| /* |
| * ipmi_si.c |
| * |
| * The interface to the IPMI driver for the system interfaces (KCS, SMIC, |
| * BT). |
| * |
| * Author: MontaVista Software, Inc. |
| * Corey Minyard <minyard@mvista.com> |
| * source@mvista.com |
| * |
| * Copyright 2002 MontaVista Software Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| * |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR |
| * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
| * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| /* |
| * This file holds the "policy" for the interface to the SMI state |
| * machine. It does the configuration, handles timers and interrupts, |
| * and drives the real SMI state machine. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <asm/system.h> |
| #include <linux/sched.h> |
| #include <linux/timer.h> |
| #include <linux/errno.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/list.h> |
| #include <linux/pci.h> |
| #include <linux/ioport.h> |
| #include <linux/notifier.h> |
| #include <linux/kthread.h> |
| #include <asm/irq.h> |
| #ifdef CONFIG_HIGH_RES_TIMERS |
| #include <linux/hrtime.h> |
| # if defined(schedule_next_int) |
| /* Old high-res timer code, do translations. */ |
| # define get_arch_cycles(a) quick_update_jiffies_sub(a) |
| # define arch_cycles_per_jiffy cycles_per_jiffies |
| # endif |
| static inline void add_usec_to_timer(struct timer_list *t, long v) |
| { |
| t->arch_cycle_expires += nsec_to_arch_cycle(v * 1000); |
| while (t->arch_cycle_expires >= arch_cycles_per_jiffy) |
| { |
| t->expires++; |
| t->arch_cycle_expires -= arch_cycles_per_jiffy; |
| } |
| } |
| #endif |
| #include <linux/interrupt.h> |
| #include <linux/rcupdate.h> |
| #include <linux/ipmi_smi.h> |
| #include <asm/io.h> |
| #include "ipmi_si_sm.h" |
| #include <linux/init.h> |
| #include <linux/dmi.h> |
| |
| /* Measure times between events in the driver. */ |
| #undef DEBUG_TIMING |
| |
| /* Call every 10 ms. */ |
| #define SI_TIMEOUT_TIME_USEC 10000 |
| #define SI_USEC_PER_JIFFY (1000000/HZ) |
| #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) |
| #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a |
| short timeout */ |
| |
| enum si_intf_state { |
| SI_NORMAL, |
| SI_GETTING_FLAGS, |
| SI_GETTING_EVENTS, |
| SI_CLEARING_FLAGS, |
| SI_CLEARING_FLAGS_THEN_SET_IRQ, |
| SI_GETTING_MESSAGES, |
| SI_ENABLE_INTERRUPTS1, |
| SI_ENABLE_INTERRUPTS2 |
| /* FIXME - add watchdog stuff. */ |
| }; |
| |
| /* Some BT-specific defines we need here. */ |
| #define IPMI_BT_INTMASK_REG 2 |
| #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 |
| #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 |
| |
| enum si_type { |
| SI_KCS, SI_SMIC, SI_BT |
| }; |
| |
| struct ipmi_device_id { |
| unsigned char device_id; |
| unsigned char device_revision; |
| unsigned char firmware_revision_1; |
| unsigned char firmware_revision_2; |
| unsigned char ipmi_version; |
| unsigned char additional_device_support; |
| unsigned char manufacturer_id[3]; |
| unsigned char product_id[2]; |
| unsigned char aux_firmware_revision[4]; |
| } __attribute__((packed)); |
| |
| #define ipmi_version_major(v) ((v)->ipmi_version & 0xf) |
| #define ipmi_version_minor(v) ((v)->ipmi_version >> 4) |
| |
| struct smi_info |
| { |
| int intf_num; |
| ipmi_smi_t intf; |
| struct si_sm_data *si_sm; |
| struct si_sm_handlers *handlers; |
| enum si_type si_type; |
| spinlock_t si_lock; |
| spinlock_t msg_lock; |
| struct list_head xmit_msgs; |
| struct list_head hp_xmit_msgs; |
| struct ipmi_smi_msg *curr_msg; |
| enum si_intf_state si_state; |
| |
| /* Used to handle the various types of I/O that can occur with |
| IPMI */ |
| struct si_sm_io io; |
| int (*io_setup)(struct smi_info *info); |
| void (*io_cleanup)(struct smi_info *info); |
| int (*irq_setup)(struct smi_info *info); |
| void (*irq_cleanup)(struct smi_info *info); |
| unsigned int io_size; |
| |
| /* Per-OEM handler, called from handle_flags(). |
| Returns 1 when handle_flags() needs to be re-run |
| or 0 indicating it set si_state itself. |
| */ |
| int (*oem_data_avail_handler)(struct smi_info *smi_info); |
| |
| /* Flags from the last GET_MSG_FLAGS command, used when an ATTN |
| is set to hold the flags until we are done handling everything |
| from the flags. */ |
| #define RECEIVE_MSG_AVAIL 0x01 |
| #define EVENT_MSG_BUFFER_FULL 0x02 |
| #define WDT_PRE_TIMEOUT_INT 0x08 |
| #define OEM0_DATA_AVAIL 0x20 |
| #define OEM1_DATA_AVAIL 0x40 |
| #define OEM2_DATA_AVAIL 0x80 |
| #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ |
| OEM1_DATA_AVAIL | \ |
| OEM2_DATA_AVAIL) |
| unsigned char msg_flags; |
| |
| /* If set to true, this will request events the next time the |
| state machine is idle. */ |
| atomic_t req_events; |
| |
| /* If true, run the state machine to completion on every send |
| call. Generally used after a panic to make sure stuff goes |
| out. */ |
| int run_to_completion; |
| |
| /* The I/O port of an SI interface. */ |
| int port; |
| |
| /* The space between start addresses of the two ports. For |
| instance, if the first port is 0xca2 and the spacing is 4, then |
| the second port is 0xca6. */ |
| unsigned int spacing; |
| |
| /* zero if no irq; */ |
| int irq; |
| |
| /* The timer for this si. */ |
| struct timer_list si_timer; |
| |
| /* The time (in jiffies) the last timeout occurred at. */ |
| unsigned long last_timeout_jiffies; |
| |
| /* Used to gracefully stop the timer without race conditions. */ |
| atomic_t stop_operation; |
| |
| /* The driver will disable interrupts when it gets into a |
| situation where it cannot handle messages due to lack of |
| memory. Once that situation clears up, it will re-enable |
| interrupts. */ |
| int interrupt_disabled; |
| |
| struct ipmi_device_id device_id; |
| |
| /* Slave address, could be reported from DMI. */ |
| unsigned char slave_addr; |
| |
| /* Counters and things for the proc filesystem. */ |
| spinlock_t count_lock; |
| unsigned long short_timeouts; |
| unsigned long long_timeouts; |
| unsigned long timeout_restarts; |
| unsigned long idles; |
| unsigned long interrupts; |
| unsigned long attentions; |
| unsigned long flag_fetches; |
| unsigned long hosed_count; |
| unsigned long complete_transactions; |
| unsigned long events; |
| unsigned long watchdog_pretimeouts; |
| unsigned long incoming_messages; |
| |
| struct task_struct *thread; |
| }; |
| |
| static struct notifier_block *xaction_notifier_list; |
| static int register_xaction_notifier(struct notifier_block * nb) |
| { |
| return notifier_chain_register(&xaction_notifier_list, nb); |
| } |
| |
| static void si_restart_short_timer(struct smi_info *smi_info); |
| |
| static void deliver_recv_msg(struct smi_info *smi_info, |
| struct ipmi_smi_msg *msg) |
| { |
| /* Deliver the message to the upper layer with the lock |
| released. */ |
| spin_unlock(&(smi_info->si_lock)); |
| ipmi_smi_msg_received(smi_info->intf, msg); |
| spin_lock(&(smi_info->si_lock)); |
| } |
| |
| static void return_hosed_msg(struct smi_info *smi_info) |
| { |
| struct ipmi_smi_msg *msg = smi_info->curr_msg; |
| |
| /* Make it a reponse */ |
| msg->rsp[0] = msg->data[0] | 4; |
| msg->rsp[1] = msg->data[1]; |
| msg->rsp[2] = 0xFF; /* Unknown error. */ |
| msg->rsp_size = 3; |
| |
| smi_info->curr_msg = NULL; |
| deliver_recv_msg(smi_info, msg); |
| } |
| |
| static enum si_sm_result start_next_msg(struct smi_info *smi_info) |
| { |
| int rv; |
| struct list_head *entry = NULL; |
| #ifdef DEBUG_TIMING |
| struct timeval t; |
| #endif |
| |
| /* No need to save flags, we aleady have interrupts off and we |
| already hold the SMI lock. */ |
| spin_lock(&(smi_info->msg_lock)); |
| |
| /* Pick the high priority queue first. */ |
| if (! list_empty(&(smi_info->hp_xmit_msgs))) { |
| entry = smi_info->hp_xmit_msgs.next; |
| } else if (! list_empty(&(smi_info->xmit_msgs))) { |
| entry = smi_info->xmit_msgs.next; |
| } |
| |
| if (! entry) { |
| smi_info->curr_msg = NULL; |
| rv = SI_SM_IDLE; |
| } else { |
| int err; |
| |
| list_del(entry); |
| smi_info->curr_msg = list_entry(entry, |
| struct ipmi_smi_msg, |
| link); |
| #ifdef DEBUG_TIMING |
| do_gettimeofday(&t); |
| printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); |
| #endif |
| err = notifier_call_chain(&xaction_notifier_list, 0, smi_info); |
| if (err & NOTIFY_STOP_MASK) { |
| rv = SI_SM_CALL_WITHOUT_DELAY; |
| goto out; |
| } |
| err = smi_info->handlers->start_transaction( |
| smi_info->si_sm, |
| smi_info->curr_msg->data, |
| smi_info->curr_msg->data_size); |
| if (err) { |
| return_hosed_msg(smi_info); |
| } |
| |
| rv = SI_SM_CALL_WITHOUT_DELAY; |
| } |
| out: |
| spin_unlock(&(smi_info->msg_lock)); |
| |
| return rv; |
| } |
| |
| static void start_enable_irq(struct smi_info *smi_info) |
| { |
| unsigned char msg[2]; |
| |
| /* If we are enabling interrupts, we have to tell the |
| BMC to use them. */ |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; |
| |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); |
| smi_info->si_state = SI_ENABLE_INTERRUPTS1; |
| } |
| |
| static void start_clear_flags(struct smi_info *smi_info) |
| { |
| unsigned char msg[3]; |
| |
| /* Make sure the watchdog pre-timeout flag is not set at startup. */ |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; |
| msg[2] = WDT_PRE_TIMEOUT_INT; |
| |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); |
| smi_info->si_state = SI_CLEARING_FLAGS; |
| } |
| |
| /* When we have a situtaion where we run out of memory and cannot |
| allocate messages, we just leave them in the BMC and run the system |
| polled until we can allocate some memory. Once we have some |
| memory, we will re-enable the interrupt. */ |
| static inline void disable_si_irq(struct smi_info *smi_info) |
| { |
| if ((smi_info->irq) && (! smi_info->interrupt_disabled)) { |
| disable_irq_nosync(smi_info->irq); |
| smi_info->interrupt_disabled = 1; |
| } |
| } |
| |
| static inline void enable_si_irq(struct smi_info *smi_info) |
| { |
| if ((smi_info->irq) && (smi_info->interrupt_disabled)) { |
| enable_irq(smi_info->irq); |
| smi_info->interrupt_disabled = 0; |
| } |
| } |
| |
| static void handle_flags(struct smi_info *smi_info) |
| { |
| retry: |
| if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { |
| /* Watchdog pre-timeout */ |
| spin_lock(&smi_info->count_lock); |
| smi_info->watchdog_pretimeouts++; |
| spin_unlock(&smi_info->count_lock); |
| |
| start_clear_flags(smi_info); |
| smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; |
| spin_unlock(&(smi_info->si_lock)); |
| ipmi_smi_watchdog_pretimeout(smi_info->intf); |
| spin_lock(&(smi_info->si_lock)); |
| } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { |
| /* Messages available. */ |
| smi_info->curr_msg = ipmi_alloc_smi_msg(); |
| if (! smi_info->curr_msg) { |
| disable_si_irq(smi_info); |
| smi_info->si_state = SI_NORMAL; |
| return; |
| } |
| enable_si_irq(smi_info); |
| |
| smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; |
| smi_info->curr_msg->data_size = 2; |
| |
| smi_info->handlers->start_transaction( |
| smi_info->si_sm, |
| smi_info->curr_msg->data, |
| smi_info->curr_msg->data_size); |
| smi_info->si_state = SI_GETTING_MESSAGES; |
| } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { |
| /* Events available. */ |
| smi_info->curr_msg = ipmi_alloc_smi_msg(); |
| if (! smi_info->curr_msg) { |
| disable_si_irq(smi_info); |
| smi_info->si_state = SI_NORMAL; |
| return; |
| } |
| enable_si_irq(smi_info); |
| |
| smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; |
| smi_info->curr_msg->data_size = 2; |
| |
| smi_info->handlers->start_transaction( |
| smi_info->si_sm, |
| smi_info->curr_msg->data, |
| smi_info->curr_msg->data_size); |
| smi_info->si_state = SI_GETTING_EVENTS; |
| } else if (smi_info->msg_flags & OEM_DATA_AVAIL) { |
| if (smi_info->oem_data_avail_handler) |
| if (smi_info->oem_data_avail_handler(smi_info)) |
| goto retry; |
| } else { |
| smi_info->si_state = SI_NORMAL; |
| } |
| } |
| |
| static void handle_transaction_done(struct smi_info *smi_info) |
| { |
| struct ipmi_smi_msg *msg; |
| #ifdef DEBUG_TIMING |
| struct timeval t; |
| |
| do_gettimeofday(&t); |
| printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); |
| #endif |
| switch (smi_info->si_state) { |
| case SI_NORMAL: |
| if (! smi_info->curr_msg) |
| break; |
| |
| smi_info->curr_msg->rsp_size |
| = smi_info->handlers->get_result( |
| smi_info->si_sm, |
| smi_info->curr_msg->rsp, |
| IPMI_MAX_MSG_LENGTH); |
| |
| /* Do this here becase deliver_recv_msg() releases the |
| lock, and a new message can be put in during the |
| time the lock is released. */ |
| msg = smi_info->curr_msg; |
| smi_info->curr_msg = NULL; |
| deliver_recv_msg(smi_info, msg); |
| break; |
| |
| case SI_GETTING_FLAGS: |
| { |
| unsigned char msg[4]; |
| unsigned int len; |
| |
| /* We got the flags from the SMI, now handle them. */ |
| len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); |
| if (msg[2] != 0) { |
| /* Error fetching flags, just give up for |
| now. */ |
| smi_info->si_state = SI_NORMAL; |
| } else if (len < 4) { |
| /* Hmm, no flags. That's technically illegal, but |
| don't use uninitialized data. */ |
| smi_info->si_state = SI_NORMAL; |
| } else { |
| smi_info->msg_flags = msg[3]; |
| handle_flags(smi_info); |
| } |
| break; |
| } |
| |
| case SI_CLEARING_FLAGS: |
| case SI_CLEARING_FLAGS_THEN_SET_IRQ: |
| { |
| unsigned char msg[3]; |
| |
| /* We cleared the flags. */ |
| smi_info->handlers->get_result(smi_info->si_sm, msg, 3); |
| if (msg[2] != 0) { |
| /* Error clearing flags */ |
| printk(KERN_WARNING |
| "ipmi_si: Error clearing flags: %2.2x\n", |
| msg[2]); |
| } |
| if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) |
| start_enable_irq(smi_info); |
| else |
| smi_info->si_state = SI_NORMAL; |
| break; |
| } |
| |
| case SI_GETTING_EVENTS: |
| { |
| smi_info->curr_msg->rsp_size |
| = smi_info->handlers->get_result( |
| smi_info->si_sm, |
| smi_info->curr_msg->rsp, |
| IPMI_MAX_MSG_LENGTH); |
| |
| /* Do this here becase deliver_recv_msg() releases the |
| lock, and a new message can be put in during the |
| time the lock is released. */ |
| msg = smi_info->curr_msg; |
| smi_info->curr_msg = NULL; |
| if (msg->rsp[2] != 0) { |
| /* Error getting event, probably done. */ |
| msg->done(msg); |
| |
| /* Take off the event flag. */ |
| smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; |
| handle_flags(smi_info); |
| } else { |
| spin_lock(&smi_info->count_lock); |
| smi_info->events++; |
| spin_unlock(&smi_info->count_lock); |
| |
| /* Do this before we deliver the message |
| because delivering the message releases the |
| lock and something else can mess with the |
| state. */ |
| handle_flags(smi_info); |
| |
| deliver_recv_msg(smi_info, msg); |
| } |
| break; |
| } |
| |
| case SI_GETTING_MESSAGES: |
| { |
| smi_info->curr_msg->rsp_size |
| = smi_info->handlers->get_result( |
| smi_info->si_sm, |
| smi_info->curr_msg->rsp, |
| IPMI_MAX_MSG_LENGTH); |
| |
| /* Do this here becase deliver_recv_msg() releases the |
| lock, and a new message can be put in during the |
| time the lock is released. */ |
| msg = smi_info->curr_msg; |
| smi_info->curr_msg = NULL; |
| if (msg->rsp[2] != 0) { |
| /* Error getting event, probably done. */ |
| msg->done(msg); |
| |
| /* Take off the msg flag. */ |
| smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; |
| handle_flags(smi_info); |
| } else { |
| spin_lock(&smi_info->count_lock); |
| smi_info->incoming_messages++; |
| spin_unlock(&smi_info->count_lock); |
| |
| /* Do this before we deliver the message |
| because delivering the message releases the |
| lock and something else can mess with the |
| state. */ |
| handle_flags(smi_info); |
| |
| deliver_recv_msg(smi_info, msg); |
| } |
| break; |
| } |
| |
| case SI_ENABLE_INTERRUPTS1: |
| { |
| unsigned char msg[4]; |
| |
| /* We got the flags from the SMI, now handle them. */ |
| smi_info->handlers->get_result(smi_info->si_sm, msg, 4); |
| if (msg[2] != 0) { |
| printk(KERN_WARNING |
| "ipmi_si: Could not enable interrupts" |
| ", failed get, using polled mode.\n"); |
| smi_info->si_state = SI_NORMAL; |
| } else { |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; |
| msg[2] = msg[3] | 1; /* enable msg queue int */ |
| smi_info->handlers->start_transaction( |
| smi_info->si_sm, msg, 3); |
| smi_info->si_state = SI_ENABLE_INTERRUPTS2; |
| } |
| break; |
| } |
| |
| case SI_ENABLE_INTERRUPTS2: |
| { |
| unsigned char msg[4]; |
| |
| /* We got the flags from the SMI, now handle them. */ |
| smi_info->handlers->get_result(smi_info->si_sm, msg, 4); |
| if (msg[2] != 0) { |
| printk(KERN_WARNING |
| "ipmi_si: Could not enable interrupts" |
| ", failed set, using polled mode.\n"); |
| } |
| smi_info->si_state = SI_NORMAL; |
| break; |
| } |
| } |
| } |
| |
| /* Called on timeouts and events. Timeouts should pass the elapsed |
| time, interrupts should pass in zero. */ |
| static enum si_sm_result smi_event_handler(struct smi_info *smi_info, |
| int time) |
| { |
| enum si_sm_result si_sm_result; |
| |
| restart: |
| /* There used to be a loop here that waited a little while |
| (around 25us) before giving up. That turned out to be |
| pointless, the minimum delays I was seeing were in the 300us |
| range, which is far too long to wait in an interrupt. So |
| we just run until the state machine tells us something |
| happened or it needs a delay. */ |
| si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); |
| time = 0; |
| while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) |
| { |
| si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); |
| } |
| |
| if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) |
| { |
| spin_lock(&smi_info->count_lock); |
| smi_info->complete_transactions++; |
| spin_unlock(&smi_info->count_lock); |
| |
| handle_transaction_done(smi_info); |
| si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); |
| } |
| else if (si_sm_result == SI_SM_HOSED) |
| { |
| spin_lock(&smi_info->count_lock); |
| smi_info->hosed_count++; |
| spin_unlock(&smi_info->count_lock); |
| |
| /* Do the before return_hosed_msg, because that |
| releases the lock. */ |
| smi_info->si_state = SI_NORMAL; |
| if (smi_info->curr_msg != NULL) { |
| /* If we were handling a user message, format |
| a response to send to the upper layer to |
| tell it about the error. */ |
| return_hosed_msg(smi_info); |
| } |
| si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); |
| } |
| |
| /* We prefer handling attn over new messages. */ |
| if (si_sm_result == SI_SM_ATTN) |
| { |
| unsigned char msg[2]; |
| |
| spin_lock(&smi_info->count_lock); |
| smi_info->attentions++; |
| spin_unlock(&smi_info->count_lock); |
| |
| /* Got a attn, send down a get message flags to see |
| what's causing it. It would be better to handle |
| this in the upper layer, but due to the way |
| interrupts work with the SMI, that's not really |
| possible. */ |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_GET_MSG_FLAGS_CMD; |
| |
| smi_info->handlers->start_transaction( |
| smi_info->si_sm, msg, 2); |
| smi_info->si_state = SI_GETTING_FLAGS; |
| goto restart; |
| } |
| |
| /* If we are currently idle, try to start the next message. */ |
| if (si_sm_result == SI_SM_IDLE) { |
| spin_lock(&smi_info->count_lock); |
| smi_info->idles++; |
| spin_unlock(&smi_info->count_lock); |
| |
| si_sm_result = start_next_msg(smi_info); |
| if (si_sm_result != SI_SM_IDLE) |
| goto restart; |
| } |
| |
| if ((si_sm_result == SI_SM_IDLE) |
| && (atomic_read(&smi_info->req_events))) |
| { |
| /* We are idle and the upper layer requested that I fetch |
| events, so do so. */ |
| unsigned char msg[2]; |
| |
| spin_lock(&smi_info->count_lock); |
| smi_info->flag_fetches++; |
| spin_unlock(&smi_info->count_lock); |
| |
| atomic_set(&smi_info->req_events, 0); |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_GET_MSG_FLAGS_CMD; |
| |
| smi_info->handlers->start_transaction( |
| smi_info->si_sm, msg, 2); |
| smi_info->si_state = SI_GETTING_FLAGS; |
| goto restart; |
| } |
| |
| return si_sm_result; |
| } |
| |
| static void sender(void *send_info, |
| struct ipmi_smi_msg *msg, |
| int priority) |
| { |
| struct smi_info *smi_info = send_info; |
| enum si_sm_result result; |
| unsigned long flags; |
| #ifdef DEBUG_TIMING |
| struct timeval t; |
| #endif |
| |
| spin_lock_irqsave(&(smi_info->msg_lock), flags); |
| #ifdef DEBUG_TIMING |
| do_gettimeofday(&t); |
| printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); |
| #endif |
| |
| if (smi_info->run_to_completion) { |
| /* If we are running to completion, then throw it in |
| the list and run transactions until everything is |
| clear. Priority doesn't matter here. */ |
| list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); |
| |
| /* We have to release the msg lock and claim the smi |
| lock in this case, because of race conditions. */ |
| spin_unlock_irqrestore(&(smi_info->msg_lock), flags); |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| result = smi_event_handler(smi_info, 0); |
| while (result != SI_SM_IDLE) { |
| udelay(SI_SHORT_TIMEOUT_USEC); |
| result = smi_event_handler(smi_info, |
| SI_SHORT_TIMEOUT_USEC); |
| } |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| return; |
| } else { |
| if (priority > 0) { |
| list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs)); |
| } else { |
| list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); |
| } |
| } |
| spin_unlock_irqrestore(&(smi_info->msg_lock), flags); |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| if ((smi_info->si_state == SI_NORMAL) |
| && (smi_info->curr_msg == NULL)) |
| { |
| start_next_msg(smi_info); |
| si_restart_short_timer(smi_info); |
| } |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| } |
| |
| static void set_run_to_completion(void *send_info, int i_run_to_completion) |
| { |
| struct smi_info *smi_info = send_info; |
| enum si_sm_result result; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| |
| smi_info->run_to_completion = i_run_to_completion; |
| if (i_run_to_completion) { |
| result = smi_event_handler(smi_info, 0); |
| while (result != SI_SM_IDLE) { |
| udelay(SI_SHORT_TIMEOUT_USEC); |
| result = smi_event_handler(smi_info, |
| SI_SHORT_TIMEOUT_USEC); |
| } |
| } |
| |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| } |
| |
| static int ipmi_thread(void *data) |
| { |
| struct smi_info *smi_info = data; |
| unsigned long flags; |
| enum si_sm_result smi_result; |
| |
| set_user_nice(current, 19); |
| while (!kthread_should_stop()) { |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| smi_result=smi_event_handler(smi_info, 0); |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { |
| /* do nothing */ |
| } |
| else if (smi_result == SI_SM_CALL_WITH_DELAY) |
| udelay(1); |
| else |
| schedule_timeout_interruptible(1); |
| } |
| return 0; |
| } |
| |
| |
| static void poll(void *send_info) |
| { |
| struct smi_info *smi_info = send_info; |
| |
| smi_event_handler(smi_info, 0); |
| } |
| |
| static void request_events(void *send_info) |
| { |
| struct smi_info *smi_info = send_info; |
| |
| atomic_set(&smi_info->req_events, 1); |
| } |
| |
| static int initialized = 0; |
| |
| /* Must be called with interrupts off and with the si_lock held. */ |
| static void si_restart_short_timer(struct smi_info *smi_info) |
| { |
| #if defined(CONFIG_HIGH_RES_TIMERS) |
| unsigned long flags; |
| unsigned long jiffies_now; |
| unsigned long seq; |
| |
| if (del_timer(&(smi_info->si_timer))) { |
| /* If we don't delete the timer, then it will go off |
| immediately, anyway. So we only process if we |
| actually delete the timer. */ |
| |
| do { |
| seq = read_seqbegin_irqsave(&xtime_lock, flags); |
| jiffies_now = jiffies; |
| smi_info->si_timer.expires = jiffies_now; |
| smi_info->si_timer.arch_cycle_expires |
| = get_arch_cycles(jiffies_now); |
| } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); |
| |
| add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC); |
| |
| add_timer(&(smi_info->si_timer)); |
| spin_lock_irqsave(&smi_info->count_lock, flags); |
| smi_info->timeout_restarts++; |
| spin_unlock_irqrestore(&smi_info->count_lock, flags); |
| } |
| #endif |
| } |
| |
| static void smi_timeout(unsigned long data) |
| { |
| struct smi_info *smi_info = (struct smi_info *) data; |
| enum si_sm_result smi_result; |
| unsigned long flags; |
| unsigned long jiffies_now; |
| long time_diff; |
| #ifdef DEBUG_TIMING |
| struct timeval t; |
| #endif |
| |
| if (atomic_read(&smi_info->stop_operation)) |
| return; |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| #ifdef DEBUG_TIMING |
| do_gettimeofday(&t); |
| printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); |
| #endif |
| jiffies_now = jiffies; |
| time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) |
| * SI_USEC_PER_JIFFY); |
| smi_result = smi_event_handler(smi_info, time_diff); |
| |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| |
| smi_info->last_timeout_jiffies = jiffies_now; |
| |
| if ((smi_info->irq) && (! smi_info->interrupt_disabled)) { |
| /* Running with interrupts, only do long timeouts. */ |
| smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; |
| spin_lock_irqsave(&smi_info->count_lock, flags); |
| smi_info->long_timeouts++; |
| spin_unlock_irqrestore(&smi_info->count_lock, flags); |
| goto do_add_timer; |
| } |
| |
| /* If the state machine asks for a short delay, then shorten |
| the timer timeout. */ |
| if (smi_result == SI_SM_CALL_WITH_DELAY) { |
| #if defined(CONFIG_HIGH_RES_TIMERS) |
| unsigned long seq; |
| #endif |
| spin_lock_irqsave(&smi_info->count_lock, flags); |
| smi_info->short_timeouts++; |
| spin_unlock_irqrestore(&smi_info->count_lock, flags); |
| #if defined(CONFIG_HIGH_RES_TIMERS) |
| do { |
| seq = read_seqbegin_irqsave(&xtime_lock, flags); |
| smi_info->si_timer.expires = jiffies; |
| smi_info->si_timer.arch_cycle_expires |
| = get_arch_cycles(smi_info->si_timer.expires); |
| } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); |
| add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC); |
| #else |
| smi_info->si_timer.expires = jiffies + 1; |
| #endif |
| } else { |
| spin_lock_irqsave(&smi_info->count_lock, flags); |
| smi_info->long_timeouts++; |
| spin_unlock_irqrestore(&smi_info->count_lock, flags); |
| smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; |
| #if defined(CONFIG_HIGH_RES_TIMERS) |
| smi_info->si_timer.arch_cycle_expires = 0; |
| #endif |
| } |
| |
| do_add_timer: |
| add_timer(&(smi_info->si_timer)); |
| } |
| |
| static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs) |
| { |
| struct smi_info *smi_info = data; |
| unsigned long flags; |
| #ifdef DEBUG_TIMING |
| struct timeval t; |
| #endif |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| |
| spin_lock(&smi_info->count_lock); |
| smi_info->interrupts++; |
| spin_unlock(&smi_info->count_lock); |
| |
| if (atomic_read(&smi_info->stop_operation)) |
| goto out; |
| |
| #ifdef DEBUG_TIMING |
| do_gettimeofday(&t); |
| printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); |
| #endif |
| smi_event_handler(smi_info, 0); |
| out: |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs) |
| { |
| struct smi_info *smi_info = data; |
| /* We need to clear the IRQ flag for the BT interface. */ |
| smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, |
| IPMI_BT_INTMASK_CLEAR_IRQ_BIT |
| | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); |
| return si_irq_handler(irq, data, regs); |
| } |
| |
| |
| static struct ipmi_smi_handlers handlers = |
| { |
| .owner = THIS_MODULE, |
| .sender = sender, |
| .request_events = request_events, |
| .set_run_to_completion = set_run_to_completion, |
| .poll = poll, |
| }; |
| |
| /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses, |
| a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */ |
| |
| #define SI_MAX_PARMS 4 |
| #define SI_MAX_DRIVERS ((SI_MAX_PARMS * 2) + 2) |
| static struct smi_info *smi_infos[SI_MAX_DRIVERS] = |
| { NULL, NULL, NULL, NULL }; |
| |
| #define DEVICE_NAME "ipmi_si" |
| |
| #define DEFAULT_KCS_IO_PORT 0xca2 |
| #define DEFAULT_SMIC_IO_PORT 0xca9 |
| #define DEFAULT_BT_IO_PORT 0xe4 |
| #define DEFAULT_REGSPACING 1 |
| |
| static int si_trydefaults = 1; |
| static char *si_type[SI_MAX_PARMS]; |
| #define MAX_SI_TYPE_STR 30 |
| static char si_type_str[MAX_SI_TYPE_STR]; |
| static unsigned long addrs[SI_MAX_PARMS]; |
| static int num_addrs; |
| static unsigned int ports[SI_MAX_PARMS]; |
| static int num_ports; |
| static int irqs[SI_MAX_PARMS]; |
| static int num_irqs; |
| static int regspacings[SI_MAX_PARMS]; |
| static int num_regspacings = 0; |
| static int regsizes[SI_MAX_PARMS]; |
| static int num_regsizes = 0; |
| static int regshifts[SI_MAX_PARMS]; |
| static int num_regshifts = 0; |
| static int slave_addrs[SI_MAX_PARMS]; |
| static int num_slave_addrs = 0; |
| |
| |
| module_param_named(trydefaults, si_trydefaults, bool, 0); |
| MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" |
| " default scan of the KCS and SMIC interface at the standard" |
| " address"); |
| module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); |
| MODULE_PARM_DESC(type, "Defines the type of each interface, each" |
| " interface separated by commas. The types are 'kcs'," |
| " 'smic', and 'bt'. For example si_type=kcs,bt will set" |
| " the first interface to kcs and the second to bt"); |
| module_param_array(addrs, long, &num_addrs, 0); |
| MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" |
| " addresses separated by commas. Only use if an interface" |
| " is in memory. Otherwise, set it to zero or leave" |
| " it blank."); |
| module_param_array(ports, int, &num_ports, 0); |
| MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" |
| " addresses separated by commas. Only use if an interface" |
| " is a port. Otherwise, set it to zero or leave" |
| " it blank."); |
| module_param_array(irqs, int, &num_irqs, 0); |
| MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" |
| " addresses separated by commas. Only use if an interface" |
| " has an interrupt. Otherwise, set it to zero or leave" |
| " it blank."); |
| module_param_array(regspacings, int, &num_regspacings, 0); |
| MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" |
| " and each successive register used by the interface. For" |
| " instance, if the start address is 0xca2 and the spacing" |
| " is 2, then the second address is at 0xca4. Defaults" |
| " to 1."); |
| module_param_array(regsizes, int, &num_regsizes, 0); |
| MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." |
| " This should generally be 1, 2, 4, or 8 for an 8-bit," |
| " 16-bit, 32-bit, or 64-bit register. Use this if you" |
| " the 8-bit IPMI register has to be read from a larger" |
| " register."); |
| module_param_array(regshifts, int, &num_regshifts, 0); |
| MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." |
| " IPMI register, in bits. For instance, if the data" |
| " is read from a 32-bit word and the IPMI data is in" |
| " bit 8-15, then the shift would be 8"); |
| module_param_array(slave_addrs, int, &num_slave_addrs, 0); |
| MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" |
| " the controller. Normally this is 0x20, but can be" |
| " overridden by this parm. This is an array indexed" |
| " by interface number."); |
| |
| |
| #define IPMI_MEM_ADDR_SPACE 1 |
| #define IPMI_IO_ADDR_SPACE 2 |
| |
| #if defined(CONFIG_ACPI) || defined(CONFIG_X86) || defined(CONFIG_PCI) |
| static int is_new_interface(int intf, u8 addr_space, unsigned long base_addr) |
| { |
| int i; |
| |
| for (i = 0; i < SI_MAX_PARMS; ++i) { |
| /* Don't check our address. */ |
| if (i == intf) |
| continue; |
| if (si_type[i] != NULL) { |
| if ((addr_space == IPMI_MEM_ADDR_SPACE && |
| base_addr == addrs[i]) || |
| (addr_space == IPMI_IO_ADDR_SPACE && |
| base_addr == ports[i])) |
| return 0; |
| } |
| else |
| break; |
| } |
| |
| return 1; |
| } |
| #endif |
| |
| static int std_irq_setup(struct smi_info *info) |
| { |
| int rv; |
| |
| if (! info->irq) |
| return 0; |
| |
| if (info->si_type == SI_BT) { |
| rv = request_irq(info->irq, |
| si_bt_irq_handler, |
| SA_INTERRUPT, |
| DEVICE_NAME, |
| info); |
| if (! rv) |
| /* Enable the interrupt in the BT interface. */ |
| info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, |
| IPMI_BT_INTMASK_ENABLE_IRQ_BIT); |
| } else |
| rv = request_irq(info->irq, |
| si_irq_handler, |
| SA_INTERRUPT, |
| DEVICE_NAME, |
| info); |
| if (rv) { |
| printk(KERN_WARNING |
| "ipmi_si: %s unable to claim interrupt %d," |
| " running polled\n", |
| DEVICE_NAME, info->irq); |
| info->irq = 0; |
| } else { |
| printk(" Using irq %d\n", info->irq); |
| } |
| |
| return rv; |
| } |
| |
| static void std_irq_cleanup(struct smi_info *info) |
| { |
| if (! info->irq) |
| return; |
| |
| if (info->si_type == SI_BT) |
| /* Disable the interrupt in the BT interface. */ |
| info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); |
| free_irq(info->irq, info); |
| } |
| |
| static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) |
| { |
| unsigned int *addr = io->info; |
| |
| return inb((*addr)+(offset*io->regspacing)); |
| } |
| |
| static void port_outb(struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| unsigned int *addr = io->info; |
| |
| outb(b, (*addr)+(offset * io->regspacing)); |
| } |
| |
| static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) |
| { |
| unsigned int *addr = io->info; |
| |
| return (inw((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff; |
| } |
| |
| static void port_outw(struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| unsigned int *addr = io->info; |
| |
| outw(b << io->regshift, (*addr)+(offset * io->regspacing)); |
| } |
| |
| static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) |
| { |
| unsigned int *addr = io->info; |
| |
| return (inl((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff; |
| } |
| |
| static void port_outl(struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| unsigned int *addr = io->info; |
| |
| outl(b << io->regshift, (*addr)+(offset * io->regspacing)); |
| } |
| |
| static void port_cleanup(struct smi_info *info) |
| { |
| unsigned int *addr = info->io.info; |
| int mapsize; |
| |
| if (addr && (*addr)) { |
| mapsize = ((info->io_size * info->io.regspacing) |
| - (info->io.regspacing - info->io.regsize)); |
| |
| release_region (*addr, mapsize); |
| } |
| kfree(info); |
| } |
| |
| static int port_setup(struct smi_info *info) |
| { |
| unsigned int *addr = info->io.info; |
| int mapsize; |
| |
| if (! addr || (! *addr)) |
| return -ENODEV; |
| |
| info->io_cleanup = port_cleanup; |
| |
| /* Figure out the actual inb/inw/inl/etc routine to use based |
| upon the register size. */ |
| switch (info->io.regsize) { |
| case 1: |
| info->io.inputb = port_inb; |
| info->io.outputb = port_outb; |
| break; |
| case 2: |
| info->io.inputb = port_inw; |
| info->io.outputb = port_outw; |
| break; |
| case 4: |
| info->io.inputb = port_inl; |
| info->io.outputb = port_outl; |
| break; |
| default: |
| printk("ipmi_si: Invalid register size: %d\n", |
| info->io.regsize); |
| return -EINVAL; |
| } |
| |
| /* Calculate the total amount of memory to claim. This is an |
| * unusual looking calculation, but it avoids claiming any |
| * more memory than it has to. It will claim everything |
| * between the first address to the end of the last full |
| * register. */ |
| mapsize = ((info->io_size * info->io.regspacing) |
| - (info->io.regspacing - info->io.regsize)); |
| |
| if (request_region(*addr, mapsize, DEVICE_NAME) == NULL) |
| return -EIO; |
| return 0; |
| } |
| |
| static int try_init_port(int intf_num, struct smi_info **new_info) |
| { |
| struct smi_info *info; |
| |
| if (! ports[intf_num]) |
| return -ENODEV; |
| |
| if (! is_new_interface(intf_num, IPMI_IO_ADDR_SPACE, |
| ports[intf_num])) |
| return -ENODEV; |
| |
| info = kmalloc(sizeof(*info), GFP_KERNEL); |
| if (! info) { |
| printk(KERN_ERR "ipmi_si: Could not allocate SI data (1)\n"); |
| return -ENOMEM; |
| } |
| memset(info, 0, sizeof(*info)); |
| |
| info->io_setup = port_setup; |
| info->io.info = &(ports[intf_num]); |
| info->io.addr = NULL; |
| info->io.regspacing = regspacings[intf_num]; |
| if (! info->io.regspacing) |
| info->io.regspacing = DEFAULT_REGSPACING; |
| info->io.regsize = regsizes[intf_num]; |
| if (! info->io.regsize) |
| info->io.regsize = DEFAULT_REGSPACING; |
| info->io.regshift = regshifts[intf_num]; |
| info->irq = 0; |
| info->irq_setup = NULL; |
| *new_info = info; |
| |
| if (si_type[intf_num] == NULL) |
| si_type[intf_num] = "kcs"; |
| |
| printk("ipmi_si: Trying \"%s\" at I/O port 0x%x\n", |
| si_type[intf_num], ports[intf_num]); |
| return 0; |
| } |
| |
| static unsigned char mem_inb(struct si_sm_io *io, unsigned int offset) |
| { |
| return readb((io->addr)+(offset * io->regspacing)); |
| } |
| |
| static void mem_outb(struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| writeb(b, (io->addr)+(offset * io->regspacing)); |
| } |
| |
| static unsigned char mem_inw(struct si_sm_io *io, unsigned int offset) |
| { |
| return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) |
| && 0xff; |
| } |
| |
| static void mem_outw(struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); |
| } |
| |
| static unsigned char mem_inl(struct si_sm_io *io, unsigned int offset) |
| { |
| return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) |
| && 0xff; |
| } |
| |
| static void mem_outl(struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); |
| } |
| |
| #ifdef readq |
| static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) |
| { |
| return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) |
| && 0xff; |
| } |
| |
| static void mem_outq(struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); |
| } |
| #endif |
| |
| static void mem_cleanup(struct smi_info *info) |
| { |
| unsigned long *addr = info->io.info; |
| int mapsize; |
| |
| if (info->io.addr) { |
| iounmap(info->io.addr); |
| |
| mapsize = ((info->io_size * info->io.regspacing) |
| - (info->io.regspacing - info->io.regsize)); |
| |
| release_mem_region(*addr, mapsize); |
| } |
| kfree(info); |
| } |
| |
| static int mem_setup(struct smi_info *info) |
| { |
| unsigned long *addr = info->io.info; |
| int mapsize; |
| |
| if (! addr || (! *addr)) |
| return -ENODEV; |
| |
| info->io_cleanup = mem_cleanup; |
| |
| /* Figure out the actual readb/readw/readl/etc routine to use based |
| upon the register size. */ |
| switch (info->io.regsize) { |
| case 1: |
| info->io.inputb = mem_inb; |
| info->io.outputb = mem_outb; |
| break; |
| case 2: |
| info->io.inputb = mem_inw; |
| info->io.outputb = mem_outw; |
| break; |
| case 4: |
| info->io.inputb = mem_inl; |
| info->io.outputb = mem_outl; |
| break; |
| #ifdef readq |
| case 8: |
| info->io.inputb = mem_inq; |
| info->io.outputb = mem_outq; |
| break; |
| #endif |
| default: |
| printk("ipmi_si: Invalid register size: %d\n", |
| info->io.regsize); |
| return -EINVAL; |
| } |
| |
| /* Calculate the total amount of memory to claim. This is an |
| * unusual looking calculation, but it avoids claiming any |
| * more memory than it has to. It will claim everything |
| * between the first address to the end of the last full |
| * register. */ |
| mapsize = ((info->io_size * info->io.regspacing) |
| - (info->io.regspacing - info->io.regsize)); |
| |
| if (request_mem_region(*addr, mapsize, DEVICE_NAME) == NULL) |
| return -EIO; |
| |
| info->io.addr = ioremap(*addr, mapsize); |
| if (info->io.addr == NULL) { |
| release_mem_region(*addr, mapsize); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static int try_init_mem(int intf_num, struct smi_info **new_info) |
| { |
| struct smi_info *info; |
| |
| if (! addrs[intf_num]) |
| return -ENODEV; |
| |
| if (! is_new_interface(intf_num, IPMI_MEM_ADDR_SPACE, |
| addrs[intf_num])) |
| return -ENODEV; |
| |
| info = kmalloc(sizeof(*info), GFP_KERNEL); |
| if (! info) { |
| printk(KERN_ERR "ipmi_si: Could not allocate SI data (2)\n"); |
| return -ENOMEM; |
| } |
| memset(info, 0, sizeof(*info)); |
| |
| info->io_setup = mem_setup; |
| info->io.info = &addrs[intf_num]; |
| info->io.addr = NULL; |
| info->io.regspacing = regspacings[intf_num]; |
| if (! info->io.regspacing) |
| info->io.regspacing = DEFAULT_REGSPACING; |
| info->io.regsize = regsizes[intf_num]; |
| if (! info->io.regsize) |
| info->io.regsize = DEFAULT_REGSPACING; |
| info->io.regshift = regshifts[intf_num]; |
| info->irq = 0; |
| info->irq_setup = NULL; |
| *new_info = info; |
| |
| if (si_type[intf_num] == NULL) |
| si_type[intf_num] = "kcs"; |
| |
| printk("ipmi_si: Trying \"%s\" at memory address 0x%lx\n", |
| si_type[intf_num], addrs[intf_num]); |
| return 0; |
| } |
| |
| |
| #ifdef CONFIG_ACPI |
| |
| #include <linux/acpi.h> |
| |
| /* Once we get an ACPI failure, we don't try any more, because we go |
| through the tables sequentially. Once we don't find a table, there |
| are no more. */ |
| static int acpi_failure = 0; |
| |
| /* For GPE-type interrupts. */ |
| static u32 ipmi_acpi_gpe(void *context) |
| { |
| struct smi_info *smi_info = context; |
| unsigned long flags; |
| #ifdef DEBUG_TIMING |
| struct timeval t; |
| #endif |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| |
| spin_lock(&smi_info->count_lock); |
| smi_info->interrupts++; |
| spin_unlock(&smi_info->count_lock); |
| |
| if (atomic_read(&smi_info->stop_operation)) |
| goto out; |
| |
| #ifdef DEBUG_TIMING |
| do_gettimeofday(&t); |
| printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); |
| #endif |
| smi_event_handler(smi_info, 0); |
| out: |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| |
| return ACPI_INTERRUPT_HANDLED; |
| } |
| |
| static int acpi_gpe_irq_setup(struct smi_info *info) |
| { |
| acpi_status status; |
| |
| if (! info->irq) |
| return 0; |
| |
| /* FIXME - is level triggered right? */ |
| status = acpi_install_gpe_handler(NULL, |
| info->irq, |
| ACPI_GPE_LEVEL_TRIGGERED, |
| &ipmi_acpi_gpe, |
| info); |
| if (status != AE_OK) { |
| printk(KERN_WARNING |
| "ipmi_si: %s unable to claim ACPI GPE %d," |
| " running polled\n", |
| DEVICE_NAME, info->irq); |
| info->irq = 0; |
| return -EINVAL; |
| } else { |
| printk(" Using ACPI GPE %d\n", info->irq); |
| return 0; |
| } |
| } |
| |
| static void acpi_gpe_irq_cleanup(struct smi_info *info) |
| { |
| if (! info->irq) |
| return; |
| |
| acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); |
| } |
| |
| /* |
| * Defined at |
| * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf |
| */ |
| struct SPMITable { |
| s8 Signature[4]; |
| u32 Length; |
| u8 Revision; |
| u8 Checksum; |
| s8 OEMID[6]; |
| s8 OEMTableID[8]; |
| s8 OEMRevision[4]; |
| s8 CreatorID[4]; |
| s8 CreatorRevision[4]; |
| u8 InterfaceType; |
| u8 IPMIlegacy; |
| s16 SpecificationRevision; |
| |
| /* |
| * Bit 0 - SCI interrupt supported |
| * Bit 1 - I/O APIC/SAPIC |
| */ |
| u8 InterruptType; |
| |
| /* If bit 0 of InterruptType is set, then this is the SCI |
| interrupt in the GPEx_STS register. */ |
| u8 GPE; |
| |
| s16 Reserved; |
| |
| /* If bit 1 of InterruptType is set, then this is the I/O |
| APIC/SAPIC interrupt. */ |
| u32 GlobalSystemInterrupt; |
| |
| /* The actual register address. */ |
| struct acpi_generic_address addr; |
| |
| u8 UID[4]; |
| |
| s8 spmi_id[1]; /* A '\0' terminated array starts here. */ |
| }; |
| |
| static int try_init_acpi(int intf_num, struct smi_info **new_info) |
| { |
| struct smi_info *info; |
| acpi_status status; |
| struct SPMITable *spmi; |
| char *io_type; |
| u8 addr_space; |
| |
| if (acpi_disabled) |
| return -ENODEV; |
| |
| if (acpi_failure) |
| return -ENODEV; |
| |
| status = acpi_get_firmware_table("SPMI", intf_num+1, |
| ACPI_LOGICAL_ADDRESSING, |
| (struct acpi_table_header **) &spmi); |
| if (status != AE_OK) { |
| acpi_failure = 1; |
| return -ENODEV; |
| } |
| |
| if (spmi->IPMIlegacy != 1) { |
| printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy); |
| return -ENODEV; |
| } |
| |
| if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) |
| addr_space = IPMI_MEM_ADDR_SPACE; |
| else |
| addr_space = IPMI_IO_ADDR_SPACE; |
| if (! is_new_interface(-1, addr_space, spmi->addr.address)) |
| return -ENODEV; |
| |
| if (! spmi->addr.register_bit_width) { |
| acpi_failure = 1; |
| return -ENODEV; |
| } |
| |
| /* Figure out the interface type. */ |
| switch (spmi->InterfaceType) |
| { |
| case 1: /* KCS */ |
| si_type[intf_num] = "kcs"; |
| break; |
| |
| case 2: /* SMIC */ |
| si_type[intf_num] = "smic"; |
| break; |
| |
| case 3: /* BT */ |
| si_type[intf_num] = "bt"; |
| break; |
| |
| default: |
| printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n", |
| spmi->InterfaceType); |
| return -EIO; |
| } |
| |
| info = kmalloc(sizeof(*info), GFP_KERNEL); |
| if (! info) { |
| printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n"); |
| return -ENOMEM; |
| } |
| memset(info, 0, sizeof(*info)); |
| |
| if (spmi->InterruptType & 1) { |
| /* We've got a GPE interrupt. */ |
| info->irq = spmi->GPE; |
| info->irq_setup = acpi_gpe_irq_setup; |
| info->irq_cleanup = acpi_gpe_irq_cleanup; |
| } else if (spmi->InterruptType & 2) { |
| /* We've got an APIC/SAPIC interrupt. */ |
| info->irq = spmi->GlobalSystemInterrupt; |
| info->irq_setup = std_irq_setup; |
| info->irq_cleanup = std_irq_cleanup; |
| } else { |
| /* Use the default interrupt setting. */ |
| info->irq = 0; |
| info->irq_setup = NULL; |
| } |
| |
| if (spmi->addr.register_bit_width) { |
| /* A (hopefully) properly formed register bit width. */ |
| regspacings[intf_num] = spmi->addr.register_bit_width / 8; |
| info->io.regspacing = spmi->addr.register_bit_width / 8; |
| } else { |
| /* Some broken systems get this wrong and set the value |
| * to zero. Assume it is the default spacing. If that |
| * is wrong, too bad, the vendor should fix the tables. */ |
| regspacings[intf_num] = DEFAULT_REGSPACING; |
| info->io.regspacing = DEFAULT_REGSPACING; |
| } |
| regsizes[intf_num] = regspacings[intf_num]; |
| info->io.regsize = regsizes[intf_num]; |
| regshifts[intf_num] = spmi->addr.register_bit_offset; |
| info->io.regshift = regshifts[intf_num]; |
| |
| if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { |
| io_type = "memory"; |
| info->io_setup = mem_setup; |
| addrs[intf_num] = spmi->addr.address; |
| info->io.info = &(addrs[intf_num]); |
| } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) { |
| io_type = "I/O"; |
| info->io_setup = port_setup; |
| ports[intf_num] = spmi->addr.address; |
| info->io.info = &(ports[intf_num]); |
| } else { |
| kfree(info); |
| printk("ipmi_si: Unknown ACPI I/O Address type\n"); |
| return -EIO; |
| } |
| |
| *new_info = info; |
| |
| printk("ipmi_si: ACPI/SPMI specifies \"%s\" %s SI @ 0x%lx\n", |
| si_type[intf_num], io_type, (unsigned long) spmi->addr.address); |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_X86 |
| typedef struct dmi_ipmi_data |
| { |
| u8 type; |
| u8 addr_space; |
| unsigned long base_addr; |
| u8 irq; |
| u8 offset; |
| u8 slave_addr; |
| } dmi_ipmi_data_t; |
| |
| static dmi_ipmi_data_t dmi_data[SI_MAX_DRIVERS]; |
| static int dmi_data_entries; |
| |
| static int __init decode_dmi(struct dmi_header *dm, int intf_num) |
| { |
| u8 *data = (u8 *)dm; |
| unsigned long base_addr; |
| u8 reg_spacing; |
| u8 len = dm->length; |
| dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num; |
| |
| ipmi_data->type = data[4]; |
| |
| memcpy(&base_addr, data+8, sizeof(unsigned long)); |
| if (len >= 0x11) { |
| if (base_addr & 1) { |
| /* I/O */ |
| base_addr &= 0xFFFE; |
| ipmi_data->addr_space = IPMI_IO_ADDR_SPACE; |
| } |
| else { |
| /* Memory */ |
| ipmi_data->addr_space = IPMI_MEM_ADDR_SPACE; |
| } |
| /* If bit 4 of byte 0x10 is set, then the lsb for the address |
| is odd. */ |
| ipmi_data->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); |
| |
| ipmi_data->irq = data[0x11]; |
| |
| /* The top two bits of byte 0x10 hold the register spacing. */ |
| reg_spacing = (data[0x10] & 0xC0) >> 6; |
| switch(reg_spacing){ |
| case 0x00: /* Byte boundaries */ |
| ipmi_data->offset = 1; |
| break; |
| case 0x01: /* 32-bit boundaries */ |
| ipmi_data->offset = 4; |
| break; |
| case 0x02: /* 16-byte boundaries */ |
| ipmi_data->offset = 16; |
| break; |
| default: |
| /* Some other interface, just ignore it. */ |
| return -EIO; |
| } |
| } else { |
| /* Old DMI spec. */ |
| /* Note that technically, the lower bit of the base |
| * address should be 1 if the address is I/O and 0 if |
| * the address is in memory. So many systems get that |
| * wrong (and all that I have seen are I/O) so we just |
| * ignore that bit and assume I/O. Systems that use |
| * memory should use the newer spec, anyway. */ |
| ipmi_data->base_addr = base_addr & 0xfffe; |
| ipmi_data->addr_space = IPMI_IO_ADDR_SPACE; |
| ipmi_data->offset = 1; |
| } |
| |
| ipmi_data->slave_addr = data[6]; |
| |
| if (is_new_interface(-1, ipmi_data->addr_space,ipmi_data->base_addr)) { |
| dmi_data_entries++; |
| return 0; |
| } |
| |
| memset(ipmi_data, 0, sizeof(dmi_ipmi_data_t)); |
| |
| return -1; |
| } |
| |
| static void __init dmi_find_bmc(void) |
| { |
| struct dmi_device *dev = NULL; |
| int intf_num = 0; |
| |
| while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { |
| if (intf_num >= SI_MAX_DRIVERS) |
| break; |
| |
| decode_dmi((struct dmi_header *) dev->device_data, intf_num++); |
| } |
| } |
| |
| static int try_init_smbios(int intf_num, struct smi_info **new_info) |
| { |
| struct smi_info *info; |
| dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num; |
| char *io_type; |
| |
| if (intf_num >= dmi_data_entries) |
| return -ENODEV; |
| |
| switch (ipmi_data->type) { |
| case 0x01: /* KCS */ |
| si_type[intf_num] = "kcs"; |
| break; |
| case 0x02: /* SMIC */ |
| si_type[intf_num] = "smic"; |
| break; |
| case 0x03: /* BT */ |
| si_type[intf_num] = "bt"; |
| break; |
| default: |
| return -EIO; |
| } |
| |
| info = kmalloc(sizeof(*info), GFP_KERNEL); |
| if (! info) { |
| printk(KERN_ERR "ipmi_si: Could not allocate SI data (4)\n"); |
| return -ENOMEM; |
| } |
| memset(info, 0, sizeof(*info)); |
| |
| if (ipmi_data->addr_space == 1) { |
| io_type = "memory"; |
| info->io_setup = mem_setup; |
| addrs[intf_num] = ipmi_data->base_addr; |
| info->io.info = &(addrs[intf_num]); |
| } else if (ipmi_data->addr_space == 2) { |
| io_type = "I/O"; |
| info->io_setup = port_setup; |
| ports[intf_num] = ipmi_data->base_addr; |
| info->io.info = &(ports[intf_num]); |
| } else { |
| kfree(info); |
| printk("ipmi_si: Unknown SMBIOS I/O Address type.\n"); |
| return -EIO; |
| } |
| |
| regspacings[intf_num] = ipmi_data->offset; |
| info->io.regspacing = regspacings[intf_num]; |
| if (! info->io.regspacing) |
| info->io.regspacing = DEFAULT_REGSPACING; |
| info->io.regsize = DEFAULT_REGSPACING; |
| info->io.regshift = regshifts[intf_num]; |
| |
| info->slave_addr = ipmi_data->slave_addr; |
| |
| irqs[intf_num] = ipmi_data->irq; |
| |
| *new_info = info; |
| |
| printk("ipmi_si: Found SMBIOS-specified state machine at %s" |
| " address 0x%lx, slave address 0x%x\n", |
| io_type, (unsigned long)ipmi_data->base_addr, |
| ipmi_data->slave_addr); |
| return 0; |
| } |
| #endif /* CONFIG_X86 */ |
| |
| #ifdef CONFIG_PCI |
| |
| #define PCI_ERMC_CLASSCODE 0x0C0700 |
| #define PCI_HP_VENDOR_ID 0x103C |
| #define PCI_MMC_DEVICE_ID 0x121A |
| #define PCI_MMC_ADDR_CW 0x10 |
| |
| /* Avoid more than one attempt to probe pci smic. */ |
| static int pci_smic_checked = 0; |
| |
| static int find_pci_smic(int intf_num, struct smi_info **new_info) |
| { |
| struct smi_info *info; |
| int error; |
| struct pci_dev *pci_dev = NULL; |
| u16 base_addr; |
| int fe_rmc = 0; |
| |
| if (pci_smic_checked) |
| return -ENODEV; |
| |
| pci_smic_checked = 1; |
| |
| pci_dev = pci_get_device(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID, NULL); |
| if (! pci_dev) { |
| pci_dev = pci_get_class(PCI_ERMC_CLASSCODE, NULL); |
| if (pci_dev && (pci_dev->subsystem_vendor == PCI_HP_VENDOR_ID)) |
| fe_rmc = 1; |
| else |
| return -ENODEV; |
| } |
| |
| error = pci_read_config_word(pci_dev, PCI_MMC_ADDR_CW, &base_addr); |
| if (error) |
| { |
| pci_dev_put(pci_dev); |
| printk(KERN_ERR |
| "ipmi_si: pci_read_config_word() failed (%d).\n", |
| error); |
| return -ENODEV; |
| } |
| |
| /* Bit 0: 1 specifies programmed I/O, 0 specifies memory mapped I/O */ |
| if (! (base_addr & 0x0001)) |
| { |
| pci_dev_put(pci_dev); |
| printk(KERN_ERR |
| "ipmi_si: memory mapped I/O not supported for PCI" |
| " smic.\n"); |
| return -ENODEV; |
| } |
| |
| base_addr &= 0xFFFE; |
| if (! fe_rmc) |
| /* Data register starts at base address + 1 in eRMC */ |
| ++base_addr; |
| |
| if (! is_new_interface(-1, IPMI_IO_ADDR_SPACE, base_addr)) { |
| pci_dev_put(pci_dev); |
| return -ENODEV; |
| } |
| |
| info = kmalloc(sizeof(*info), GFP_KERNEL); |
| if (! info) { |
| pci_dev_put(pci_dev); |
| printk(KERN_ERR "ipmi_si: Could not allocate SI data (5)\n"); |
| return -ENOMEM; |
| } |
| memset(info, 0, sizeof(*info)); |
| |
| info->io_setup = port_setup; |
| ports[intf_num] = base_addr; |
| info->io.info = &(ports[intf_num]); |
| info->io.regspacing = regspacings[intf_num]; |
| if (! info->io.regspacing) |
| info->io.regspacing = DEFAULT_REGSPACING; |
| info->io.regsize = DEFAULT_REGSPACING; |
| info->io.regshift = regshifts[intf_num]; |
| |
| *new_info = info; |
| |
| irqs[intf_num] = pci_dev->irq; |
| si_type[intf_num] = "smic"; |
| |
| printk("ipmi_si: Found PCI SMIC at I/O address 0x%lx\n", |
| (long unsigned int) base_addr); |
| |
| pci_dev_put(pci_dev); |
| return 0; |
| } |
| #endif /* CONFIG_PCI */ |
| |
| static int try_init_plug_and_play(int intf_num, struct smi_info **new_info) |
| { |
| #ifdef CONFIG_PCI |
| if (find_pci_smic(intf_num, new_info) == 0) |
| return 0; |
| #endif |
| /* Include other methods here. */ |
| |
| return -ENODEV; |
| } |
| |
| |
| static int try_get_dev_id(struct smi_info *smi_info) |
| { |
| unsigned char msg[2]; |
| unsigned char *resp; |
| unsigned long resp_len; |
| enum si_sm_result smi_result; |
| int rv = 0; |
| |
| resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); |
| if (! resp) |
| return -ENOMEM; |
| |
| /* Do a Get Device ID command, since it comes back with some |
| useful info. */ |
| msg[0] = IPMI_NETFN_APP_REQUEST << 2; |
| msg[1] = IPMI_GET_DEVICE_ID_CMD; |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); |
| |
| smi_result = smi_info->handlers->event(smi_info->si_sm, 0); |
| for (;;) |
| { |
| if (smi_result == SI_SM_CALL_WITH_DELAY || |
| smi_result == SI_SM_CALL_WITH_TICK_DELAY) { |
| schedule_timeout_uninterruptible(1); |
| smi_result = smi_info->handlers->event( |
| smi_info->si_sm, 100); |
| } |
| else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) |
| { |
| smi_result = smi_info->handlers->event( |
| smi_info->si_sm, 0); |
| } |
| else |
| break; |
| } |
| if (smi_result == SI_SM_HOSED) { |
| /* We couldn't get the state machine to run, so whatever's at |
| the port is probably not an IPMI SMI interface. */ |
| rv = -ENODEV; |
| goto out; |
| } |
| |
| /* Otherwise, we got some data. */ |
| resp_len = smi_info->handlers->get_result(smi_info->si_sm, |
| resp, IPMI_MAX_MSG_LENGTH); |
| if (resp_len < 6) { |
| /* That's odd, it should be longer. */ |
| rv = -EINVAL; |
| goto out; |
| } |
| |
| if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) { |
| /* That's odd, it shouldn't be able to fail. */ |
| rv = -EINVAL; |
| goto out; |
| } |
| |
| /* Record info from the get device id, in case we need it. */ |
| memcpy(&smi_info->device_id, &resp[3], |
| min_t(unsigned long, resp_len-3, sizeof(smi_info->device_id))); |
| |
| out: |
| kfree(resp); |
| return rv; |
| } |
| |
| static int type_file_read_proc(char *page, char **start, off_t off, |
| int count, int *eof, void *data) |
| { |
| char *out = (char *) page; |
| struct smi_info *smi = data; |
| |
| switch (smi->si_type) { |
| case SI_KCS: |
| return sprintf(out, "kcs\n"); |
| case SI_SMIC: |
| return sprintf(out, "smic\n"); |
| case SI_BT: |
| return sprintf(out, "bt\n"); |
| default: |
| return 0; |
| } |
| } |
| |
| static int stat_file_read_proc(char *page, char **start, off_t off, |
| int count, int *eof, void *data) |
| { |
| char *out = (char *) page; |
| struct smi_info *smi = data; |
| |
| out += sprintf(out, "interrupts_enabled: %d\n", |
| smi->irq && ! smi->interrupt_disabled); |
| out += sprintf(out, "short_timeouts: %ld\n", |
| smi->short_timeouts); |
| out += sprintf(out, "long_timeouts: %ld\n", |
| smi->long_timeouts); |
| out += sprintf(out, "timeout_restarts: %ld\n", |
| smi->timeout_restarts); |
| out += sprintf(out, "idles: %ld\n", |
| smi->idles); |
| out += sprintf(out, "interrupts: %ld\n", |
| smi->interrupts); |
| out += sprintf(out, "attentions: %ld\n", |
| smi->attentions); |
| out += sprintf(out, "flag_fetches: %ld\n", |
| smi->flag_fetches); |
| out += sprintf(out, "hosed_count: %ld\n", |
| smi->hosed_count); |
| out += sprintf(out, "complete_transactions: %ld\n", |
| smi->complete_transactions); |
| out += sprintf(out, "events: %ld\n", |
| smi->events); |
| out += sprintf(out, "watchdog_pretimeouts: %ld\n", |
| smi->watchdog_pretimeouts); |
| out += sprintf(out, "incoming_messages: %ld\n", |
| smi->incoming_messages); |
| |
| return (out - ((char *) page)); |
| } |
| |
| /* |
| * oem_data_avail_to_receive_msg_avail |
| * @info - smi_info structure with msg_flags set |
| * |
| * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL |
| * Returns 1 indicating need to re-run handle_flags(). |
| */ |
| static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) |
| { |
| smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | |
| RECEIVE_MSG_AVAIL); |
| return 1; |
| } |
| |
| /* |
| * setup_dell_poweredge_oem_data_handler |
| * @info - smi_info.device_id must be populated |
| * |
| * Systems that match, but have firmware version < 1.40 may assert |
| * OEM0_DATA_AVAIL on their own, without being told via Set Flags that |
| * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL |
| * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags |
| * as RECEIVE_MSG_AVAIL instead. |
| * |
| * As Dell has no plans to release IPMI 1.5 firmware that *ever* |
| * assert the OEM[012] bits, and if it did, the driver would have to |
| * change to handle that properly, we don't actually check for the |
| * firmware version. |
| * Device ID = 0x20 BMC on PowerEdge 8G servers |
| * Device Revision = 0x80 |
| * Firmware Revision1 = 0x01 BMC version 1.40 |
| * Firmware Revision2 = 0x40 BCD encoded |
| * IPMI Version = 0x51 IPMI 1.5 |
| * Manufacturer ID = A2 02 00 Dell IANA |
| * |
| * Additionally, PowerEdge systems with IPMI < 1.5 may also assert |
| * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. |
| * |
| */ |
| #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 |
| #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 |
| #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 |
| #define DELL_IANA_MFR_ID {0xA2, 0x02, 0x00} |
| static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) |
| { |
| struct ipmi_device_id *id = &smi_info->device_id; |
| const char mfr[3]=DELL_IANA_MFR_ID; |
| if (! memcmp(mfr, id->manufacturer_id, sizeof(mfr))) { |
| if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && |
| id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && |
| id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { |
| smi_info->oem_data_avail_handler = |
| oem_data_avail_to_receive_msg_avail; |
| } |
| else if (ipmi_version_major(id) < 1 || |
| (ipmi_version_major(id) == 1 && |
| ipmi_version_minor(id) < 5)) { |
| smi_info->oem_data_avail_handler = |
| oem_data_avail_to_receive_msg_avail; |
| } |
| } |
| } |
| |
| #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA |
| static void return_hosed_msg_badsize(struct smi_info *smi_info) |
| { |
| struct ipmi_smi_msg *msg = smi_info->curr_msg; |
| |
| /* Make it a reponse */ |
| msg->rsp[0] = msg->data[0] | 4; |
| msg->rsp[1] = msg->data[1]; |
| msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; |
| msg->rsp_size = 3; |
| smi_info->curr_msg = NULL; |
| deliver_recv_msg(smi_info, msg); |
| } |
| |
| /* |
| * dell_poweredge_bt_xaction_handler |
| * @info - smi_info.device_id must be populated |
| * |
| * Dell PowerEdge servers with the BT interface (x6xx and 1750) will |
| * not respond to a Get SDR command if the length of the data |
| * requested is exactly 0x3A, which leads to command timeouts and no |
| * data returned. This intercepts such commands, and causes userspace |
| * callers to try again with a different-sized buffer, which succeeds. |
| */ |
| |
| #define STORAGE_NETFN 0x0A |
| #define STORAGE_CMD_GET_SDR 0x23 |
| static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, |
| unsigned long unused, |
| void *in) |
| { |
| struct smi_info *smi_info = in; |
| unsigned char *data = smi_info->curr_msg->data; |
| unsigned int size = smi_info->curr_msg->data_size; |
| if (size >= 8 && |
| (data[0]>>2) == STORAGE_NETFN && |
| data[1] == STORAGE_CMD_GET_SDR && |
| data[7] == 0x3A) { |
| return_hosed_msg_badsize(smi_info); |
| return NOTIFY_STOP; |
| } |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block dell_poweredge_bt_xaction_notifier = { |
| .notifier_call = dell_poweredge_bt_xaction_handler, |
| }; |
| |
| /* |
| * setup_dell_poweredge_bt_xaction_handler |
| * @info - smi_info.device_id must be filled in already |
| * |
| * Fills in smi_info.device_id.start_transaction_pre_hook |
| * when we know what function to use there. |
| */ |
| static void |
| setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) |
| { |
| struct ipmi_device_id *id = &smi_info->device_id; |
| const char mfr[3]=DELL_IANA_MFR_ID; |
| if (! memcmp(mfr, id->manufacturer_id, sizeof(mfr)) && |
| smi_info->si_type == SI_BT) |
| register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); |
| } |
| |
| /* |
| * setup_oem_data_handler |
| * @info - smi_info.device_id must be filled in already |
| * |
| * Fills in smi_info.device_id.oem_data_available_handler |
| * when we know what function to use there. |
| */ |
| |
| static void setup_oem_data_handler(struct smi_info *smi_info) |
| { |
| setup_dell_poweredge_oem_data_handler(smi_info); |
| } |
| |
| static void setup_xaction_handlers(struct smi_info *smi_info) |
| { |
| setup_dell_poweredge_bt_xaction_handler(smi_info); |
| } |
| |
| static inline void wait_for_timer_and_thread(struct smi_info *smi_info) |
| { |
| if (smi_info->thread != ERR_PTR(-ENOMEM)) |
| kthread_stop(smi_info->thread); |
| del_timer_sync(&smi_info->si_timer); |
| } |
| |
| /* Returns 0 if initialized, or negative on an error. */ |
| static int init_one_smi(int intf_num, struct smi_info **smi) |
| { |
| int rv; |
| struct smi_info *new_smi; |
| |
| |
| rv = try_init_mem(intf_num, &new_smi); |
| if (rv) |
| rv = try_init_port(intf_num, &new_smi); |
| #ifdef CONFIG_ACPI |
| if (rv && si_trydefaults) |
| rv = try_init_acpi(intf_num, &new_smi); |
| #endif |
| #ifdef CONFIG_X86 |
| if (rv && si_trydefaults) |
| rv = try_init_smbios(intf_num, &new_smi); |
| #endif |
| if (rv && si_trydefaults) |
| rv = try_init_plug_and_play(intf_num, &new_smi); |
| |
| if (rv) |
| return rv; |
| |
| /* So we know not to free it unless we have allocated one. */ |
| new_smi->intf = NULL; |
| new_smi->si_sm = NULL; |
| new_smi->handlers = NULL; |
| |
| if (! new_smi->irq_setup) { |
| new_smi->irq = irqs[intf_num]; |
| new_smi->irq_setup = std_irq_setup; |
| new_smi->irq_cleanup = std_irq_cleanup; |
| } |
| |
| /* Default to KCS if no type is specified. */ |
| if (si_type[intf_num] == NULL) { |
| if (si_trydefaults) |
| si_type[intf_num] = "kcs"; |
| else { |
| rv = -EINVAL; |
| goto out_err; |
| } |
| } |
| |
| /* Set up the state machine to use. */ |
| if (strcmp(si_type[intf_num], "kcs") == 0) { |
| new_smi->handlers = &kcs_smi_handlers; |
| new_smi->si_type = SI_KCS; |
| } else if (strcmp(si_type[intf_num], "smic") == 0) { |
| new_smi->handlers = &smic_smi_handlers; |
| new_smi->si_type = SI_SMIC; |
| } else if (strcmp(si_type[intf_num], "bt") == 0) { |
| new_smi->handlers = &bt_smi_handlers; |
| new_smi->si_type = SI_BT; |
| } else { |
| /* No support for anything else yet. */ |
| rv = -EIO; |
| goto out_err; |
| } |
| |
| /* Allocate the state machine's data and initialize it. */ |
| new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); |
| if (! new_smi->si_sm) { |
| printk(" Could not allocate state machine memory\n"); |
| rv = -ENOMEM; |
| goto out_err; |
| } |
| new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, |
| &new_smi->io); |
| |
| /* Now that we know the I/O size, we can set up the I/O. */ |
| rv = new_smi->io_setup(new_smi); |
| if (rv) { |
| printk(" Could not set up I/O space\n"); |
| goto out_err; |
| } |
| |
| spin_lock_init(&(new_smi->si_lock)); |
| spin_lock_init(&(new_smi->msg_lock)); |
| spin_lock_init(&(new_smi->count_lock)); |
| |
| /* Do low-level detection first. */ |
| if (new_smi->handlers->detect(new_smi->si_sm)) { |
| rv = -ENODEV; |
| goto out_err; |
| } |
| |
| /* Attempt a get device id command. If it fails, we probably |
| don't have a SMI here. */ |
| rv = try_get_dev_id(new_smi); |
| if (rv) |
| goto out_err; |
| |
| setup_oem_data_handler(new_smi); |
| setup_xaction_handlers(new_smi); |
| |
| /* Try to claim any interrupts. */ |
| new_smi->irq_setup(new_smi); |
| |
| INIT_LIST_HEAD(&(new_smi->xmit_msgs)); |
| INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); |
| new_smi->curr_msg = NULL; |
| atomic_set(&new_smi->req_events, 0); |
| new_smi->run_to_completion = 0; |
| |
| new_smi->interrupt_disabled = 0; |
| atomic_set(&new_smi->stop_operation, 0); |
| new_smi->intf_num = intf_num; |
| |
| /* Start clearing the flags before we enable interrupts or the |
| timer to avoid racing with the timer. */ |
| start_clear_flags(new_smi); |
| /* IRQ is defined to be set when non-zero. */ |
| if (new_smi->irq) |
| new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; |
| |
| /* The ipmi_register_smi() code does some operations to |
| determine the channel information, so we must be ready to |
| handle operations before it is called. This means we have |
| to stop the timer if we get an error after this point. */ |
| init_timer(&(new_smi->si_timer)); |
| new_smi->si_timer.data = (long) new_smi; |
| new_smi->si_timer.function = smi_timeout; |
| new_smi->last_timeout_jiffies = jiffies; |
| new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; |
| |
| add_timer(&(new_smi->si_timer)); |
| if (new_smi->si_type != SI_BT) |
| new_smi->thread = kthread_run(ipmi_thread, new_smi, |
| "kipmi%d", new_smi->intf_num); |
| |
| rv = ipmi_register_smi(&handlers, |
| new_smi, |
| ipmi_version_major(&new_smi->device_id), |
| ipmi_version_minor(&new_smi->device_id), |
| new_smi->slave_addr, |
| &(new_smi->intf)); |
| if (rv) { |
| printk(KERN_ERR |
| "ipmi_si: Unable to register device: error %d\n", |
| rv); |
| goto out_err_stop_timer; |
| } |
| |
| rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", |
| type_file_read_proc, NULL, |
| new_smi, THIS_MODULE); |
| if (rv) { |
| printk(KERN_ERR |
| "ipmi_si: Unable to create proc entry: %d\n", |
| rv); |
| goto out_err_stop_timer; |
| } |
| |
| rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", |
| stat_file_read_proc, NULL, |
| new_smi, THIS_MODULE); |
| if (rv) { |
| printk(KERN_ERR |
| "ipmi_si: Unable to create proc entry: %d\n", |
| rv); |
| goto out_err_stop_timer; |
| } |
| |
| *smi = new_smi; |
| |
| printk(" IPMI %s interface initialized\n", si_type[intf_num]); |
| |
| return 0; |
| |
| out_err_stop_timer: |
| atomic_inc(&new_smi->stop_operation); |
| wait_for_timer_and_thread(new_smi); |
| |
| out_err: |
| if (new_smi->intf) |
| ipmi_unregister_smi(new_smi->intf); |
| |
| new_smi->irq_cleanup(new_smi); |
| |
| /* Wait until we know that we are out of any interrupt |
| handlers might have been running before we freed the |
| interrupt. */ |
| synchronize_sched(); |
| |
| if (new_smi->si_sm) { |
| if (new_smi->handlers) |
| new_smi->handlers->cleanup(new_smi->si_sm); |
| kfree(new_smi->si_sm); |
| } |
| new_smi->io_cleanup(new_smi); |
| |
| return rv; |
| } |
| |
| static __init int init_ipmi_si(void) |
| { |
| int rv = 0; |
| int pos = 0; |
| int i; |
| char *str; |
| |
| if (initialized) |
| return 0; |
| initialized = 1; |
| |
| /* Parse out the si_type string into its components. */ |
| str = si_type_str; |
| if (*str != '\0') { |
| for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { |
| si_type[i] = str; |
| str = strchr(str, ','); |
| if (str) { |
| *str = '\0'; |
| str++; |
| } else { |
| break; |
| } |
| } |
| } |
| |
| printk(KERN_INFO "IPMI System Interface driver.\n"); |
| |
| #ifdef CONFIG_X86 |
| dmi_find_bmc(); |
| #endif |
| |
| rv = init_one_smi(0, &(smi_infos[pos])); |
| if (rv && ! ports[0] && si_trydefaults) { |
| /* If we are trying defaults and the initial port is |
| not set, then set it. */ |
| si_type[0] = "kcs"; |
| ports[0] = DEFAULT_KCS_IO_PORT; |
| rv = init_one_smi(0, &(smi_infos[pos])); |
| if (rv) { |
| /* No KCS - try SMIC */ |
| si_type[0] = "smic"; |
| ports[0] = DEFAULT_SMIC_IO_PORT; |
| rv = init_one_smi(0, &(smi_infos[pos])); |
| } |
| if (rv) { |
| /* No SMIC - try BT */ |
| si_type[0] = "bt"; |
| ports[0] = DEFAULT_BT_IO_PORT; |
| rv = init_one_smi(0, &(smi_infos[pos])); |
| } |
| } |
| if (rv == 0) |
| pos++; |
| |
| for (i = 1; i < SI_MAX_PARMS; i++) { |
| rv = init_one_smi(i, &(smi_infos[pos])); |
| if (rv == 0) |
| pos++; |
| } |
| |
| if (smi_infos[0] == NULL) { |
| printk("ipmi_si: Unable to find any System Interface(s)\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| module_init(init_ipmi_si); |
| |
| static void __exit cleanup_one_si(struct smi_info *to_clean) |
| { |
| int rv; |
| unsigned long flags; |
| |
| if (! to_clean) |
| return; |
| |
| /* Tell the timer and interrupt handlers that we are shutting |
| down. */ |
| spin_lock_irqsave(&(to_clean->si_lock), flags); |
| spin_lock(&(to_clean->msg_lock)); |
| |
| atomic_inc(&to_clean->stop_operation); |
| to_clean->irq_cleanup(to_clean); |
| |
| spin_unlock(&(to_clean->msg_lock)); |
| spin_unlock_irqrestore(&(to_clean->si_lock), flags); |
| |
| /* Wait until we know that we are out of any interrupt |
| handlers might have been running before we freed the |
| interrupt. */ |
| synchronize_sched(); |
| |
| wait_for_timer_and_thread(to_clean); |
| |
| /* Interrupts and timeouts are stopped, now make sure the |
| interface is in a clean state. */ |
| while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { |
| poll(to_clean); |
| schedule_timeout_uninterruptible(1); |
| } |
| |
| rv = ipmi_unregister_smi(to_clean->intf); |
| if (rv) { |
| printk(KERN_ERR |
| "ipmi_si: Unable to unregister device: errno=%d\n", |
| rv); |
| } |
| |
| to_clean->handlers->cleanup(to_clean->si_sm); |
| |
| kfree(to_clean->si_sm); |
| |
| to_clean->io_cleanup(to_clean); |
| } |
| |
| static __exit void cleanup_ipmi_si(void) |
| { |
| int i; |
| |
| if (! initialized) |
| return; |
| |
| for (i = 0; i < SI_MAX_DRIVERS; i++) { |
| cleanup_one_si(smi_infos[i]); |
| } |
| } |
| module_exit(cleanup_ipmi_si); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); |
| MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces."); |