blob: 1e6bdba2675639568443cc1afb7ca5e603ae151a [file] [log] [blame]
/*
* linux/drivers/mmc/mmci.c - ARM PrimeCell MMCI PL180/1 driver
*
* Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/mmc/host.h>
#include <linux/mmc/protocol.h>
#include <asm/div64.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/scatterlist.h>
#include <asm/sizes.h>
#include <asm/hardware/amba.h>
#include <asm/hardware/clock.h>
#include <asm/mach/mmc.h>
#include "mmci.h"
#define DRIVER_NAME "mmci-pl18x"
#ifdef CONFIG_MMC_DEBUG
#define DBG(host,fmt,args...) \
pr_debug("%s: %s: " fmt, mmc_hostname(host->mmc), __func__ , args)
#else
#define DBG(host,fmt,args...) do { } while (0)
#endif
static unsigned int fmax = 515633;
static void
mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
{
writel(0, host->base + MMCICOMMAND);
host->mrq = NULL;
host->cmd = NULL;
if (mrq->data)
mrq->data->bytes_xfered = host->data_xfered;
/*
* Need to drop the host lock here; mmc_request_done may call
* back into the driver...
*/
spin_unlock(&host->lock);
mmc_request_done(host->mmc, mrq);
spin_lock(&host->lock);
}
static void mmci_stop_data(struct mmci_host *host)
{
writel(0, host->base + MMCIDATACTRL);
writel(0, host->base + MMCIMASK1);
host->data = NULL;
}
static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
{
unsigned int datactrl, timeout, irqmask;
unsigned long long clks;
void __iomem *base;
DBG(host, "blksz %04x blks %04x flags %08x\n",
1 << data->blksz_bits, data->blocks, data->flags);
host->data = data;
host->size = data->blocks << data->blksz_bits;
host->data_xfered = 0;
mmci_init_sg(host, data);
clks = (unsigned long long)data->timeout_ns * host->cclk;
do_div(clks, 1000000000UL);
timeout = data->timeout_clks + (unsigned int)clks;
base = host->base;
writel(timeout, base + MMCIDATATIMER);
writel(host->size, base + MMCIDATALENGTH);
datactrl = MCI_DPSM_ENABLE | data->blksz_bits << 4;
if (data->flags & MMC_DATA_READ) {
datactrl |= MCI_DPSM_DIRECTION;
irqmask = MCI_RXFIFOHALFFULLMASK;
} else {
/*
* We don't actually need to include "FIFO empty" here
* since its implicit in "FIFO half empty".
*/
irqmask = MCI_TXFIFOHALFEMPTYMASK;
}
writel(datactrl, base + MMCIDATACTRL);
writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
writel(irqmask, base + MMCIMASK1);
}
static void
mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
{
void __iomem *base = host->base;
DBG(host, "op %02x arg %08x flags %08x\n",
cmd->opcode, cmd->arg, cmd->flags);
if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
writel(0, base + MMCICOMMAND);
udelay(1);
}
c |= cmd->opcode | MCI_CPSM_ENABLE;
switch (cmd->flags & MMC_RSP_MASK) {
case MMC_RSP_NONE:
default:
break;
case MMC_RSP_LONG:
c |= MCI_CPSM_LONGRSP;
case MMC_RSP_SHORT:
c |= MCI_CPSM_RESPONSE;
break;
}
if (/*interrupt*/0)
c |= MCI_CPSM_INTERRUPT;
host->cmd = cmd;
writel(cmd->arg, base + MMCIARGUMENT);
writel(c, base + MMCICOMMAND);
}
static void
mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
unsigned int status)
{
if (status & MCI_DATABLOCKEND) {
host->data_xfered += 1 << data->blksz_bits;
}
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
if (status & MCI_DATACRCFAIL)
data->error = MMC_ERR_BADCRC;
else if (status & MCI_DATATIMEOUT)
data->error = MMC_ERR_TIMEOUT;
else if (status & (MCI_TXUNDERRUN|MCI_RXOVERRUN))
data->error = MMC_ERR_FIFO;
status |= MCI_DATAEND;
}
if (status & MCI_DATAEND) {
mmci_stop_data(host);
if (!data->stop) {
mmci_request_end(host, data->mrq);
} else {
mmci_start_command(host, data->stop, 0);
}
}
}
static void
mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
unsigned int status)
{
void __iomem *base = host->base;
host->cmd = NULL;
cmd->resp[0] = readl(base + MMCIRESPONSE0);
cmd->resp[1] = readl(base + MMCIRESPONSE1);
cmd->resp[2] = readl(base + MMCIRESPONSE2);
cmd->resp[3] = readl(base + MMCIRESPONSE3);
if (status & MCI_CMDTIMEOUT) {
cmd->error = MMC_ERR_TIMEOUT;
} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
cmd->error = MMC_ERR_BADCRC;
}
if (!cmd->data || cmd->error != MMC_ERR_NONE) {
mmci_request_end(host, cmd->mrq);
} else if (!(cmd->data->flags & MMC_DATA_READ)) {
mmci_start_data(host, cmd->data);
}
}
static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
{
void __iomem *base = host->base;
char *ptr = buffer;
u32 status;
do {
int count = host->size - (readl(base + MMCIFIFOCNT) << 2);
if (count > remain)
count = remain;
if (count <= 0)
break;
readsl(base + MMCIFIFO, ptr, count >> 2);
ptr += count;
remain -= count;
if (remain == 0)
break;
status = readl(base + MMCISTATUS);
} while (status & MCI_RXDATAAVLBL);
return ptr - buffer;
}
static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
{
void __iomem *base = host->base;
char *ptr = buffer;
do {
unsigned int count, maxcnt;
maxcnt = status & MCI_TXFIFOEMPTY ? MCI_FIFOSIZE : MCI_FIFOHALFSIZE;
count = min(remain, maxcnt);
writesl(base + MMCIFIFO, ptr, count >> 2);
ptr += count;
remain -= count;
if (remain == 0)
break;
status = readl(base + MMCISTATUS);
} while (status & MCI_TXFIFOHALFEMPTY);
return ptr - buffer;
}
/*
* PIO data transfer IRQ handler.
*/
static irqreturn_t mmci_pio_irq(int irq, void *dev_id, struct pt_regs *regs)
{
struct mmci_host *host = dev_id;
void __iomem *base = host->base;
u32 status;
status = readl(base + MMCISTATUS);
DBG(host, "irq1 %08x\n", status);
do {
unsigned long flags;
unsigned int remain, len;
char *buffer;
/*
* For write, we only need to test the half-empty flag
* here - if the FIFO is completely empty, then by
* definition it is more than half empty.
*
* For read, check for data available.
*/
if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
break;
/*
* Map the current scatter buffer.
*/
buffer = mmci_kmap_atomic(host, &flags) + host->sg_off;
remain = host->sg_ptr->length - host->sg_off;
len = 0;
if (status & MCI_RXACTIVE)
len = mmci_pio_read(host, buffer, remain);
if (status & MCI_TXACTIVE)
len = mmci_pio_write(host, buffer, remain, status);
/*
* Unmap the buffer.
*/
mmci_kunmap_atomic(host, &flags);
host->sg_off += len;
host->size -= len;
remain -= len;
if (remain)
break;
if (!mmci_next_sg(host))
break;
status = readl(base + MMCISTATUS);
} while (1);
/*
* If we're nearing the end of the read, switch to
* "any data available" mode.
*/
if (status & MCI_RXACTIVE && host->size < MCI_FIFOSIZE)
writel(MCI_RXDATAAVLBLMASK, base + MMCIMASK1);
/*
* If we run out of data, disable the data IRQs; this
* prevents a race where the FIFO becomes empty before
* the chip itself has disabled the data path, and
* stops us racing with our data end IRQ.
*/
if (host->size == 0) {
writel(0, base + MMCIMASK1);
writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
}
return IRQ_HANDLED;
}
/*
* Handle completion of command and data transfers.
*/
static irqreturn_t mmci_irq(int irq, void *dev_id, struct pt_regs *regs)
{
struct mmci_host *host = dev_id;
u32 status;
int ret = 0;
spin_lock(&host->lock);
do {
struct mmc_command *cmd;
struct mmc_data *data;
status = readl(host->base + MMCISTATUS);
status &= readl(host->base + MMCIMASK0);
writel(status, host->base + MMCICLEAR);
DBG(host, "irq0 %08x\n", status);
data = host->data;
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
mmci_data_irq(host, data, status);
cmd = host->cmd;
if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
mmci_cmd_irq(host, cmd, status);
ret = 1;
} while (status);
spin_unlock(&host->lock);
return IRQ_RETVAL(ret);
}
static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mmci_host *host = mmc_priv(mmc);
WARN_ON(host->mrq != NULL);
spin_lock_irq(&host->lock);
host->mrq = mrq;
if (mrq->data && mrq->data->flags & MMC_DATA_READ)
mmci_start_data(host, mrq->data);
mmci_start_command(host, mrq->cmd, 0);
spin_unlock_irq(&host->lock);
}
static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmci_host *host = mmc_priv(mmc);
u32 clk = 0, pwr = 0;
DBG(host, "clock %uHz busmode %u powermode %u Vdd %u\n",
ios->clock, ios->bus_mode, ios->power_mode, ios->vdd);
if (ios->clock) {
if (ios->clock >= host->mclk) {
clk = MCI_CLK_BYPASS;
host->cclk = host->mclk;
} else {
clk = host->mclk / (2 * ios->clock) - 1;
if (clk > 256)
clk = 255;
host->cclk = host->mclk / (2 * (clk + 1));
}
clk |= MCI_CLK_ENABLE;
}
if (host->plat->translate_vdd)
pwr |= host->plat->translate_vdd(mmc_dev(mmc), ios->vdd);
switch (ios->power_mode) {
case MMC_POWER_OFF:
break;
case MMC_POWER_UP:
pwr |= MCI_PWR_UP;
break;
case MMC_POWER_ON:
pwr |= MCI_PWR_ON;
break;
}
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
pwr |= MCI_ROD;
writel(clk, host->base + MMCICLOCK);
if (host->pwr != pwr) {
host->pwr = pwr;
writel(pwr, host->base + MMCIPOWER);
}
}
static struct mmc_host_ops mmci_ops = {
.request = mmci_request,
.set_ios = mmci_set_ios,
};
static void mmci_check_status(unsigned long data)
{
struct mmci_host *host = (struct mmci_host *)data;
unsigned int status;
status = host->plat->status(mmc_dev(host->mmc));
if (status ^ host->oldstat)
mmc_detect_change(host->mmc, 0);
host->oldstat = status;
mod_timer(&host->timer, jiffies + HZ);
}
static int mmci_probe(struct amba_device *dev, void *id)
{
struct mmc_platform_data *plat = dev->dev.platform_data;
struct mmci_host *host;
struct mmc_host *mmc;
int ret;
/* must have platform data */
if (!plat) {
ret = -EINVAL;
goto out;
}
ret = amba_request_regions(dev, DRIVER_NAME);
if (ret)
goto out;
mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
if (!mmc) {
ret = -ENOMEM;
goto rel_regions;
}
host = mmc_priv(mmc);
host->clk = clk_get(&dev->dev, "MCLK");
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
host->clk = NULL;
goto host_free;
}
ret = clk_use(host->clk);
if (ret)
goto clk_free;
ret = clk_enable(host->clk);
if (ret)
goto clk_unuse;
host->plat = plat;
host->mclk = clk_get_rate(host->clk);
host->mmc = mmc;
host->base = ioremap(dev->res.start, SZ_4K);
if (!host->base) {
ret = -ENOMEM;
goto clk_disable;
}
mmc->ops = &mmci_ops;
mmc->f_min = (host->mclk + 511) / 512;
mmc->f_max = min(host->mclk, fmax);
mmc->ocr_avail = plat->ocr_mask;
/*
* We can do SGIO
*/
mmc->max_hw_segs = 16;
mmc->max_phys_segs = NR_SG;
/*
* Since we only have a 16-bit data length register, we must
* ensure that we don't exceed 2^16-1 bytes in a single request.
* Choose 64 (512-byte) sectors as the limit.
*/
mmc->max_sectors = 64;
/*
* Set the maximum segment size. Since we aren't doing DMA
* (yet) we are only limited by the data length register.
*/
mmc->max_seg_size = mmc->max_sectors << 9;
spin_lock_init(&host->lock);
writel(0, host->base + MMCIMASK0);
writel(0, host->base + MMCIMASK1);
writel(0xfff, host->base + MMCICLEAR);
ret = request_irq(dev->irq[0], mmci_irq, SA_SHIRQ, DRIVER_NAME " (cmd)", host);
if (ret)
goto unmap;
ret = request_irq(dev->irq[1], mmci_pio_irq, SA_SHIRQ, DRIVER_NAME " (pio)", host);
if (ret)
goto irq0_free;
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
amba_set_drvdata(dev, mmc);
mmc_add_host(mmc);
printk(KERN_INFO "%s: MMCI rev %x cfg %02x at 0x%08lx irq %d,%d\n",
mmc_hostname(mmc), amba_rev(dev), amba_config(dev),
dev->res.start, dev->irq[0], dev->irq[1]);
init_timer(&host->timer);
host->timer.data = (unsigned long)host;
host->timer.function = mmci_check_status;
host->timer.expires = jiffies + HZ;
add_timer(&host->timer);
return 0;
irq0_free:
free_irq(dev->irq[0], host);
unmap:
iounmap(host->base);
clk_disable:
clk_disable(host->clk);
clk_unuse:
clk_unuse(host->clk);
clk_free:
clk_put(host->clk);
host_free:
mmc_free_host(mmc);
rel_regions:
amba_release_regions(dev);
out:
return ret;
}
static int mmci_remove(struct amba_device *dev)
{
struct mmc_host *mmc = amba_get_drvdata(dev);
amba_set_drvdata(dev, NULL);
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
del_timer_sync(&host->timer);
mmc_remove_host(mmc);
writel(0, host->base + MMCIMASK0);
writel(0, host->base + MMCIMASK1);
writel(0, host->base + MMCICOMMAND);
writel(0, host->base + MMCIDATACTRL);
free_irq(dev->irq[0], host);
free_irq(dev->irq[1], host);
iounmap(host->base);
clk_disable(host->clk);
clk_unuse(host->clk);
clk_put(host->clk);
mmc_free_host(mmc);
amba_release_regions(dev);
}
return 0;
}
#ifdef CONFIG_PM
static int mmci_suspend(struct amba_device *dev, pm_message_t state)
{
struct mmc_host *mmc = amba_get_drvdata(dev);
int ret = 0;
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
ret = mmc_suspend_host(mmc, state);
if (ret == 0)
writel(0, host->base + MMCIMASK0);
}
return ret;
}
static int mmci_resume(struct amba_device *dev)
{
struct mmc_host *mmc = amba_get_drvdata(dev);
int ret = 0;
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
ret = mmc_resume_host(mmc);
}
return ret;
}
#else
#define mmci_suspend NULL
#define mmci_resume NULL
#endif
static struct amba_id mmci_ids[] = {
{
.id = 0x00041180,
.mask = 0x000fffff,
},
{
.id = 0x00041181,
.mask = 0x000fffff,
},
{ 0, 0 },
};
static struct amba_driver mmci_driver = {
.drv = {
.name = DRIVER_NAME,
},
.probe = mmci_probe,
.remove = mmci_remove,
.suspend = mmci_suspend,
.resume = mmci_resume,
.id_table = mmci_ids,
};
static int __init mmci_init(void)
{
return amba_driver_register(&mmci_driver);
}
static void __exit mmci_exit(void)
{
amba_driver_unregister(&mmci_driver);
}
module_init(mmci_init);
module_exit(mmci_exit);
module_param(fmax, uint, 0444);
MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
MODULE_LICENSE("GPL");