| /* |
| * New driver for Marvell Yukon chipset and SysKonnect Gigabit |
| * Ethernet adapters. Based on earlier sk98lin, e100 and |
| * FreeBSD if_sk drivers. |
| * |
| * This driver intentionally does not support all the features |
| * of the original driver such as link fail-over and link management because |
| * those should be done at higher levels. |
| * |
| * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/in.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/pci.h> |
| #include <linux/if_vlan.h> |
| #include <linux/ip.h> |
| #include <linux/delay.h> |
| #include <linux/crc32.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/mii.h> |
| #include <asm/irq.h> |
| |
| #include "skge.h" |
| |
| #define DRV_NAME "skge" |
| #define DRV_VERSION "1.9" |
| #define PFX DRV_NAME " " |
| |
| #define DEFAULT_TX_RING_SIZE 128 |
| #define DEFAULT_RX_RING_SIZE 512 |
| #define MAX_TX_RING_SIZE 1024 |
| #define TX_LOW_WATER (MAX_SKB_FRAGS + 1) |
| #define MAX_RX_RING_SIZE 4096 |
| #define RX_COPY_THRESHOLD 128 |
| #define RX_BUF_SIZE 1536 |
| #define PHY_RETRIES 1000 |
| #define ETH_JUMBO_MTU 9000 |
| #define TX_WATCHDOG (5 * HZ) |
| #define NAPI_WEIGHT 64 |
| #define BLINK_MS 250 |
| #define LINK_HZ (HZ/2) |
| |
| MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); |
| MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| static const u32 default_msg |
| = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK |
| | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN; |
| |
| static int debug = -1; /* defaults above */ |
| module_param(debug, int, 0); |
| MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
| |
| static const struct pci_device_id skge_id_table[] = { |
| { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), }, |
| { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */ |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */ |
| { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) }, |
| { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, }, |
| { 0 } |
| }; |
| MODULE_DEVICE_TABLE(pci, skge_id_table); |
| |
| static int skge_up(struct net_device *dev); |
| static int skge_down(struct net_device *dev); |
| static void skge_phy_reset(struct skge_port *skge); |
| static void skge_tx_clean(struct net_device *dev); |
| static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); |
| static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); |
| static void genesis_get_stats(struct skge_port *skge, u64 *data); |
| static void yukon_get_stats(struct skge_port *skge, u64 *data); |
| static void yukon_init(struct skge_hw *hw, int port); |
| static void genesis_mac_init(struct skge_hw *hw, int port); |
| static void genesis_link_up(struct skge_port *skge); |
| |
| /* Avoid conditionals by using array */ |
| static const int txqaddr[] = { Q_XA1, Q_XA2 }; |
| static const int rxqaddr[] = { Q_R1, Q_R2 }; |
| static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; |
| static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; |
| static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F }; |
| |
| static int skge_get_regs_len(struct net_device *dev) |
| { |
| return 0x4000; |
| } |
| |
| /* |
| * Returns copy of whole control register region |
| * Note: skip RAM address register because accessing it will |
| * cause bus hangs! |
| */ |
| static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, |
| void *p) |
| { |
| const struct skge_port *skge = netdev_priv(dev); |
| const void __iomem *io = skge->hw->regs; |
| |
| regs->version = 1; |
| memset(p, 0, regs->len); |
| memcpy_fromio(p, io, B3_RAM_ADDR); |
| |
| memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, |
| regs->len - B3_RI_WTO_R1); |
| } |
| |
| /* Wake on Lan only supported on Yukon chips with rev 1 or above */ |
| static int wol_supported(const struct skge_hw *hw) |
| { |
| return !((hw->chip_id == CHIP_ID_GENESIS || |
| (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0))); |
| } |
| |
| static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| |
| wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0; |
| wol->wolopts = skge->wol ? WAKE_MAGIC : 0; |
| } |
| |
| static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| |
| if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) |
| return -EOPNOTSUPP; |
| |
| if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw)) |
| return -EOPNOTSUPP; |
| |
| skge->wol = wol->wolopts == WAKE_MAGIC; |
| |
| if (skge->wol) { |
| memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN); |
| |
| skge_write16(hw, WOL_CTRL_STAT, |
| WOL_CTL_ENA_PME_ON_MAGIC_PKT | |
| WOL_CTL_ENA_MAGIC_PKT_UNIT); |
| } else |
| skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT); |
| |
| return 0; |
| } |
| |
| /* Determine supported/advertised modes based on hardware. |
| * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx |
| */ |
| static u32 skge_supported_modes(const struct skge_hw *hw) |
| { |
| u32 supported; |
| |
| if (hw->copper) { |
| supported = SUPPORTED_10baseT_Half |
| | SUPPORTED_10baseT_Full |
| | SUPPORTED_100baseT_Half |
| | SUPPORTED_100baseT_Full |
| | SUPPORTED_1000baseT_Half |
| | SUPPORTED_1000baseT_Full |
| | SUPPORTED_Autoneg| SUPPORTED_TP; |
| |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| supported &= ~(SUPPORTED_10baseT_Half |
| | SUPPORTED_10baseT_Full |
| | SUPPORTED_100baseT_Half |
| | SUPPORTED_100baseT_Full); |
| |
| else if (hw->chip_id == CHIP_ID_YUKON) |
| supported &= ~SUPPORTED_1000baseT_Half; |
| } else |
| supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half |
| | SUPPORTED_FIBRE | SUPPORTED_Autoneg; |
| |
| return supported; |
| } |
| |
| static int skge_get_settings(struct net_device *dev, |
| struct ethtool_cmd *ecmd) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| |
| ecmd->transceiver = XCVR_INTERNAL; |
| ecmd->supported = skge_supported_modes(hw); |
| |
| if (hw->copper) { |
| ecmd->port = PORT_TP; |
| ecmd->phy_address = hw->phy_addr; |
| } else |
| ecmd->port = PORT_FIBRE; |
| |
| ecmd->advertising = skge->advertising; |
| ecmd->autoneg = skge->autoneg; |
| ecmd->speed = skge->speed; |
| ecmd->duplex = skge->duplex; |
| return 0; |
| } |
| |
| static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| const struct skge_hw *hw = skge->hw; |
| u32 supported = skge_supported_modes(hw); |
| |
| if (ecmd->autoneg == AUTONEG_ENABLE) { |
| ecmd->advertising = supported; |
| skge->duplex = -1; |
| skge->speed = -1; |
| } else { |
| u32 setting; |
| |
| switch (ecmd->speed) { |
| case SPEED_1000: |
| if (ecmd->duplex == DUPLEX_FULL) |
| setting = SUPPORTED_1000baseT_Full; |
| else if (ecmd->duplex == DUPLEX_HALF) |
| setting = SUPPORTED_1000baseT_Half; |
| else |
| return -EINVAL; |
| break; |
| case SPEED_100: |
| if (ecmd->duplex == DUPLEX_FULL) |
| setting = SUPPORTED_100baseT_Full; |
| else if (ecmd->duplex == DUPLEX_HALF) |
| setting = SUPPORTED_100baseT_Half; |
| else |
| return -EINVAL; |
| break; |
| |
| case SPEED_10: |
| if (ecmd->duplex == DUPLEX_FULL) |
| setting = SUPPORTED_10baseT_Full; |
| else if (ecmd->duplex == DUPLEX_HALF) |
| setting = SUPPORTED_10baseT_Half; |
| else |
| return -EINVAL; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if ((setting & supported) == 0) |
| return -EINVAL; |
| |
| skge->speed = ecmd->speed; |
| skge->duplex = ecmd->duplex; |
| } |
| |
| skge->autoneg = ecmd->autoneg; |
| skge->advertising = ecmd->advertising; |
| |
| if (netif_running(dev)) |
| skge_phy_reset(skge); |
| |
| return (0); |
| } |
| |
| static void skge_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *info) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| |
| strcpy(info->driver, DRV_NAME); |
| strcpy(info->version, DRV_VERSION); |
| strcpy(info->fw_version, "N/A"); |
| strcpy(info->bus_info, pci_name(skge->hw->pdev)); |
| } |
| |
| static const struct skge_stat { |
| char name[ETH_GSTRING_LEN]; |
| u16 xmac_offset; |
| u16 gma_offset; |
| } skge_stats[] = { |
| { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI }, |
| { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI }, |
| |
| { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK }, |
| { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK }, |
| { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK }, |
| { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK }, |
| { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK }, |
| { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK }, |
| { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE }, |
| { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE }, |
| |
| { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL }, |
| { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL }, |
| { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL }, |
| { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL }, |
| { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, |
| { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, |
| |
| { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, |
| { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, |
| { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG }, |
| { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, |
| { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, |
| }; |
| |
| static int skge_get_stats_count(struct net_device *dev) |
| { |
| return ARRAY_SIZE(skge_stats); |
| } |
| |
| static void skge_get_ethtool_stats(struct net_device *dev, |
| struct ethtool_stats *stats, u64 *data) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| |
| if (skge->hw->chip_id == CHIP_ID_GENESIS) |
| genesis_get_stats(skge, data); |
| else |
| yukon_get_stats(skge, data); |
| } |
| |
| /* Use hardware MIB variables for critical path statistics and |
| * transmit feedback not reported at interrupt. |
| * Other errors are accounted for in interrupt handler. |
| */ |
| static struct net_device_stats *skge_get_stats(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| u64 data[ARRAY_SIZE(skge_stats)]; |
| |
| if (skge->hw->chip_id == CHIP_ID_GENESIS) |
| genesis_get_stats(skge, data); |
| else |
| yukon_get_stats(skge, data); |
| |
| skge->net_stats.tx_bytes = data[0]; |
| skge->net_stats.rx_bytes = data[1]; |
| skge->net_stats.tx_packets = data[2] + data[4] + data[6]; |
| skge->net_stats.rx_packets = data[3] + data[5] + data[7]; |
| skge->net_stats.multicast = data[3] + data[5]; |
| skge->net_stats.collisions = data[10]; |
| skge->net_stats.tx_aborted_errors = data[12]; |
| |
| return &skge->net_stats; |
| } |
| |
| static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) |
| { |
| int i; |
| |
| switch (stringset) { |
| case ETH_SS_STATS: |
| for (i = 0; i < ARRAY_SIZE(skge_stats); i++) |
| memcpy(data + i * ETH_GSTRING_LEN, |
| skge_stats[i].name, ETH_GSTRING_LEN); |
| break; |
| } |
| } |
| |
| static void skge_get_ring_param(struct net_device *dev, |
| struct ethtool_ringparam *p) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| |
| p->rx_max_pending = MAX_RX_RING_SIZE; |
| p->tx_max_pending = MAX_TX_RING_SIZE; |
| p->rx_mini_max_pending = 0; |
| p->rx_jumbo_max_pending = 0; |
| |
| p->rx_pending = skge->rx_ring.count; |
| p->tx_pending = skge->tx_ring.count; |
| p->rx_mini_pending = 0; |
| p->rx_jumbo_pending = 0; |
| } |
| |
| static int skge_set_ring_param(struct net_device *dev, |
| struct ethtool_ringparam *p) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| int err; |
| |
| if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || |
| p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE) |
| return -EINVAL; |
| |
| skge->rx_ring.count = p->rx_pending; |
| skge->tx_ring.count = p->tx_pending; |
| |
| if (netif_running(dev)) { |
| skge_down(dev); |
| err = skge_up(dev); |
| if (err) |
| dev_close(dev); |
| } |
| |
| return 0; |
| } |
| |
| static u32 skge_get_msglevel(struct net_device *netdev) |
| { |
| struct skge_port *skge = netdev_priv(netdev); |
| return skge->msg_enable; |
| } |
| |
| static void skge_set_msglevel(struct net_device *netdev, u32 value) |
| { |
| struct skge_port *skge = netdev_priv(netdev); |
| skge->msg_enable = value; |
| } |
| |
| static int skge_nway_reset(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| |
| if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) |
| return -EINVAL; |
| |
| skge_phy_reset(skge); |
| return 0; |
| } |
| |
| static int skge_set_sg(struct net_device *dev, u32 data) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| |
| if (hw->chip_id == CHIP_ID_GENESIS && data) |
| return -EOPNOTSUPP; |
| return ethtool_op_set_sg(dev, data); |
| } |
| |
| static int skge_set_tx_csum(struct net_device *dev, u32 data) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| |
| if (hw->chip_id == CHIP_ID_GENESIS && data) |
| return -EOPNOTSUPP; |
| |
| return ethtool_op_set_tx_csum(dev, data); |
| } |
| |
| static u32 skge_get_rx_csum(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| |
| return skge->rx_csum; |
| } |
| |
| /* Only Yukon supports checksum offload. */ |
| static int skge_set_rx_csum(struct net_device *dev, u32 data) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| |
| if (skge->hw->chip_id == CHIP_ID_GENESIS && data) |
| return -EOPNOTSUPP; |
| |
| skge->rx_csum = data; |
| return 0; |
| } |
| |
| static void skge_get_pauseparam(struct net_device *dev, |
| struct ethtool_pauseparam *ecmd) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| |
| ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC) |
| || (skge->flow_control == FLOW_MODE_SYM_OR_REM); |
| ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND); |
| |
| ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause; |
| } |
| |
| static int skge_set_pauseparam(struct net_device *dev, |
| struct ethtool_pauseparam *ecmd) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct ethtool_pauseparam old; |
| |
| skge_get_pauseparam(dev, &old); |
| |
| if (ecmd->autoneg != old.autoneg) |
| skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC; |
| else { |
| if (ecmd->rx_pause && ecmd->tx_pause) |
| skge->flow_control = FLOW_MODE_SYMMETRIC; |
| else if (ecmd->rx_pause && !ecmd->tx_pause) |
| skge->flow_control = FLOW_MODE_SYM_OR_REM; |
| else if (!ecmd->rx_pause && ecmd->tx_pause) |
| skge->flow_control = FLOW_MODE_LOC_SEND; |
| else |
| skge->flow_control = FLOW_MODE_NONE; |
| } |
| |
| if (netif_running(dev)) |
| skge_phy_reset(skge); |
| |
| return 0; |
| } |
| |
| /* Chip internal frequency for clock calculations */ |
| static inline u32 hwkhz(const struct skge_hw *hw) |
| { |
| return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125; |
| } |
| |
| /* Chip HZ to microseconds */ |
| static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) |
| { |
| return (ticks * 1000) / hwkhz(hw); |
| } |
| |
| /* Microseconds to chip HZ */ |
| static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) |
| { |
| return hwkhz(hw) * usec / 1000; |
| } |
| |
| static int skge_get_coalesce(struct net_device *dev, |
| struct ethtool_coalesce *ecmd) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| |
| ecmd->rx_coalesce_usecs = 0; |
| ecmd->tx_coalesce_usecs = 0; |
| |
| if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { |
| u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); |
| u32 msk = skge_read32(hw, B2_IRQM_MSK); |
| |
| if (msk & rxirqmask[port]) |
| ecmd->rx_coalesce_usecs = delay; |
| if (msk & txirqmask[port]) |
| ecmd->tx_coalesce_usecs = delay; |
| } |
| |
| return 0; |
| } |
| |
| /* Note: interrupt timer is per board, but can turn on/off per port */ |
| static int skge_set_coalesce(struct net_device *dev, |
| struct ethtool_coalesce *ecmd) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| u32 msk = skge_read32(hw, B2_IRQM_MSK); |
| u32 delay = 25; |
| |
| if (ecmd->rx_coalesce_usecs == 0) |
| msk &= ~rxirqmask[port]; |
| else if (ecmd->rx_coalesce_usecs < 25 || |
| ecmd->rx_coalesce_usecs > 33333) |
| return -EINVAL; |
| else { |
| msk |= rxirqmask[port]; |
| delay = ecmd->rx_coalesce_usecs; |
| } |
| |
| if (ecmd->tx_coalesce_usecs == 0) |
| msk &= ~txirqmask[port]; |
| else if (ecmd->tx_coalesce_usecs < 25 || |
| ecmd->tx_coalesce_usecs > 33333) |
| return -EINVAL; |
| else { |
| msk |= txirqmask[port]; |
| delay = min(delay, ecmd->rx_coalesce_usecs); |
| } |
| |
| skge_write32(hw, B2_IRQM_MSK, msk); |
| if (msk == 0) |
| skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); |
| else { |
| skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); |
| skge_write32(hw, B2_IRQM_CTRL, TIM_START); |
| } |
| return 0; |
| } |
| |
| enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST }; |
| static void skge_led(struct skge_port *skge, enum led_mode mode) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| |
| mutex_lock(&hw->phy_mutex); |
| if (hw->chip_id == CHIP_ID_GENESIS) { |
| switch (mode) { |
| case LED_MODE_OFF: |
| if (hw->phy_type == SK_PHY_BCOM) |
| xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF); |
| else { |
| skge_write32(hw, SK_REG(port, TX_LED_VAL), 0); |
| skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF); |
| } |
| skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); |
| skge_write32(hw, SK_REG(port, RX_LED_VAL), 0); |
| skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF); |
| break; |
| |
| case LED_MODE_ON: |
| skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON); |
| skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); |
| |
| skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); |
| skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); |
| |
| break; |
| |
| case LED_MODE_TST: |
| skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON); |
| skge_write32(hw, SK_REG(port, RX_LED_VAL), 100); |
| skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); |
| |
| if (hw->phy_type == SK_PHY_BCOM) |
| xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON); |
| else { |
| skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON); |
| skge_write32(hw, SK_REG(port, TX_LED_VAL), 100); |
| skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); |
| } |
| |
| } |
| } else { |
| switch (mode) { |
| case LED_MODE_OFF: |
| gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); |
| gm_phy_write(hw, port, PHY_MARV_LED_OVER, |
| PHY_M_LED_MO_DUP(MO_LED_OFF) | |
| PHY_M_LED_MO_10(MO_LED_OFF) | |
| PHY_M_LED_MO_100(MO_LED_OFF) | |
| PHY_M_LED_MO_1000(MO_LED_OFF) | |
| PHY_M_LED_MO_RX(MO_LED_OFF)); |
| break; |
| case LED_MODE_ON: |
| gm_phy_write(hw, port, PHY_MARV_LED_CTRL, |
| PHY_M_LED_PULS_DUR(PULS_170MS) | |
| PHY_M_LED_BLINK_RT(BLINK_84MS) | |
| PHY_M_LEDC_TX_CTRL | |
| PHY_M_LEDC_DP_CTRL); |
| |
| gm_phy_write(hw, port, PHY_MARV_LED_OVER, |
| PHY_M_LED_MO_RX(MO_LED_OFF) | |
| (skge->speed == SPEED_100 ? |
| PHY_M_LED_MO_100(MO_LED_ON) : 0)); |
| break; |
| case LED_MODE_TST: |
| gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); |
| gm_phy_write(hw, port, PHY_MARV_LED_OVER, |
| PHY_M_LED_MO_DUP(MO_LED_ON) | |
| PHY_M_LED_MO_10(MO_LED_ON) | |
| PHY_M_LED_MO_100(MO_LED_ON) | |
| PHY_M_LED_MO_1000(MO_LED_ON) | |
| PHY_M_LED_MO_RX(MO_LED_ON)); |
| } |
| } |
| mutex_unlock(&hw->phy_mutex); |
| } |
| |
| /* blink LED's for finding board */ |
| static int skge_phys_id(struct net_device *dev, u32 data) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| unsigned long ms; |
| enum led_mode mode = LED_MODE_TST; |
| |
| if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) |
| ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000; |
| else |
| ms = data * 1000; |
| |
| while (ms > 0) { |
| skge_led(skge, mode); |
| mode ^= LED_MODE_TST; |
| |
| if (msleep_interruptible(BLINK_MS)) |
| break; |
| ms -= BLINK_MS; |
| } |
| |
| /* back to regular LED state */ |
| skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF); |
| |
| return 0; |
| } |
| |
| static const struct ethtool_ops skge_ethtool_ops = { |
| .get_settings = skge_get_settings, |
| .set_settings = skge_set_settings, |
| .get_drvinfo = skge_get_drvinfo, |
| .get_regs_len = skge_get_regs_len, |
| .get_regs = skge_get_regs, |
| .get_wol = skge_get_wol, |
| .set_wol = skge_set_wol, |
| .get_msglevel = skge_get_msglevel, |
| .set_msglevel = skge_set_msglevel, |
| .nway_reset = skge_nway_reset, |
| .get_link = ethtool_op_get_link, |
| .get_ringparam = skge_get_ring_param, |
| .set_ringparam = skge_set_ring_param, |
| .get_pauseparam = skge_get_pauseparam, |
| .set_pauseparam = skge_set_pauseparam, |
| .get_coalesce = skge_get_coalesce, |
| .set_coalesce = skge_set_coalesce, |
| .get_sg = ethtool_op_get_sg, |
| .set_sg = skge_set_sg, |
| .get_tx_csum = ethtool_op_get_tx_csum, |
| .set_tx_csum = skge_set_tx_csum, |
| .get_rx_csum = skge_get_rx_csum, |
| .set_rx_csum = skge_set_rx_csum, |
| .get_strings = skge_get_strings, |
| .phys_id = skge_phys_id, |
| .get_stats_count = skge_get_stats_count, |
| .get_ethtool_stats = skge_get_ethtool_stats, |
| .get_perm_addr = ethtool_op_get_perm_addr, |
| }; |
| |
| /* |
| * Allocate ring elements and chain them together |
| * One-to-one association of board descriptors with ring elements |
| */ |
| static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base) |
| { |
| struct skge_tx_desc *d; |
| struct skge_element *e; |
| int i; |
| |
| ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL); |
| if (!ring->start) |
| return -ENOMEM; |
| |
| for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { |
| e->desc = d; |
| if (i == ring->count - 1) { |
| e->next = ring->start; |
| d->next_offset = base; |
| } else { |
| e->next = e + 1; |
| d->next_offset = base + (i+1) * sizeof(*d); |
| } |
| } |
| ring->to_use = ring->to_clean = ring->start; |
| |
| return 0; |
| } |
| |
| /* Allocate and setup a new buffer for receiving */ |
| static void skge_rx_setup(struct skge_port *skge, struct skge_element *e, |
| struct sk_buff *skb, unsigned int bufsize) |
| { |
| struct skge_rx_desc *rd = e->desc; |
| u64 map; |
| |
| map = pci_map_single(skge->hw->pdev, skb->data, bufsize, |
| PCI_DMA_FROMDEVICE); |
| |
| rd->dma_lo = map; |
| rd->dma_hi = map >> 32; |
| e->skb = skb; |
| rd->csum1_start = ETH_HLEN; |
| rd->csum2_start = ETH_HLEN; |
| rd->csum1 = 0; |
| rd->csum2 = 0; |
| |
| wmb(); |
| |
| rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; |
| pci_unmap_addr_set(e, mapaddr, map); |
| pci_unmap_len_set(e, maplen, bufsize); |
| } |
| |
| /* Resume receiving using existing skb, |
| * Note: DMA address is not changed by chip. |
| * MTU not changed while receiver active. |
| */ |
| static inline void skge_rx_reuse(struct skge_element *e, unsigned int size) |
| { |
| struct skge_rx_desc *rd = e->desc; |
| |
| rd->csum2 = 0; |
| rd->csum2_start = ETH_HLEN; |
| |
| wmb(); |
| |
| rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size; |
| } |
| |
| |
| /* Free all buffers in receive ring, assumes receiver stopped */ |
| static void skge_rx_clean(struct skge_port *skge) |
| { |
| struct skge_hw *hw = skge->hw; |
| struct skge_ring *ring = &skge->rx_ring; |
| struct skge_element *e; |
| |
| e = ring->start; |
| do { |
| struct skge_rx_desc *rd = e->desc; |
| rd->control = 0; |
| if (e->skb) { |
| pci_unmap_single(hw->pdev, |
| pci_unmap_addr(e, mapaddr), |
| pci_unmap_len(e, maplen), |
| PCI_DMA_FROMDEVICE); |
| dev_kfree_skb(e->skb); |
| e->skb = NULL; |
| } |
| } while ((e = e->next) != ring->start); |
| } |
| |
| |
| /* Allocate buffers for receive ring |
| * For receive: to_clean is next received frame. |
| */ |
| static int skge_rx_fill(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_ring *ring = &skge->rx_ring; |
| struct skge_element *e; |
| |
| e = ring->start; |
| do { |
| struct sk_buff *skb; |
| |
| skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN, |
| GFP_KERNEL); |
| if (!skb) |
| return -ENOMEM; |
| |
| skb_reserve(skb, NET_IP_ALIGN); |
| skge_rx_setup(skge, e, skb, skge->rx_buf_size); |
| } while ( (e = e->next) != ring->start); |
| |
| ring->to_clean = ring->start; |
| return 0; |
| } |
| |
| static const char *skge_pause(enum pause_status status) |
| { |
| switch(status) { |
| case FLOW_STAT_NONE: |
| return "none"; |
| case FLOW_STAT_REM_SEND: |
| return "rx only"; |
| case FLOW_STAT_LOC_SEND: |
| return "tx_only"; |
| case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */ |
| return "both"; |
| default: |
| return "indeterminated"; |
| } |
| } |
| |
| |
| static void skge_link_up(struct skge_port *skge) |
| { |
| skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), |
| LED_BLK_OFF|LED_SYNC_OFF|LED_ON); |
| |
| netif_carrier_on(skge->netdev); |
| netif_wake_queue(skge->netdev); |
| |
| if (netif_msg_link(skge)) { |
| printk(KERN_INFO PFX |
| "%s: Link is up at %d Mbps, %s duplex, flow control %s\n", |
| skge->netdev->name, skge->speed, |
| skge->duplex == DUPLEX_FULL ? "full" : "half", |
| skge_pause(skge->flow_status)); |
| } |
| } |
| |
| static void skge_link_down(struct skge_port *skge) |
| { |
| skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); |
| netif_carrier_off(skge->netdev); |
| netif_stop_queue(skge->netdev); |
| |
| if (netif_msg_link(skge)) |
| printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name); |
| } |
| |
| |
| static void xm_link_down(struct skge_hw *hw, int port) |
| { |
| struct net_device *dev = hw->dev[port]; |
| struct skge_port *skge = netdev_priv(dev); |
| u16 cmd, msk; |
| |
| if (hw->phy_type == SK_PHY_XMAC) { |
| msk = xm_read16(hw, port, XM_IMSK); |
| msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND; |
| xm_write16(hw, port, XM_IMSK, msk); |
| } |
| |
| cmd = xm_read16(hw, port, XM_MMU_CMD); |
| cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX); |
| xm_write16(hw, port, XM_MMU_CMD, cmd); |
| /* dummy read to ensure writing */ |
| (void) xm_read16(hw, port, XM_MMU_CMD); |
| |
| if (netif_carrier_ok(dev)) |
| skge_link_down(skge); |
| } |
| |
| static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) |
| { |
| int i; |
| |
| xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); |
| *val = xm_read16(hw, port, XM_PHY_DATA); |
| |
| if (hw->phy_type == SK_PHY_XMAC) |
| goto ready; |
| |
| for (i = 0; i < PHY_RETRIES; i++) { |
| if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY) |
| goto ready; |
| udelay(1); |
| } |
| |
| return -ETIMEDOUT; |
| ready: |
| *val = xm_read16(hw, port, XM_PHY_DATA); |
| |
| return 0; |
| } |
| |
| static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg) |
| { |
| u16 v = 0; |
| if (__xm_phy_read(hw, port, reg, &v)) |
| printk(KERN_WARNING PFX "%s: phy read timed out\n", |
| hw->dev[port]->name); |
| return v; |
| } |
| |
| static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) |
| { |
| int i; |
| |
| xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); |
| for (i = 0; i < PHY_RETRIES; i++) { |
| if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) |
| goto ready; |
| udelay(1); |
| } |
| return -EIO; |
| |
| ready: |
| xm_write16(hw, port, XM_PHY_DATA, val); |
| for (i = 0; i < PHY_RETRIES; i++) { |
| if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) |
| return 0; |
| udelay(1); |
| } |
| return -ETIMEDOUT; |
| } |
| |
| static void genesis_init(struct skge_hw *hw) |
| { |
| /* set blink source counter */ |
| skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); |
| skge_write8(hw, B2_BSC_CTRL, BSC_START); |
| |
| /* configure mac arbiter */ |
| skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); |
| |
| /* configure mac arbiter timeout values */ |
| skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); |
| skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); |
| skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); |
| skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); |
| |
| skge_write8(hw, B3_MA_RCINI_RX1, 0); |
| skge_write8(hw, B3_MA_RCINI_RX2, 0); |
| skge_write8(hw, B3_MA_RCINI_TX1, 0); |
| skge_write8(hw, B3_MA_RCINI_TX2, 0); |
| |
| /* configure packet arbiter timeout */ |
| skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); |
| skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); |
| skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); |
| skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); |
| skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); |
| } |
| |
| static void genesis_reset(struct skge_hw *hw, int port) |
| { |
| const u8 zero[8] = { 0 }; |
| |
| skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); |
| |
| /* reset the statistics module */ |
| xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); |
| xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */ |
| xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ |
| xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ |
| xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ |
| |
| /* disable Broadcom PHY IRQ */ |
| if (hw->phy_type == SK_PHY_BCOM) |
| xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); |
| |
| xm_outhash(hw, port, XM_HSM, zero); |
| } |
| |
| |
| /* Convert mode to MII values */ |
| static const u16 phy_pause_map[] = { |
| [FLOW_MODE_NONE] = 0, |
| [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM, |
| [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP, |
| [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM, |
| }; |
| |
| /* special defines for FIBER (88E1011S only) */ |
| static const u16 fiber_pause_map[] = { |
| [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE, |
| [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD, |
| [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD, |
| [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD, |
| }; |
| |
| |
| /* Check status of Broadcom phy link */ |
| static void bcom_check_link(struct skge_hw *hw, int port) |
| { |
| struct net_device *dev = hw->dev[port]; |
| struct skge_port *skge = netdev_priv(dev); |
| u16 status; |
| |
| /* read twice because of latch */ |
| (void) xm_phy_read(hw, port, PHY_BCOM_STAT); |
| status = xm_phy_read(hw, port, PHY_BCOM_STAT); |
| |
| if ((status & PHY_ST_LSYNC) == 0) { |
| xm_link_down(hw, port); |
| return; |
| } |
| |
| if (skge->autoneg == AUTONEG_ENABLE) { |
| u16 lpa, aux; |
| |
| if (!(status & PHY_ST_AN_OVER)) |
| return; |
| |
| lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); |
| if (lpa & PHY_B_AN_RF) { |
| printk(KERN_NOTICE PFX "%s: remote fault\n", |
| dev->name); |
| return; |
| } |
| |
| aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); |
| |
| /* Check Duplex mismatch */ |
| switch (aux & PHY_B_AS_AN_RES_MSK) { |
| case PHY_B_RES_1000FD: |
| skge->duplex = DUPLEX_FULL; |
| break; |
| case PHY_B_RES_1000HD: |
| skge->duplex = DUPLEX_HALF; |
| break; |
| default: |
| printk(KERN_NOTICE PFX "%s: duplex mismatch\n", |
| dev->name); |
| return; |
| } |
| |
| /* We are using IEEE 802.3z/D5.0 Table 37-4 */ |
| switch (aux & PHY_B_AS_PAUSE_MSK) { |
| case PHY_B_AS_PAUSE_MSK: |
| skge->flow_status = FLOW_STAT_SYMMETRIC; |
| break; |
| case PHY_B_AS_PRR: |
| skge->flow_status = FLOW_STAT_REM_SEND; |
| break; |
| case PHY_B_AS_PRT: |
| skge->flow_status = FLOW_STAT_LOC_SEND; |
| break; |
| default: |
| skge->flow_status = FLOW_STAT_NONE; |
| } |
| skge->speed = SPEED_1000; |
| } |
| |
| if (!netif_carrier_ok(dev)) |
| genesis_link_up(skge); |
| } |
| |
| /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional |
| * Phy on for 100 or 10Mbit operation |
| */ |
| static void bcom_phy_init(struct skge_port *skge) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| int i; |
| u16 id1, r, ext, ctl; |
| |
| /* magic workaround patterns for Broadcom */ |
| static const struct { |
| u16 reg; |
| u16 val; |
| } A1hack[] = { |
| { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, |
| { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, |
| { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, |
| { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, |
| }, C0hack[] = { |
| { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, |
| { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, |
| }; |
| |
| /* read Id from external PHY (all have the same address) */ |
| id1 = xm_phy_read(hw, port, PHY_XMAC_ID1); |
| |
| /* Optimize MDIO transfer by suppressing preamble. */ |
| r = xm_read16(hw, port, XM_MMU_CMD); |
| r |= XM_MMU_NO_PRE; |
| xm_write16(hw, port, XM_MMU_CMD,r); |
| |
| switch (id1) { |
| case PHY_BCOM_ID1_C0: |
| /* |
| * Workaround BCOM Errata for the C0 type. |
| * Write magic patterns to reserved registers. |
| */ |
| for (i = 0; i < ARRAY_SIZE(C0hack); i++) |
| xm_phy_write(hw, port, |
| C0hack[i].reg, C0hack[i].val); |
| |
| break; |
| case PHY_BCOM_ID1_A1: |
| /* |
| * Workaround BCOM Errata for the A1 type. |
| * Write magic patterns to reserved registers. |
| */ |
| for (i = 0; i < ARRAY_SIZE(A1hack); i++) |
| xm_phy_write(hw, port, |
| A1hack[i].reg, A1hack[i].val); |
| break; |
| } |
| |
| /* |
| * Workaround BCOM Errata (#10523) for all BCom PHYs. |
| * Disable Power Management after reset. |
| */ |
| r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); |
| r |= PHY_B_AC_DIS_PM; |
| xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r); |
| |
| /* Dummy read */ |
| xm_read16(hw, port, XM_ISRC); |
| |
| ext = PHY_B_PEC_EN_LTR; /* enable tx led */ |
| ctl = PHY_CT_SP1000; /* always 1000mbit */ |
| |
| if (skge->autoneg == AUTONEG_ENABLE) { |
| /* |
| * Workaround BCOM Errata #1 for the C5 type. |
| * 1000Base-T Link Acquisition Failure in Slave Mode |
| * Set Repeater/DTE bit 10 of the 1000Base-T Control Register |
| */ |
| u16 adv = PHY_B_1000C_RD; |
| if (skge->advertising & ADVERTISED_1000baseT_Half) |
| adv |= PHY_B_1000C_AHD; |
| if (skge->advertising & ADVERTISED_1000baseT_Full) |
| adv |= PHY_B_1000C_AFD; |
| xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv); |
| |
| ctl |= PHY_CT_ANE | PHY_CT_RE_CFG; |
| } else { |
| if (skge->duplex == DUPLEX_FULL) |
| ctl |= PHY_CT_DUP_MD; |
| /* Force to slave */ |
| xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE); |
| } |
| |
| /* Set autonegotiation pause parameters */ |
| xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, |
| phy_pause_map[skge->flow_control] | PHY_AN_CSMA); |
| |
| /* Handle Jumbo frames */ |
| if (hw->dev[port]->mtu > ETH_DATA_LEN) { |
| xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, |
| PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK); |
| |
| ext |= PHY_B_PEC_HIGH_LA; |
| |
| } |
| |
| xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext); |
| xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl); |
| |
| /* Use link status change interrupt */ |
| xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); |
| } |
| |
| static void xm_phy_init(struct skge_port *skge) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| u16 ctrl = 0; |
| |
| if (skge->autoneg == AUTONEG_ENABLE) { |
| if (skge->advertising & ADVERTISED_1000baseT_Half) |
| ctrl |= PHY_X_AN_HD; |
| if (skge->advertising & ADVERTISED_1000baseT_Full) |
| ctrl |= PHY_X_AN_FD; |
| |
| ctrl |= fiber_pause_map[skge->flow_control]; |
| |
| xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl); |
| |
| /* Restart Auto-negotiation */ |
| ctrl = PHY_CT_ANE | PHY_CT_RE_CFG; |
| } else { |
| /* Set DuplexMode in Config register */ |
| if (skge->duplex == DUPLEX_FULL) |
| ctrl |= PHY_CT_DUP_MD; |
| /* |
| * Do NOT enable Auto-negotiation here. This would hold |
| * the link down because no IDLEs are transmitted |
| */ |
| } |
| |
| xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl); |
| |
| /* Poll PHY for status changes */ |
| schedule_delayed_work(&skge->link_thread, LINK_HZ); |
| } |
| |
| static void xm_check_link(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| u16 status; |
| |
| /* read twice because of latch */ |
| (void) xm_phy_read(hw, port, PHY_XMAC_STAT); |
| status = xm_phy_read(hw, port, PHY_XMAC_STAT); |
| |
| if ((status & PHY_ST_LSYNC) == 0) { |
| xm_link_down(hw, port); |
| return; |
| } |
| |
| if (skge->autoneg == AUTONEG_ENABLE) { |
| u16 lpa, res; |
| |
| if (!(status & PHY_ST_AN_OVER)) |
| return; |
| |
| lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); |
| if (lpa & PHY_B_AN_RF) { |
| printk(KERN_NOTICE PFX "%s: remote fault\n", |
| dev->name); |
| return; |
| } |
| |
| res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI); |
| |
| /* Check Duplex mismatch */ |
| switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) { |
| case PHY_X_RS_FD: |
| skge->duplex = DUPLEX_FULL; |
| break; |
| case PHY_X_RS_HD: |
| skge->duplex = DUPLEX_HALF; |
| break; |
| default: |
| printk(KERN_NOTICE PFX "%s: duplex mismatch\n", |
| dev->name); |
| return; |
| } |
| |
| /* We are using IEEE 802.3z/D5.0 Table 37-4 */ |
| if ((skge->flow_control == FLOW_MODE_SYMMETRIC || |
| skge->flow_control == FLOW_MODE_SYM_OR_REM) && |
| (lpa & PHY_X_P_SYM_MD)) |
| skge->flow_status = FLOW_STAT_SYMMETRIC; |
| else if (skge->flow_control == FLOW_MODE_SYM_OR_REM && |
| (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD) |
| /* Enable PAUSE receive, disable PAUSE transmit */ |
| skge->flow_status = FLOW_STAT_REM_SEND; |
| else if (skge->flow_control == FLOW_MODE_LOC_SEND && |
| (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD) |
| /* Disable PAUSE receive, enable PAUSE transmit */ |
| skge->flow_status = FLOW_STAT_LOC_SEND; |
| else |
| skge->flow_status = FLOW_STAT_NONE; |
| |
| skge->speed = SPEED_1000; |
| } |
| |
| if (!netif_carrier_ok(dev)) |
| genesis_link_up(skge); |
| } |
| |
| /* Poll to check for link coming up. |
| * Since internal PHY is wired to a level triggered pin, can't |
| * get an interrupt when carrier is detected. |
| */ |
| static void xm_link_timer(struct work_struct *work) |
| { |
| struct skge_port *skge = |
| container_of(work, struct skge_port, link_thread.work); |
| struct net_device *dev = skge->netdev; |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| |
| if (!netif_running(dev)) |
| return; |
| |
| if (netif_carrier_ok(dev)) { |
| xm_read16(hw, port, XM_ISRC); |
| if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)) |
| goto nochange; |
| } else { |
| if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS) |
| goto nochange; |
| xm_read16(hw, port, XM_ISRC); |
| if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS) |
| goto nochange; |
| } |
| |
| mutex_lock(&hw->phy_mutex); |
| xm_check_link(dev); |
| mutex_unlock(&hw->phy_mutex); |
| |
| nochange: |
| schedule_delayed_work(&skge->link_thread, LINK_HZ); |
| } |
| |
| static void genesis_mac_init(struct skge_hw *hw, int port) |
| { |
| struct net_device *dev = hw->dev[port]; |
| struct skge_port *skge = netdev_priv(dev); |
| int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN; |
| int i; |
| u32 r; |
| const u8 zero[6] = { 0 }; |
| |
| for (i = 0; i < 10; i++) { |
| skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), |
| MFF_SET_MAC_RST); |
| if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST) |
| goto reset_ok; |
| udelay(1); |
| } |
| |
| printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name); |
| |
| reset_ok: |
| /* Unreset the XMAC. */ |
| skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); |
| |
| /* |
| * Perform additional initialization for external PHYs, |
| * namely for the 1000baseTX cards that use the XMAC's |
| * GMII mode. |
| */ |
| if (hw->phy_type != SK_PHY_XMAC) { |
| /* Take external Phy out of reset */ |
| r = skge_read32(hw, B2_GP_IO); |
| if (port == 0) |
| r |= GP_DIR_0|GP_IO_0; |
| else |
| r |= GP_DIR_2|GP_IO_2; |
| |
| skge_write32(hw, B2_GP_IO, r); |
| |
| /* Enable GMII interface */ |
| xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); |
| } |
| |
| |
| switch(hw->phy_type) { |
| case SK_PHY_XMAC: |
| xm_phy_init(skge); |
| break; |
| case SK_PHY_BCOM: |
| bcom_phy_init(skge); |
| bcom_check_link(hw, port); |
| } |
| |
| /* Set Station Address */ |
| xm_outaddr(hw, port, XM_SA, dev->dev_addr); |
| |
| /* We don't use match addresses so clear */ |
| for (i = 1; i < 16; i++) |
| xm_outaddr(hw, port, XM_EXM(i), zero); |
| |
| /* Clear MIB counters */ |
| xm_write16(hw, port, XM_STAT_CMD, |
| XM_SC_CLR_RXC | XM_SC_CLR_TXC); |
| /* Clear two times according to Errata #3 */ |
| xm_write16(hw, port, XM_STAT_CMD, |
| XM_SC_CLR_RXC | XM_SC_CLR_TXC); |
| |
| /* configure Rx High Water Mark (XM_RX_HI_WM) */ |
| xm_write16(hw, port, XM_RX_HI_WM, 1450); |
| |
| /* We don't need the FCS appended to the packet. */ |
| r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS; |
| if (jumbo) |
| r |= XM_RX_BIG_PK_OK; |
| |
| if (skge->duplex == DUPLEX_HALF) { |
| /* |
| * If in manual half duplex mode the other side might be in |
| * full duplex mode, so ignore if a carrier extension is not seen |
| * on frames received |
| */ |
| r |= XM_RX_DIS_CEXT; |
| } |
| xm_write16(hw, port, XM_RX_CMD, r); |
| |
| |
| /* We want short frames padded to 60 bytes. */ |
| xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD); |
| |
| /* |
| * Bump up the transmit threshold. This helps hold off transmit |
| * underruns when we're blasting traffic from both ports at once. |
| */ |
| xm_write16(hw, port, XM_TX_THR, 512); |
| |
| /* |
| * Enable the reception of all error frames. This is is |
| * a necessary evil due to the design of the XMAC. The |
| * XMAC's receive FIFO is only 8K in size, however jumbo |
| * frames can be up to 9000 bytes in length. When bad |
| * frame filtering is enabled, the XMAC's RX FIFO operates |
| * in 'store and forward' mode. For this to work, the |
| * entire frame has to fit into the FIFO, but that means |
| * that jumbo frames larger than 8192 bytes will be |
| * truncated. Disabling all bad frame filtering causes |
| * the RX FIFO to operate in streaming mode, in which |
| * case the XMAC will start transferring frames out of the |
| * RX FIFO as soon as the FIFO threshold is reached. |
| */ |
| xm_write32(hw, port, XM_MODE, XM_DEF_MODE); |
| |
| |
| /* |
| * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK) |
| * - Enable all bits excepting 'Octets Rx OK Low CntOv' |
| * and 'Octets Rx OK Hi Cnt Ov'. |
| */ |
| xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK); |
| |
| /* |
| * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK) |
| * - Enable all bits excepting 'Octets Tx OK Low CntOv' |
| * and 'Octets Tx OK Hi Cnt Ov'. |
| */ |
| xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK); |
| |
| /* Configure MAC arbiter */ |
| skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); |
| |
| /* configure timeout values */ |
| skge_write8(hw, B3_MA_TOINI_RX1, 72); |
| skge_write8(hw, B3_MA_TOINI_RX2, 72); |
| skge_write8(hw, B3_MA_TOINI_TX1, 72); |
| skge_write8(hw, B3_MA_TOINI_TX2, 72); |
| |
| skge_write8(hw, B3_MA_RCINI_RX1, 0); |
| skge_write8(hw, B3_MA_RCINI_RX2, 0); |
| skge_write8(hw, B3_MA_RCINI_TX1, 0); |
| skge_write8(hw, B3_MA_RCINI_TX2, 0); |
| |
| /* Configure Rx MAC FIFO */ |
| skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); |
| skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); |
| skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); |
| |
| /* Configure Tx MAC FIFO */ |
| skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); |
| skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); |
| skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); |
| |
| if (jumbo) { |
| /* Enable frame flushing if jumbo frames used */ |
| skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH); |
| } else { |
| /* enable timeout timers if normal frames */ |
| skge_write16(hw, B3_PA_CTRL, |
| (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); |
| } |
| } |
| |
| static void genesis_stop(struct skge_port *skge) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| u32 reg; |
| |
| genesis_reset(hw, port); |
| |
| /* Clear Tx packet arbiter timeout IRQ */ |
| skge_write16(hw, B3_PA_CTRL, |
| port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); |
| |
| /* |
| * If the transfer sticks at the MAC the STOP command will not |
| * terminate if we don't flush the XMAC's transmit FIFO ! |
| */ |
| xm_write32(hw, port, XM_MODE, |
| xm_read32(hw, port, XM_MODE)|XM_MD_FTF); |
| |
| |
| /* Reset the MAC */ |
| skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); |
| |
| /* For external PHYs there must be special handling */ |
| if (hw->phy_type != SK_PHY_XMAC) { |
| reg = skge_read32(hw, B2_GP_IO); |
| if (port == 0) { |
| reg |= GP_DIR_0; |
| reg &= ~GP_IO_0; |
| } else { |
| reg |= GP_DIR_2; |
| reg &= ~GP_IO_2; |
| } |
| skge_write32(hw, B2_GP_IO, reg); |
| skge_read32(hw, B2_GP_IO); |
| } |
| |
| xm_write16(hw, port, XM_MMU_CMD, |
| xm_read16(hw, port, XM_MMU_CMD) |
| & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); |
| |
| xm_read16(hw, port, XM_MMU_CMD); |
| } |
| |
| |
| static void genesis_get_stats(struct skge_port *skge, u64 *data) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| int i; |
| unsigned long timeout = jiffies + HZ; |
| |
| xm_write16(hw, port, |
| XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); |
| |
| /* wait for update to complete */ |
| while (xm_read16(hw, port, XM_STAT_CMD) |
| & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { |
| if (time_after(jiffies, timeout)) |
| break; |
| udelay(10); |
| } |
| |
| /* special case for 64 bit octet counter */ |
| data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32 |
| | xm_read32(hw, port, XM_TXO_OK_LO); |
| data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32 |
| | xm_read32(hw, port, XM_RXO_OK_LO); |
| |
| for (i = 2; i < ARRAY_SIZE(skge_stats); i++) |
| data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset); |
| } |
| |
| static void genesis_mac_intr(struct skge_hw *hw, int port) |
| { |
| struct skge_port *skge = netdev_priv(hw->dev[port]); |
| u16 status = xm_read16(hw, port, XM_ISRC); |
| |
| if (netif_msg_intr(skge)) |
| printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n", |
| skge->netdev->name, status); |
| |
| if (hw->phy_type == SK_PHY_XMAC && |
| (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC))) |
| xm_link_down(hw, port); |
| |
| if (status & XM_IS_TXF_UR) { |
| xm_write32(hw, port, XM_MODE, XM_MD_FTF); |
| ++skge->net_stats.tx_fifo_errors; |
| } |
| if (status & XM_IS_RXF_OV) { |
| xm_write32(hw, port, XM_MODE, XM_MD_FRF); |
| ++skge->net_stats.rx_fifo_errors; |
| } |
| } |
| |
| static void genesis_link_up(struct skge_port *skge) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| u16 cmd, msk; |
| u32 mode; |
| |
| cmd = xm_read16(hw, port, XM_MMU_CMD); |
| |
| /* |
| * enabling pause frame reception is required for 1000BT |
| * because the XMAC is not reset if the link is going down |
| */ |
| if (skge->flow_status == FLOW_STAT_NONE || |
| skge->flow_status == FLOW_STAT_LOC_SEND) |
| /* Disable Pause Frame Reception */ |
| cmd |= XM_MMU_IGN_PF; |
| else |
| /* Enable Pause Frame Reception */ |
| cmd &= ~XM_MMU_IGN_PF; |
| |
| xm_write16(hw, port, XM_MMU_CMD, cmd); |
| |
| mode = xm_read32(hw, port, XM_MODE); |
| if (skge->flow_status== FLOW_STAT_SYMMETRIC || |
| skge->flow_status == FLOW_STAT_LOC_SEND) { |
| /* |
| * Configure Pause Frame Generation |
| * Use internal and external Pause Frame Generation. |
| * Sending pause frames is edge triggered. |
| * Send a Pause frame with the maximum pause time if |
| * internal oder external FIFO full condition occurs. |
| * Send a zero pause time frame to re-start transmission. |
| */ |
| /* XM_PAUSE_DA = '010000C28001' (default) */ |
| /* XM_MAC_PTIME = 0xffff (maximum) */ |
| /* remember this value is defined in big endian (!) */ |
| xm_write16(hw, port, XM_MAC_PTIME, 0xffff); |
| |
| mode |= XM_PAUSE_MODE; |
| skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); |
| } else { |
| /* |
| * disable pause frame generation is required for 1000BT |
| * because the XMAC is not reset if the link is going down |
| */ |
| /* Disable Pause Mode in Mode Register */ |
| mode &= ~XM_PAUSE_MODE; |
| |
| skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); |
| } |
| |
| xm_write32(hw, port, XM_MODE, mode); |
| msk = XM_DEF_MSK; |
| if (hw->phy_type != SK_PHY_XMAC) |
| msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */ |
| |
| xm_write16(hw, port, XM_IMSK, msk); |
| xm_read16(hw, port, XM_ISRC); |
| |
| /* get MMU Command Reg. */ |
| cmd = xm_read16(hw, port, XM_MMU_CMD); |
| if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL) |
| cmd |= XM_MMU_GMII_FD; |
| |
| /* |
| * Workaround BCOM Errata (#10523) for all BCom Phys |
| * Enable Power Management after link up |
| */ |
| if (hw->phy_type == SK_PHY_BCOM) { |
| xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, |
| xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) |
| & ~PHY_B_AC_DIS_PM); |
| xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); |
| } |
| |
| /* enable Rx/Tx */ |
| xm_write16(hw, port, XM_MMU_CMD, |
| cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); |
| skge_link_up(skge); |
| } |
| |
| |
| static inline void bcom_phy_intr(struct skge_port *skge) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| u16 isrc; |
| |
| isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT); |
| if (netif_msg_intr(skge)) |
| printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n", |
| skge->netdev->name, isrc); |
| |
| if (isrc & PHY_B_IS_PSE) |
| printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n", |
| hw->dev[port]->name); |
| |
| /* Workaround BCom Errata: |
| * enable and disable loopback mode if "NO HCD" occurs. |
| */ |
| if (isrc & PHY_B_IS_NO_HDCL) { |
| u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL); |
| xm_phy_write(hw, port, PHY_BCOM_CTRL, |
| ctrl | PHY_CT_LOOP); |
| xm_phy_write(hw, port, PHY_BCOM_CTRL, |
| ctrl & ~PHY_CT_LOOP); |
| } |
| |
| if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) |
| bcom_check_link(hw, port); |
| |
| } |
| |
| static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) |
| { |
| int i; |
| |
| gma_write16(hw, port, GM_SMI_DATA, val); |
| gma_write16(hw, port, GM_SMI_CTRL, |
| GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); |
| for (i = 0; i < PHY_RETRIES; i++) { |
| udelay(1); |
| |
| if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) |
| return 0; |
| } |
| |
| printk(KERN_WARNING PFX "%s: phy write timeout\n", |
| hw->dev[port]->name); |
| return -EIO; |
| } |
| |
| static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) |
| { |
| int i; |
| |
| gma_write16(hw, port, GM_SMI_CTRL, |
| GM_SMI_CT_PHY_AD(hw->phy_addr) |
| | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); |
| |
| for (i = 0; i < PHY_RETRIES; i++) { |
| udelay(1); |
| if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) |
| goto ready; |
| } |
| |
| return -ETIMEDOUT; |
| ready: |
| *val = gma_read16(hw, port, GM_SMI_DATA); |
| return 0; |
| } |
| |
| static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg) |
| { |
| u16 v = 0; |
| if (__gm_phy_read(hw, port, reg, &v)) |
| printk(KERN_WARNING PFX "%s: phy read timeout\n", |
| hw->dev[port]->name); |
| return v; |
| } |
| |
| /* Marvell Phy Initialization */ |
| static void yukon_init(struct skge_hw *hw, int port) |
| { |
| struct skge_port *skge = netdev_priv(hw->dev[port]); |
| u16 ctrl, ct1000, adv; |
| |
| if (skge->autoneg == AUTONEG_ENABLE) { |
| u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); |
| |
| ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | |
| PHY_M_EC_MAC_S_MSK); |
| ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); |
| |
| ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); |
| |
| gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); |
| } |
| |
| ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); |
| if (skge->autoneg == AUTONEG_DISABLE) |
| ctrl &= ~PHY_CT_ANE; |
| |
| ctrl |= PHY_CT_RESET; |
| gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); |
| |
| ctrl = 0; |
| ct1000 = 0; |
| adv = PHY_AN_CSMA; |
| |
| if (skge->autoneg == AUTONEG_ENABLE) { |
| if (hw->copper) { |
| if (skge->advertising & ADVERTISED_1000baseT_Full) |
| ct1000 |= PHY_M_1000C_AFD; |
| if (skge->advertising & ADVERTISED_1000baseT_Half) |
| ct1000 |= PHY_M_1000C_AHD; |
| if (skge->advertising & ADVERTISED_100baseT_Full) |
| adv |= PHY_M_AN_100_FD; |
| if (skge->advertising & ADVERTISED_100baseT_Half) |
| adv |= PHY_M_AN_100_HD; |
| if (skge->advertising & ADVERTISED_10baseT_Full) |
| adv |= PHY_M_AN_10_FD; |
| if (skge->advertising & ADVERTISED_10baseT_Half) |
| adv |= PHY_M_AN_10_HD; |
| |
| /* Set Flow-control capabilities */ |
| adv |= phy_pause_map[skge->flow_control]; |
| } else { |
| if (skge->advertising & ADVERTISED_1000baseT_Full) |
| adv |= PHY_M_AN_1000X_AFD; |
| if (skge->advertising & ADVERTISED_1000baseT_Half) |
| adv |= PHY_M_AN_1000X_AHD; |
| |
| adv |= fiber_pause_map[skge->flow_control]; |
| } |
| |
| /* Restart Auto-negotiation */ |
| ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; |
| } else { |
| /* forced speed/duplex settings */ |
| ct1000 = PHY_M_1000C_MSE; |
| |
| if (skge->duplex == DUPLEX_FULL) |
| ctrl |= PHY_CT_DUP_MD; |
| |
| switch (skge->speed) { |
| case SPEED_1000: |
| ctrl |= PHY_CT_SP1000; |
| break; |
| case SPEED_100: |
| ctrl |= PHY_CT_SP100; |
| break; |
| } |
| |
| ctrl |= PHY_CT_RESET; |
| } |
| |
| gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); |
| |
| gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); |
| gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); |
| |
| /* Enable phy interrupt on autonegotiation complete (or link up) */ |
| if (skge->autoneg == AUTONEG_ENABLE) |
| gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK); |
| else |
| gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); |
| } |
| |
| static void yukon_reset(struct skge_hw *hw, int port) |
| { |
| gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ |
| gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ |
| gma_write16(hw, port, GM_MC_ADDR_H2, 0); |
| gma_write16(hw, port, GM_MC_ADDR_H3, 0); |
| gma_write16(hw, port, GM_MC_ADDR_H4, 0); |
| |
| gma_write16(hw, port, GM_RX_CTRL, |
| gma_read16(hw, port, GM_RX_CTRL) |
| | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); |
| } |
| |
| /* Apparently, early versions of Yukon-Lite had wrong chip_id? */ |
| static int is_yukon_lite_a0(struct skge_hw *hw) |
| { |
| u32 reg; |
| int ret; |
| |
| if (hw->chip_id != CHIP_ID_YUKON) |
| return 0; |
| |
| reg = skge_read32(hw, B2_FAR); |
| skge_write8(hw, B2_FAR + 3, 0xff); |
| ret = (skge_read8(hw, B2_FAR + 3) != 0); |
| skge_write32(hw, B2_FAR, reg); |
| return ret; |
| } |
| |
| static void yukon_mac_init(struct skge_hw *hw, int port) |
| { |
| struct skge_port *skge = netdev_priv(hw->dev[port]); |
| int i; |
| u32 reg; |
| const u8 *addr = hw->dev[port]->dev_addr; |
| |
| /* WA code for COMA mode -- set PHY reset */ |
| if (hw->chip_id == CHIP_ID_YUKON_LITE && |
| hw->chip_rev >= CHIP_REV_YU_LITE_A3) { |
| reg = skge_read32(hw, B2_GP_IO); |
| reg |= GP_DIR_9 | GP_IO_9; |
| skge_write32(hw, B2_GP_IO, reg); |
| } |
| |
| /* hard reset */ |
| skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); |
| skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); |
| |
| /* WA code for COMA mode -- clear PHY reset */ |
| if (hw->chip_id == CHIP_ID_YUKON_LITE && |
| hw->chip_rev >= CHIP_REV_YU_LITE_A3) { |
| reg = skge_read32(hw, B2_GP_IO); |
| reg |= GP_DIR_9; |
| reg &= ~GP_IO_9; |
| skge_write32(hw, B2_GP_IO, reg); |
| } |
| |
| /* Set hardware config mode */ |
| reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | |
| GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; |
| reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; |
| |
| /* Clear GMC reset */ |
| skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET); |
| skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); |
| skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); |
| |
| if (skge->autoneg == AUTONEG_DISABLE) { |
| reg = GM_GPCR_AU_ALL_DIS; |
| gma_write16(hw, port, GM_GP_CTRL, |
| gma_read16(hw, port, GM_GP_CTRL) | reg); |
| |
| switch (skge->speed) { |
| case SPEED_1000: |
| reg &= ~GM_GPCR_SPEED_100; |
| reg |= GM_GPCR_SPEED_1000; |
| break; |
| case SPEED_100: |
| reg &= ~GM_GPCR_SPEED_1000; |
| reg |= GM_GPCR_SPEED_100; |
| break; |
| case SPEED_10: |
| reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100); |
| break; |
| } |
| |
| if (skge->duplex == DUPLEX_FULL) |
| reg |= GM_GPCR_DUP_FULL; |
| } else |
| reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; |
| |
| switch (skge->flow_control) { |
| case FLOW_MODE_NONE: |
| skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); |
| reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; |
| break; |
| case FLOW_MODE_LOC_SEND: |
| /* disable Rx flow-control */ |
| reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; |
| break; |
| case FLOW_MODE_SYMMETRIC: |
| case FLOW_MODE_SYM_OR_REM: |
| /* enable Tx & Rx flow-control */ |
| break; |
| } |
| |
| gma_write16(hw, port, GM_GP_CTRL, reg); |
| skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); |
| |
| yukon_init(hw, port); |
| |
| /* MIB clear */ |
| reg = gma_read16(hw, port, GM_PHY_ADDR); |
| gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); |
| |
| for (i = 0; i < GM_MIB_CNT_SIZE; i++) |
| gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); |
| gma_write16(hw, port, GM_PHY_ADDR, reg); |
| |
| /* transmit control */ |
| gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); |
| |
| /* receive control reg: unicast + multicast + no FCS */ |
| gma_write16(hw, port, GM_RX_CTRL, |
| GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); |
| |
| /* transmit flow control */ |
| gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); |
| |
| /* transmit parameter */ |
| gma_write16(hw, port, GM_TX_PARAM, |
| TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | |
| TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | |
| TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); |
| |
| /* serial mode register */ |
| reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); |
| if (hw->dev[port]->mtu > 1500) |
| reg |= GM_SMOD_JUMBO_ENA; |
| |
| gma_write16(hw, port, GM_SERIAL_MODE, reg); |
| |
| /* physical address: used for pause frames */ |
| gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); |
| /* virtual address for data */ |
| gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); |
| |
| /* enable interrupt mask for counter overflows */ |
| gma_write16(hw, port, GM_TX_IRQ_MSK, 0); |
| gma_write16(hw, port, GM_RX_IRQ_MSK, 0); |
| gma_write16(hw, port, GM_TR_IRQ_MSK, 0); |
| |
| /* Initialize Mac Fifo */ |
| |
| /* Configure Rx MAC FIFO */ |
| skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); |
| reg = GMF_OPER_ON | GMF_RX_F_FL_ON; |
| |
| /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ |
| if (is_yukon_lite_a0(hw)) |
| reg &= ~GMF_RX_F_FL_ON; |
| |
| skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); |
| skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); |
| /* |
| * because Pause Packet Truncation in GMAC is not working |
| * we have to increase the Flush Threshold to 64 bytes |
| * in order to flush pause packets in Rx FIFO on Yukon-1 |
| */ |
| skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1); |
| |
| /* Configure Tx MAC FIFO */ |
| skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); |
| skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); |
| } |
| |
| /* Go into power down mode */ |
| static void yukon_suspend(struct skge_hw *hw, int port) |
| { |
| u16 ctrl; |
| |
| ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); |
| ctrl |= PHY_M_PC_POL_R_DIS; |
| gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); |
| |
| ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); |
| ctrl |= PHY_CT_RESET; |
| gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); |
| |
| /* switch IEEE compatible power down mode on */ |
| ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); |
| ctrl |= PHY_CT_PDOWN; |
| gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); |
| } |
| |
| static void yukon_stop(struct skge_port *skge) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| |
| skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); |
| yukon_reset(hw, port); |
| |
| gma_write16(hw, port, GM_GP_CTRL, |
| gma_read16(hw, port, GM_GP_CTRL) |
| & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA)); |
| gma_read16(hw, port, GM_GP_CTRL); |
| |
| yukon_suspend(hw, port); |
| |
| /* set GPHY Control reset */ |
| skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); |
| skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); |
| } |
| |
| static void yukon_get_stats(struct skge_port *skge, u64 *data) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| int i; |
| |
| data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 |
| | gma_read32(hw, port, GM_TXO_OK_LO); |
| data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 |
| | gma_read32(hw, port, GM_RXO_OK_LO); |
| |
| for (i = 2; i < ARRAY_SIZE(skge_stats); i++) |
| data[i] = gma_read32(hw, port, |
| skge_stats[i].gma_offset); |
| } |
| |
| static void yukon_mac_intr(struct skge_hw *hw, int port) |
| { |
| struct net_device *dev = hw->dev[port]; |
| struct skge_port *skge = netdev_priv(dev); |
| u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); |
| |
| if (netif_msg_intr(skge)) |
| printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n", |
| dev->name, status); |
| |
| if (status & GM_IS_RX_FF_OR) { |
| ++skge->net_stats.rx_fifo_errors; |
| skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); |
| } |
| |
| if (status & GM_IS_TX_FF_UR) { |
| ++skge->net_stats.tx_fifo_errors; |
| skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); |
| } |
| |
| } |
| |
| static u16 yukon_speed(const struct skge_hw *hw, u16 aux) |
| { |
| switch (aux & PHY_M_PS_SPEED_MSK) { |
| case PHY_M_PS_SPEED_1000: |
| return SPEED_1000; |
| case PHY_M_PS_SPEED_100: |
| return SPEED_100; |
| default: |
| return SPEED_10; |
| } |
| } |
| |
| static void yukon_link_up(struct skge_port *skge) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| u16 reg; |
| |
| /* Enable Transmit FIFO Underrun */ |
| skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); |
| |
| reg = gma_read16(hw, port, GM_GP_CTRL); |
| if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) |
| reg |= GM_GPCR_DUP_FULL; |
| |
| /* enable Rx/Tx */ |
| reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; |
| gma_write16(hw, port, GM_GP_CTRL, reg); |
| |
| gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); |
| skge_link_up(skge); |
| } |
| |
| static void yukon_link_down(struct skge_port *skge) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| u16 ctrl; |
| |
| ctrl = gma_read16(hw, port, GM_GP_CTRL); |
| ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); |
| gma_write16(hw, port, GM_GP_CTRL, ctrl); |
| |
| if (skge->flow_status == FLOW_STAT_REM_SEND) { |
| ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV); |
| ctrl |= PHY_M_AN_ASP; |
| /* restore Asymmetric Pause bit */ |
| gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl); |
| } |
| |
| skge_link_down(skge); |
| |
| yukon_init(hw, port); |
| } |
| |
| static void yukon_phy_intr(struct skge_port *skge) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| const char *reason = NULL; |
| u16 istatus, phystat; |
| |
| istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); |
| phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); |
| |
| if (netif_msg_intr(skge)) |
| printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n", |
| skge->netdev->name, istatus, phystat); |
| |
| if (istatus & PHY_M_IS_AN_COMPL) { |
| if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP) |
| & PHY_M_AN_RF) { |
| reason = "remote fault"; |
| goto failed; |
| } |
| |
| if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { |
| reason = "master/slave fault"; |
| goto failed; |
| } |
| |
| if (!(phystat & PHY_M_PS_SPDUP_RES)) { |
| reason = "speed/duplex"; |
| goto failed; |
| } |
| |
| skge->duplex = (phystat & PHY_M_PS_FULL_DUP) |
| ? DUPLEX_FULL : DUPLEX_HALF; |
| skge->speed = yukon_speed(hw, phystat); |
| |
| /* We are using IEEE 802.3z/D5.0 Table 37-4 */ |
| switch (phystat & PHY_M_PS_PAUSE_MSK) { |
| case PHY_M_PS_PAUSE_MSK: |
| skge->flow_status = FLOW_STAT_SYMMETRIC; |
| break; |
| case PHY_M_PS_RX_P_EN: |
| skge->flow_status = FLOW_STAT_REM_SEND; |
| break; |
| case PHY_M_PS_TX_P_EN: |
| skge->flow_status = FLOW_STAT_LOC_SEND; |
| break; |
| default: |
| skge->flow_status = FLOW_STAT_NONE; |
| } |
| |
| if (skge->flow_status == FLOW_STAT_NONE || |
| (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) |
| skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); |
| else |
| skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); |
| yukon_link_up(skge); |
| return; |
| } |
| |
| if (istatus & PHY_M_IS_LSP_CHANGE) |
| skge->speed = yukon_speed(hw, phystat); |
| |
| if (istatus & PHY_M_IS_DUP_CHANGE) |
| skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; |
| if (istatus & PHY_M_IS_LST_CHANGE) { |
| if (phystat & PHY_M_PS_LINK_UP) |
| yukon_link_up(skge); |
| else |
| yukon_link_down(skge); |
| } |
| return; |
| failed: |
| printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n", |
| skge->netdev->name, reason); |
| |
| /* XXX restart autonegotiation? */ |
| } |
| |
| static void skge_phy_reset(struct skge_port *skge) |
| { |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| struct net_device *dev = hw->dev[port]; |
| |
| netif_stop_queue(skge->netdev); |
| netif_carrier_off(skge->netdev); |
| |
| mutex_lock(&hw->phy_mutex); |
| if (hw->chip_id == CHIP_ID_GENESIS) { |
| genesis_reset(hw, port); |
| genesis_mac_init(hw, port); |
| } else { |
| yukon_reset(hw, port); |
| yukon_init(hw, port); |
| } |
| mutex_unlock(&hw->phy_mutex); |
| |
| dev->set_multicast_list(dev); |
| } |
| |
| /* Basic MII support */ |
| static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| struct mii_ioctl_data *data = if_mii(ifr); |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| int err = -EOPNOTSUPP; |
| |
| if (!netif_running(dev)) |
| return -ENODEV; /* Phy still in reset */ |
| |
| switch(cmd) { |
| case SIOCGMIIPHY: |
| data->phy_id = hw->phy_addr; |
| |
| /* fallthru */ |
| case SIOCGMIIREG: { |
| u16 val = 0; |
| mutex_lock(&hw->phy_mutex); |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); |
| else |
| err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); |
| mutex_unlock(&hw->phy_mutex); |
| data->val_out = val; |
| break; |
| } |
| |
| case SIOCSMIIREG: |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| |
| mutex_lock(&hw->phy_mutex); |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f, |
| data->val_in); |
| else |
| err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f, |
| data->val_in); |
| mutex_unlock(&hw->phy_mutex); |
| break; |
| } |
| return err; |
| } |
| |
| static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) |
| { |
| u32 end; |
| |
| start /= 8; |
| len /= 8; |
| end = start + len - 1; |
| |
| skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); |
| skge_write32(hw, RB_ADDR(q, RB_START), start); |
| skge_write32(hw, RB_ADDR(q, RB_WP), start); |
| skge_write32(hw, RB_ADDR(q, RB_RP), start); |
| skge_write32(hw, RB_ADDR(q, RB_END), end); |
| |
| if (q == Q_R1 || q == Q_R2) { |
| /* Set thresholds on receive queue's */ |
| skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), |
| start + (2*len)/3); |
| skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), |
| start + (len/3)); |
| } else { |
| /* Enable store & forward on Tx queue's because |
| * Tx FIFO is only 4K on Genesis and 1K on Yukon |
| */ |
| skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); |
| } |
| |
| skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); |
| } |
| |
| /* Setup Bus Memory Interface */ |
| static void skge_qset(struct skge_port *skge, u16 q, |
| const struct skge_element *e) |
| { |
| struct skge_hw *hw = skge->hw; |
| u32 watermark = 0x600; |
| u64 base = skge->dma + (e->desc - skge->mem); |
| |
| /* optimization to reduce window on 32bit/33mhz */ |
| if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) |
| watermark /= 2; |
| |
| skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); |
| skge_write32(hw, Q_ADDR(q, Q_F), watermark); |
| skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); |
| skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); |
| } |
| |
| static int skge_up(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| u32 chunk, ram_addr; |
| size_t rx_size, tx_size; |
| int err; |
| |
| if (netif_msg_ifup(skge)) |
| printk(KERN_INFO PFX "%s: enabling interface\n", dev->name); |
| |
| if (dev->mtu > RX_BUF_SIZE) |
| skge->rx_buf_size = dev->mtu + ETH_HLEN; |
| else |
| skge->rx_buf_size = RX_BUF_SIZE; |
| |
| |
| rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); |
| tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); |
| skge->mem_size = tx_size + rx_size; |
| skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma); |
| if (!skge->mem) |
| return -ENOMEM; |
| |
| BUG_ON(skge->dma & 7); |
| |
| if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) { |
| printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n"); |
| err = -EINVAL; |
| goto free_pci_mem; |
| } |
| |
| memset(skge->mem, 0, skge->mem_size); |
| |
| err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma); |
| if (err) |
| goto free_pci_mem; |
| |
| err = skge_rx_fill(dev); |
| if (err) |
| goto free_rx_ring; |
| |
| err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, |
| skge->dma + rx_size); |
| if (err) |
| goto free_rx_ring; |
| |
| /* Initialize MAC */ |
| mutex_lock(&hw->phy_mutex); |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| genesis_mac_init(hw, port); |
| else |
| yukon_mac_init(hw, port); |
| mutex_unlock(&hw->phy_mutex); |
| |
| /* Configure RAMbuffers */ |
| chunk = hw->ram_size / ((hw->ports + 1)*2); |
| ram_addr = hw->ram_offset + 2 * chunk * port; |
| |
| skge_ramset(hw, rxqaddr[port], ram_addr, chunk); |
| skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); |
| |
| BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); |
| skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); |
| skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); |
| |
| /* Start receiver BMU */ |
| wmb(); |
| skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); |
| skge_led(skge, LED_MODE_ON); |
| |
| netif_poll_enable(dev); |
| return 0; |
| |
| free_rx_ring: |
| skge_rx_clean(skge); |
| kfree(skge->rx_ring.start); |
| free_pci_mem: |
| pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); |
| skge->mem = NULL; |
| |
| return err; |
| } |
| |
| static int skge_down(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| |
| if (skge->mem == NULL) |
| return 0; |
| |
| if (netif_msg_ifdown(skge)) |
| printk(KERN_INFO PFX "%s: disabling interface\n", dev->name); |
| |
| netif_stop_queue(dev); |
| if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC) |
| cancel_rearming_delayed_work(&skge->link_thread); |
| |
| skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| genesis_stop(skge); |
| else |
| yukon_stop(skge); |
| |
| /* Stop transmitter */ |
| skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); |
| skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), |
| RB_RST_SET|RB_DIS_OP_MD); |
| |
| |
| /* Disable Force Sync bit and Enable Alloc bit */ |
| skge_write8(hw, SK_REG(port, TXA_CTRL), |
| TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); |
| |
| /* Stop Interval Timer and Limit Counter of Tx Arbiter */ |
| skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); |
| skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); |
| |
| /* Reset PCI FIFO */ |
| skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); |
| skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); |
| |
| /* Reset the RAM Buffer async Tx queue */ |
| skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); |
| /* stop receiver */ |
| skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); |
| skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), |
| RB_RST_SET|RB_DIS_OP_MD); |
| skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); |
| |
| if (hw->chip_id == CHIP_ID_GENESIS) { |
| skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET); |
| skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET); |
| } else { |
| skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); |
| skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); |
| } |
| |
| skge_led(skge, LED_MODE_OFF); |
| |
| netif_poll_disable(dev); |
| skge_tx_clean(dev); |
| skge_rx_clean(skge); |
| |
| kfree(skge->rx_ring.start); |
| kfree(skge->tx_ring.start); |
| pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); |
| skge->mem = NULL; |
| return 0; |
| } |
| |
| static inline int skge_avail(const struct skge_ring *ring) |
| { |
| return ((ring->to_clean > ring->to_use) ? 0 : ring->count) |
| + (ring->to_clean - ring->to_use) - 1; |
| } |
| |
| static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| struct skge_element *e; |
| struct skge_tx_desc *td; |
| int i; |
| u32 control, len; |
| u64 map; |
| |
| if (skb_padto(skb, ETH_ZLEN)) |
| return NETDEV_TX_OK; |
| |
| if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) |
| return NETDEV_TX_BUSY; |
| |
| e = skge->tx_ring.to_use; |
| td = e->desc; |
| BUG_ON(td->control & BMU_OWN); |
| e->skb = skb; |
| len = skb_headlen(skb); |
| map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); |
| pci_unmap_addr_set(e, mapaddr, map); |
| pci_unmap_len_set(e, maplen, len); |
| |
| td->dma_lo = map; |
| td->dma_hi = map >> 32; |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| int offset = skb->h.raw - skb->data; |
| |
| /* This seems backwards, but it is what the sk98lin |
| * does. Looks like hardware is wrong? |
| */ |
| if (skb->h.ipiph->protocol == IPPROTO_UDP |
| && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON) |
| control = BMU_TCP_CHECK; |
| else |
| control = BMU_UDP_CHECK; |
| |
| td->csum_offs = 0; |
| td->csum_start = offset; |
| td->csum_write = offset + skb->csum_offset; |
| } else |
| control = BMU_CHECK; |
| |
| if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ |
| control |= BMU_EOF| BMU_IRQ_EOF; |
| else { |
| struct skge_tx_desc *tf = td; |
| |
| control |= BMU_STFWD; |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| |
| map = pci_map_page(hw->pdev, frag->page, frag->page_offset, |
| frag->size, PCI_DMA_TODEVICE); |
| |
| e = e->next; |
| e->skb = skb; |
| tf = e->desc; |
| BUG_ON(tf->control & BMU_OWN); |
| |
| tf->dma_lo = map; |
| tf->dma_hi = (u64) map >> 32; |
| pci_unmap_addr_set(e, mapaddr, map); |
| pci_unmap_len_set(e, maplen, frag->size); |
| |
| tf->control = BMU_OWN | BMU_SW | control | frag->size; |
| } |
| tf->control |= BMU_EOF | BMU_IRQ_EOF; |
| } |
| /* Make sure all the descriptors written */ |
| wmb(); |
| td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; |
| wmb(); |
| |
| skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); |
| |
| if (unlikely(netif_msg_tx_queued(skge))) |
| printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n", |
| dev->name, e - skge->tx_ring.start, skb->len); |
| |
| skge->tx_ring.to_use = e->next; |
| if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) { |
| pr_debug("%s: transmit queue full\n", dev->name); |
| netif_stop_queue(dev); |
| } |
| |
| dev->trans_start = jiffies; |
| |
| return NETDEV_TX_OK; |
| } |
| |
| |
| /* Free resources associated with this reing element */ |
| static void skge_tx_free(struct skge_port *skge, struct skge_element *e, |
| u32 control) |
| { |
| struct pci_dev *pdev = skge->hw->pdev; |
| |
| BUG_ON(!e->skb); |
| |
| /* skb header vs. fragment */ |
| if (control & BMU_STF) |
| pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr), |
| pci_unmap_len(e, maplen), |
| PCI_DMA_TODEVICE); |
| else |
| pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr), |
| pci_unmap_len(e, maplen), |
| PCI_DMA_TODEVICE); |
| |
| if (control & BMU_EOF) { |
| if (unlikely(netif_msg_tx_done(skge))) |
| printk(KERN_DEBUG PFX "%s: tx done slot %td\n", |
| skge->netdev->name, e - skge->tx_ring.start); |
| |
| dev_kfree_skb(e->skb); |
| } |
| e->skb = NULL; |
| } |
| |
| /* Free all buffers in transmit ring */ |
| static void skge_tx_clean(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_element *e; |
| |
| netif_tx_lock_bh(dev); |
| for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { |
| struct skge_tx_desc *td = e->desc; |
| skge_tx_free(skge, e, td->control); |
| td->control = 0; |
| } |
| |
| skge->tx_ring.to_clean = e; |
| netif_wake_queue(dev); |
| netif_tx_unlock_bh(dev); |
| } |
| |
| static void skge_tx_timeout(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| |
| if (netif_msg_timer(skge)) |
| printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name); |
| |
| skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); |
| skge_tx_clean(dev); |
| } |
| |
| static int skge_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| int err; |
| |
| if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) |
| return -EINVAL; |
| |
| if (!netif_running(dev)) { |
| dev->mtu = new_mtu; |
| return 0; |
| } |
| |
| skge_down(dev); |
| |
| dev->mtu = new_mtu; |
| |
| err = skge_up(dev); |
| if (err) |
| dev_close(dev); |
| |
| return err; |
| } |
| |
| static void genesis_set_multicast(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| int i, count = dev->mc_count; |
| struct dev_mc_list *list = dev->mc_list; |
| u32 mode; |
| u8 filter[8]; |
| |
| mode = xm_read32(hw, port, XM_MODE); |
| mode |= XM_MD_ENA_HASH; |
| if (dev->flags & IFF_PROMISC) |
| mode |= XM_MD_ENA_PROM; |
| else |
| mode &= ~XM_MD_ENA_PROM; |
| |
| if (dev->flags & IFF_ALLMULTI) |
| memset(filter, 0xff, sizeof(filter)); |
| else { |
| memset(filter, 0, sizeof(filter)); |
| for (i = 0; list && i < count; i++, list = list->next) { |
| u32 crc, bit; |
| crc = ether_crc_le(ETH_ALEN, list->dmi_addr); |
| bit = ~crc & 0x3f; |
| filter[bit/8] |= 1 << (bit%8); |
| } |
| } |
| |
| xm_write32(hw, port, XM_MODE, mode); |
| xm_outhash(hw, port, XM_HSM, filter); |
| } |
| |
| static void yukon_set_multicast(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| int port = skge->port; |
| struct dev_mc_list *list = dev->mc_list; |
| u16 reg; |
| u8 filter[8]; |
| |
| memset(filter, 0, sizeof(filter)); |
| |
| reg = gma_read16(hw, port, GM_RX_CTRL); |
| reg |= GM_RXCR_UCF_ENA; |
| |
| if (dev->flags & IFF_PROMISC) /* promiscuous */ |
| reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); |
| else if (dev->flags & IFF_ALLMULTI) /* all multicast */ |
| memset(filter, 0xff, sizeof(filter)); |
| else if (dev->mc_count == 0) /* no multicast */ |
| reg &= ~GM_RXCR_MCF_ENA; |
| else { |
| int i; |
| reg |= GM_RXCR_MCF_ENA; |
| |
| for (i = 0; list && i < dev->mc_count; i++, list = list->next) { |
| u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f; |
| filter[bit/8] |= 1 << (bit%8); |
| } |
| } |
| |
| |
| gma_write16(hw, port, GM_MC_ADDR_H1, |
| (u16)filter[0] | ((u16)filter[1] << 8)); |
| gma_write16(hw, port, GM_MC_ADDR_H2, |
| (u16)filter[2] | ((u16)filter[3] << 8)); |
| gma_write16(hw, port, GM_MC_ADDR_H3, |
| (u16)filter[4] | ((u16)filter[5] << 8)); |
| gma_write16(hw, port, GM_MC_ADDR_H4, |
| (u16)filter[6] | ((u16)filter[7] << 8)); |
| |
| gma_write16(hw, port, GM_RX_CTRL, reg); |
| } |
| |
| static inline u16 phy_length(const struct skge_hw *hw, u32 status) |
| { |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| return status >> XMR_FS_LEN_SHIFT; |
| else |
| return status >> GMR_FS_LEN_SHIFT; |
| } |
| |
| static inline int bad_phy_status(const struct skge_hw *hw, u32 status) |
| { |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; |
| else |
| return (status & GMR_FS_ANY_ERR) || |
| (status & GMR_FS_RX_OK) == 0; |
| } |
| |
| |
| /* Get receive buffer from descriptor. |
| * Handles copy of small buffers and reallocation failures |
| */ |
| static struct sk_buff *skge_rx_get(struct net_device *dev, |
| struct skge_element *e, |
| u32 control, u32 status, u16 csum) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct sk_buff *skb; |
| u16 len = control & BMU_BBC; |
| |
| if (unlikely(netif_msg_rx_status(skge))) |
| printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n", |
| dev->name, e - skge->rx_ring.start, |
| status, len); |
| |
| if (len > skge->rx_buf_size) |
| goto error; |
| |
| if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)) |
| goto error; |
| |
| if (bad_phy_status(skge->hw, status)) |
| goto error; |
| |
| if (phy_length(skge->hw, status) != len) |
| goto error; |
| |
| if (len < RX_COPY_THRESHOLD) { |
| skb = netdev_alloc_skb(dev, len + 2); |
| if (!skb) |
| goto resubmit; |
| |
| skb_reserve(skb, 2); |
| pci_dma_sync_single_for_cpu(skge->hw->pdev, |
| pci_unmap_addr(e, mapaddr), |
| len, PCI_DMA_FROMDEVICE); |
| memcpy(skb->data, e->skb->data, len); |
| pci_dma_sync_single_for_device(skge->hw->pdev, |
| pci_unmap_addr(e, mapaddr), |
| len, PCI_DMA_FROMDEVICE); |
| skge_rx_reuse(e, skge->rx_buf_size); |
| } else { |
| struct sk_buff *nskb; |
| nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN); |
| if (!nskb) |
| goto resubmit; |
| |
| skb_reserve(nskb, NET_IP_ALIGN); |
| pci_unmap_single(skge->hw->pdev, |
| pci_unmap_addr(e, mapaddr), |
| pci_unmap_len(e, maplen), |
| PCI_DMA_FROMDEVICE); |
| skb = e->skb; |
| prefetch(skb->data); |
| skge_rx_setup(skge, e, nskb, skge->rx_buf_size); |
| } |
| |
| skb_put(skb, len); |
| if (skge->rx_csum) { |
| skb->csum = csum; |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| } |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| return skb; |
| error: |
| |
| if (netif_msg_rx_err(skge)) |
| printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n", |
| dev->name, e - skge->rx_ring.start, |
| control, status); |
| |
| if (skge->hw->chip_id == CHIP_ID_GENESIS) { |
| if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) |
| skge->net_stats.rx_length_errors++; |
| if (status & XMR_FS_FRA_ERR) |
| skge->net_stats.rx_frame_errors++; |
| if (status & XMR_FS_FCS_ERR) |
| skge->net_stats.rx_crc_errors++; |
| } else { |
| if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) |
| skge->net_stats.rx_length_errors++; |
| if (status & GMR_FS_FRAGMENT) |
| skge->net_stats.rx_frame_errors++; |
| if (status & GMR_FS_CRC_ERR) |
| skge->net_stats.rx_crc_errors++; |
| } |
| |
| resubmit: |
| skge_rx_reuse(e, skge->rx_buf_size); |
| return NULL; |
| } |
| |
| /* Free all buffers in Tx ring which are no longer owned by device */ |
| static void skge_tx_done(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_ring *ring = &skge->tx_ring; |
| struct skge_element *e; |
| |
| skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); |
| |
| netif_tx_lock(dev); |
| for (e = ring->to_clean; e != ring->to_use; e = e->next) { |
| struct skge_tx_desc *td = e->desc; |
| |
| if (td->control & BMU_OWN) |
| break; |
| |
| skge_tx_free(skge, e, td->control); |
| } |
| skge->tx_ring.to_clean = e; |
| |
| if (skge_avail(&skge->tx_ring) > TX_LOW_WATER) |
| netif_wake_queue(dev); |
| |
| netif_tx_unlock(dev); |
| } |
| |
| static int skge_poll(struct net_device *dev, int *budget) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| struct skge_ring *ring = &skge->rx_ring; |
| struct skge_element *e; |
| int to_do = min(dev->quota, *budget); |
| int work_done = 0; |
| |
| skge_tx_done(dev); |
| |
| skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); |
| |
| for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) { |
| struct skge_rx_desc *rd = e->desc; |
| struct sk_buff *skb; |
| u32 control; |
| |
| rmb(); |
| control = rd->control; |
| if (control & BMU_OWN) |
| break; |
| |
| skb = skge_rx_get(dev, e, control, rd->status, rd->csum2); |
| if (likely(skb)) { |
| dev->last_rx = jiffies; |
| netif_receive_skb(skb); |
| |
| ++work_done; |
| } |
| } |
| ring->to_clean = e; |
| |
| /* restart receiver */ |
| wmb(); |
| skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START); |
| |
| *budget -= work_done; |
| dev->quota -= work_done; |
| |
| if (work_done >= to_do) |
| return 1; /* not done */ |
| |
| spin_lock_irq(&hw->hw_lock); |
| __netif_rx_complete(dev); |
| hw->intr_mask |= irqmask[skge->port]; |
| skge_write32(hw, B0_IMSK, hw->intr_mask); |
| skge_read32(hw, B0_IMSK); |
| spin_unlock_irq(&hw->hw_lock); |
| |
| return 0; |
| } |
| |
| /* Parity errors seem to happen when Genesis is connected to a switch |
| * with no other ports present. Heartbeat error?? |
| */ |
| static void skge_mac_parity(struct skge_hw *hw, int port) |
| { |
| struct net_device *dev = hw->dev[port]; |
| |
| if (dev) { |
| struct skge_port *skge = netdev_priv(dev); |
| ++skge->net_stats.tx_heartbeat_errors; |
| } |
| |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), |
| MFF_CLR_PERR); |
| else |
| /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ |
| skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), |
| (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) |
| ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); |
| } |
| |
| static void skge_mac_intr(struct skge_hw *hw, int port) |
| { |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| genesis_mac_intr(hw, port); |
| else |
| yukon_mac_intr(hw, port); |
| } |
| |
| /* Handle device specific framing and timeout interrupts */ |
| static void skge_error_irq(struct skge_hw *hw) |
| { |
| u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); |
| |
| if (hw->chip_id == CHIP_ID_GENESIS) { |
| /* clear xmac errors */ |
| if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) |
| skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT); |
| if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) |
| skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT); |
| } else { |
| /* Timestamp (unused) overflow */ |
| if (hwstatus & IS_IRQ_TIST_OV) |
| skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); |
| } |
| |
| if (hwstatus & IS_RAM_RD_PAR) { |
| printk(KERN_ERR PFX "Ram read data parity error\n"); |
| skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); |
| } |
| |
| if (hwstatus & IS_RAM_WR_PAR) { |
| printk(KERN_ERR PFX "Ram write data parity error\n"); |
| skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); |
| } |
| |
| if (hwstatus & IS_M1_PAR_ERR) |
| skge_mac_parity(hw, 0); |
| |
| if (hwstatus & IS_M2_PAR_ERR) |
| skge_mac_parity(hw, 1); |
| |
| if (hwstatus & IS_R1_PAR_ERR) { |
| printk(KERN_ERR PFX "%s: receive queue parity error\n", |
| hw->dev[0]->name); |
| skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); |
| } |
| |
| if (hwstatus & IS_R2_PAR_ERR) { |
| printk(KERN_ERR PFX "%s: receive queue parity error\n", |
| hw->dev[1]->name); |
| skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); |
| } |
| |
| if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { |
| u16 pci_status, pci_cmd; |
| |
| pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd); |
| pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status); |
| |
| printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n", |
| pci_name(hw->pdev), pci_cmd, pci_status); |
| |
| /* Write the error bits back to clear them. */ |
| pci_status &= PCI_STATUS_ERROR_BITS; |
| skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| pci_write_config_word(hw->pdev, PCI_COMMAND, |
| pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); |
| pci_write_config_word(hw->pdev, PCI_STATUS, pci_status); |
| skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); |
| |
| /* if error still set then just ignore it */ |
| hwstatus = skge_read32(hw, B0_HWE_ISRC); |
| if (hwstatus & IS_IRQ_STAT) { |
| printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n"); |
| hw->intr_mask &= ~IS_HW_ERR; |
| } |
| } |
| } |
| |
| /* |
| * Interrupt from PHY are handled in work queue |
| * because accessing phy registers requires spin wait which might |
| * cause excess interrupt latency. |
| */ |
| static void skge_extirq(struct work_struct *work) |
| { |
| struct skge_hw *hw = container_of(work, struct skge_hw, phy_work); |
| int port; |
| |
| mutex_lock(&hw->phy_mutex); |
| for (port = 0; port < hw->ports; port++) { |
| struct net_device *dev = hw->dev[port]; |
| struct skge_port *skge = netdev_priv(dev); |
| |
| if (netif_running(dev)) { |
| if (hw->chip_id != CHIP_ID_GENESIS) |
| yukon_phy_intr(skge); |
| else if (hw->phy_type == SK_PHY_BCOM) |
| bcom_phy_intr(skge); |
| } |
| } |
| mutex_unlock(&hw->phy_mutex); |
| |
| spin_lock_irq(&hw->hw_lock); |
| hw->intr_mask |= IS_EXT_REG; |
| skge_write32(hw, B0_IMSK, hw->intr_mask); |
| skge_read32(hw, B0_IMSK); |
| spin_unlock_irq(&hw->hw_lock); |
| } |
| |
| static irqreturn_t skge_intr(int irq, void *dev_id) |
| { |
| struct skge_hw *hw = dev_id; |
| u32 status; |
| int handled = 0; |
| |
| spin_lock(&hw->hw_lock); |
| /* Reading this register masks IRQ */ |
| status = skge_read32(hw, B0_SP_ISRC); |
| if (status == 0 || status == ~0) |
| goto out; |
| |
| handled = 1; |
| status &= hw->intr_mask; |
| if (status & IS_EXT_REG) { |
| hw->intr_mask &= ~IS_EXT_REG; |
| schedule_work(&hw->phy_work); |
| } |
| |
| if (status & (IS_XA1_F|IS_R1_F)) { |
| hw->intr_mask &= ~(IS_XA1_F|IS_R1_F); |
| netif_rx_schedule(hw->dev[0]); |
| } |
| |
| if (status & IS_PA_TO_TX1) |
| skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1); |
| |
| if (status & IS_PA_TO_RX1) { |
| struct skge_port *skge = netdev_priv(hw->dev[0]); |
| |
| ++skge->net_stats.rx_over_errors; |
| skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1); |
| } |
| |
| |
| if (status & IS_MAC1) |
| skge_mac_intr(hw, 0); |
| |
| if (hw->dev[1]) { |
| if (status & (IS_XA2_F|IS_R2_F)) { |
| hw->intr_mask &= ~(IS_XA2_F|IS_R2_F); |
| netif_rx_schedule(hw->dev[1]); |
| } |
| |
| if (status & IS_PA_TO_RX2) { |
| struct skge_port *skge = netdev_priv(hw->dev[1]); |
| ++skge->net_stats.rx_over_errors; |
| skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2); |
| } |
| |
| if (status & IS_PA_TO_TX2) |
| skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2); |
| |
| if (status & IS_MAC2) |
| skge_mac_intr(hw, 1); |
| } |
| |
| if (status & IS_HW_ERR) |
| skge_error_irq(hw); |
| |
| skge_write32(hw, B0_IMSK, hw->intr_mask); |
| skge_read32(hw, B0_IMSK); |
| out: |
| spin_unlock(&hw->hw_lock); |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void skge_netpoll(struct net_device *dev) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| |
| disable_irq(dev->irq); |
| skge_intr(dev->irq, skge->hw); |
| enable_irq(dev->irq); |
| } |
| #endif |
| |
| static int skge_set_mac_address(struct net_device *dev, void *p) |
| { |
| struct skge_port *skge = netdev_priv(dev); |
| struct skge_hw *hw = skge->hw; |
| unsigned port = skge->port; |
| const struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| mutex_lock(&hw->phy_mutex); |
| memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); |
| memcpy_toio(hw->regs + B2_MAC_1 + port*8, |
| dev->dev_addr, ETH_ALEN); |
| memcpy_toio(hw->regs + B2_MAC_2 + port*8, |
| dev->dev_addr, ETH_ALEN); |
| |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| xm_outaddr(hw, port, XM_SA, dev->dev_addr); |
| else { |
| gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); |
| gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); |
| } |
| mutex_unlock(&hw->phy_mutex); |
| |
| return 0; |
| } |
| |
| static const struct { |
| u8 id; |
| const char *name; |
| } skge_chips[] = { |
| { CHIP_ID_GENESIS, "Genesis" }, |
| { CHIP_ID_YUKON, "Yukon" }, |
| { CHIP_ID_YUKON_LITE, "Yukon-Lite"}, |
| { CHIP_ID_YUKON_LP, "Yukon-LP"}, |
| }; |
| |
| static const char *skge_board_name(const struct skge_hw *hw) |
| { |
| int i; |
| static char buf[16]; |
| |
| for (i = 0; i < ARRAY_SIZE(skge_chips); i++) |
| if (skge_chips[i].id == hw->chip_id) |
| return skge_chips[i].name; |
| |
| snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id); |
| return buf; |
| } |
| |
| |
| /* |
| * Setup the board data structure, but don't bring up |
| * the port(s) |
| */ |
| static int skge_reset(struct skge_hw *hw) |
| { |
| u32 reg; |
| u16 ctst, pci_status; |
| u8 t8, mac_cfg, pmd_type; |
| int i; |
| |
| ctst = skge_read16(hw, B0_CTST); |
| |
| /* do a SW reset */ |
| skge_write8(hw, B0_CTST, CS_RST_SET); |
| skge_write8(hw, B0_CTST, CS_RST_CLR); |
| |
| /* clear PCI errors, if any */ |
| skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| skge_write8(hw, B2_TST_CTRL2, 0); |
| |
| pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status); |
| pci_write_config_word(hw->pdev, PCI_STATUS, |
| pci_status | PCI_STATUS_ERROR_BITS); |
| skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); |
| skge_write8(hw, B0_CTST, CS_MRST_CLR); |
| |
| /* restore CLK_RUN bits (for Yukon-Lite) */ |
| skge_write16(hw, B0_CTST, |
| ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); |
| |
| hw->chip_id = skge_read8(hw, B2_CHIP_ID); |
| hw->phy_type = skge_read8(hw, B2_E_1) & 0xf; |
| pmd_type = skge_read8(hw, B2_PMD_TYP); |
| hw->copper = (pmd_type == 'T' || pmd_type == '1'); |
| |
| switch (hw->chip_id) { |
| case CHIP_ID_GENESIS: |
| switch (hw->phy_type) { |
| case SK_PHY_XMAC: |
| hw->phy_addr = PHY_ADDR_XMAC; |
| break; |
| case SK_PHY_BCOM: |
| hw->phy_addr = PHY_ADDR_BCOM; |
| break; |
| default: |
| printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n", |
| pci_name(hw->pdev), hw->phy_type); |
| return -EOPNOTSUPP; |
| } |
| break; |
| |
| case CHIP_ID_YUKON: |
| case CHIP_ID_YUKON_LITE: |
| case CHIP_ID_YUKON_LP: |
| if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S') |
| hw->copper = 1; |
| |
| hw->phy_addr = PHY_ADDR_MARV; |
| break; |
| |
| default: |
| printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n", |
| pci_name(hw->pdev), hw->chip_id); |
| return -EOPNOTSUPP; |
| } |
| |
| mac_cfg = skge_read8(hw, B2_MAC_CFG); |
| hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2; |
| hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4; |
| |
| /* read the adapters RAM size */ |
| t8 = skge_read8(hw, B2_E_0); |
| if (hw->chip_id == CHIP_ID_GENESIS) { |
| if (t8 == 3) { |
| /* special case: 4 x 64k x 36, offset = 0x80000 */ |
| hw->ram_size = 0x100000; |
| hw->ram_offset = 0x80000; |
| } else |
| hw->ram_size = t8 * 512; |
| } |
| else if (t8 == 0) |
| hw->ram_size = 0x20000; |
| else |
| hw->ram_size = t8 * 4096; |
| |
| hw->intr_mask = IS_HW_ERR | IS_PORT_1; |
| if (hw->ports > 1) |
| hw->intr_mask |= IS_PORT_2; |
| |
| if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)) |
| hw->intr_mask |= IS_EXT_REG; |
| |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| genesis_init(hw); |
| else { |
| /* switch power to VCC (WA for VAUX problem) */ |
| skge_write8(hw, B0_POWER_CTRL, |
| PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); |
| |
| /* avoid boards with stuck Hardware error bits */ |
| if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) && |
| (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) { |
| printk(KERN_WARNING PFX "stuck hardware sensor bit\n"); |
| hw->intr_mask &= ~IS_HW_ERR; |
| } |
| |
| /* Clear PHY COMA */ |
| skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®); |
| reg &= ~PCI_PHY_COMA; |
| pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg); |
| skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); |
| |
| |
| for (i = 0; i < hw->ports; i++) { |
| skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); |
| skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); |
| } |
| } |
| |
| /* turn off hardware timer (unused) */ |
| skge_write8(hw, B2_TI_CTRL, TIM_STOP); |
| skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); |
| skge_write8(hw, B0_LED, LED_STAT_ON); |
| |
| /* enable the Tx Arbiters */ |
| for (i = 0; i < hw->ports; i++) |
| skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); |
| |
| /* Initialize ram interface */ |
| skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); |
| |
| skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); |
| skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); |
| skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); |
| skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); |
| skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); |
| skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); |
| skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); |
| skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); |
| skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); |
| skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); |
| skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); |
| skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); |
| |
| skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); |
| |
| /* Set interrupt moderation for Transmit only |
| * Receive interrupts avoided by NAPI |
| */ |
| skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); |
| skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); |
| skge_write32(hw, B2_IRQM_CTRL, TIM_START); |
| |
| skge_write32(hw, B0_IMSK, hw->intr_mask); |
| |
| mutex_lock(&hw->phy_mutex); |
| for (i = 0; i < hw->ports; i++) { |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| genesis_reset(hw, i); |
| else |
| yukon_reset(hw, i); |
| } |
| mutex_unlock(&hw->phy_mutex); |
| |
| return 0; |
| } |
| |
| /* Initialize network device */ |
| static struct net_device *skge_devinit(struct skge_hw *hw, int port, |
| int highmem) |
| { |
| struct skge_port *skge; |
| struct net_device *dev = alloc_etherdev(sizeof(*skge)); |
| |
| if (!dev) { |
| printk(KERN_ERR "skge etherdev alloc failed"); |
| return NULL; |
| } |
| |
| SET_MODULE_OWNER(dev); |
| SET_NETDEV_DEV(dev, &hw->pdev->dev); |
| dev->open = skge_up; |
| dev->stop = skge_down; |
| dev->do_ioctl = skge_ioctl; |
| dev->hard_start_xmit = skge_xmit_frame; |
| dev->get_stats = skge_get_stats; |
| if (hw->chip_id == CHIP_ID_GENESIS) |
| dev->set_multicast_list = genesis_set_multicast; |
| else |
| dev->set_multicast_list = yukon_set_multicast; |
| |
| dev->set_mac_address = skge_set_mac_address; |
| dev->change_mtu = skge_change_mtu; |
| SET_ETHTOOL_OPS(dev, &skge_ethtool_ops); |
| dev->tx_timeout = skge_tx_timeout; |
| dev->watchdog_timeo = TX_WATCHDOG; |
| dev->poll = skge_poll; |
| dev->weight = NAPI_WEIGHT; |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| dev->poll_controller = skge_netpoll; |
| #endif |
| dev->irq = hw->pdev->irq; |
| |
| if (highmem) |
| dev->features |= NETIF_F_HIGHDMA; |
| |
| skge = netdev_priv(dev); |
| skge->netdev = dev; |
| skge->hw = hw; |
| skge->msg_enable = netif_msg_init(debug, default_msg); |
| skge->tx_ring.count = DEFAULT_TX_RING_SIZE; |
| skge->rx_ring.count = DEFAULT_RX_RING_SIZE; |
| |
| /* Auto speed and flow control */ |
| skge->autoneg = AUTONEG_ENABLE; |
| skge->flow_control = FLOW_MODE_SYM_OR_REM; |
| skge->duplex = -1; |
| skge->speed = -1; |
| skge->advertising = skge_supported_modes(hw); |
| |
| hw->dev[port] = dev; |
| |
| skge->port = port; |
| |
| /* Only used for Genesis XMAC */ |
| INIT_DELAYED_WORK(&skge->link_thread, xm_link_timer); |
| |
| if (hw->chip_id != CHIP_ID_GENESIS) { |
| dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; |
| skge->rx_csum = 1; |
| } |
| |
| /* read the mac address */ |
| memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); |
| memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); |
| |
| /* device is off until link detection */ |
| netif_carrier_off(dev); |
| netif_stop_queue(dev); |
| |
| return dev; |
| } |
| |
| static void __devinit skge_show_addr(struct net_device *dev) |
| { |
| const struct skge_port *skge = netdev_priv(dev); |
| |
| if (netif_msg_probe(skge)) |
| printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n", |
| dev->name, |
| dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], |
| dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); |
| } |
| |
| static int __devinit skge_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct net_device *dev, *dev1; |
| struct skge_hw *hw; |
| int err, using_dac = 0; |
| |
| err = pci_enable_device(pdev); |
| if (err) { |
| printk(KERN_ERR PFX "%s cannot enable PCI device\n", |
| pci_name(pdev)); |
| goto err_out; |
| } |
| |
| err = pci_request_regions(pdev, DRV_NAME); |
| if (err) { |
| printk(KERN_ERR PFX "%s cannot obtain PCI resources\n", |
| pci_name(pdev)); |
| goto err_out_disable_pdev; |
| } |
| |
| pci_set_master(pdev); |
| |
| if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { |
| using_dac = 1; |
| err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); |
| } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { |
| using_dac = 0; |
| err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); |
| } |
| |
| if (err) { |
| printk(KERN_ERR PFX "%s no usable DMA configuration\n", |
| pci_name(pdev)); |
| goto err_out_free_regions; |
| } |
| |
| #ifdef __BIG_ENDIAN |
| /* byte swap descriptors in hardware */ |
| { |
| u32 reg; |
| |
| pci_read_config_dword(pdev, PCI_DEV_REG2, ®); |
| reg |= PCI_REV_DESC; |
| pci_write_config_dword(pdev, PCI_DEV_REG2, reg); |
| } |
| #endif |
| |
| err = -ENOMEM; |
| hw = kzalloc(sizeof(*hw), GFP_KERNEL); |
| if (!hw) { |
| printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n", |
| pci_name(pdev)); |
| goto err_out_free_regions; |
| } |
| |
| hw->pdev = pdev; |
| mutex_init(&hw->phy_mutex); |
| INIT_WORK(&hw->phy_work, skge_extirq); |
| spin_lock_init(&hw->hw_lock); |
| |
| hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); |
| if (!hw->regs) { |
| printk(KERN_ERR PFX "%s: cannot map device registers\n", |
| pci_name(pdev)); |
| goto err_out_free_hw; |
| } |
| |
| err = skge_reset(hw); |
| if (err) |
| goto err_out_iounmap; |
| |
| printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n", |
| (unsigned long long)pci_resource_start(pdev, 0), pdev->irq, |
| skge_board_name(hw), hw->chip_rev); |
| |
| dev = skge_devinit(hw, 0, using_dac); |
| if (!dev) |
| goto err_out_led_off; |
| |
| if (!is_valid_ether_addr(dev->dev_addr)) { |
| printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n", |
| pci_name(pdev)); |
| err = -EIO; |
| goto err_out_free_netdev; |
| } |
| |
| err = register_netdev(dev); |
| if (err) { |
| printk(KERN_ERR PFX "%s: cannot register net device\n", |
| pci_name(pdev)); |
| goto err_out_free_netdev; |
| } |
| |
| err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw); |
| if (err) { |
| printk(KERN_ERR PFX "%s: cannot assign irq %d\n", |
| dev->name, pdev->irq); |
| goto err_out_unregister; |
| } |
| skge_show_addr(dev); |
| |
| if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) { |
| if (register_netdev(dev1) == 0) |
| skge_show_addr(dev1); |
| else { |
| /* Failure to register second port need not be fatal */ |
| printk(KERN_WARNING PFX "register of second port failed\n"); |
| hw->dev[1] = NULL; |
| free_netdev(dev1); |
| } |
| } |
| pci_set_drvdata(pdev, hw); |
| |
| return 0; |
| |
| err_out_unregister: |
| unregister_netdev(dev); |
| err_out_free_netdev: |
| free_netdev(dev); |
| err_out_led_off: |
| skge_write16(hw, B0_LED, LED_STAT_OFF); |
| err_out_iounmap: |
| iounmap(hw->regs); |
| err_out_free_hw: |
| kfree(hw); |
| err_out_free_regions: |
| pci_release_regions(pdev); |
| err_out_disable_pdev: |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| err_out: |
| return err; |
| } |
| |
| static void __devexit skge_remove(struct pci_dev *pdev) |
| { |
| struct skge_hw *hw = pci_get_drvdata(pdev); |
| struct net_device *dev0, *dev1; |
| |
| if (!hw) |
| return; |
| |
| if ((dev1 = hw->dev[1])) |
| unregister_netdev(dev1); |
| dev0 = hw->dev[0]; |
| unregister_netdev(dev0); |
| |
| spin_lock_irq(&hw->hw_lock); |
| hw->intr_mask = 0; |
| skge_write32(hw, B0_IMSK, 0); |
| skge_read32(hw, B0_IMSK); |
| spin_unlock_irq(&hw->hw_lock); |
| |
| skge_write16(hw, B0_LED, LED_STAT_OFF); |
| skge_write8(hw, B0_CTST, CS_RST_SET); |
| |
| flush_scheduled_work(); |
| |
| free_irq(pdev->irq, hw); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| if (dev1) |
| free_netdev(dev1); |
| free_netdev(dev0); |
| |
| iounmap(hw->regs); |
| kfree(hw); |
| pci_set_drvdata(pdev, NULL); |
| } |
| |
| #ifdef CONFIG_PM |
| static int skge_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| struct skge_hw *hw = pci_get_drvdata(pdev); |
| int i, wol = 0; |
| |
| pci_save_state(pdev); |
| for (i = 0; i < hw->ports; i++) { |
| struct net_device *dev = hw->dev[i]; |
| |
| if (netif_running(dev)) { |
| struct skge_port *skge = netdev_priv(dev); |
| |
| netif_carrier_off(dev); |
| if (skge->wol) |
| netif_stop_queue(dev); |
| else |
| skge_down(dev); |
| wol |= skge->wol; |
| } |
| netif_device_detach(dev); |
| } |
| |
| skge_write32(hw, B0_IMSK, 0); |
| pci_enable_wake(pdev, pci_choose_state(pdev, state), wol); |
| pci_set_power_state(pdev, pci_choose_state(pdev, state)); |
| |
| return 0; |
| } |
| |
| static int skge_resume(struct pci_dev *pdev) |
| { |
| struct skge_hw *hw = pci_get_drvdata(pdev); |
| int i, err; |
| |
| pci_set_power_state(pdev, PCI_D0); |
| pci_restore_state(pdev); |
| pci_enable_wake(pdev, PCI_D0, 0); |
| |
| err = skge_reset(hw); |
| if (err) |
| goto out; |
| |
| for (i = 0; i < hw->ports; i++) { |
| struct net_device *dev = hw->dev[i]; |
| |
| netif_device_attach(dev); |
| if (netif_running(dev)) { |
| err = skge_up(dev); |
| |
| if (err) { |
| printk(KERN_ERR PFX "%s: could not up: %d\n", |
| dev->name, err); |
| dev_close(dev); |
| goto out; |
| } |
| } |
| } |
| out: |
| return err; |
| } |
| #endif |
| |
| static struct pci_driver skge_driver = { |
| .name = DRV_NAME, |
| .id_table = skge_id_table, |
| .probe = skge_probe, |
| .remove = __devexit_p(skge_remove), |
| #ifdef CONFIG_PM |
| .suspend = skge_suspend, |
| .resume = skge_resume, |
| #endif |
| }; |
| |
| static int __init skge_init_module(void) |
| { |
| return pci_register_driver(&skge_driver); |
| } |
| |
| static void __exit skge_cleanup_module(void) |
| { |
| pci_unregister_driver(&skge_driver); |
| } |
| |
| module_init(skge_init_module); |
| module_exit(skge_cleanup_module); |