| /* |
| * This is for all the tests related to logic bugs (e.g. bad dereferences, |
| * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and |
| * lockups) along with other things that don't fit well into existing LKDTM |
| * test source files. |
| */ |
| #include "lkdtm.h" |
| #include <linux/list.h> |
| #include <linux/refcount.h> |
| #include <linux/sched.h> |
| |
| struct lkdtm_list { |
| struct list_head node; |
| }; |
| |
| /* |
| * Make sure our attempts to over run the kernel stack doesn't trigger |
| * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we |
| * recurse past the end of THREAD_SIZE by default. |
| */ |
| #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0) |
| #define REC_STACK_SIZE (CONFIG_FRAME_WARN / 2) |
| #else |
| #define REC_STACK_SIZE (THREAD_SIZE / 8) |
| #endif |
| #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2) |
| |
| static int recur_count = REC_NUM_DEFAULT; |
| |
| static DEFINE_SPINLOCK(lock_me_up); |
| |
| static int recursive_loop(int remaining) |
| { |
| char buf[REC_STACK_SIZE]; |
| |
| /* Make sure compiler does not optimize this away. */ |
| memset(buf, (remaining & 0xff) | 0x1, REC_STACK_SIZE); |
| if (!remaining) |
| return 0; |
| else |
| return recursive_loop(remaining - 1); |
| } |
| |
| /* If the depth is negative, use the default, otherwise keep parameter. */ |
| void __init lkdtm_bugs_init(int *recur_param) |
| { |
| if (*recur_param < 0) |
| *recur_param = recur_count; |
| else |
| recur_count = *recur_param; |
| } |
| |
| void lkdtm_PANIC(void) |
| { |
| panic("dumptest"); |
| } |
| |
| void lkdtm_BUG(void) |
| { |
| BUG(); |
| } |
| |
| void lkdtm_WARNING(void) |
| { |
| WARN_ON(1); |
| } |
| |
| void lkdtm_EXCEPTION(void) |
| { |
| *((int *) 0) = 0; |
| } |
| |
| void lkdtm_LOOP(void) |
| { |
| for (;;) |
| ; |
| } |
| |
| void lkdtm_OVERFLOW(void) |
| { |
| (void) recursive_loop(recur_count); |
| } |
| |
| static noinline void __lkdtm_CORRUPT_STACK(void *stack) |
| { |
| memset(stack, 'a', 64); |
| } |
| |
| noinline void lkdtm_CORRUPT_STACK(void) |
| { |
| /* Use default char array length that triggers stack protection. */ |
| char data[8]; |
| __lkdtm_CORRUPT_STACK(&data); |
| |
| pr_info("Corrupted stack with '%16s'...\n", data); |
| } |
| |
| void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void) |
| { |
| static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5}; |
| u32 *p; |
| u32 val = 0x12345678; |
| |
| p = (u32 *)(data + 1); |
| if (*p == 0) |
| val = 0x87654321; |
| *p = val; |
| } |
| |
| void lkdtm_SOFTLOCKUP(void) |
| { |
| preempt_disable(); |
| for (;;) |
| cpu_relax(); |
| } |
| |
| void lkdtm_HARDLOCKUP(void) |
| { |
| local_irq_disable(); |
| for (;;) |
| cpu_relax(); |
| } |
| |
| void lkdtm_SPINLOCKUP(void) |
| { |
| /* Must be called twice to trigger. */ |
| spin_lock(&lock_me_up); |
| /* Let sparse know we intended to exit holding the lock. */ |
| __release(&lock_me_up); |
| } |
| |
| void lkdtm_HUNG_TASK(void) |
| { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule(); |
| } |
| |
| void lkdtm_REFCOUNT_SATURATE_INC(void) |
| { |
| refcount_t over = REFCOUNT_INIT(UINT_MAX - 1); |
| |
| pr_info("attempting good refcount decrement\n"); |
| refcount_dec(&over); |
| refcount_inc(&over); |
| |
| pr_info("attempting bad refcount inc overflow\n"); |
| refcount_inc(&over); |
| refcount_inc(&over); |
| if (refcount_read(&over) == UINT_MAX) |
| pr_err("Correctly stayed saturated, but no BUG?!\n"); |
| else |
| pr_err("Fail: refcount wrapped\n"); |
| } |
| |
| void lkdtm_REFCOUNT_SATURATE_ADD(void) |
| { |
| refcount_t over = REFCOUNT_INIT(UINT_MAX - 1); |
| |
| pr_info("attempting good refcount decrement\n"); |
| refcount_dec(&over); |
| refcount_inc(&over); |
| |
| pr_info("attempting bad refcount add overflow\n"); |
| refcount_add(2, &over); |
| if (refcount_read(&over) == UINT_MAX) |
| pr_err("Correctly stayed saturated, but no BUG?!\n"); |
| else |
| pr_err("Fail: refcount wrapped\n"); |
| } |
| |
| void lkdtm_REFCOUNT_ZERO_DEC(void) |
| { |
| refcount_t zero = REFCOUNT_INIT(1); |
| |
| pr_info("attempting bad refcount decrement to zero\n"); |
| refcount_dec(&zero); |
| if (refcount_read(&zero) == 0) |
| pr_err("Stayed at zero, but no BUG?!\n"); |
| else |
| pr_err("Fail: refcount went crazy\n"); |
| } |
| |
| void lkdtm_REFCOUNT_ZERO_SUB(void) |
| { |
| refcount_t zero = REFCOUNT_INIT(1); |
| |
| pr_info("attempting bad refcount subtract past zero\n"); |
| if (!refcount_sub_and_test(2, &zero)) |
| pr_info("wrap attempt was noticed\n"); |
| if (refcount_read(&zero) == 1) |
| pr_err("Correctly stayed above 0, but no BUG?!\n"); |
| else |
| pr_err("Fail: refcount wrapped\n"); |
| } |
| |
| void lkdtm_REFCOUNT_ZERO_INC(void) |
| { |
| refcount_t zero = REFCOUNT_INIT(0); |
| |
| pr_info("attempting bad refcount increment from zero\n"); |
| refcount_inc(&zero); |
| if (refcount_read(&zero) == 0) |
| pr_err("Stayed at zero, but no BUG?!\n"); |
| else |
| pr_err("Fail: refcount went past zero\n"); |
| } |
| |
| void lkdtm_REFCOUNT_ZERO_ADD(void) |
| { |
| refcount_t zero = REFCOUNT_INIT(0); |
| |
| pr_info("attempting bad refcount addition from zero\n"); |
| refcount_add(2, &zero); |
| if (refcount_read(&zero) == 0) |
| pr_err("Stayed at zero, but no BUG?!\n"); |
| else |
| pr_err("Fail: refcount went past zero\n"); |
| } |
| |
| void lkdtm_CORRUPT_LIST_ADD(void) |
| { |
| /* |
| * Initially, an empty list via LIST_HEAD: |
| * test_head.next = &test_head |
| * test_head.prev = &test_head |
| */ |
| LIST_HEAD(test_head); |
| struct lkdtm_list good, bad; |
| void *target[2] = { }; |
| void *redirection = ⌖ |
| |
| pr_info("attempting good list addition\n"); |
| |
| /* |
| * Adding to the list performs these actions: |
| * test_head.next->prev = &good.node |
| * good.node.next = test_head.next |
| * good.node.prev = test_head |
| * test_head.next = good.node |
| */ |
| list_add(&good.node, &test_head); |
| |
| pr_info("attempting corrupted list addition\n"); |
| /* |
| * In simulating this "write what where" primitive, the "what" is |
| * the address of &bad.node, and the "where" is the address held |
| * by "redirection". |
| */ |
| test_head.next = redirection; |
| list_add(&bad.node, &test_head); |
| |
| if (target[0] == NULL && target[1] == NULL) |
| pr_err("Overwrite did not happen, but no BUG?!\n"); |
| else |
| pr_err("list_add() corruption not detected!\n"); |
| } |
| |
| void lkdtm_CORRUPT_LIST_DEL(void) |
| { |
| LIST_HEAD(test_head); |
| struct lkdtm_list item; |
| void *target[2] = { }; |
| void *redirection = ⌖ |
| |
| list_add(&item.node, &test_head); |
| |
| pr_info("attempting good list removal\n"); |
| list_del(&item.node); |
| |
| pr_info("attempting corrupted list removal\n"); |
| list_add(&item.node, &test_head); |
| |
| /* As with the list_add() test above, this corrupts "next". */ |
| item.node.next = redirection; |
| list_del(&item.node); |
| |
| if (target[0] == NULL && target[1] == NULL) |
| pr_err("Overwrite did not happen, but no BUG?!\n"); |
| else |
| pr_err("list_del() corruption not detected!\n"); |
| } |