| /* |
| * |
| * Copyright (c) 2009, Microsoft Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
| * Place - Suite 330, Boston, MA 02111-1307 USA. |
| * |
| * Authors: |
| * Haiyang Zhang <haiyangz@microsoft.com> |
| * Hank Janssen <hjanssen@microsoft.com> |
| * K. Y. Srinivasan <kys@microsoft.com> |
| * |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/hyperv.h> |
| #include <linux/uio.h> |
| |
| #include "hyperv_vmbus.h" |
| |
| void hv_begin_read(struct hv_ring_buffer_info *rbi) |
| { |
| rbi->ring_buffer->interrupt_mask = 1; |
| mb(); |
| } |
| |
| u32 hv_end_read(struct hv_ring_buffer_info *rbi) |
| { |
| u32 read; |
| u32 write; |
| |
| rbi->ring_buffer->interrupt_mask = 0; |
| mb(); |
| |
| /* |
| * Now check to see if the ring buffer is still empty. |
| * If it is not, we raced and we need to process new |
| * incoming messages. |
| */ |
| hv_get_ringbuffer_availbytes(rbi, &read, &write); |
| |
| return read; |
| } |
| |
| /* |
| * When we write to the ring buffer, check if the host needs to |
| * be signaled. Here is the details of this protocol: |
| * |
| * 1. The host guarantees that while it is draining the |
| * ring buffer, it will set the interrupt_mask to |
| * indicate it does not need to be interrupted when |
| * new data is placed. |
| * |
| * 2. The host guarantees that it will completely drain |
| * the ring buffer before exiting the read loop. Further, |
| * once the ring buffer is empty, it will clear the |
| * interrupt_mask and re-check to see if new data has |
| * arrived. |
| */ |
| |
| static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi) |
| { |
| mb(); |
| if (rbi->ring_buffer->interrupt_mask) |
| return false; |
| |
| /* check interrupt_mask before read_index */ |
| rmb(); |
| /* |
| * This is the only case we need to signal when the |
| * ring transitions from being empty to non-empty. |
| */ |
| if (old_write == rbi->ring_buffer->read_index) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * To optimize the flow management on the send-side, |
| * when the sender is blocked because of lack of |
| * sufficient space in the ring buffer, potential the |
| * consumer of the ring buffer can signal the producer. |
| * This is controlled by the following parameters: |
| * |
| * 1. pending_send_sz: This is the size in bytes that the |
| * producer is trying to send. |
| * 2. The feature bit feat_pending_send_sz set to indicate if |
| * the consumer of the ring will signal when the ring |
| * state transitions from being full to a state where |
| * there is room for the producer to send the pending packet. |
| */ |
| |
| static bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi) |
| { |
| u32 cur_write_sz; |
| u32 r_size; |
| u32 write_loc; |
| u32 read_loc = rbi->ring_buffer->read_index; |
| u32 pending_sz; |
| |
| /* |
| * Issue a full memory barrier before making the signaling decision. |
| * Here is the reason for having this barrier: |
| * If the reading of the pend_sz (in this function) |
| * were to be reordered and read before we commit the new read |
| * index (in the calling function) we could |
| * have a problem. If the host were to set the pending_sz after we |
| * have sampled pending_sz and go to sleep before we commit the |
| * read index, we could miss sending the interrupt. Issue a full |
| * memory barrier to address this. |
| */ |
| mb(); |
| |
| pending_sz = rbi->ring_buffer->pending_send_sz; |
| write_loc = rbi->ring_buffer->write_index; |
| /* If the other end is not blocked on write don't bother. */ |
| if (pending_sz == 0) |
| return false; |
| |
| r_size = rbi->ring_datasize; |
| cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) : |
| read_loc - write_loc; |
| |
| if (cur_write_sz >= pending_sz) |
| return true; |
| |
| return false; |
| } |
| |
| /* Get the next write location for the specified ring buffer. */ |
| static inline u32 |
| hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) |
| { |
| u32 next = ring_info->ring_buffer->write_index; |
| |
| return next; |
| } |
| |
| /* Set the next write location for the specified ring buffer. */ |
| static inline void |
| hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, |
| u32 next_write_location) |
| { |
| ring_info->ring_buffer->write_index = next_write_location; |
| } |
| |
| /* Get the next read location for the specified ring buffer. */ |
| static inline u32 |
| hv_get_next_read_location(struct hv_ring_buffer_info *ring_info) |
| { |
| u32 next = ring_info->ring_buffer->read_index; |
| |
| return next; |
| } |
| |
| /* |
| * Get the next read location + offset for the specified ring buffer. |
| * This allows the caller to skip. |
| */ |
| static inline u32 |
| hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info, |
| u32 offset) |
| { |
| u32 next = ring_info->ring_buffer->read_index; |
| |
| next += offset; |
| next %= ring_info->ring_datasize; |
| |
| return next; |
| } |
| |
| /* Set the next read location for the specified ring buffer. */ |
| static inline void |
| hv_set_next_read_location(struct hv_ring_buffer_info *ring_info, |
| u32 next_read_location) |
| { |
| ring_info->ring_buffer->read_index = next_read_location; |
| } |
| |
| |
| /* Get the start of the ring buffer. */ |
| static inline void * |
| hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info) |
| { |
| return (void *)ring_info->ring_buffer->buffer; |
| } |
| |
| |
| /* Get the size of the ring buffer. */ |
| static inline u32 |
| hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info) |
| { |
| return ring_info->ring_datasize; |
| } |
| |
| /* Get the read and write indices as u64 of the specified ring buffer. */ |
| static inline u64 |
| hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) |
| { |
| return (u64)ring_info->ring_buffer->write_index << 32; |
| } |
| |
| /* |
| * Helper routine to copy to source from ring buffer. |
| * Assume there is enough room. Handles wrap-around in src case only!! |
| */ |
| static u32 hv_copyfrom_ringbuffer( |
| struct hv_ring_buffer_info *ring_info, |
| void *dest, |
| u32 destlen, |
| u32 start_read_offset) |
| { |
| void *ring_buffer = hv_get_ring_buffer(ring_info); |
| u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); |
| |
| u32 frag_len; |
| |
| /* wrap-around detected at the src */ |
| if (destlen > ring_buffer_size - start_read_offset) { |
| frag_len = ring_buffer_size - start_read_offset; |
| |
| memcpy(dest, ring_buffer + start_read_offset, frag_len); |
| memcpy(dest + frag_len, ring_buffer, destlen - frag_len); |
| } else |
| |
| memcpy(dest, ring_buffer + start_read_offset, destlen); |
| |
| |
| start_read_offset += destlen; |
| start_read_offset %= ring_buffer_size; |
| |
| return start_read_offset; |
| } |
| |
| |
| /* |
| * Helper routine to copy from source to ring buffer. |
| * Assume there is enough room. Handles wrap-around in dest case only!! |
| */ |
| static u32 hv_copyto_ringbuffer( |
| struct hv_ring_buffer_info *ring_info, |
| u32 start_write_offset, |
| void *src, |
| u32 srclen) |
| { |
| void *ring_buffer = hv_get_ring_buffer(ring_info); |
| u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); |
| u32 frag_len; |
| |
| /* wrap-around detected! */ |
| if (srclen > ring_buffer_size - start_write_offset) { |
| frag_len = ring_buffer_size - start_write_offset; |
| memcpy(ring_buffer + start_write_offset, src, frag_len); |
| memcpy(ring_buffer, src + frag_len, srclen - frag_len); |
| } else |
| memcpy(ring_buffer + start_write_offset, src, srclen); |
| |
| start_write_offset += srclen; |
| start_write_offset %= ring_buffer_size; |
| |
| return start_write_offset; |
| } |
| |
| /* Get various debug metrics for the specified ring buffer. */ |
| void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, |
| struct hv_ring_buffer_debug_info *debug_info) |
| { |
| u32 bytes_avail_towrite; |
| u32 bytes_avail_toread; |
| |
| if (ring_info->ring_buffer) { |
| hv_get_ringbuffer_availbytes(ring_info, |
| &bytes_avail_toread, |
| &bytes_avail_towrite); |
| |
| debug_info->bytes_avail_toread = bytes_avail_toread; |
| debug_info->bytes_avail_towrite = bytes_avail_towrite; |
| debug_info->current_read_index = |
| ring_info->ring_buffer->read_index; |
| debug_info->current_write_index = |
| ring_info->ring_buffer->write_index; |
| debug_info->current_interrupt_mask = |
| ring_info->ring_buffer->interrupt_mask; |
| } |
| } |
| |
| /* Initialize the ring buffer. */ |
| int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, |
| void *buffer, u32 buflen) |
| { |
| if (sizeof(struct hv_ring_buffer) != PAGE_SIZE) |
| return -EINVAL; |
| |
| memset(ring_info, 0, sizeof(struct hv_ring_buffer_info)); |
| |
| ring_info->ring_buffer = (struct hv_ring_buffer *)buffer; |
| ring_info->ring_buffer->read_index = |
| ring_info->ring_buffer->write_index = 0; |
| |
| /* Set the feature bit for enabling flow control. */ |
| ring_info->ring_buffer->feature_bits.value = 1; |
| |
| ring_info->ring_size = buflen; |
| ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer); |
| |
| spin_lock_init(&ring_info->ring_lock); |
| |
| return 0; |
| } |
| |
| /* Cleanup the ring buffer. */ |
| void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) |
| { |
| } |
| |
| /* Write to the ring buffer. */ |
| int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info, |
| struct kvec *kv_list, u32 kv_count, bool *signal, bool lock) |
| { |
| int i = 0; |
| u32 bytes_avail_towrite; |
| u32 bytes_avail_toread; |
| u32 totalbytes_towrite = 0; |
| |
| u32 next_write_location; |
| u32 old_write; |
| u64 prev_indices = 0; |
| unsigned long flags = 0; |
| |
| for (i = 0; i < kv_count; i++) |
| totalbytes_towrite += kv_list[i].iov_len; |
| |
| totalbytes_towrite += sizeof(u64); |
| |
| if (lock) |
| spin_lock_irqsave(&outring_info->ring_lock, flags); |
| |
| hv_get_ringbuffer_availbytes(outring_info, |
| &bytes_avail_toread, |
| &bytes_avail_towrite); |
| |
| /* |
| * If there is only room for the packet, assume it is full. |
| * Otherwise, the next time around, we think the ring buffer |
| * is empty since the read index == write index. |
| */ |
| if (bytes_avail_towrite <= totalbytes_towrite) { |
| if (lock) |
| spin_unlock_irqrestore(&outring_info->ring_lock, flags); |
| return -EAGAIN; |
| } |
| |
| /* Write to the ring buffer */ |
| next_write_location = hv_get_next_write_location(outring_info); |
| |
| old_write = next_write_location; |
| |
| for (i = 0; i < kv_count; i++) { |
| next_write_location = hv_copyto_ringbuffer(outring_info, |
| next_write_location, |
| kv_list[i].iov_base, |
| kv_list[i].iov_len); |
| } |
| |
| /* Set previous packet start */ |
| prev_indices = hv_get_ring_bufferindices(outring_info); |
| |
| next_write_location = hv_copyto_ringbuffer(outring_info, |
| next_write_location, |
| &prev_indices, |
| sizeof(u64)); |
| |
| /* Issue a full memory barrier before updating the write index */ |
| mb(); |
| |
| /* Now, update the write location */ |
| hv_set_next_write_location(outring_info, next_write_location); |
| |
| |
| if (lock) |
| spin_unlock_irqrestore(&outring_info->ring_lock, flags); |
| |
| *signal = hv_need_to_signal(old_write, outring_info); |
| return 0; |
| } |
| |
| int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, |
| void *buffer, u32 buflen, u32 *buffer_actual_len, |
| u64 *requestid, bool *signal, bool raw) |
| { |
| u32 bytes_avail_towrite; |
| u32 bytes_avail_toread; |
| u32 next_read_location = 0; |
| u64 prev_indices = 0; |
| struct vmpacket_descriptor desc; |
| u32 offset; |
| u32 packetlen; |
| int ret = 0; |
| |
| if (buflen <= 0) |
| return -EINVAL; |
| |
| |
| *buffer_actual_len = 0; |
| *requestid = 0; |
| |
| hv_get_ringbuffer_availbytes(inring_info, |
| &bytes_avail_toread, |
| &bytes_avail_towrite); |
| |
| /* Make sure there is something to read */ |
| if (bytes_avail_toread < sizeof(desc)) { |
| /* |
| * No error is set when there is even no header, drivers are |
| * supposed to analyze buffer_actual_len. |
| */ |
| return ret; |
| } |
| |
| next_read_location = hv_get_next_read_location(inring_info); |
| next_read_location = hv_copyfrom_ringbuffer(inring_info, &desc, |
| sizeof(desc), |
| next_read_location); |
| |
| offset = raw ? 0 : (desc.offset8 << 3); |
| packetlen = (desc.len8 << 3) - offset; |
| *buffer_actual_len = packetlen; |
| *requestid = desc.trans_id; |
| |
| if (bytes_avail_toread < packetlen + offset) |
| return -EAGAIN; |
| |
| if (packetlen > buflen) |
| return -ENOBUFS; |
| |
| next_read_location = |
| hv_get_next_readlocation_withoffset(inring_info, offset); |
| |
| next_read_location = hv_copyfrom_ringbuffer(inring_info, |
| buffer, |
| packetlen, |
| next_read_location); |
| |
| next_read_location = hv_copyfrom_ringbuffer(inring_info, |
| &prev_indices, |
| sizeof(u64), |
| next_read_location); |
| |
| /* |
| * Make sure all reads are done before we update the read index since |
| * the writer may start writing to the read area once the read index |
| * is updated. |
| */ |
| mb(); |
| |
| /* Update the read index */ |
| hv_set_next_read_location(inring_info, next_read_location); |
| |
| *signal = hv_need_to_signal_on_read(inring_info); |
| |
| return ret; |
| } |