| #ifndef _ASM_X86_MSR_H |
| #define _ASM_X86_MSR_H |
| |
| #include "msr-index.h" |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <asm/asm.h> |
| #include <asm/errno.h> |
| #include <asm/cpumask.h> |
| #include <uapi/asm/msr.h> |
| |
| struct msr { |
| union { |
| struct { |
| u32 l; |
| u32 h; |
| }; |
| u64 q; |
| }; |
| }; |
| |
| struct msr_info { |
| u32 msr_no; |
| struct msr reg; |
| struct msr *msrs; |
| int err; |
| }; |
| |
| struct msr_regs_info { |
| u32 *regs; |
| int err; |
| }; |
| |
| struct saved_msr { |
| bool valid; |
| struct msr_info info; |
| }; |
| |
| struct saved_msrs { |
| unsigned int num; |
| struct saved_msr *array; |
| }; |
| |
| /* |
| * both i386 and x86_64 returns 64-bit value in edx:eax, but gcc's "A" |
| * constraint has different meanings. For i386, "A" means exactly |
| * edx:eax, while for x86_64 it doesn't mean rdx:rax or edx:eax. Instead, |
| * it means rax *or* rdx. |
| */ |
| #ifdef CONFIG_X86_64 |
| /* Using 64-bit values saves one instruction clearing the high half of low */ |
| #define DECLARE_ARGS(val, low, high) unsigned long low, high |
| #define EAX_EDX_VAL(val, low, high) ((low) | (high) << 32) |
| #define EAX_EDX_RET(val, low, high) "=a" (low), "=d" (high) |
| #else |
| #define DECLARE_ARGS(val, low, high) unsigned long long val |
| #define EAX_EDX_VAL(val, low, high) (val) |
| #define EAX_EDX_RET(val, low, high) "=A" (val) |
| #endif |
| |
| #ifdef CONFIG_TRACEPOINTS |
| /* |
| * Be very careful with includes. This header is prone to include loops. |
| */ |
| #include <asm/atomic.h> |
| #include <linux/tracepoint-defs.h> |
| |
| extern struct tracepoint __tracepoint_read_msr; |
| extern struct tracepoint __tracepoint_write_msr; |
| extern struct tracepoint __tracepoint_rdpmc; |
| #define msr_tracepoint_active(t) static_key_false(&(t).key) |
| extern void do_trace_write_msr(unsigned int msr, u64 val, int failed); |
| extern void do_trace_read_msr(unsigned int msr, u64 val, int failed); |
| extern void do_trace_rdpmc(unsigned int msr, u64 val, int failed); |
| #else |
| #define msr_tracepoint_active(t) false |
| static inline void do_trace_write_msr(unsigned int msr, u64 val, int failed) {} |
| static inline void do_trace_read_msr(unsigned int msr, u64 val, int failed) {} |
| static inline void do_trace_rdpmc(unsigned int msr, u64 val, int failed) {} |
| #endif |
| |
| static inline unsigned long long native_read_msr(unsigned int msr) |
| { |
| DECLARE_ARGS(val, low, high); |
| |
| asm volatile("1: rdmsr\n" |
| "2:\n" |
| _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_unsafe) |
| : EAX_EDX_RET(val, low, high) : "c" (msr)); |
| if (msr_tracepoint_active(__tracepoint_read_msr)) |
| do_trace_read_msr(msr, EAX_EDX_VAL(val, low, high), 0); |
| return EAX_EDX_VAL(val, low, high); |
| } |
| |
| static inline unsigned long long native_read_msr_safe(unsigned int msr, |
| int *err) |
| { |
| DECLARE_ARGS(val, low, high); |
| |
| asm volatile("2: rdmsr ; xor %[err],%[err]\n" |
| "1:\n\t" |
| ".section .fixup,\"ax\"\n\t" |
| "3: mov %[fault],%[err]\n\t" |
| "xorl %%eax, %%eax\n\t" |
| "xorl %%edx, %%edx\n\t" |
| "jmp 1b\n\t" |
| ".previous\n\t" |
| _ASM_EXTABLE(2b, 3b) |
| : [err] "=r" (*err), EAX_EDX_RET(val, low, high) |
| : "c" (msr), [fault] "i" (-EIO)); |
| if (msr_tracepoint_active(__tracepoint_read_msr)) |
| do_trace_read_msr(msr, EAX_EDX_VAL(val, low, high), *err); |
| return EAX_EDX_VAL(val, low, high); |
| } |
| |
| /* Can be uninlined because referenced by paravirt */ |
| static inline void notrace |
| __native_write_msr_notrace(unsigned int msr, u32 low, u32 high) |
| { |
| asm volatile("1: wrmsr\n" |
| "2:\n" |
| _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_unsafe) |
| : : "c" (msr), "a"(low), "d" (high) : "memory"); |
| } |
| |
| /* Can be uninlined because referenced by paravirt */ |
| static inline void notrace |
| native_write_msr(unsigned int msr, u32 low, u32 high) |
| { |
| __native_write_msr_notrace(msr, low, high); |
| if (msr_tracepoint_active(__tracepoint_write_msr)) |
| do_trace_write_msr(msr, ((u64)high << 32 | low), 0); |
| } |
| |
| static inline void |
| wrmsr_notrace(unsigned int msr, u32 low, u32 high) |
| { |
| __native_write_msr_notrace(msr, low, high); |
| } |
| |
| /* Can be uninlined because referenced by paravirt */ |
| static inline int notrace |
| native_write_msr_safe(unsigned int msr, u32 low, u32 high) |
| { |
| int err; |
| |
| asm volatile("2: wrmsr ; xor %[err],%[err]\n" |
| "1:\n\t" |
| ".section .fixup,\"ax\"\n\t" |
| "3: mov %[fault],%[err] ; jmp 1b\n\t" |
| ".previous\n\t" |
| _ASM_EXTABLE(2b, 3b) |
| : [err] "=a" (err) |
| : "c" (msr), "0" (low), "d" (high), |
| [fault] "i" (-EIO) |
| : "memory"); |
| if (msr_tracepoint_active(__tracepoint_write_msr)) |
| do_trace_write_msr(msr, ((u64)high << 32 | low), err); |
| return err; |
| } |
| |
| extern int rdmsr_safe_regs(u32 regs[8]); |
| extern int wrmsr_safe_regs(u32 regs[8]); |
| |
| /** |
| * rdtsc() - returns the current TSC without ordering constraints |
| * |
| * rdtsc() returns the result of RDTSC as a 64-bit integer. The |
| * only ordering constraint it supplies is the ordering implied by |
| * "asm volatile": it will put the RDTSC in the place you expect. The |
| * CPU can and will speculatively execute that RDTSC, though, so the |
| * results can be non-monotonic if compared on different CPUs. |
| */ |
| static __always_inline unsigned long long rdtsc(void) |
| { |
| DECLARE_ARGS(val, low, high); |
| |
| asm volatile("rdtsc" : EAX_EDX_RET(val, low, high)); |
| |
| return EAX_EDX_VAL(val, low, high); |
| } |
| |
| /** |
| * rdtsc_ordered() - read the current TSC in program order |
| * |
| * rdtsc_ordered() returns the result of RDTSC as a 64-bit integer. |
| * It is ordered like a load to a global in-memory counter. It should |
| * be impossible to observe non-monotonic rdtsc_unordered() behavior |
| * across multiple CPUs as long as the TSC is synced. |
| */ |
| static __always_inline unsigned long long rdtsc_ordered(void) |
| { |
| /* |
| * The RDTSC instruction is not ordered relative to memory |
| * access. The Intel SDM and the AMD APM are both vague on this |
| * point, but empirically an RDTSC instruction can be |
| * speculatively executed before prior loads. An RDTSC |
| * immediately after an appropriate barrier appears to be |
| * ordered as a normal load, that is, it provides the same |
| * ordering guarantees as reading from a global memory location |
| * that some other imaginary CPU is updating continuously with a |
| * time stamp. |
| */ |
| alternative_2("", "mfence", X86_FEATURE_MFENCE_RDTSC, |
| "lfence", X86_FEATURE_LFENCE_RDTSC); |
| return rdtsc(); |
| } |
| |
| /* Deprecated, keep it for a cycle for easier merging: */ |
| #define rdtscll(now) do { (now) = rdtsc_ordered(); } while (0) |
| |
| static inline unsigned long long native_read_pmc(int counter) |
| { |
| DECLARE_ARGS(val, low, high); |
| |
| asm volatile("rdpmc" : EAX_EDX_RET(val, low, high) : "c" (counter)); |
| if (msr_tracepoint_active(__tracepoint_rdpmc)) |
| do_trace_rdpmc(counter, EAX_EDX_VAL(val, low, high), 0); |
| return EAX_EDX_VAL(val, low, high); |
| } |
| |
| #ifdef CONFIG_PARAVIRT |
| #include <asm/paravirt.h> |
| #else |
| #include <linux/errno.h> |
| /* |
| * Access to machine-specific registers (available on 586 and better only) |
| * Note: the rd* operations modify the parameters directly (without using |
| * pointer indirection), this allows gcc to optimize better |
| */ |
| |
| #define rdmsr(msr, low, high) \ |
| do { \ |
| u64 __val = native_read_msr((msr)); \ |
| (void)((low) = (u32)__val); \ |
| (void)((high) = (u32)(__val >> 32)); \ |
| } while (0) |
| |
| static inline void wrmsr(unsigned int msr, u32 low, u32 high) |
| { |
| native_write_msr(msr, low, high); |
| } |
| |
| #define rdmsrl(msr, val) \ |
| ((val) = native_read_msr((msr))) |
| |
| static inline void wrmsrl(unsigned int msr, u64 val) |
| { |
| native_write_msr(msr, (u32)(val & 0xffffffffULL), (u32)(val >> 32)); |
| } |
| |
| /* wrmsr with exception handling */ |
| static inline int wrmsr_safe(unsigned int msr, u32 low, u32 high) |
| { |
| return native_write_msr_safe(msr, low, high); |
| } |
| |
| /* rdmsr with exception handling */ |
| #define rdmsr_safe(msr, low, high) \ |
| ({ \ |
| int __err; \ |
| u64 __val = native_read_msr_safe((msr), &__err); \ |
| (*low) = (u32)__val; \ |
| (*high) = (u32)(__val >> 32); \ |
| __err; \ |
| }) |
| |
| static inline int rdmsrl_safe(unsigned int msr, unsigned long long *p) |
| { |
| int err; |
| |
| *p = native_read_msr_safe(msr, &err); |
| return err; |
| } |
| |
| #define rdpmc(counter, low, high) \ |
| do { \ |
| u64 _l = native_read_pmc((counter)); \ |
| (low) = (u32)_l; \ |
| (high) = (u32)(_l >> 32); \ |
| } while (0) |
| |
| #define rdpmcl(counter, val) ((val) = native_read_pmc(counter)) |
| |
| #endif /* !CONFIG_PARAVIRT */ |
| |
| /* |
| * 64-bit version of wrmsr_safe(): |
| */ |
| static inline int wrmsrl_safe(u32 msr, u64 val) |
| { |
| return wrmsr_safe(msr, (u32)val, (u32)(val >> 32)); |
| } |
| |
| #define write_tsc(low, high) wrmsr(MSR_IA32_TSC, (low), (high)) |
| |
| #define write_rdtscp_aux(val) wrmsr(MSR_TSC_AUX, (val), 0) |
| |
| struct msr *msrs_alloc(void); |
| void msrs_free(struct msr *msrs); |
| int msr_set_bit(u32 msr, u8 bit); |
| int msr_clear_bit(u32 msr, u8 bit); |
| |
| #ifdef CONFIG_SMP |
| int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h); |
| int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h); |
| int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q); |
| int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q); |
| void rdmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs); |
| void wrmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr *msrs); |
| int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h); |
| int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h); |
| int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q); |
| int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q); |
| int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]); |
| int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]); |
| #else /* CONFIG_SMP */ |
| static inline int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h) |
| { |
| rdmsr(msr_no, *l, *h); |
| return 0; |
| } |
| static inline int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h) |
| { |
| wrmsr(msr_no, l, h); |
| return 0; |
| } |
| static inline int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q) |
| { |
| rdmsrl(msr_no, *q); |
| return 0; |
| } |
| static inline int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q) |
| { |
| wrmsrl(msr_no, q); |
| return 0; |
| } |
| static inline void rdmsr_on_cpus(const struct cpumask *m, u32 msr_no, |
| struct msr *msrs) |
| { |
| rdmsr_on_cpu(0, msr_no, &(msrs[0].l), &(msrs[0].h)); |
| } |
| static inline void wrmsr_on_cpus(const struct cpumask *m, u32 msr_no, |
| struct msr *msrs) |
| { |
| wrmsr_on_cpu(0, msr_no, msrs[0].l, msrs[0].h); |
| } |
| static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, |
| u32 *l, u32 *h) |
| { |
| return rdmsr_safe(msr_no, l, h); |
| } |
| static inline int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h) |
| { |
| return wrmsr_safe(msr_no, l, h); |
| } |
| static inline int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q) |
| { |
| return rdmsrl_safe(msr_no, q); |
| } |
| static inline int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q) |
| { |
| return wrmsrl_safe(msr_no, q); |
| } |
| static inline int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]) |
| { |
| return rdmsr_safe_regs(regs); |
| } |
| static inline int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]) |
| { |
| return wrmsr_safe_regs(regs); |
| } |
| #endif /* CONFIG_SMP */ |
| #endif /* __ASSEMBLY__ */ |
| #endif /* _ASM_X86_MSR_H */ |