blob: 08c4c6dc5f7f26dedab581589a53036e4ba3fee8 [file] [log] [blame]
/*
* Copyright (C) 2017 Netronome Systems, Inc.
*
* This software is dual licensed under the GNU General License Version 2,
* June 1991 as shown in the file COPYING in the top-level directory of this
* source tree or the BSD 2-Clause License provided below. You have the
* option to license this software under the complete terms of either license.
*
* The BSD 2-Clause License:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/skbuff.h>
#include <net/devlink.h>
#include <net/pkt_cls.h>
#include "cmsg.h"
#include "main.h"
#include "../nfpcore/nfp_cpp.h"
#include "../nfpcore/nfp_nsp.h"
#include "../nfp_app.h"
#include "../nfp_main.h"
#include "../nfp_net.h"
#include "../nfp_port.h"
#define NFP_FLOWER_WHITELIST_DISSECTOR \
(BIT(FLOW_DISSECTOR_KEY_CONTROL) | \
BIT(FLOW_DISSECTOR_KEY_BASIC) | \
BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_PORTS) | \
BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_VLAN) | \
BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
BIT(FLOW_DISSECTOR_KEY_MPLS) | \
BIT(FLOW_DISSECTOR_KEY_IP))
#define NFP_FLOWER_WHITELIST_TUN_DISSECTOR \
(BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_PORTS))
#define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R \
(BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_PORTS))
static int
nfp_flower_xmit_flow(struct net_device *netdev,
struct nfp_fl_payload *nfp_flow, u8 mtype)
{
u32 meta_len, key_len, mask_len, act_len, tot_len;
struct nfp_repr *priv = netdev_priv(netdev);
struct sk_buff *skb;
unsigned char *msg;
meta_len = sizeof(struct nfp_fl_rule_metadata);
key_len = nfp_flow->meta.key_len;
mask_len = nfp_flow->meta.mask_len;
act_len = nfp_flow->meta.act_len;
tot_len = meta_len + key_len + mask_len + act_len;
/* Convert to long words as firmware expects
* lengths in units of NFP_FL_LW_SIZ.
*/
nfp_flow->meta.key_len >>= NFP_FL_LW_SIZ;
nfp_flow->meta.mask_len >>= NFP_FL_LW_SIZ;
nfp_flow->meta.act_len >>= NFP_FL_LW_SIZ;
skb = nfp_flower_cmsg_alloc(priv->app, tot_len, mtype, GFP_KERNEL);
if (!skb)
return -ENOMEM;
msg = nfp_flower_cmsg_get_data(skb);
memcpy(msg, &nfp_flow->meta, meta_len);
memcpy(&msg[meta_len], nfp_flow->unmasked_data, key_len);
memcpy(&msg[meta_len + key_len], nfp_flow->mask_data, mask_len);
memcpy(&msg[meta_len + key_len + mask_len],
nfp_flow->action_data, act_len);
/* Convert back to bytes as software expects
* lengths in units of bytes.
*/
nfp_flow->meta.key_len <<= NFP_FL_LW_SIZ;
nfp_flow->meta.mask_len <<= NFP_FL_LW_SIZ;
nfp_flow->meta.act_len <<= NFP_FL_LW_SIZ;
nfp_ctrl_tx(priv->app->ctrl, skb);
return 0;
}
static bool nfp_flower_check_higher_than_mac(struct tc_cls_flower_offload *f)
{
return dissector_uses_key(f->dissector,
FLOW_DISSECTOR_KEY_IPV4_ADDRS) ||
dissector_uses_key(f->dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS) ||
dissector_uses_key(f->dissector,
FLOW_DISSECTOR_KEY_PORTS) ||
dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ICMP);
}
static int
nfp_flower_calculate_key_layers(struct nfp_app *app,
struct nfp_fl_key_ls *ret_key_ls,
struct tc_cls_flower_offload *flow,
bool egress,
enum nfp_flower_tun_type *tun_type)
{
struct flow_dissector_key_basic *mask_basic = NULL;
struct flow_dissector_key_basic *key_basic = NULL;
struct nfp_flower_priv *priv = app->priv;
u32 key_layer_two;
u8 key_layer;
int key_size;
if (flow->dissector->used_keys & ~NFP_FLOWER_WHITELIST_DISSECTOR)
return -EOPNOTSUPP;
/* If any tun dissector is used then the required set must be used. */
if (flow->dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR &&
(flow->dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R)
!= NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R)
return -EOPNOTSUPP;
key_layer_two = 0;
key_layer = NFP_FLOWER_LAYER_PORT;
key_size = sizeof(struct nfp_flower_meta_tci) +
sizeof(struct nfp_flower_in_port);
if (dissector_uses_key(flow->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS) ||
dissector_uses_key(flow->dissector, FLOW_DISSECTOR_KEY_MPLS)) {
key_layer |= NFP_FLOWER_LAYER_MAC;
key_size += sizeof(struct nfp_flower_mac_mpls);
}
if (dissector_uses_key(flow->dissector,
FLOW_DISSECTOR_KEY_ENC_CONTROL)) {
struct flow_dissector_key_ipv4_addrs *mask_ipv4 = NULL;
struct flow_dissector_key_ports *mask_enc_ports = NULL;
struct flow_dissector_key_ports *enc_ports = NULL;
struct flow_dissector_key_control *mask_enc_ctl =
skb_flow_dissector_target(flow->dissector,
FLOW_DISSECTOR_KEY_ENC_CONTROL,
flow->mask);
struct flow_dissector_key_control *enc_ctl =
skb_flow_dissector_target(flow->dissector,
FLOW_DISSECTOR_KEY_ENC_CONTROL,
flow->key);
if (!egress)
return -EOPNOTSUPP;
if (mask_enc_ctl->addr_type != 0xffff ||
enc_ctl->addr_type != FLOW_DISSECTOR_KEY_IPV4_ADDRS)
return -EOPNOTSUPP;
/* These fields are already verified as used. */
mask_ipv4 =
skb_flow_dissector_target(flow->dissector,
FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
flow->mask);
if (mask_ipv4->dst != cpu_to_be32(~0))
return -EOPNOTSUPP;
mask_enc_ports =
skb_flow_dissector_target(flow->dissector,
FLOW_DISSECTOR_KEY_ENC_PORTS,
flow->mask);
enc_ports =
skb_flow_dissector_target(flow->dissector,
FLOW_DISSECTOR_KEY_ENC_PORTS,
flow->key);
if (mask_enc_ports->dst != cpu_to_be16(~0))
return -EOPNOTSUPP;
switch (enc_ports->dst) {
case htons(NFP_FL_VXLAN_PORT):
*tun_type = NFP_FL_TUNNEL_VXLAN;
key_layer |= NFP_FLOWER_LAYER_VXLAN;
key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
break;
case htons(NFP_FL_GENEVE_PORT):
if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE))
return -EOPNOTSUPP;
*tun_type = NFP_FL_TUNNEL_GENEVE;
key_layer |= NFP_FLOWER_LAYER_EXT_META;
key_size += sizeof(struct nfp_flower_ext_meta);
key_layer_two |= NFP_FLOWER_LAYER2_GENEVE;
key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
break;
default:
return -EOPNOTSUPP;
}
} else if (egress) {
/* Reject non tunnel matches offloaded to egress repr. */
return -EOPNOTSUPP;
}
if (dissector_uses_key(flow->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
mask_basic = skb_flow_dissector_target(flow->dissector,
FLOW_DISSECTOR_KEY_BASIC,
flow->mask);
key_basic = skb_flow_dissector_target(flow->dissector,
FLOW_DISSECTOR_KEY_BASIC,
flow->key);
}
if (mask_basic && mask_basic->n_proto) {
/* Ethernet type is present in the key. */
switch (key_basic->n_proto) {
case cpu_to_be16(ETH_P_IP):
key_layer |= NFP_FLOWER_LAYER_IPV4;
key_size += sizeof(struct nfp_flower_ipv4);
break;
case cpu_to_be16(ETH_P_IPV6):
key_layer |= NFP_FLOWER_LAYER_IPV6;
key_size += sizeof(struct nfp_flower_ipv6);
break;
/* Currently we do not offload ARP
* because we rely on it to get to the host.
*/
case cpu_to_be16(ETH_P_ARP):
return -EOPNOTSUPP;
/* Will be included in layer 2. */
case cpu_to_be16(ETH_P_8021Q):
break;
default:
/* Other ethtype - we need check the masks for the
* remainder of the key to ensure we can offload.
*/
if (nfp_flower_check_higher_than_mac(flow))
return -EOPNOTSUPP;
break;
}
}
if (mask_basic && mask_basic->ip_proto) {
/* Ethernet type is present in the key. */
switch (key_basic->ip_proto) {
case IPPROTO_TCP:
case IPPROTO_UDP:
case IPPROTO_SCTP:
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
key_layer |= NFP_FLOWER_LAYER_TP;
key_size += sizeof(struct nfp_flower_tp_ports);
break;
default:
/* Other ip proto - we need check the masks for the
* remainder of the key to ensure we can offload.
*/
return -EOPNOTSUPP;
}
}
ret_key_ls->key_layer = key_layer;
ret_key_ls->key_layer_two = key_layer_two;
ret_key_ls->key_size = key_size;
return 0;
}
static struct nfp_fl_payload *
nfp_flower_allocate_new(struct nfp_fl_key_ls *key_layer)
{
struct nfp_fl_payload *flow_pay;
flow_pay = kmalloc(sizeof(*flow_pay), GFP_KERNEL);
if (!flow_pay)
return NULL;
flow_pay->meta.key_len = key_layer->key_size;
flow_pay->unmasked_data = kmalloc(key_layer->key_size, GFP_KERNEL);
if (!flow_pay->unmasked_data)
goto err_free_flow;
flow_pay->meta.mask_len = key_layer->key_size;
flow_pay->mask_data = kmalloc(key_layer->key_size, GFP_KERNEL);
if (!flow_pay->mask_data)
goto err_free_unmasked;
flow_pay->action_data = kmalloc(NFP_FL_MAX_A_SIZ, GFP_KERNEL);
if (!flow_pay->action_data)
goto err_free_mask;
flow_pay->nfp_tun_ipv4_addr = 0;
flow_pay->meta.flags = 0;
spin_lock_init(&flow_pay->lock);
return flow_pay;
err_free_mask:
kfree(flow_pay->mask_data);
err_free_unmasked:
kfree(flow_pay->unmasked_data);
err_free_flow:
kfree(flow_pay);
return NULL;
}
/**
* nfp_flower_add_offload() - Adds a new flow to hardware.
* @app: Pointer to the APP handle
* @netdev: netdev structure.
* @flow: TC flower classifier offload structure.
* @egress: NFP netdev is the egress.
*
* Adds a new flow to the repeated hash structure and action payload.
*
* Return: negative value on error, 0 if configured successfully.
*/
static int
nfp_flower_add_offload(struct nfp_app *app, struct net_device *netdev,
struct tc_cls_flower_offload *flow, bool egress)
{
enum nfp_flower_tun_type tun_type = NFP_FL_TUNNEL_NONE;
struct nfp_flower_priv *priv = app->priv;
struct nfp_fl_payload *flow_pay;
struct nfp_fl_key_ls *key_layer;
int err;
key_layer = kmalloc(sizeof(*key_layer), GFP_KERNEL);
if (!key_layer)
return -ENOMEM;
err = nfp_flower_calculate_key_layers(app, key_layer, flow, egress,
&tun_type);
if (err)
goto err_free_key_ls;
flow_pay = nfp_flower_allocate_new(key_layer);
if (!flow_pay) {
err = -ENOMEM;
goto err_free_key_ls;
}
err = nfp_flower_compile_flow_match(flow, key_layer, netdev, flow_pay,
tun_type);
if (err)
goto err_destroy_flow;
err = nfp_flower_compile_action(flow, netdev, flow_pay);
if (err)
goto err_destroy_flow;
err = nfp_compile_flow_metadata(app, flow, flow_pay);
if (err)
goto err_destroy_flow;
err = nfp_flower_xmit_flow(netdev, flow_pay,
NFP_FLOWER_CMSG_TYPE_FLOW_ADD);
if (err)
goto err_destroy_flow;
INIT_HLIST_NODE(&flow_pay->link);
flow_pay->tc_flower_cookie = flow->cookie;
hash_add_rcu(priv->flow_table, &flow_pay->link, flow->cookie);
/* Deallocate flow payload when flower rule has been destroyed. */
kfree(key_layer);
return 0;
err_destroy_flow:
kfree(flow_pay->action_data);
kfree(flow_pay->mask_data);
kfree(flow_pay->unmasked_data);
kfree(flow_pay);
err_free_key_ls:
kfree(key_layer);
return err;
}
/**
* nfp_flower_del_offload() - Removes a flow from hardware.
* @app: Pointer to the APP handle
* @netdev: netdev structure.
* @flow: TC flower classifier offload structure
*
* Removes a flow from the repeated hash structure and clears the
* action payload.
*
* Return: negative value on error, 0 if removed successfully.
*/
static int
nfp_flower_del_offload(struct nfp_app *app, struct net_device *netdev,
struct tc_cls_flower_offload *flow)
{
struct nfp_fl_payload *nfp_flow;
int err;
nfp_flow = nfp_flower_search_fl_table(app, flow->cookie);
if (!nfp_flow)
return -ENOENT;
err = nfp_modify_flow_metadata(app, nfp_flow);
if (err)
goto err_free_flow;
if (nfp_flow->nfp_tun_ipv4_addr)
nfp_tunnel_del_ipv4_off(app, nfp_flow->nfp_tun_ipv4_addr);
err = nfp_flower_xmit_flow(netdev, nfp_flow,
NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
if (err)
goto err_free_flow;
err_free_flow:
hash_del_rcu(&nfp_flow->link);
kfree(nfp_flow->action_data);
kfree(nfp_flow->mask_data);
kfree(nfp_flow->unmasked_data);
kfree_rcu(nfp_flow, rcu);
return err;
}
/**
* nfp_flower_get_stats() - Populates flow stats obtained from hardware.
* @app: Pointer to the APP handle
* @flow: TC flower classifier offload structure
*
* Populates a flow statistics structure which which corresponds to a
* specific flow.
*
* Return: negative value on error, 0 if stats populated successfully.
*/
static int
nfp_flower_get_stats(struct nfp_app *app, struct tc_cls_flower_offload *flow)
{
struct nfp_fl_payload *nfp_flow;
nfp_flow = nfp_flower_search_fl_table(app, flow->cookie);
if (!nfp_flow)
return -EINVAL;
spin_lock_bh(&nfp_flow->lock);
tcf_exts_stats_update(flow->exts, nfp_flow->stats.bytes,
nfp_flow->stats.pkts, nfp_flow->stats.used);
nfp_flow->stats.pkts = 0;
nfp_flow->stats.bytes = 0;
spin_unlock_bh(&nfp_flow->lock);
return 0;
}
static int
nfp_flower_repr_offload(struct nfp_app *app, struct net_device *netdev,
struct tc_cls_flower_offload *flower, bool egress)
{
if (!eth_proto_is_802_3(flower->common.protocol))
return -EOPNOTSUPP;
switch (flower->command) {
case TC_CLSFLOWER_REPLACE:
return nfp_flower_add_offload(app, netdev, flower, egress);
case TC_CLSFLOWER_DESTROY:
return nfp_flower_del_offload(app, netdev, flower);
case TC_CLSFLOWER_STATS:
return nfp_flower_get_stats(app, flower);
}
return -EOPNOTSUPP;
}
int nfp_flower_setup_tc_egress_cb(enum tc_setup_type type, void *type_data,
void *cb_priv)
{
struct nfp_repr *repr = cb_priv;
if (!tc_cls_can_offload_and_chain0(repr->netdev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return nfp_flower_repr_offload(repr->app, repr->netdev,
type_data, true);
default:
return -EOPNOTSUPP;
}
}
static int nfp_flower_setup_tc_block_cb(enum tc_setup_type type,
void *type_data, void *cb_priv)
{
struct nfp_repr *repr = cb_priv;
if (!tc_cls_can_offload_and_chain0(repr->netdev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return nfp_flower_repr_offload(repr->app, repr->netdev,
type_data, false);
default:
return -EOPNOTSUPP;
}
}
static int nfp_flower_setup_tc_block(struct net_device *netdev,
struct tc_block_offload *f)
{
struct nfp_repr *repr = netdev_priv(netdev);
if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
return -EOPNOTSUPP;
switch (f->command) {
case TC_BLOCK_BIND:
return tcf_block_cb_register(f->block,
nfp_flower_setup_tc_block_cb,
repr, repr);
case TC_BLOCK_UNBIND:
tcf_block_cb_unregister(f->block,
nfp_flower_setup_tc_block_cb,
repr);
return 0;
default:
return -EOPNOTSUPP;
}
}
int nfp_flower_setup_tc(struct nfp_app *app, struct net_device *netdev,
enum tc_setup_type type, void *type_data)
{
switch (type) {
case TC_SETUP_BLOCK:
return nfp_flower_setup_tc_block(netdev, type_data);
default:
return -EOPNOTSUPP;
}
}