |
| } |
| |
| p = ioremap(r->start, resource_size(r)); |
| if (!p) { |
| pr_err("Can't remap %s\n", res_name); |
| return -ENOMEM; |
| } |
| |
| if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) |
| res->gpmi_regs = p; |
| else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) |
| res->bch_regs = p; |
| else |
| pr_err("unknown resource name : %s\n", res_name); |
| |
| return 0; |
| } |
| |
| static void release_register_block(struct gpmi_nand_data *this) |
| { |
| struct resources *res = &this->resources; |
| if (res->gpmi_regs) |
| iounmap(res->gpmi_regs); |
| if (res->bch_regs) |
| iounmap(res->bch_regs); |
| res->gpmi_regs = NULL; |
| res->bch_regs = NULL; |
| } |
| |
| static int __devinit |
| acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) |
| { |
| struct platform_device *pdev = this->pdev; |
| struct resources *res = &this->resources; |
| const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; |
| struct resource *r; |
| int err; |
| |
| r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); |
| if (!r) { |
| pr_err("Can't get resource for %s\n", res_name); |
| return -ENXIO; |
| } |
| |
| err = request_irq(r->start, irq_h, 0, res_name, this); |
| if (err) { |
| pr_err("Can't own %s\n", res_name); |
| return err; |
| } |
| |
| res->bch_low_interrupt = r->start; |
| res->bch_high_interrupt = r->end; |
| return 0; |
| } |
| |
| static void release_bch_irq(struct gpmi_nand_data *this) |
| { |
| struct resources *res = &this->resources; |
| int i = res->bch_low_interrupt; |
| |
| for (; i <= res->bch_high_interrupt; i++) |
| free_irq(i, this); |
| } |
| |
| static bool gpmi_dma_filter(struct dma_chan *chan, void *param) |
| { |
| struct gpmi_nand_data *this = param; |
| int dma_channel = (int)this->private; |
| |
| if (!mxs_dma_is_apbh(chan)) |
| return false; |
| /* |
| * only catch the GPMI dma channels : |
| * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3 |
| * (These four channels share the same IRQ!) |
| * |
| * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7 |
| * (These eight channels share the same IRQ!) |
| */ |
| if (dma_channel == chan->chan_id) { |
| chan->private = &this->dma_data; |
| return true; |
| } |
| return false; |
| } |
| |
| static void release_dma_channels(struct gpmi_nand_data *this) |
| { |
| unsigned int i; |
| for (i = 0; i < DMA_CHANS; i++) |
| if (this->dma_chans[i]) { |
| dma_release_channel(this->dma_chans[i]); |
| this->dma_chans[i] = NULL; |
| } |
| } |
| |
| static int __devinit acquire_dma_channels(struct gpmi_nand_data *this) |
| { |
| struct platform_device *pdev = this->pdev; |
| struct resource *r_dma; |
| struct device_node *dn; |
| u32 dma_channel; |
| int ret; |
| struct dma_chan *dma_chan; |
| dma_cap_mask_t mask; |
| |
| /* dma channel, we only use the first one. */ |
| dn = pdev->dev.of_node; |
| ret = of_property_read_u32(dn, "fsl,gpmi-dma-channel", &dma_channel); |
| if (ret) { |
| pr_err("unable to get DMA channel from dt.\n"); |
| goto acquire_err; |
| } |
| this->private = (void *)dma_channel; |
| |
| /* gpmi dma interrupt */ |
| r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ, |
| GPMI_NAND_DMA_INTERRUPT_RES_NAME); |
| if (!r_dma) { |
| pr_err("Can't get resource for DMA\n"); |
| goto acquire_err; |
| } |
| this->dma_data.chan_irq = r_dma->start; |
| |
| /* request dma channel */ |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| dma_chan = dma_request_channel(mask, gpmi_dma_filter, this); |
| if (!dma_chan) { |
| pr_err("Failed to request DMA channel.\n"); |
| goto acquire_err; |
| } |
| |
| this->dma_chans[0] = dma_chan; |
| return 0; |
| |
| acquire_err: |
| release_dma_channels(this); |
| return -EINVAL; |
| } |
| |
| static void gpmi_put_clks(struct gpmi_nand_data *this) |
| { |
| struct resources *r = &this->resources; |
| struct clk *clk; |
| int i; |
| |
| for (i = 0; i < GPMI_CLK_MAX; i++) { |
| clk = r->clock[i]; |
| if (clk) { |
| clk_put(clk); |
| r->clock[i] = NULL; |
| } |
| } |
| } |
| |
| static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = { |
| "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", |
| }; |
| |
| static int __devinit gpmi_get_clks(struct gpmi_nand_data *this) |
| { |
| struct resources *r = &this->resources; |
| char **extra_clks = NULL; |
| struct clk *clk; |
| int i; |
| |
| /* The main clock is stored in the first. */ |
| r->clock[0] = clk_get(this->dev, "gpmi_io"); |
| if (IS_ERR(r->clock[0])) |
| goto err_clock; |
| |
| /* Get extra clocks */ |
| if (GPMI_IS_MX6Q(this)) |
| extra_clks = extra_clks_for_mx6q; |
| if (!extra_clks) |
| return 0; |
| |
| for (i = 1; i < GPMI_CLK_MAX; i++) { |
| if (extra_clks[i - 1] == NULL) |
| break; |
| |
| clk = clk_get(this->dev, extra_clks[i - 1]); |
| if (IS_ERR(clk)) |
| goto err_clock; |
| |
| r->clock[i] = clk; |
| } |
| |
| if (GPMI_IS_MX6Q(this)) |
| /* |
| * Set the default value for the gpmi clock in mx6q: |
| * |
| * If you want to use the ONFI nand which is in the |
| * Synchronous Mode, you should change the clock as you need. |
| */ |
| clk_set_rate(r->clock[0], 22000000); |
| |
| return 0; |
| |
| err_clock: |
| dev_dbg(this->dev, "failed in finding the clocks.\n"); |
| gpmi_put_clks(this); |
| return -ENOMEM; |
| } |
| |
| static int __devinit acquire_resources(struct gpmi_nand_data *this) |
| { |
| struct pinctrl *pinctrl; |
| int ret; |
| |
| ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); |
| if (ret) |
| goto exit_regs; |
| |
| ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); |
| if (ret) |
| goto exit_regs; |
| |
| ret = acquire_bch_irq(this, bch_irq); |
| if (ret) |
| goto exit_regs; |
| |
| ret = acquire_dma_channels(this); |
| if (ret) |
| goto exit_dma_channels; |
| |
| pinctrl = devm_pinctrl_get_select_default(&this->pdev->dev); |
| if (IS_ERR(pinctrl)) { |
| ret = PTR_ERR(pinctrl); |
| goto exit_pin; |
| } |
| |
| ret = gpmi_get_clks(this); |
| if (ret) |
| goto exit_clock; |
| return 0; |
| |
| exit_clock: |
| exit_pin: |
| release_dma_channels(this); |
| exit_dma_channels: |
| release_bch_irq(this); |
| exit_regs: |
| release_register_block(this); |
| return ret; |
| } |
| |
| static void release_resources(struct gpmi_nand_data *this) |
| { |
| gpmi_put_clks(this); |
| release_register_block(this); |
| release_bch_irq(this); |
| release_dma_channels(this); |
| } |
| |
| static int __devinit init_hardware(struct gpmi_nand_data *this) |
| { |
| int ret; |
| |
| /* |
| * This structure contains the "safe" GPMI timing that should succeed |
| * with any NAND Flash device |
| * (although, with less-than-optimal performance). |
| */ |
| struct nand_timing safe_timing = { |
| .data_setup_in_ns = 80, |
| .data_hold_in_ns = 60, |
| .address_setup_in_ns = 25, |
| .gpmi_sample_delay_in_ns = 6, |
| .tREA_in_ns = -1, |
| .tRLOH_in_ns = -1, |
| .tRHOH_in_ns = -1, |
| }; |
| |
| /* Initialize the hardwares. */ |
| ret = gpmi_init(this); |
| if (ret) |
| return ret; |
| |
| this->timing = safe_timing; |
| return 0; |
| } |
| |
| static int read_page_prepare(struct gpmi_nand_data *this, |
| void *destination, unsigned length, |
| void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, |
| void **use_virt, dma_addr_t *use_phys) |
| { |
| struct device *dev = this->dev; |
| |
| if (virt_addr_valid(destination)) { |
| dma_addr_t dest_phys; |
| |
| dest_phys = dma_map_single(dev, destination, |
| length, DMA_FROM_DEVICE); |
| if (dma_mapping_error(dev, dest_phys)) { |
| if (alt_size < length) { |
| pr_err("%s, Alternate buffer is too small\n", |
| __func__); |
| return -ENOMEM; |
| } |
| goto map_failed; |
| } |
| *use_virt = destination; |
| *use_phys = dest_phys; |
| this->direct_dma_map_ok = true; |
| return 0; |
| } |
| |
| map_failed: |
| *use_virt = alt_virt; |
| *use_phys = alt_phys; |
| this->direct_dma_map_ok = false; |
| return 0; |
| } |
| |
| static inline void read_page_end(struct gpmi_nand_data *this, |
| void *destination, unsigned length, |
| void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, |
| void *used_virt, dma_addr_t used_phys) |
| { |
| if (this->direct_dma_map_ok) |
| dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE); |
| } |
| |
| static inline void read_page_swap_end(struct gpmi_nand_data *this, |
| void *destination, unsigned length, |
| void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, |
| void *used_virt, dma_addr_t used_phys) |
| { |
| if (!this->direct_dma_map_ok) |
| memcpy(destination, alt_virt, length); |
| } |
| |
| static int send_page_prepare(struct gpmi_nand_data *this, |
| const void *source, unsigned length, |
| void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, |
| const void **use_virt, dma_addr_t *use_phys) |
| { |
| struct device *dev = this->dev; |
| |
| if (virt_addr_valid(source)) { |
| dma_addr_t source_phys; |
| |
| source_phys = dma_map_single(dev, (void *)source, length, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(dev, source_phys)) { |
| if (alt_size < length) { |
| pr_err("%s, Alternate buffer is too small\n", |
| __func__); |
| return -ENOMEM; |
| } |
| goto map_failed; |
| } |
| *use_virt = source; |
| *use_phys = source_phys; |
| return 0; |
| } |
| map_failed: |
| /* |
| * Copy the content of the source buffer into the alternate |
| * buffer and set up the return values accordingly. |
| */ |
| memcpy(alt_virt, source, length); |
| |
| *use_virt = alt_virt; |
| *use_phys = alt_phys; |
| return 0; |
| } |
| |
| static void send_page_end(struct gpmi_nand_data *this, |
| const void *source, unsigned length, |
| void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, |
| const void *used_virt, dma_addr_t used_phys) |
| { |
| struct device *dev = this->dev; |
| if (used_virt == source) |
| dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); |
| } |
| |
| static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) |
| { |
| struct device *dev = this->dev; |
| |
| if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) |
| dma_free_coherent(dev, this->page_buffer_size, |
| this->page_buffer_virt, |
| this->page_buffer_phys); |
| kfree(this->cmd_buffer); |
| kfree(this->data_buffer_dma); |
| |
| this->cmd_buffer = NULL; |
| this->data_buffer_dma = NULL; |
| this->page_buffer_virt = NULL; |
| this->page_buffer_size = 0; |
| } |
| |
| /* Allocate the DMA buffers */ |
| static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) |
| { |
| struct bch_geometry *geo = &this->bch_geometry; |
| struct device *dev = this->dev; |
| |
| /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ |
| this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); |
| if (this->cmd_buffer == NULL) |
| goto error_alloc; |
| |
| /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */ |
| this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); |
| if (this->data_buffer_dma == NULL) |
| goto error_alloc; |
| |
| /* |
| * [3] Allocate the page buffer. |
| * |
| * Both the payload buffer and the auxiliary buffer must appear on |
| * 32-bit boundaries. We presume the size of the payload buffer is a |
| * power of two and is much larger than four, which guarantees the |
| * auxiliary buffer will appear on a 32-bit boundary. |
| */ |
| this->page_buffer_size = geo->payload_size + geo->auxiliary_size; |
| this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, |
| &this->page_buffer_phys, GFP_DMA); |
| if (!this->page_buffer_virt) |
| goto error_alloc; |
| |
| |
| /* Slice up the page buffer. */ |
| this->payload_virt = this->page_buffer_virt; |
| this->payload_phys = this->page_buffer_phys; |
| this->auxiliary_virt = this->payload_virt + geo->payload_size; |
| this->auxiliary_phys = this->payload_phys + geo->payload_size; |
| return 0; |
| |
| error_alloc: |
| gpmi_free_dma_buffer(this); |
| pr_err("Error allocating DMA buffers!\n"); |
| return -ENOMEM; |
| } |
| |
| static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct gpmi_nand_data *this = chip->priv; |
| int ret; |
| |
| /* |
| * Every operation begins with a command byte and a series of zero or |
| * more address bytes. These are distinguished by either the Address |
| * Latch Enable (ALE) or Command Latch Enable (CLE) signals being |
| * asserted. When MTD is ready to execute the command, it will deassert |
| * both latch enables. |
| * |
| * Rather than run a separate DMA operation for every single byte, we |
| * queue them up and run a single DMA operation for the entire series |
| * of command and data bytes. NAND_CMD_NONE means the END of the queue. |
| */ |
| if ((ctrl & (NAND_ALE | NAND_CLE))) { |
| if (data != NAND_CMD_NONE) |
| this->cmd_buffer[this->command_length++] = data; |
| return; |
| } |
| |
| if (!this->command_length) |
| return; |
| |
| ret = gpmi_send_command(this); |
| if (ret) |
| pr_err("Chip: %u, Error %d\n", this->current_chip, ret); |
| |
| this->command_length = 0; |
| } |
| |
| static int gpmi_dev_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct gpmi_nand_data *this = chip->priv; |
| |
| return gpmi_is_ready(this, this->current_chip); |
| } |
| |
| static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct gpmi_nand_data *this = chip->priv; |
| |
| if ((this->current_chip < 0) && (chipnr >= 0)) |
| gpmi_begin(this); |
| else if ((this->current_chip >= 0) && (chipnr < 0)) |
| gpmi_end(this); |
| |
| this->current_chip = chipnr; |
| } |
| |
| static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct gpmi_nand_data *this = chip->priv; |
| |
| pr_debug("len is %d\n", len); |
| this->upper_buf = buf; |
| this->upper_len = len; |
| |
| gpmi_read_data(this); |
| } |
| |
| static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct gpmi_nand_data *this = chip->priv; |
| |
| pr_debug("len is %d\n", len); |
| this->upper_buf = (uint8_t *)buf; |
| this->upper_len = len; |
| |
| gpmi_send_data(this); |
| } |
| |
| static uint8_t gpmi_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct gpmi_nand_data *this = chip->priv; |
| uint8_t *buf = this->data_buffer_dma; |
| |
| gpmi_read_buf(mtd, buf, 1); |
| return buf[0]; |
| } |
| |
| /* |
| * Handles block mark swapping. |
| * It can be called in swapping the block mark, or swapping it back, |
| * because the the operations are the same. |
| */ |
| static void block_mark_swapping(struct gpmi_nand_data *this, |
| void *payload, void *auxiliary) |
| { |
| struct bch_geometry *nfc_geo = &this->bch_geometry; |
| unsigned char *p; |
| unsigned char *a; |
| unsigned int bit; |
| unsigned char mask; |
| unsigned char from_data; |
| unsigned char from_oob; |
| |
| if (!this->swap_block_mark) |
| return; |
| |
| /* |
| * If control arrives here, we're swapping. Make some convenience |
| * variables. |
| */ |
| bit = nfc_geo->block_mark_bit_offset; |
| p = payload + nfc_geo->block_mark_byte_offset; |
| a = auxiliary; |
| |
| /* |
| * Get the byte from the data area that overlays the block mark. Since |
| * the ECC engine applies its own view to the bits in the page, the |
| * physical block mark won't (in general) appear on a byte boundary in |
| * the data. |
| */ |
| from_data = (p[0] >> bit) | (p[1] << (8 - bit)); |
| |
| /* Get the byte from the OOB. */ |
| from_oob = a[0]; |
| |
| /* Swap them. */ |
| a[0] = from_data; |
| |
| mask = (0x1 << bit) - 1; |
| p[0] = (p[0] & mask) | (from_oob << bit); |
| |
| mask = ~0 << bit; |
| p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); |
| } |
| |
| static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| struct gpmi_nand_data *this = chip->priv; |
| struct bch_geometry *nfc_geo = &this->bch_geometry; |
| void *payload_virt; |
| dma_addr_t payload_phys; |
| void *auxiliary_virt; |
| dma_addr_t auxiliary_phys; |
| unsigned int i; |
| unsigned char *status; |
| unsigned int failed; |
| unsigned int corrected; |
| int ret; |
| |
| pr_debug("page number is : %d\n", page); |
| ret = read_page_prepare(this, buf, mtd->writesize, |
| this->payload_virt, this->payload_phys, |
| nfc_geo->payload_size, |
| &payload_virt, &payload_phys); |
| if (ret) { |
| pr_err("Inadequate DMA buffer\n"); |
| ret = -ENOMEM; |
| return ret; |
| } |
| auxiliary_virt = this->auxiliary_virt; |
| auxiliary_phys = this->auxiliary_phys; |
| |
| /* go! */ |
| ret = gpmi_read_page(this, payload_phys, auxiliary_phys); |
| read_page_end(this, buf, mtd->writesize, |
| this->payload_virt, this->payload_phys, |
| nfc_geo->payload_size, |
| payload_virt, payload_phys); |
| if (ret) { |
| pr_err("Error in ECC-based read: %d\n", ret); |
| goto exit_nfc; |
| } |
| |
| /* handle the block mark swapping */ |
| block_mark_swapping(this, payload_virt, auxiliary_virt); |
| |
| /* Loop over status bytes, accumulating ECC status. */ |
| failed = 0; |
| corrected = 0; |
| status = auxiliary_virt + nfc_geo->auxiliary_status_offset; |
| |
| for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { |
| if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) |
| continue; |
| |
| if (*status == STATUS_UNCORRECTABLE) { |
| failed++; |
| continue; |
| } |
| corrected += *status; |
| } |
| |
| /* |
| * Propagate ECC status to the owning MTD only when failed or |
| * corrected times nearly reaches our ECC correction threshold. |
| */ |
| if (failed || corrected >= (nfc_geo->ecc_strength - 1)) { |
| mtd->ecc_stats.failed += failed; |
| mtd->ecc_stats.corrected += corrected; |
| } |
| |
| if (oob_required) { |
| /* |
| * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() |
| * for details about our policy for delivering the OOB. |
| * |
| * We fill the caller's buffer with set bits, and then copy the |
| * block mark to th caller's buffer. Note that, if block mark |
| * swapping was necessary, it has already been done, so we can |
| * rely on the first byte of the auxiliary buffer to contain |
| * the block mark. |
| */ |
| memset(chip->oob_poi, ~0, mtd->oobsize); |
| chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; |
| } |
| |
| read_page_swap_end(this, buf, mtd->writesize, |
| this->payload_virt, this->payload_phys, |
| nfc_geo->payload_size, |
| payload_virt, payload_phys); |
| exit_nfc: |
| return ret; |
| } |
| |
| static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, int oob_required) |
| { |
| struct gpmi_nand_data *this = chip->priv; |
| struct bch_geometry *nfc_geo = &this->bch_geometry; |
| const void *payload_virt; |
| dma_addr_t payload_phys; |
| const void *auxiliary_virt; |
| dma_addr_t auxiliary_phys; |
| int ret; |
| |
| pr_debug("ecc write page.\n"); |
| if (this->swap_block_mark) { |
| /* |
| * If control arrives here, we're doing block mark swapping. |
| * Since we can't modify the caller's buffers, we must copy them |
| * into our own. |
| */ |
| memcpy(this->payload_virt, buf, mtd->writesize); |
| payload_virt = this->payload_virt; |
| payload_phys = this->payload_phys; |
| |
| memcpy(this->auxiliary_virt, chip->oob_poi, |
| nfc_geo->auxiliary_size); |
| auxiliary_virt = this->auxiliary_virt; |
| auxiliary_phys = this->auxiliary_phys; |
| |
| /* Handle block mark swapping. */ |
| block_mark_swapping(this, |
| (void *) payload_virt, (void *) auxiliary_virt); |
| } else { |
| /* |
| * If control arrives here, we're not doing block mark swapping, |
| * so we can to try and use the caller's buffers. |
| */ |
| ret = send_page_prepare(this, |
| buf, mtd->writesize, |
| this->payload_virt, this->payload_phys, |
| nfc_geo->payload_size, |
| &payload_virt, &payload_phys); |
| if (ret) { |
| pr_err("Inadequate payload DMA buffer\n"); |
| return 0; |
| } |
| |
| ret = send_page_prepare(this, |
| chip->oob_poi, mtd->oobsize, |
| this->auxiliary_virt, this->auxiliary_phys, |
| nfc_geo->auxiliary_size, |
| &auxiliary_virt, &auxiliary_phys); |
| if (ret) { |
| pr_err("Inadequate auxiliary DMA buffer\n"); |
| goto exit_auxiliary; |
| } |
| } |
| |
| /* Ask the NFC. */ |
| ret = gpmi_send_page(this, payload_phys, auxiliary_phys); |
| if (ret) |
| pr_err("Error in ECC-based write: %d\n", ret); |
| |
| if (!this->swap_block_mark) { |
| send_page_end(this, chip->oob_poi, mtd->oobsize, |
| this->auxiliary_virt, this->auxiliary_phys, |
| nfc_geo->auxiliary_size, |
| auxiliary_virt, auxiliary_phys); |
| exit_auxiliary: |
| send_page_end(this, buf, mtd->writesize, |
| this->payload_virt, this->payload_phys, |
| nfc_geo->payload_size, |
| payload_virt, payload_phys); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * There are several places in this driver where we have to handle the OOB and |
| * block marks. This is the function where things are the most complicated, so |
| * this is where we try to explain it all. All the other places refer back to |
| * here. |
| * |
| * These are the rules, in order of decreasing importance: |
| * |
| * 1) Nothing the caller does can be allowed to imperil the block mark. |
| * |
| * 2) In read operations, the first byte of the OOB we return must reflect the |
| * true state of the block mark, no matter where that block mark appears in |
| * the physical page. |
| * |
| * 3) ECC-based read operations return an OOB full of set bits (since we never |
| * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads |
| * return). |
| * |
| * 4) "Raw" read operations return a direct view of the physical bytes in the |
| * page, using the conventional definition of which bytes are data and which |
| * are OOB. This gives the caller a way to see the actual, physical bytes |
| * in the page, without the distortions applied by our ECC engine. |
| * |
| * |
| * What we do for this specific read operation depends on two questions: |
| * |
| * 1) Are we doing a "raw" read, or an ECC-based read? |
| * |
| * 2) Are we using block mark swapping or transcription? |
| * |
| * There are four cases, illustrated by the following Karnaugh map: |
| * |
| * | Raw | ECC-based | |
| * -------------+-------------------------+-------------------------+ |
| * | Read the conventional | | |
| * | OOB at the end of the | | |
| * Swapping | page and return it. It | | |
| * | contains exactly what | | |
| * | we want. | Read the block mark and | |
| * -------------+-------------------------+ return it in a buffer | |
| * | Read the conventional | full of set bits. | |
| * | OOB at the end of the | | |
| * | page and also the block | | |
| * Transcribing | mark in the metadata. | | |
| * | Copy the block mark | | |
| * | into the first byte of | | |
| * | the OOB. | | |
| * -------------+-------------------------+-------------------------+ |
| * |
| * Note that we break rule #4 in the Transcribing/Raw case because we're not |
| * giving an accurate view of the actual, physical bytes in the page (we're |
| * overwriting the block mark). That's OK because it's more important to follow |
| * rule #2. |
| * |
| * It turns out that knowing whether we want an "ECC-based" or "raw" read is not |
| * easy. When reading a page, for example, the NAND Flash MTD code calls our |
| * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an |
| * ECC-based or raw view of the page is implicit in which function it calls |
| * (there is a similar pair of ECC-based/raw functions for writing). |
| * |
| * FIXME: The following paragraph is incorrect, now that there exist |
| * ecc.read_oob_raw and ecc.write_oob_raw functions. |
| * |
| * Since MTD assumes the OOB is not covered by ECC, there is no pair of |
| * ECC-based/raw functions for reading or or writing the OOB. The fact that the |
| * caller wants an ECC-based or raw view of the page is not propagated down to |
| * this driver. |
| */ |
| static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| struct gpmi_nand_data *this = chip->priv; |
| |
| pr_debug("page number is %d\n", page); |
| /* clear the OOB buffer */ |
| memset(chip->oob_poi, ~0, mtd->oobsize); |
| |
| /* Read out the conventional OOB. */ |
| chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| /* |
| * Now, we want to make sure the block mark is correct. In the |
| * Swapping/Raw case, we already have it. Otherwise, we need to |
| * explicitly read it. |
| */ |
| if (!this->swap_block_mark) { |
| /* Read the block mark into the first byte of the OOB buffer. */ |
| chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| chip->oob_poi[0] = chip->read_byte(mtd); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) |
| { |
| /* |
| * The BCH will use all the (page + oob). |
| * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob. |
| * But it can not stop some ioctls such MEMWRITEOOB which uses |
| * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit |
| * these ioctls too. |
| */ |
| return -EPERM; |
| } |
| |
| static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct gpmi_nand_data *this = chip->priv; |
| int block, ret = 0; |
| uint8_t *block_mark; |
| int column, page, status, chipnr; |
| |
| /* Get block number */ |
| block = (int)(ofs >> chip->bbt_erase_shift); |
| if (chip->bbt) |
| chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); |
| |
| /* Do we have a flash based bad block table ? */ |
| if (chip->bbt_options & NAND_BBT_USE_FLASH) |
| ret = nand_update_bbt(mtd, ofs); |
| else { |
| chipnr = (int)(ofs >> chip->chip_shift); |
| chip->select_chip(mtd, chipnr); |
| |
| column = this->swap_block_mark ? mtd->writesize : 0; |
| |
| /* Write the block mark. */ |
| block_mark = this->data_buffer_dma; |
| block_mark[0] = 0; /* bad block marker */ |
| |
| /* Shift to get page */ |
| page = (int)(ofs >> chip->page_shift); |
| |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page); |
| chip->write_buf(mtd, block_mark, 1); |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| |
| status = chip->waitfunc(mtd, chip); |
| if (status & NAND_STATUS_FAIL) |
| ret = -EIO; |
| |
| chip->select_chip(mtd, -1); |
| } |
| if (!ret) |
| mtd->ecc_stats.badblocks++; |
| |
| return ret; |
| } |
| |
| static int nand_boot_set_geometry(struct gpmi_nand_data *this) |
| { |
| struct boot_rom_geometry *geometry = &this->rom_geometry; |
| |
| /* |
| * Set the boot block stride size. |
| * |
| * In principle, we should be reading this from the OTP bits, since |
| * that's where the ROM is going to get it. In fact, we don't have any |
| * way to read the OTP bits, so we go with the default and hope for the |
| * best. |
| */ |
| geometry->stride_size_in_pages = 64; |
| |
| /* |
| * Set the search area stride exponent. |
| * |
| * In principle, we should be reading this from the OTP bits, since |
| * that's where the ROM is going to get it. In fact, we don't have any |
| * way to read the OTP bits, so we go with the default and hope for the |
| * best. |
| */ |
| geometry->search_area_stride_exponent = 2; |
| return 0; |
| } |
| |
| static const char *fingerprint = "STMP"; |
| static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) |
| { |
| struct boot_rom_geometry *rom_geo = &this->rom_geometry; |
| struct device *dev = this->dev; |
| struct mtd_info *mtd = &this->mtd; |
| struct nand_chip *chip = &this->nand; |
| unsigned int search_area_size_in_strides; |
| unsigned int stride; |
| unsigned int page; |
| uint8_t *buffer = chip->buffers->databuf; |
| int saved_chip_number; |
| int found_an_ncb_fingerprint = false; |
| |
| /* Compute the number of strides in a search area. */ |
| search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; |
| |
| saved_chip_number = this->current_chip; |
| chip->select_chip(mtd, 0); |
| |
| /* |
| * Loop through the first search area, looking for the NCB fingerprint. |
| */ |
| dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); |
| |
| for (stride = 0; stride < search_area_size_in_strides; stride++) { |
| /* Compute the page addresses. */ |
| page = stride * rom_geo->stride_size_in_pages; |
| |
| dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); |
| |
| /* |
| * Read the NCB fingerprint. The fingerprint is four bytes long |
| * and starts in the 12th byte of the page. |
| */ |
| chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page); |
| chip->read_buf(mtd, buffer, strlen(fingerprint)); |
| |
| /* Look for the fingerprint. */ |
| if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { |
| found_an_ncb_fingerprint = true; |
| break; |
| } |
| |
| } |
| |
| chip->select_chip(mtd, saved_chip_number); |
| |
| if (found_an_ncb_fingerprint) |
| dev_dbg(dev, "\tFound a fingerprint\n"); |
| else |
| dev_dbg(dev, "\tNo fingerprint found\n"); |
| return found_an_ncb_fingerprint; |
| } |
| |
| /* Writes a transcription stamp. */ |
| static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) |
| { |
| struct device *dev = this->dev; |
| struct boot_rom_geometry *rom_geo = &this->rom_geometry; |
| struct mtd_info *mtd = &this->mtd; |
| struct nand_chip *chip = &this->nand; |
| unsigned int block_size_in_pages; |
| unsigned int search_area_size_in_strides; |
| unsigned int search_area_size_in_pages; |
| unsigned int search_area_size_in_blocks; |
| unsigned int block; |
| unsigned int stride; |
| unsigned int page; |
| uint8_t *buffer = chip->buffers->databuf; |
| int saved_chip_number; |
| int status; |
| |
| /* Compute the search area geometry. */ |
| block_size_in_pages = mtd->erasesize / mtd->writesize; |
| search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; |
| search_area_size_in_pages = search_area_size_in_strides * |
| rom_geo->stride_size_in_pages; |
| search_area_size_in_blocks = |
| (search_area_size_in_pages + (block_size_in_pages - 1)) / |
| block_size_in_pages; |
| |
| dev_dbg(dev, "Search Area Geometry :\n"); |
| dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); |
| dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); |
| dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); |
| |
| /* Select chip 0. */ |
| saved_chip_number = this->current_chip; |
| chip->select_chip(mtd, 0); |
| |
| /* Loop over blocks in the first search area, erasing them. */ |
| dev_dbg(dev, "Erasing the search area...\n"); |
| |
| for (block = 0; block < search_area_size_in_blocks; block++) { |
| /* Compute the page address. */ |
| page = block * block_size_in_pages; |
| |
| /* Erase this block. */ |
| dev_dbg(dev, "\tErasing block 0x%x\n", block); |
| chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); |
| chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); |
| |
| /* Wait for the erase to finish. */ |
| status = chip->waitfunc(mtd, chip); |
| if (status & NAND_STATUS_FAIL) |
| dev_err(dev, "[%s] Erase failed.\n", __func__); |
| } |
| |
| /* Write the NCB fingerprint into the page buffer. */ |
| memset(buffer, ~0, mtd->writesize); |
| memset(chip->oob_poi, ~0, mtd->oobsize); |
| memcpy(buffer + 12, fingerprint, strlen(fingerprint)); |
| |
| /* Loop through the first search area, writing NCB fingerprints. */ |
| dev_dbg(dev, "Writing NCB fingerprints...\n"); |
| for (stride = 0; stride < search_area_size_in_strides; stride++) { |
| /* Compute the page addresses. */ |
| page = stride * rom_geo->stride_size_in_pages; |
| |
| /* Write the first page of the current stride. */ |
| dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); |
| chip->ecc.write_page_raw(mtd, chip, buffer, 0); |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| |
| /* Wait for the write to finish. */ |
| status = chip->waitfunc(mtd, chip); |
| if (status & NAND_STATUS_FAIL) |
| dev_err(dev, "[%s] Write failed.\n", __func__); |
| } |
| |
| /* Deselect chip 0. */ |
| chip->select_chip(mtd, saved_chip_number); |
| return 0; |
| } |
| |
| static int mx23_boot_init(struct gpmi_nand_data *this) |
| { |
| struct device *dev = this->dev; |
| struct nand_chip *chip = &this->nand; |
| struct mtd_info *mtd = &this->mtd; |
| unsigned int block_count; |
| unsigned int block; |
| int chipnr; |
| int page; |
| loff_t byte; |
| uint8_t block_mark; |
| int ret = 0; |
| |
| /* |
| * If control arrives here, we can't use block mark swapping, which |
| * means we're forced to use transcription. First, scan for the |
| * transcription stamp. If we find it, then we don't have to do |
| * anything -- the block marks are already transcribed. |
| */ |
| if (mx23_check_transcription_stamp(this)) |
| return 0; |
| |
| /* |
| * If control arrives here, we couldn't find a transcription stamp, so |
| * so we presume the block marks are in the conventional location. |
| */ |
| dev_dbg(dev, "Transcribing bad block marks...\n"); |
| |
| /* Compute the number of blocks in the entire medium. */ |
| block_count = chip->chipsize >> chip->phys_erase_shift; |
| |
| /* |
| * Loop over all the blocks in the medium, transcribing block marks as |
| * we go. |
| */ |
| for (block = 0; block < block_count; block++) { |
| /* |
| * Compute the chip, page and byte addresses for this block's |
| * conventional mark. |
| */ |
| chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); |
| page = block << (chip->phys_erase_shift - chip->page_shift); |
| byte = block << chip->phys_erase_shift; |
| |
| /* Send the command to read the conventional block mark. */ |
| chip->select_chip(mtd, chipnr); |
| chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); |
| block_mark = chip->read_byte(mtd); |
| chip->select_chip(mtd, -1); |
| |
| /* |
| * Check if the block is marked bad. If so, we need to mark it |
| * again, but this time the result will be a mark in the |
| * location where we transcribe block marks. |
| */ |
| if (block_mark != 0xff) { |
| dev_dbg(dev, "Transcribing mark in block %u\n", block); |
| ret = chip->block_markbad(mtd, byte); |
| if (ret) |
| dev_err(dev, "Failed to mark block bad with " |
| "ret %d\n", ret); |
| } |
| } |
| |
| /* Write the stamp that indicates we've transcribed the block marks. */ |
| mx23_write_transcription_stamp(this); |
| return 0; |
| } |
| |
| static int nand_boot_init(struct gpmi_nand_data *this) |
| { |
| nand_boot_set_geometry(this); |
| |
| /* This is ROM arch-specific initilization before the BBT scanning. */ |
| if (GPMI_IS_MX23(this)) |
| return mx23_boot_init(this); |
| return 0; |
| } |
| |
| static int gpmi_set_geometry(struct gpmi_nand_data *this) |
| { |
| int ret; |
| |
| /* Free the temporary DMA memory for reading ID. */ |
| gpmi_free_dma_buffer(this); |
| |
| /* Set up the NFC geometry which is used by BCH. */ |
| ret = bch_set_geometry(this); |
| if (ret) { |
| pr_err("Error setting BCH geometry : %d\n", ret); |
| return ret; |
| } |
| |
| /* Alloc the new DMA buffers according to the pagesize and oobsize */ |
| return gpmi_alloc_dma_buffer(this); |
| } |
| |
| static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this) |
| { |
| int ret; |
| |
| /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ |
| if (GPMI_IS_MX23(this)) |
| this->swap_block_mark = false; |
| else |
| this->swap_block_mark = true; |
| |
| /* Set up the medium geometry */ |
| ret = gpmi_set_geometry(this); |
| if (ret) |
| return ret; |
| |
| /* Adjust the ECC strength according to the chip. */ |
| this->nand.ecc.strength = this->bch_geometry.ecc_strength; |
| this->mtd.ecc_strength = this->bch_geometry.ecc_strength; |
| this->mtd.bitflip_threshold = this->bch_geometry.ecc_strength; |
| |
| /* NAND boot init, depends on the gpmi_set_geometry(). */ |
| return nand_boot_init(this); |
| } |
| |
| static int gpmi_scan_bbt(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct gpmi_nand_data *this = chip->priv; |
| int ret; |
| |
| /* Prepare for the BBT scan. */ |
| ret = gpmi_pre_bbt_scan(this); |
| if (ret) |
| return ret; |
| |
| /* |
| * Can we enable the extra features? such as EDO or Sync mode. |
| * |
| * We do not check the return value now. That's means if we fail in |
| * enable the extra features, we still can run in the normal way. |
| */ |
| gpmi_extra_init(this); |
| |
| /* use the default BBT implementation */ |
| return nand_default_bbt(mtd); |
| } |
| |
| static void gpmi_nfc_exit(struct gpmi_nand_data *this) |
| { |
| nand_release(&this->mtd); |
| gpmi_free_dma_buffer(this); |
| } |
| |
| static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this) |
| { |
| struct mtd_info *mtd = &this->mtd; |
| struct nand_chip *chip = &this->nand; |
| struct mtd_part_parser_data ppdata = {}; |
| int ret; |
| |
| /* init current chip */ |
| this->current_chip = -1; |
| |
| /* init the MTD data structures */ |
| mtd->priv = chip; |
| mtd->name = "gpmi-nand"; |
| mtd->owner = THIS_MODULE; |
| |
| /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ |
| chip->priv = this; |
| chip->select_chip = gpmi_select_chip; |
| chip->cmd_ctrl = gpmi_cmd_ctrl; |
| chip->dev_ready = gpmi_dev_ready; |
| chip->read_byte = gpmi_read_byte; |
| chip->read_buf = gpmi_read_buf; |
| chip->write_buf = gpmi_write_buf; |
| chip->ecc.read_page = gpmi_ecc_read_page; |
| chip->ecc.write_page = gpmi_ecc_write_page; |
| chip->ecc.read_oob = gpmi_ecc_read_oob; |
| chip->ecc.write_oob = gpmi_ecc_write_oob; |
| chip->scan_bbt = gpmi_scan_bbt; |
| chip->badblock_pattern = &gpmi_bbt_descr; |
| chip->block_markbad = gpmi_block_markbad; |
| chip->options |= NAND_NO_SUBPAGE_WRITE; |
| chip->ecc.mode = NAND_ECC_HW; |
| chip->ecc.size = 1; |
| chip->ecc.strength = 8; |
| chip->ecc.layout = &gpmi_hw_ecclayout; |
| if (of_get_nand_on_flash_bbt(this->dev->of_node)) |
| chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; |
| |
| /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */ |
| this->bch_geometry.payload_size = 1024; |
| this->bch_geometry.auxiliary_size = 128; |
| ret = gpmi_alloc_dma_buffer(this); |
| if (ret) |
| goto err_out; |
| |
| ret = nand_scan(mtd, 1); |
| if (ret) { |
| pr_err("Chip scan failed\n"); |
| goto err_out; |
| } |
| |
| ppdata.of_node = this->pdev->dev.of_node; |
| ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); |
| if (ret) |
| goto err_out; |
| return 0; |
| |
| err_out: |
| gpmi_nfc_exit(this); |
| return ret; |
| } |
| |
| static const struct platform_device_id gpmi_ids[] = { |
| { .name = "imx23-gpmi-nand", .driver_data = IS_MX23, }, |
| { .name = "imx28-gpmi-nand", .driver_data = IS_MX28, }, |
| { .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, }, |
| {}, |
| }; |
| |
| static const struct of_device_id gpmi_nand_id_table[] = { |
| { |
| .compatible = "fsl,imx23-gpmi-nand", |
| .data = (void *)&gpmi_ids[IS_MX23] |
| }, { |
| .compatible = "fsl,imx28-gpmi-nand", |
| .data = (void *)&gpmi_ids[IS_MX28] |
| }, { |
| .compatible = "fsl,imx6q-gpmi-nand", |
| .data = (void *)&gpmi_ids[IS_MX6Q] |
| }, {} |
| }; |
| MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); |
| |
| static int __devinit gpmi_nand_probe(struct platform_device *pdev) |
| { |
| struct gpmi_nand_data *this; |
| const struct of_device_id *of_id; |
| int ret; |
| |
| of_id = of_match_device(gpmi_nand_id_table, &pdev->dev); |
| if (of_id) { |
| pdev->id_entry = of_id->data; |
| } else { |
| pr_err("Failed to find the right device id.\n"); |
| return -ENOMEM; |
| } |
| |
| this = kzalloc(sizeof(*this), GFP_KERNEL); |
| if (!this) { |
| pr_err("Failed to allocate per-device memory\n"); |
| return -ENOMEM; |
| } |
| |
| platform_set_drvdata(pdev, this); |
| this->pdev = pdev; |
| this->dev = &pdev->dev; |
| |
| ret = acquire_resources(this); |
| if (ret) |
| goto exit_acquire_resources; |
| |
| ret = init_hardware(this); |
| if (ret) |
| goto exit_nfc_init; |
| |
| ret = gpmi_nfc_init(this); |
| if (ret) |
| goto exit_nfc_init; |
| |
| dev_info(this->dev, "driver registered.\n"); |
| |
| return 0; |
| |
| exit_nfc_init: |
| release_resources(this); |
| exit_acquire_resources: |
| platform_set_drvdata(pdev, NULL); |
| kfree(this); |
| dev_err(this->dev, "driver registration failed: %d\n", ret); |
| |
| return ret; |
| } |
| |
| static int __devexit gpmi_nand_remove(struct platform_device *pdev) |
| { |
| struct gpmi_nand_data *this = platform_get_drvdata(pdev); |
| |
| gpmi_nfc_exit(this); |
| release_resources(this); |
| platform_set_drvdata(pdev, NULL); |
| kfree(this); |
| return 0; |
| } |
| |
| static struct platform_driver gpmi_nand_driver = { |
| .driver = { |
| .name = "gpmi-nand", |
| .of_match_table = gpmi_nand_id_table, |
| }, |
| .probe = gpmi_nand_probe, |
| .remove = gpmi_nand_remove, |
| .id_table = gpmi_ids, |
| }; |
| module_platform_driver(gpmi_nand_driver); |
| |
| MODULE_AUTHOR("Freescale Semiconductor, Inc."); |
| MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); |
| MODULE_LICENSE("GPL"); |