| /* |
| * balloc.c |
| * |
| * PURPOSE |
| * Block allocation handling routines for the OSTA-UDF(tm) filesystem. |
| * |
| * COPYRIGHT |
| * This file is distributed under the terms of the GNU General Public |
| * License (GPL). Copies of the GPL can be obtained from: |
| * ftp://prep.ai.mit.edu/pub/gnu/GPL |
| * Each contributing author retains all rights to their own work. |
| * |
| * (C) 1999-2001 Ben Fennema |
| * (C) 1999 Stelias Computing Inc |
| * |
| * HISTORY |
| * |
| * 02/24/99 blf Created. |
| * |
| */ |
| |
| #include "udfdecl.h" |
| |
| #include <linux/quotaops.h> |
| #include <linux/buffer_head.h> |
| #include <linux/bitops.h> |
| |
| #include "udf_i.h" |
| #include "udf_sb.h" |
| |
| #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr) |
| #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr) |
| #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr) |
| #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size) |
| #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset) |
| |
| #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x) |
| #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y) |
| #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y)) |
| #define uintBPL_t uint(BITS_PER_LONG) |
| #define uint(x) xuint(x) |
| #define xuint(x) __le ## x |
| |
| static inline int find_next_one_bit(void *addr, int size, int offset) |
| { |
| uintBPL_t *p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG); |
| int result = offset & ~(BITS_PER_LONG - 1); |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= (BITS_PER_LONG - 1); |
| if (offset) { |
| tmp = leBPL_to_cpup(p++); |
| tmp &= ~0UL << offset; |
| if (size < BITS_PER_LONG) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| size -= BITS_PER_LONG; |
| result += BITS_PER_LONG; |
| } |
| while (size & ~(BITS_PER_LONG - 1)) { |
| if ((tmp = leBPL_to_cpup(p++))) |
| goto found_middle; |
| result += BITS_PER_LONG; |
| size -= BITS_PER_LONG; |
| } |
| if (!size) |
| return result; |
| tmp = leBPL_to_cpup(p); |
| found_first: |
| tmp &= ~0UL >> (BITS_PER_LONG - size); |
| found_middle: |
| return result + ffz(~tmp); |
| } |
| |
| #define find_first_one_bit(addr, size)\ |
| find_next_one_bit((addr), (size), 0) |
| |
| static int read_block_bitmap(struct super_block *sb, |
| struct udf_bitmap *bitmap, unsigned int block, |
| unsigned long bitmap_nr) |
| { |
| struct buffer_head *bh = NULL; |
| int retval = 0; |
| kernel_lb_addr loc; |
| |
| loc.logicalBlockNum = bitmap->s_extPosition; |
| loc.partitionReferenceNum = UDF_SB_PARTITION(sb); |
| |
| bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block)); |
| if (!bh) { |
| retval = -EIO; |
| } |
| bitmap->s_block_bitmap[bitmap_nr] = bh; |
| return retval; |
| } |
| |
| static int __load_block_bitmap(struct super_block *sb, |
| struct udf_bitmap *bitmap, |
| unsigned int block_group) |
| { |
| int retval = 0; |
| int nr_groups = bitmap->s_nr_groups; |
| |
| if (block_group >= nr_groups) { |
| udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, |
| nr_groups); |
| } |
| |
| if (bitmap->s_block_bitmap[block_group]) { |
| return block_group; |
| } else { |
| retval = read_block_bitmap(sb, bitmap, block_group, |
| block_group); |
| if (retval < 0) |
| return retval; |
| return block_group; |
| } |
| } |
| |
| static inline int load_block_bitmap(struct super_block *sb, |
| struct udf_bitmap *bitmap, |
| unsigned int block_group) |
| { |
| int slot; |
| |
| slot = __load_block_bitmap(sb, bitmap, block_group); |
| |
| if (slot < 0) |
| return slot; |
| |
| if (!bitmap->s_block_bitmap[slot]) |
| return -EIO; |
| |
| return slot; |
| } |
| |
| static void udf_bitmap_free_blocks(struct super_block *sb, |
| struct inode *inode, |
| struct udf_bitmap *bitmap, |
| kernel_lb_addr bloc, uint32_t offset, |
| uint32_t count) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| struct buffer_head *bh = NULL; |
| unsigned long block; |
| unsigned long block_group; |
| unsigned long bit; |
| unsigned long i; |
| int bitmap_nr; |
| unsigned long overflow; |
| |
| mutex_lock(&sbi->s_alloc_mutex); |
| if (bloc.logicalBlockNum < 0 || |
| (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) { |
| udf_debug("%d < %d || %d + %d > %d\n", |
| bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, |
| UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); |
| goto error_return; |
| } |
| |
| block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3); |
| |
| do_more: |
| overflow = 0; |
| block_group = block >> (sb->s_blocksize_bits + 3); |
| bit = block % (sb->s_blocksize << 3); |
| |
| /* |
| * Check to see if we are freeing blocks across a group boundary. |
| */ |
| if (bit + count > (sb->s_blocksize << 3)) { |
| overflow = bit + count - (sb->s_blocksize << 3); |
| count -= overflow; |
| } |
| bitmap_nr = load_block_bitmap(sb, bitmap, block_group); |
| if (bitmap_nr < 0) |
| goto error_return; |
| |
| bh = bitmap->s_block_bitmap[bitmap_nr]; |
| for (i = 0; i < count; i++) { |
| if (udf_set_bit(bit + i, bh->b_data)) { |
| udf_debug("bit %ld already set\n", bit + i); |
| udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]); |
| } else { |
| if (inode) |
| DQUOT_FREE_BLOCK(inode, 1); |
| if (UDF_SB_LVIDBH(sb)) { |
| UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = |
| cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)]) + 1); |
| } |
| } |
| } |
| mark_buffer_dirty(bh); |
| if (overflow) { |
| block += count; |
| count = overflow; |
| goto do_more; |
| } |
| error_return: |
| sb->s_dirt = 1; |
| if (UDF_SB_LVIDBH(sb)) |
| mark_buffer_dirty(UDF_SB_LVIDBH(sb)); |
| mutex_unlock(&sbi->s_alloc_mutex); |
| return; |
| } |
| |
| static int udf_bitmap_prealloc_blocks(struct super_block *sb, |
| struct inode *inode, |
| struct udf_bitmap *bitmap, |
| uint16_t partition, uint32_t first_block, |
| uint32_t block_count) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| int alloc_count = 0; |
| int bit, block, block_group, group_start; |
| int nr_groups, bitmap_nr; |
| struct buffer_head *bh; |
| |
| mutex_lock(&sbi->s_alloc_mutex); |
| if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) |
| goto out; |
| |
| if (first_block + block_count > UDF_SB_PARTLEN(sb, partition)) |
| block_count = UDF_SB_PARTLEN(sb, partition) - first_block; |
| |
| repeat: |
| nr_groups = (UDF_SB_PARTLEN(sb, partition) + |
| (sizeof(struct spaceBitmapDesc) << 3) + |
| (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8); |
| block = first_block + (sizeof(struct spaceBitmapDesc) << 3); |
| block_group = block >> (sb->s_blocksize_bits + 3); |
| group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); |
| |
| bitmap_nr = load_block_bitmap(sb, bitmap, block_group); |
| if (bitmap_nr < 0) |
| goto out; |
| bh = bitmap->s_block_bitmap[bitmap_nr]; |
| |
| bit = block % (sb->s_blocksize << 3); |
| |
| while (bit < (sb->s_blocksize << 3) && block_count > 0) { |
| if (!udf_test_bit(bit, bh->b_data)) { |
| goto out; |
| } else if (DQUOT_PREALLOC_BLOCK(inode, 1)) { |
| goto out; |
| } else if (!udf_clear_bit(bit, bh->b_data)) { |
| udf_debug("bit already cleared for block %d\n", bit); |
| DQUOT_FREE_BLOCK(inode, 1); |
| goto out; |
| } |
| block_count--; |
| alloc_count++; |
| bit++; |
| block++; |
| } |
| mark_buffer_dirty(bh); |
| if (block_count > 0) |
| goto repeat; |
| out: |
| if (UDF_SB_LVIDBH(sb)) { |
| UDF_SB_LVID(sb)->freeSpaceTable[partition] = |
| cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition]) - alloc_count); |
| mark_buffer_dirty(UDF_SB_LVIDBH(sb)); |
| } |
| sb->s_dirt = 1; |
| mutex_unlock(&sbi->s_alloc_mutex); |
| return alloc_count; |
| } |
| |
| static int udf_bitmap_new_block(struct super_block *sb, |
| struct inode *inode, |
| struct udf_bitmap *bitmap, uint16_t partition, |
| uint32_t goal, int *err) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| int newbit, bit = 0, block, block_group, group_start; |
| int end_goal, nr_groups, bitmap_nr, i; |
| struct buffer_head *bh = NULL; |
| char *ptr; |
| int newblock = 0; |
| |
| *err = -ENOSPC; |
| mutex_lock(&sbi->s_alloc_mutex); |
| |
| repeat: |
| if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) |
| goal = 0; |
| |
| nr_groups = bitmap->s_nr_groups; |
| block = goal + (sizeof(struct spaceBitmapDesc) << 3); |
| block_group = block >> (sb->s_blocksize_bits + 3); |
| group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); |
| |
| bitmap_nr = load_block_bitmap(sb, bitmap, block_group); |
| if (bitmap_nr < 0) |
| goto error_return; |
| bh = bitmap->s_block_bitmap[bitmap_nr]; |
| ptr = memscan((char *)bh->b_data + group_start, 0xFF, |
| sb->s_blocksize - group_start); |
| |
| if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { |
| bit = block % (sb->s_blocksize << 3); |
| if (udf_test_bit(bit, bh->b_data)) |
| goto got_block; |
| |
| end_goal = (bit + 63) & ~63; |
| bit = udf_find_next_one_bit(bh->b_data, end_goal, bit); |
| if (bit < end_goal) |
| goto got_block; |
| |
| ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3)); |
| newbit = (ptr - ((char *)bh->b_data)) << 3; |
| if (newbit < sb->s_blocksize << 3) { |
| bit = newbit; |
| goto search_back; |
| } |
| |
| newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit); |
| if (newbit < sb->s_blocksize << 3) { |
| bit = newbit; |
| goto got_block; |
| } |
| } |
| |
| for (i = 0; i < (nr_groups * 2); i++) { |
| block_group++; |
| if (block_group >= nr_groups) |
| block_group = 0; |
| group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); |
| |
| bitmap_nr = load_block_bitmap(sb, bitmap, block_group); |
| if (bitmap_nr < 0) |
| goto error_return; |
| bh = bitmap->s_block_bitmap[bitmap_nr]; |
| if (i < nr_groups) { |
| ptr = memscan((char *)bh->b_data + group_start, 0xFF, |
| sb->s_blocksize - group_start); |
| if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) { |
| bit = (ptr - ((char *)bh->b_data)) << 3; |
| break; |
| } |
| } else { |
| bit = udf_find_next_one_bit((char *)bh->b_data, |
| sb->s_blocksize << 3, |
| group_start << 3); |
| if (bit < sb->s_blocksize << 3) |
| break; |
| } |
| } |
| if (i >= (nr_groups * 2)) { |
| mutex_unlock(&sbi->s_alloc_mutex); |
| return newblock; |
| } |
| if (bit < sb->s_blocksize << 3) |
| goto search_back; |
| else |
| bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3); |
| if (bit >= sb->s_blocksize << 3) { |
| mutex_unlock(&sbi->s_alloc_mutex); |
| return 0; |
| } |
| |
| search_back: |
| for (i = 0; i < 7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--) |
| ; /* empty loop */ |
| |
| got_block: |
| |
| /* |
| * Check quota for allocation of this block. |
| */ |
| if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) { |
| mutex_unlock(&sbi->s_alloc_mutex); |
| *err = -EDQUOT; |
| return 0; |
| } |
| |
| newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) - |
| (sizeof(struct spaceBitmapDesc) << 3); |
| |
| if (!udf_clear_bit(bit, bh->b_data)) { |
| udf_debug("bit already cleared for block %d\n", bit); |
| goto repeat; |
| } |
| |
| mark_buffer_dirty(bh); |
| |
| if (UDF_SB_LVIDBH(sb)) { |
| UDF_SB_LVID(sb)->freeSpaceTable[partition] = |
| cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition]) - 1); |
| mark_buffer_dirty(UDF_SB_LVIDBH(sb)); |
| } |
| sb->s_dirt = 1; |
| mutex_unlock(&sbi->s_alloc_mutex); |
| *err = 0; |
| return newblock; |
| |
| error_return: |
| *err = -EIO; |
| mutex_unlock(&sbi->s_alloc_mutex); |
| return 0; |
| } |
| |
| static void udf_table_free_blocks(struct super_block *sb, |
| struct inode *inode, |
| struct inode *table, |
| kernel_lb_addr bloc, uint32_t offset, |
| uint32_t count) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| uint32_t start, end; |
| uint32_t elen; |
| kernel_lb_addr eloc; |
| struct extent_position oepos, epos; |
| int8_t etype; |
| int i; |
| |
| mutex_lock(&sbi->s_alloc_mutex); |
| if (bloc.logicalBlockNum < 0 || |
| (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) { |
| udf_debug("%d < %d || %d + %d > %d\n", |
| bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, |
| UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); |
| goto error_return; |
| } |
| |
| /* We do this up front - There are some error conditions that could occure, |
| but.. oh well */ |
| if (inode) |
| DQUOT_FREE_BLOCK(inode, count); |
| if (UDF_SB_LVIDBH(sb)) { |
| UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = |
| cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)]) + count); |
| mark_buffer_dirty(UDF_SB_LVIDBH(sb)); |
| } |
| |
| start = bloc.logicalBlockNum + offset; |
| end = bloc.logicalBlockNum + offset + count - 1; |
| |
| epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry); |
| elen = 0; |
| epos.block = oepos.block = UDF_I_LOCATION(table); |
| epos.bh = oepos.bh = NULL; |
| |
| while (count && |
| (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { |
| if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) == start)) { |
| if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) { |
| count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); |
| start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); |
| elen = (etype << 30) | (0x40000000 - sb->s_blocksize); |
| } else { |
| elen = (etype << 30) | (elen + (count << sb->s_blocksize_bits)); |
| start += count; |
| count = 0; |
| } |
| udf_write_aext(table, &oepos, eloc, elen, 1); |
| } else if (eloc.logicalBlockNum == (end + 1)) { |
| if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) { |
| count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); |
| end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); |
| eloc.logicalBlockNum -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); |
| elen = (etype << 30) | (0x40000000 - sb->s_blocksize); |
| } else { |
| eloc.logicalBlockNum = start; |
| elen = (etype << 30) | (elen + (count << sb->s_blocksize_bits)); |
| end -= count; |
| count = 0; |
| } |
| udf_write_aext(table, &oepos, eloc, elen, 1); |
| } |
| |
| if (epos.bh != oepos.bh) { |
| i = -1; |
| oepos.block = epos.block; |
| brelse(oepos.bh); |
| get_bh(epos.bh); |
| oepos.bh = epos.bh; |
| oepos.offset = 0; |
| } else { |
| oepos.offset = epos.offset; |
| } |
| } |
| |
| if (count) { |
| /* |
| * NOTE: we CANNOT use udf_add_aext here, as it can try to allocate |
| * a new block, and since we hold the super block lock already |
| * very bad things would happen :) |
| * |
| * We copy the behavior of udf_add_aext, but instead of |
| * trying to allocate a new block close to the existing one, |
| * we just steal a block from the extent we are trying to add. |
| * |
| * It would be nice if the blocks were close together, but it |
| * isn't required. |
| */ |
| |
| int adsize; |
| short_ad *sad = NULL; |
| long_ad *lad = NULL; |
| struct allocExtDesc *aed; |
| |
| eloc.logicalBlockNum = start; |
| elen = EXT_RECORDED_ALLOCATED | |
| (count << sb->s_blocksize_bits); |
| |
| if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) { |
| adsize = sizeof(short_ad); |
| } else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) { |
| adsize = sizeof(long_ad); |
| } else { |
| brelse(oepos.bh); |
| brelse(epos.bh); |
| goto error_return; |
| } |
| |
| if (epos.offset + (2 * adsize) > sb->s_blocksize) { |
| char *sptr, *dptr; |
| int loffset; |
| |
| brelse(oepos.bh); |
| oepos = epos; |
| |
| /* Steal a block from the extent being free'd */ |
| epos.block.logicalBlockNum = eloc.logicalBlockNum; |
| eloc.logicalBlockNum++; |
| elen -= sb->s_blocksize; |
| |
| if (!(epos.bh = udf_tread(sb, udf_get_lb_pblock(sb, epos.block, 0)))) { |
| brelse(oepos.bh); |
| goto error_return; |
| } |
| aed = (struct allocExtDesc *)(epos.bh->b_data); |
| aed->previousAllocExtLocation = cpu_to_le32(oepos.block.logicalBlockNum); |
| if (epos.offset + adsize > sb->s_blocksize) { |
| loffset = epos.offset; |
| aed->lengthAllocDescs = cpu_to_le32(adsize); |
| sptr = UDF_I_DATA(inode) + epos.offset - |
| udf_file_entry_alloc_offset(inode) + |
| UDF_I_LENEATTR(inode) - adsize; |
| dptr = epos.bh->b_data + sizeof(struct allocExtDesc); |
| memcpy(dptr, sptr, adsize); |
| epos.offset = sizeof(struct allocExtDesc) + adsize; |
| } else { |
| loffset = epos.offset + adsize; |
| aed->lengthAllocDescs = cpu_to_le32(0); |
| sptr = oepos.bh->b_data + epos.offset; |
| epos.offset = sizeof(struct allocExtDesc); |
| |
| if (oepos.bh) { |
| aed = (struct allocExtDesc *)oepos.bh->b_data; |
| aed->lengthAllocDescs = |
| cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); |
| } else { |
| UDF_I_LENALLOC(table) += adsize; |
| mark_inode_dirty(table); |
| } |
| } |
| if (UDF_SB_UDFREV(sb) >= 0x0200) |
| udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 3, 1, |
| epos.block.logicalBlockNum, sizeof(tag)); |
| else |
| udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 2, 1, |
| epos.block.logicalBlockNum, sizeof(tag)); |
| |
| switch (UDF_I_ALLOCTYPE(table)) { |
| case ICBTAG_FLAG_AD_SHORT: |
| sad = (short_ad *)sptr; |
| sad->extLength = cpu_to_le32( |
| EXT_NEXT_EXTENT_ALLOCDECS | |
| sb->s_blocksize); |
| sad->extPosition = cpu_to_le32(epos.block.logicalBlockNum); |
| break; |
| case ICBTAG_FLAG_AD_LONG: |
| lad = (long_ad *)sptr; |
| lad->extLength = cpu_to_le32( |
| EXT_NEXT_EXTENT_ALLOCDECS | |
| sb->s_blocksize); |
| lad->extLocation = cpu_to_lelb(epos.block); |
| break; |
| } |
| if (oepos.bh) { |
| udf_update_tag(oepos.bh->b_data, loffset); |
| mark_buffer_dirty(oepos.bh); |
| } else { |
| mark_inode_dirty(table); |
| } |
| } |
| |
| if (elen) { /* It's possible that stealing the block emptied the extent */ |
| udf_write_aext(table, &epos, eloc, elen, 1); |
| |
| if (!epos.bh) { |
| UDF_I_LENALLOC(table) += adsize; |
| mark_inode_dirty(table); |
| } else { |
| aed = (struct allocExtDesc *)epos.bh->b_data; |
| aed->lengthAllocDescs = |
| cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); |
| udf_update_tag(epos.bh->b_data, epos.offset); |
| mark_buffer_dirty(epos.bh); |
| } |
| } |
| } |
| |
| brelse(epos.bh); |
| brelse(oepos.bh); |
| |
| error_return: |
| sb->s_dirt = 1; |
| mutex_unlock(&sbi->s_alloc_mutex); |
| return; |
| } |
| |
| static int udf_table_prealloc_blocks(struct super_block *sb, |
| struct inode *inode, |
| struct inode *table, uint16_t partition, |
| uint32_t first_block, uint32_t block_count) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| int alloc_count = 0; |
| uint32_t elen, adsize; |
| kernel_lb_addr eloc; |
| struct extent_position epos; |
| int8_t etype = -1; |
| |
| if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) |
| return 0; |
| |
| if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) |
| adsize = sizeof(short_ad); |
| else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) |
| adsize = sizeof(long_ad); |
| else |
| return 0; |
| |
| mutex_lock(&sbi->s_alloc_mutex); |
| epos.offset = sizeof(struct unallocSpaceEntry); |
| epos.block = UDF_I_LOCATION(table); |
| epos.bh = NULL; |
| eloc.logicalBlockNum = 0xFFFFFFFF; |
| |
| while (first_block != eloc.logicalBlockNum && |
| (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { |
| udf_debug("eloc=%d, elen=%d, first_block=%d\n", |
| eloc.logicalBlockNum, elen, first_block); |
| ; /* empty loop body */ |
| } |
| |
| if (first_block == eloc.logicalBlockNum) { |
| epos.offset -= adsize; |
| |
| alloc_count = (elen >> sb->s_blocksize_bits); |
| if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count)) { |
| alloc_count = 0; |
| } else if (alloc_count > block_count) { |
| alloc_count = block_count; |
| eloc.logicalBlockNum += alloc_count; |
| elen -= (alloc_count << sb->s_blocksize_bits); |
| udf_write_aext(table, &epos, eloc, (etype << 30) | elen, 1); |
| } else { |
| udf_delete_aext(table, epos, eloc, (etype << 30) | elen); |
| } |
| } else { |
| alloc_count = 0; |
| } |
| |
| brelse(epos.bh); |
| |
| if (alloc_count && UDF_SB_LVIDBH(sb)) { |
| UDF_SB_LVID(sb)->freeSpaceTable[partition] = |
| cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition]) - alloc_count); |
| mark_buffer_dirty(UDF_SB_LVIDBH(sb)); |
| sb->s_dirt = 1; |
| } |
| mutex_unlock(&sbi->s_alloc_mutex); |
| return alloc_count; |
| } |
| |
| static int udf_table_new_block(struct super_block *sb, |
| struct inode *inode, |
| struct inode *table, uint16_t partition, |
| uint32_t goal, int *err) |
| { |
| struct udf_sb_info *sbi = UDF_SB(sb); |
| uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF; |
| uint32_t newblock = 0, adsize; |
| uint32_t elen, goal_elen = 0; |
| kernel_lb_addr eloc, goal_eloc; |
| struct extent_position epos, goal_epos; |
| int8_t etype; |
| |
| *err = -ENOSPC; |
| |
| if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) |
| adsize = sizeof(short_ad); |
| else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) |
| adsize = sizeof(long_ad); |
| else |
| return newblock; |
| |
| mutex_lock(&sbi->s_alloc_mutex); |
| if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) |
| goal = 0; |
| |
| /* We search for the closest matching block to goal. If we find a exact hit, |
| we stop. Otherwise we keep going till we run out of extents. |
| We store the buffer_head, bloc, and extoffset of the current closest |
| match and use that when we are done. |
| */ |
| epos.offset = sizeof(struct unallocSpaceEntry); |
| epos.block = UDF_I_LOCATION(table); |
| epos.bh = goal_epos.bh = NULL; |
| |
| while (spread && |
| (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { |
| if (goal >= eloc.logicalBlockNum) { |
| if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) |
| nspread = 0; |
| else |
| nspread = goal - eloc.logicalBlockNum - |
| (elen >> sb->s_blocksize_bits); |
| } else { |
| nspread = eloc.logicalBlockNum - goal; |
| } |
| |
| if (nspread < spread) { |
| spread = nspread; |
| if (goal_epos.bh != epos.bh) { |
| brelse(goal_epos.bh); |
| goal_epos.bh = epos.bh; |
| get_bh(goal_epos.bh); |
| } |
| goal_epos.block = epos.block; |
| goal_epos.offset = epos.offset - adsize; |
| goal_eloc = eloc; |
| goal_elen = (etype << 30) | elen; |
| } |
| } |
| |
| brelse(epos.bh); |
| |
| if (spread == 0xFFFFFFFF) { |
| brelse(goal_epos.bh); |
| mutex_unlock(&sbi->s_alloc_mutex); |
| return 0; |
| } |
| |
| /* Only allocate blocks from the beginning of the extent. |
| That way, we only delete (empty) extents, never have to insert an |
| extent because of splitting */ |
| /* This works, but very poorly.... */ |
| |
| newblock = goal_eloc.logicalBlockNum; |
| goal_eloc.logicalBlockNum++; |
| goal_elen -= sb->s_blocksize; |
| |
| if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) { |
| brelse(goal_epos.bh); |
| mutex_unlock(&sbi->s_alloc_mutex); |
| *err = -EDQUOT; |
| return 0; |
| } |
| |
| if (goal_elen) |
| udf_write_aext(table, &goal_epos, goal_eloc, goal_elen, 1); |
| else |
| udf_delete_aext(table, goal_epos, goal_eloc, goal_elen); |
| brelse(goal_epos.bh); |
| |
| if (UDF_SB_LVIDBH(sb)) { |
| UDF_SB_LVID(sb)->freeSpaceTable[partition] = |
| cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition]) - 1); |
| mark_buffer_dirty(UDF_SB_LVIDBH(sb)); |
| } |
| |
| sb->s_dirt = 1; |
| mutex_unlock(&sbi->s_alloc_mutex); |
| *err = 0; |
| return newblock; |
| } |
| |
| inline void udf_free_blocks(struct super_block *sb, |
| struct inode *inode, |
| kernel_lb_addr bloc, uint32_t offset, |
| uint32_t count) |
| { |
| uint16_t partition = bloc.partitionReferenceNum; |
| |
| if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) { |
| return udf_bitmap_free_blocks(sb, inode, |
| UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, |
| bloc, offset, count); |
| } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) { |
| return udf_table_free_blocks(sb, inode, |
| UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, |
| bloc, offset, count); |
| } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) { |
| return udf_bitmap_free_blocks(sb, inode, |
| UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, |
| bloc, offset, count); |
| } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) { |
| return udf_table_free_blocks(sb, inode, |
| UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, |
| bloc, offset, count); |
| } else { |
| return; |
| } |
| } |
| |
| inline int udf_prealloc_blocks(struct super_block *sb, |
| struct inode *inode, |
| uint16_t partition, uint32_t first_block, |
| uint32_t block_count) |
| { |
| if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) { |
| return udf_bitmap_prealloc_blocks(sb, inode, |
| UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, |
| partition, first_block, block_count); |
| } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) { |
| return udf_table_prealloc_blocks(sb, inode, |
| UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, |
| partition, first_block, block_count); |
| } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) { |
| return udf_bitmap_prealloc_blocks(sb, inode, |
| UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, |
| partition, first_block, block_count); |
| } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) { |
| return udf_table_prealloc_blocks(sb, inode, |
| UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, |
| partition, first_block, block_count); |
| } else { |
| return 0; |
| } |
| } |
| |
| inline int udf_new_block(struct super_block *sb, |
| struct inode *inode, |
| uint16_t partition, uint32_t goal, int *err) |
| { |
| int ret; |
| |
| if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) { |
| ret = udf_bitmap_new_block(sb, inode, |
| UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, |
| partition, goal, err); |
| return ret; |
| } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) { |
| return udf_table_new_block(sb, inode, |
| UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, |
| partition, goal, err); |
| } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) { |
| return udf_bitmap_new_block(sb, inode, |
| UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, |
| partition, goal, err); |
| } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) { |
| return udf_table_new_block(sb, inode, |
| UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, |
| partition, goal, err); |
| } else { |
| *err = -EIO; |
| return 0; |
| } |
| } |