blob: 268043f65dd8af19252096ea4c97f63b162547f6 [file] [log] [blame]
/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/dmi.h>
#include <linux/module.h>
#include <linux/input.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/vgaarb.h>
#include <drm/drm_edid.h>
#include <drm/drmP.h>
#include "intel_drv.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_rect.h>
#include <linux/dma_remapping.h>
/* Primary plane formats for gen <= 3 */
static const uint32_t i8xx_primary_formats[] = {
DRM_FORMAT_C8,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_XRGB8888,
};
/* Primary plane formats for gen >= 4 */
static const uint32_t i965_primary_formats[] = {
DRM_FORMAT_C8,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_XRGB2101010,
DRM_FORMAT_XBGR2101010,
};
static const uint32_t skl_primary_formats[] = {
DRM_FORMAT_C8,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_XRGB2101010,
DRM_FORMAT_XBGR2101010,
};
/* Cursor formats */
static const uint32_t intel_cursor_formats[] = {
DRM_FORMAT_ARGB8888,
};
static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config);
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config);
static int intel_set_mode(struct drm_crtc *crtc,
struct drm_atomic_state *state);
static int intel_framebuffer_init(struct drm_device *dev,
struct intel_framebuffer *ifb,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj);
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
struct intel_link_m_n *m_n,
struct intel_link_m_n *m2_n2);
static void ironlake_set_pipeconf(struct drm_crtc *crtc);
static void haswell_set_pipeconf(struct drm_crtc *crtc);
static void intel_set_pipe_csc(struct drm_crtc *crtc);
static void vlv_prepare_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config);
static void chv_prepare_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config);
static void intel_begin_crtc_commit(struct drm_crtc *crtc);
static void intel_finish_crtc_commit(struct drm_crtc *crtc);
static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state);
static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
int num_connectors);
static void intel_crtc_enable_planes(struct drm_crtc *crtc);
static void intel_crtc_disable_planes(struct drm_crtc *crtc);
static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
{
if (!connector->mst_port)
return connector->encoder;
else
return &connector->mst_port->mst_encoders[pipe]->base;
}
typedef struct {
int min, max;
} intel_range_t;
typedef struct {
int dot_limit;
int p2_slow, p2_fast;
} intel_p2_t;
typedef struct intel_limit intel_limit_t;
struct intel_limit {
intel_range_t dot, vco, n, m, m1, m2, p, p1;
intel_p2_t p2;
};
int
intel_pch_rawclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
WARN_ON(!HAS_PCH_SPLIT(dev));
return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
}
static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device *dev)
{
if (IS_GEN5(dev)) {
struct drm_i915_private *dev_priv = dev->dev_private;
return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
} else
return 27;
}
static const intel_limit_t intel_limits_i8xx_dac = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 908000, .max = 1512000 },
.n = { .min = 2, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 2, .max = 33 },
.p2 = { .dot_limit = 165000,
.p2_slow = 4, .p2_fast = 2 },
};
static const intel_limit_t intel_limits_i8xx_dvo = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 908000, .max = 1512000 },
.n = { .min = 2, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 2, .max = 33 },
.p2 = { .dot_limit = 165000,
.p2_slow = 4, .p2_fast = 4 },
};
static const intel_limit_t intel_limits_i8xx_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 908000, .max = 1512000 },
.n = { .min = 2, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 1, .max = 6 },
.p2 = { .dot_limit = 165000,
.p2_slow = 14, .p2_fast = 7 },
};
static const intel_limit_t intel_limits_i9xx_sdvo = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 8, .max = 18 },
.m2 = { .min = 3, .max = 7 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
};
static const intel_limit_t intel_limits_i9xx_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 8, .max = 18 },
.m2 = { .min = 3, .max = 7 },
.p = { .min = 7, .max = 98 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 7 },
};
static const intel_limit_t intel_limits_g4x_sdvo = {
.dot = { .min = 25000, .max = 270000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 1, .max = 3},
.p2 = { .dot_limit = 270000,
.p2_slow = 10,
.p2_fast = 10
},
};
static const intel_limit_t intel_limits_g4x_hdmi = {
.dot = { .min = 22000, .max = 400000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 16, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8},
.p2 = { .dot_limit = 165000,
.p2_slow = 10, .p2_fast = 5 },
};
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
.dot = { .min = 20000, .max = 115000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 0,
.p2_slow = 14, .p2_fast = 14
},
};
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
.dot = { .min = 80000, .max = 224000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 0,
.p2_slow = 7, .p2_fast = 7
},
};
static const intel_limit_t intel_limits_pineview_sdvo = {
.dot = { .min = 20000, .max = 400000},
.vco = { .min = 1700000, .max = 3500000 },
/* Pineview's Ncounter is a ring counter */
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
/* Pineview only has one combined m divider, which we treat as m2. */
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
};
static const intel_limit_t intel_limits_pineview_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1700000, .max = 3500000 },
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 7, .max = 112 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 14 },
};
/* Ironlake / Sandybridge
*
* We calculate clock using (register_value + 2) for N/M1/M2, so here
* the range value for them is (actual_value - 2).
*/
static const intel_limit_t intel_limits_ironlake_dac = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 5 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 10, .p2_fast = 5 },
};
static const intel_limit_t intel_limits_ironlake_single_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 118 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
};
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 56 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
};
/* LVDS 100mhz refclk limits. */
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 2 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
};
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
};
static const intel_limit_t intel_limits_vlv = {
/*
* These are the data rate limits (measured in fast clocks)
* since those are the strictest limits we have. The fast
* clock and actual rate limits are more relaxed, so checking
* them would make no difference.
*/
.dot = { .min = 25000 * 5, .max = 270000 * 5 },
.vco = { .min = 4000000, .max = 6000000 },
.n = { .min = 1, .max = 7 },
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
};
static const intel_limit_t intel_limits_chv = {
/*
* These are the data rate limits (measured in fast clocks)
* since those are the strictest limits we have. The fast
* clock and actual rate limits are more relaxed, so checking
* them would make no difference.
*/
.dot = { .min = 25000 * 5, .max = 540000 * 5},
.vco = { .min = 4800000, .max = 6480000 },
.n = { .min = 1, .max = 1 },
.m1 = { .min = 2, .max = 2 },
.m2 = { .min = 24 << 22, .max = 175 << 22 },
.p1 = { .min = 2, .max = 4 },
.p2 = { .p2_slow = 1, .p2_fast = 14 },
};
static const intel_limit_t intel_limits_bxt = {
/* FIXME: find real dot limits */
.dot = { .min = 0, .max = INT_MAX },
.vco = { .min = 4800000, .max = 6480000 },
.n = { .min = 1, .max = 1 },
.m1 = { .min = 2, .max = 2 },
/* FIXME: find real m2 limits */
.m2 = { .min = 2 << 22, .max = 255 << 22 },
.p1 = { .min = 2, .max = 4 },
.p2 = { .p2_slow = 1, .p2_fast = 20 },
};
static void vlv_clock(int refclk, intel_clock_t *clock)
{
clock->m = clock->m1 * clock->m2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
}
/**
* Returns whether any output on the specified pipe is of the specified type
*/
bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
{
struct drm_device *dev = crtc->base.dev;
struct intel_encoder *encoder;
for_each_encoder_on_crtc(dev, &crtc->base, encoder)
if (encoder->type == type)
return true;
return false;
}
/**
* Returns whether any output on the specified pipe will have the specified
* type after a staged modeset is complete, i.e., the same as
* intel_pipe_has_type() but looking at encoder->new_crtc instead of
* encoder->crtc.
*/
static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
int type)
{
struct drm_atomic_state *state = crtc_state->base.state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
struct intel_encoder *encoder;
int i, num_connectors = 0;
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc_state->base.crtc)
continue;
num_connectors++;
encoder = to_intel_encoder(connector_state->best_encoder);
if (encoder->type == type)
return true;
}
WARN_ON(num_connectors == 0);
return false;
}
static const intel_limit_t *
intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
{
struct drm_device *dev = crtc_state->base.crtc->dev;
const intel_limit_t *limit;
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_is_dual_link_lvds(dev)) {
if (refclk == 100000)
limit = &intel_limits_ironlake_dual_lvds_100m;
else
limit = &intel_limits_ironlake_dual_lvds;
} else {
if (refclk == 100000)
limit = &intel_limits_ironlake_single_lvds_100m;
else
limit = &intel_limits_ironlake_single_lvds;
}
} else
limit = &intel_limits_ironlake_dac;
return limit;
}
static const intel_limit_t *
intel_g4x_limit(struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc_state->base.crtc->dev;
const intel_limit_t *limit;
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_is_dual_link_lvds(dev))
limit = &intel_limits_g4x_dual_channel_lvds;
else
limit = &intel_limits_g4x_single_channel_lvds;
} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
limit = &intel_limits_g4x_hdmi;
} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
limit = &intel_limits_g4x_sdvo;
} else /* The option is for other outputs */
limit = &intel_limits_i9xx_sdvo;
return limit;
}
static const intel_limit_t *
intel_limit(struct intel_crtc_state *crtc_state, int refclk)
{
struct drm_device *dev = crtc_state->base.crtc->dev;
const intel_limit_t *limit;
if (IS_BROXTON(dev))
limit = &intel_limits_bxt;
else if (HAS_PCH_SPLIT(dev))
limit = intel_ironlake_limit(crtc_state, refclk);
else if (IS_G4X(dev)) {
limit = intel_g4x_limit(crtc_state);
} else if (IS_PINEVIEW(dev)) {
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
limit = &intel_limits_pineview_lvds;
else
limit = &intel_limits_pineview_sdvo;
} else if (IS_CHERRYVIEW(dev)) {
limit = &intel_limits_chv;
} else if (IS_VALLEYVIEW(dev)) {
limit = &intel_limits_vlv;
} else if (!IS_GEN2(dev)) {
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i9xx_lvds;
else
limit = &intel_limits_i9xx_sdvo;
} else {
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i8xx_lvds;
else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
limit = &intel_limits_i8xx_dvo;
else
limit = &intel_limits_i8xx_dac;
}
return limit;
}
/* m1 is reserved as 0 in Pineview, n is a ring counter */
static void pineview_clock(int refclk, intel_clock_t *clock)
{
clock->m = clock->m2 + 2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
}
static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
{
return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
}
static void i9xx_clock(int refclk, intel_clock_t *clock)
{
clock->m = i9xx_dpll_compute_m(clock);
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
return;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
}
static void chv_clock(int refclk, intel_clock_t *clock)
{
clock->m = clock->m1 * clock->m2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return;
clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
clock->n << 22);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
}
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
/**
* Returns whether the given set of divisors are valid for a given refclk with
* the given connectors.
*/
static bool intel_PLL_is_valid(struct drm_device *dev,
const intel_limit_t *limit,
const intel_clock_t *clock)
{
if (clock->n < limit->n.min || limit->n.max < clock->n)
INTELPllInvalid("n out of range\n");
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
INTELPllInvalid("p1 out of range\n");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
INTELPllInvalid("m2 out of range\n");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
INTELPllInvalid("m1 out of range\n");
if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
if (clock->m1 <= clock->m2)
INTELPllInvalid("m1 <= m2\n");
if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
if (clock->p < limit->p.min || limit->p.max < clock->p)
INTELPllInvalid("p out of range\n");
if (clock->m < limit->m.min || limit->m.max < clock->m)
INTELPllInvalid("m out of range\n");
}
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
INTELPllInvalid("vco out of range\n");
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
* connector, etc., rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
INTELPllInvalid("dot out of range\n");
return true;
}
static bool
i9xx_find_best_dpll(const intel_limit_t *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock;
int err = target;
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
/*
* For LVDS just rely on its current settings for dual-channel.
* We haven't figured out how to reliably set up different
* single/dual channel state, if we even can.
*/
if (intel_is_dual_link_lvds(dev))
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
if (clock.m2 >= clock.m1)
break;
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
i9xx_clock(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
static bool
pnv_find_best_dpll(const intel_limit_t *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock;
int err = target;
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
/*
* For LVDS just rely on its current settings for dual-channel.
* We haven't figured out how to reliably set up different
* single/dual channel state, if we even can.
*/
if (intel_is_dual_link_lvds(dev))
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
pineview_clock(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
static bool
g4x_find_best_dpll(const intel_limit_t *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock;
int max_n;
bool found;
/* approximately equals target * 0.00585 */
int err_most = (target >> 8) + (target >> 9);
found = false;
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_is_dual_link_lvds(dev))
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
max_n = limit->n.max;
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
/* based on hardware requirement, prefere larger m1,m2 */
for (clock.m1 = limit->m1.max;
clock.m1 >= limit->m1.min; clock.m1--) {
for (clock.m2 = limit->m2.max;
clock.m2 >= limit->m2.min; clock.m2--) {
for (clock.p1 = limit->p1.max;
clock.p1 >= limit->p1.min; clock.p1--) {
int this_err;
i9xx_clock(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
this_err = abs(clock.dot - target);
if (this_err < err_most) {
*best_clock = clock;
err_most = this_err;
max_n = clock.n;
found = true;
}
}
}
}
}
return found;
}
/*
* Check if the calculated PLL configuration is more optimal compared to the
* best configuration and error found so far. Return the calculated error.
*/
static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
const intel_clock_t *calculated_clock,
const intel_clock_t *best_clock,
unsigned int best_error_ppm,
unsigned int *error_ppm)
{
/*
* For CHV ignore the error and consider only the P value.
* Prefer a bigger P value based on HW requirements.
*/
if (IS_CHERRYVIEW(dev)) {
*error_ppm = 0;
return calculated_clock->p > best_clock->p;
}
if (WARN_ON_ONCE(!target_freq))
return false;
*error_ppm = div_u64(1000000ULL *
abs(target_freq - calculated_clock->dot),
target_freq);
/*
* Prefer a better P value over a better (smaller) error if the error
* is small. Ensure this preference for future configurations too by
* setting the error to 0.
*/
if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
*error_ppm = 0;
return true;
}
return *error_ppm + 10 < best_error_ppm;
}
static bool
vlv_find_best_dpll(const intel_limit_t *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock;
unsigned int bestppm = 1000000;
/* min update 19.2 MHz */
int max_n = min(limit->n.max, refclk / 19200);
bool found = false;
target *= 5; /* fast clock */
memset(best_clock, 0, sizeof(*best_clock));
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
clock.p = clock.p1 * clock.p2;
/* based on hardware requirement, prefer bigger m1,m2 values */
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
unsigned int ppm;
clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
refclk * clock.m1);
vlv_clock(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (!vlv_PLL_is_optimal(dev, target,
&clock,
best_clock,
bestppm, &ppm))
continue;
*best_clock = clock;
bestppm = ppm;
found = true;
}
}
}
}
return found;
}
static bool
chv_find_best_dpll(const intel_limit_t *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
unsigned int best_error_ppm;
intel_clock_t clock;
uint64_t m2;
int found = false;
memset(best_clock, 0, sizeof(*best_clock));
best_error_ppm = 1000000;
/*
* Based on hardware doc, the n always set to 1, and m1 always
* set to 2. If requires to support 200Mhz refclk, we need to
* revisit this because n may not 1 anymore.
*/
clock.n = 1, clock.m1 = 2;
target *= 5; /* fast clock */
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
for (clock.p2 = limit->p2.p2_fast;
clock.p2 >= limit->p2.p2_slow;
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
unsigned int error_ppm;
clock.p = clock.p1 * clock.p2;
m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
clock.n) << 22, refclk * clock.m1);
if (m2 > INT_MAX/clock.m1)
continue;
clock.m2 = m2;
chv_clock(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit, &clock))
continue;
if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
best_error_ppm, &error_ppm))
continue;
*best_clock = clock;
best_error_ppm = error_ppm;
found = true;
}
}
return found;
}
bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
intel_clock_t *best_clock)
{
int refclk = i9xx_get_refclk(crtc_state, 0);
return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
target_clock, refclk, NULL, best_clock);
}
bool intel_crtc_active(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
/* Be paranoid as we can arrive here with only partial
* state retrieved from the hardware during setup.
*
* We can ditch the adjusted_mode.crtc_clock check as soon
* as Haswell has gained clock readout/fastboot support.
*
* We can ditch the crtc->primary->fb check as soon as we can
* properly reconstruct framebuffers.
*
* FIXME: The intel_crtc->active here should be switched to
* crtc->state->active once we have proper CRTC states wired up
* for atomic.
*/
return intel_crtc->active && crtc->primary->state->fb &&
intel_crtc->config->base.adjusted_mode.crtc_clock;
}
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
return intel_crtc->config->cpu_transcoder;
}
static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg = PIPEDSL(pipe);
u32 line1, line2;
u32 line_mask;
if (IS_GEN2(dev))
line_mask = DSL_LINEMASK_GEN2;
else
line_mask = DSL_LINEMASK_GEN3;
line1 = I915_READ(reg) & line_mask;
mdelay(5);
line2 = I915_READ(reg) & line_mask;
return line1 == line2;
}
/*
* intel_wait_for_pipe_off - wait for pipe to turn off
* @crtc: crtc whose pipe to wait for
*
* After disabling a pipe, we can't wait for vblank in the usual way,
* spinning on the vblank interrupt status bit, since we won't actually
* see an interrupt when the pipe is disabled.
*
* On Gen4 and above:
* wait for the pipe register state bit to turn off
*
* Otherwise:
* wait for the display line value to settle (it usually
* ends up stopping at the start of the next frame).
*
*/
static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
enum pipe pipe = crtc->pipe;
if (INTEL_INFO(dev)->gen >= 4) {
int reg = PIPECONF(cpu_transcoder);
/* Wait for the Pipe State to go off */
if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
100))
WARN(1, "pipe_off wait timed out\n");
} else {
/* Wait for the display line to settle */
if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
WARN(1, "pipe_off wait timed out\n");
}
}
/*
* ibx_digital_port_connected - is the specified port connected?
* @dev_priv: i915 private structure
* @port: the port to test
*
* Returns true if @port is connected, false otherwise.
*/
bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *port)
{
u32 bit;
if (HAS_PCH_IBX(dev_priv->dev)) {
switch (port->port) {
case PORT_B:
bit = SDE_PORTB_HOTPLUG;
break;
case PORT_C:
bit = SDE_PORTC_HOTPLUG;
break;
case PORT_D:
bit = SDE_PORTD_HOTPLUG;
break;
default:
return true;
}
} else {
switch (port->port) {
case PORT_B:
bit = SDE_PORTB_HOTPLUG_CPT;
break;
case PORT_C:
bit = SDE_PORTC_HOTPLUG_CPT;
break;
case PORT_D:
bit = SDE_PORTD_HOTPLUG_CPT;
break;
default:
return true;
}
}
return I915_READ(SDEISR) & bit;
}
static const char *state_string(bool enabled)
{
return enabled ? "on" : "off";
}
/* Only for pre-ILK configs */
void assert_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = DPLL(pipe);
val = I915_READ(reg);
cur_state = !!(val & DPLL_VCO_ENABLE);
I915_STATE_WARN(cur_state != state,
"PLL state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
/* XXX: the dsi pll is shared between MIPI DSI ports */
static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
{
u32 val;
bool cur_state;
mutex_lock(&dev_priv->dpio_lock);
val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
mutex_unlock(&dev_priv->dpio_lock);
cur_state = val & DSI_PLL_VCO_EN;
I915_STATE_WARN(cur_state != state,
"DSI PLL state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
struct intel_shared_dpll *
intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
if (crtc->config->shared_dpll < 0)
return NULL;
return &dev_priv->shared_dplls[crtc->config->shared_dpll];
}
/* For ILK+ */
void assert_shared_dpll(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
bool state)
{
bool cur_state;
struct intel_dpll_hw_state hw_state;
if (WARN (!pll,
"asserting DPLL %s with no DPLL\n", state_string(state)))
return;
cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
I915_STATE_WARN(cur_state != state,
"%s assertion failure (expected %s, current %s)\n",
pll->name, state_string(state), state_string(cur_state));
}
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
if (HAS_DDI(dev_priv->dev)) {
/* DDI does not have a specific FDI_TX register */
reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
val = I915_READ(reg);
cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
} else {
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_TX_ENABLE);
}
I915_STATE_WARN(cur_state != state,
"FDI TX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_RX_ENABLE);
I915_STATE_WARN(cur_state != state,
"FDI RX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
/* ILK FDI PLL is always enabled */
if (INTEL_INFO(dev_priv->dev)->gen == 5)
return;
/* On Haswell, DDI ports are responsible for the FDI PLL setup */
if (HAS_DDI(dev_priv->dev))
return;
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
}
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_RX_PLL_ENABLE);
I915_STATE_WARN(cur_state != state,
"FDI RX PLL assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
void assert_panel_unlocked(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct drm_device *dev = dev_priv->dev;
int pp_reg;
u32 val;
enum pipe panel_pipe = PIPE_A;
bool locked = true;
if (WARN_ON(HAS_DDI(dev)))
return;
if (HAS_PCH_SPLIT(dev)) {
u32 port_sel;
pp_reg = PCH_PP_CONTROL;
port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
if (port_sel == PANEL_PORT_SELECT_LVDS &&
I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
panel_pipe = PIPE_B;
/* XXX: else fix for eDP */
} else if (IS_VALLEYVIEW(dev)) {
/* presumably write lock depends on pipe, not port select */
pp_reg = VLV_PIPE_PP_CONTROL(pipe);
panel_pipe = pipe;
} else {
pp_reg = PP_CONTROL;
if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
panel_pipe = PIPE_B;
}
val = I915_READ(pp_reg);
if (!(val & PANEL_POWER_ON) ||
((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
locked = false;
I915_STATE_WARN(panel_pipe == pipe && locked,
"panel assertion failure, pipe %c regs locked\n",
pipe_name(pipe));
}
static void assert_cursor(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
struct drm_device *dev = dev_priv->dev;
bool cur_state;
if (IS_845G(dev) || IS_I865G(dev))
cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
else
cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
I915_STATE_WARN(cur_state != state,
"cursor on pipe %c assertion failure (expected %s, current %s)\n",
pipe_name(pipe), state_string(state), state_string(cur_state));
}
#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
void assert_pipe(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
/* if we need the pipe quirk it must be always on */
if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
state = true;
if (!intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
cur_state = false;
} else {
reg = PIPECONF(cpu_transcoder);
val = I915_READ(reg);
cur_state = !!(val & PIPECONF_ENABLE);
}
I915_STATE_WARN(cur_state != state,
"pipe %c assertion failure (expected %s, current %s)\n",
pipe_name(pipe), state_string(state), state_string(cur_state));
}
static void assert_plane(struct drm_i915_private *dev_priv,
enum plane plane, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = DSPCNTR(plane);
val = I915_READ(reg);
cur_state = !!(val & DISPLAY_PLANE_ENABLE);
I915_STATE_WARN(cur_state != state,
"plane %c assertion failure (expected %s, current %s)\n",
plane_name(plane), state_string(state), state_string(cur_state));
}
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct drm_device *dev = dev_priv->dev;
int reg, i;
u32 val;
int cur_pipe;
/* Primary planes are fixed to pipes on gen4+ */
if (INTEL_INFO(dev)->gen >= 4) {
reg = DSPCNTR(pipe);
val = I915_READ(reg);
I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
"plane %c assertion failure, should be disabled but not\n",
plane_name(pipe));
return;
}
/* Need to check both planes against the pipe */
for_each_pipe(dev_priv, i) {
reg = DSPCNTR(i);
val = I915_READ(reg);
cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
DISPPLANE_SEL_PIPE_SHIFT;
I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
"plane %c assertion failure, should be off on pipe %c but is still active\n",
plane_name(i), pipe_name(pipe));
}
}
static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct drm_device *dev = dev_priv->dev;
int reg, sprite;
u32 val;
if (INTEL_INFO(dev)->gen >= 9) {
for_each_sprite(dev_priv, pipe, sprite) {
val = I915_READ(PLANE_CTL(pipe, sprite));
I915_STATE_WARN(val & PLANE_CTL_ENABLE,
"plane %d assertion failure, should be off on pipe %c but is still active\n",
sprite, pipe_name(pipe));
}
} else if (IS_VALLEYVIEW(dev)) {
for_each_sprite(dev_priv, pipe, sprite) {
reg = SPCNTR(pipe, sprite);
val = I915_READ(reg);
I915_STATE_WARN(val & SP_ENABLE,
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
sprite_name(pipe, sprite), pipe_name(pipe));
}
} else if (INTEL_INFO(dev)->gen >= 7) {
reg = SPRCTL(pipe);
val = I915_READ(reg);
I915_STATE_WARN(val & SPRITE_ENABLE,
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
plane_name(pipe), pipe_name(pipe));
} else if (INTEL_INFO(dev)->gen >= 5) {
reg = DVSCNTR(pipe);
val = I915_READ(reg);
I915_STATE_WARN(val & DVS_ENABLE,
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
plane_name(pipe), pipe_name(pipe));
}
}
static void assert_vblank_disabled(struct drm_crtc *crtc)
{
if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
drm_crtc_vblank_put(crtc);
}
static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
{
u32 val;
bool enabled;
I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
val = I915_READ(PCH_DREF_CONTROL);
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
DREF_SUPERSPREAD_SOURCE_MASK));
I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
}
static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
bool enabled;
reg = PCH_TRANSCONF(pipe);
val = I915_READ(reg);
enabled = !!(val & TRANS_ENABLE);
I915_STATE_WARN(enabled,
"transcoder assertion failed, should be off on pipe %c but is still active\n",
pipe_name(pipe));
}
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 port_sel, u32 val)
{
if ((val & DP_PORT_EN) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
return false;
} else if (IS_CHERRYVIEW(dev_priv->dev)) {
if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
return false;
} else {
if ((val & DP_PIPE_MASK) != (pipe << 30))
return false;
}
return true;
}
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & SDVO_ENABLE) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
return false;
} else if (IS_CHERRYVIEW(dev_priv->dev)) {
if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
return false;
} else {
if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
return false;
}
return true;
}
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & LVDS_PORT_EN) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
return false;
}
return true;
}
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & ADPA_DAC_ENABLE) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
return false;
}
return true;
}
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg, u32 port_sel)
{
u32 val = I915_READ(reg);
I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
&& (val & DP_PIPEB_SELECT),
"IBX PCH dp port still using transcoder B\n");
}
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg)
{
u32 val = I915_READ(reg);
I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
"PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
&& (val & SDVO_PIPE_B_SELECT),
"IBX PCH hdmi port still using transcoder B\n");
}
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
reg = PCH_ADPA;
val = I915_READ(reg);
I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
"PCH VGA enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
reg = PCH_LVDS;
val = I915_READ(reg);
I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
"PCH LVDS enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
}
static void intel_init_dpio(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!IS_VALLEYVIEW(dev))
return;
/*
* IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
* CHV x1 PHY (DP/HDMI D)
* IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
*/
if (IS_CHERRYVIEW(dev)) {
DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
} else {
DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
}
}
static void vlv_enable_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int reg = DPLL(crtc->pipe);
u32 dpll = pipe_config->dpll_hw_state.dpll;
assert_pipe_disabled(dev_priv, crtc->pipe);
/* No really, not for ILK+ */
BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
/* PLL is protected by panel, make sure we can write it */
if (IS_MOBILE(dev_priv->dev))
assert_panel_unlocked(dev_priv, crtc->pipe);
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150);
if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
POSTING_READ(DPLL_MD(crtc->pipe));
/* We do this three times for luck */
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
}
static void chv_enable_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 tmp;
assert_pipe_disabled(dev_priv, crtc->pipe);
BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
mutex_lock(&dev_priv->dpio_lock);
/* Enable back the 10bit clock to display controller */
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
tmp |= DPIO_DCLKP_EN;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
/*
* Need to wait > 100ns between dclkp clock enable bit and PLL enable.
*/
udelay(1);
/* Enable PLL */
I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
/* Check PLL is locked */
if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
DRM_ERROR("PLL %d failed to lock\n", pipe);
/* not sure when this should be written */
I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
POSTING_READ(DPLL_MD(pipe));
mutex_unlock(&dev_priv->dpio_lock);
}
static int intel_num_dvo_pipes(struct drm_device *dev)
{
struct intel_crtc *crtc;
int count = 0;
for_each_intel_crtc(dev, crtc)
count += crtc->active &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
return count;
}
static void i9xx_enable_pll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int reg = DPLL(crtc->pipe);
u32 dpll = crtc->config->dpll_hw_state.dpll;
assert_pipe_disabled(dev_priv, crtc->pipe);
/* No really, not for ILK+ */
BUG_ON(INTEL_INFO(dev)->gen >= 5);
/* PLL is protected by panel, make sure we can write it */
if (IS_MOBILE(dev) && !IS_I830(dev))
assert_panel_unlocked(dev_priv, crtc->pipe);
/* Enable DVO 2x clock on both PLLs if necessary */
if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
/*
* It appears to be important that we don't enable this
* for the current pipe before otherwise configuring the
* PLL. No idea how this should be handled if multiple
* DVO outputs are enabled simultaneosly.
*/
dpll |= DPLL_DVO_2X_MODE;
I915_WRITE(DPLL(!crtc->pipe),
I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
}
/* Wait for the clocks to stabilize. */
POSTING_READ(reg);
udelay(150);
if (INTEL_INFO(dev)->gen >= 4) {
I915_WRITE(DPLL_MD(crtc->pipe),
crtc->config->dpll_hw_state.dpll_md);
} else {
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(reg, dpll);
}
/* We do this three times for luck */
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, dpll);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
}
/**
* i9xx_disable_pll - disable a PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to disable
*
* Disable the PLL for @pipe, making sure the pipe is off first.
*
* Note! This is for pre-ILK only.
*/
static void i9xx_disable_pll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = crtc->pipe;
/* Disable DVO 2x clock on both PLLs if necessary */
if (IS_I830(dev) &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
intel_num_dvo_pipes(dev) == 1) {
I915_WRITE(DPLL(PIPE_B),
I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
I915_WRITE(DPLL(PIPE_A),
I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
}
/* Don't disable pipe or pipe PLLs if needed */
if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
return;
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
I915_WRITE(DPLL(pipe), 0);
POSTING_READ(DPLL(pipe));
}
static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
u32 val = 0;
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
/*
* Leave integrated clock source and reference clock enabled for pipe B.
* The latter is needed for VGA hotplug / manual detection.
*/
if (pipe == PIPE_B)
val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
I915_WRITE(DPLL(pipe), val);
POSTING_READ(DPLL(pipe));
}
static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 val;
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
/* Set PLL en = 0 */
val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
if (pipe != PIPE_A)
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
I915_WRITE(DPLL(pipe), val);
POSTING_READ(DPLL(pipe));
mutex_lock(&dev_priv->dpio_lock);
/* Disable 10bit clock to display controller */
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
val &= ~DPIO_DCLKP_EN;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
/* disable left/right clock distribution */
if (pipe != PIPE_B) {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
} else {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
}
mutex_unlock(&dev_priv->dpio_lock);
}
void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
struct intel_digital_port *dport,
unsigned int expected_mask)
{
u32 port_mask;
int dpll_reg;
switch (dport->port) {
case PORT_B:
port_mask = DPLL_PORTB_READY_MASK;
dpll_reg = DPLL(0);
break;
case PORT_C:
port_mask = DPLL_PORTC_READY_MASK;
dpll_reg = DPLL(0);
expected_mask <<= 4;
break;
case PORT_D:
port_mask = DPLL_PORTD_READY_MASK;
dpll_reg = DPIO_PHY_STATUS;
break;
default:
BUG();
}
if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
}
static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
if (WARN_ON(pll == NULL))
return;
WARN_ON(!pll->config.crtc_mask);
if (pll->active == 0) {
DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
WARN_ON(pll->on);
assert_shared_dpll_disabled(dev_priv, pll);
pll->mode_set(dev_priv, pll);
}
}
/**
* intel_enable_shared_dpll - enable PCH PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to enable
*
* The PCH PLL needs to be enabled before the PCH transcoder, since it
* drives the transcoder clock.
*/
static void intel_enable_shared_dpll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
if (WARN_ON(pll == NULL))
return;
if (WARN_ON(pll->config.crtc_mask == 0))
return;
DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
pll->name, pll->active, pll->on,
crtc->base.base.id);
if (pll->active++) {
WARN_ON(!pll->on);
assert_shared_dpll_enabled(dev_priv, pll);
return;
}
WARN_ON(pll->on);
intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
DRM_DEBUG_KMS("enabling %s\n", pll->name);
pll->enable(dev_priv, pll);
pll->on = true;
}
static void intel_disable_shared_dpll(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
/* PCH only available on ILK+ */
BUG_ON(INTEL_INFO(dev)->gen < 5);
if (WARN_ON(pll == NULL))
return;
if (WARN_ON(pll->config.crtc_mask == 0))
return;
DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
pll->name, pll->active, pll->on,
crtc->base.base.id);
if (WARN_ON(pll->active == 0)) {
assert_shared_dpll_disabled(dev_priv, pll);
return;
}
assert_shared_dpll_enabled(dev_priv, pll);
WARN_ON(!pll->on);
if (--pll->active)
return;
DRM_DEBUG_KMS("disabling %s\n", pll->name);
pll->disable(dev_priv, pll);
pll->on = false;
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
}
static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct drm_device *dev = dev_priv->dev;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t reg, val, pipeconf_val;
/* PCH only available on ILK+ */
BUG_ON(!HAS_PCH_SPLIT(dev));
/* Make sure PCH DPLL is enabled */
assert_shared_dpll_enabled(dev_priv,
intel_crtc_to_shared_dpll(intel_crtc));
/* FDI must be feeding us bits for PCH ports */
assert_fdi_tx_enabled(dev_priv, pipe);
assert_fdi_rx_enabled(dev_priv, pipe);
if (HAS_PCH_CPT(dev)) {
/* Workaround: Set the timing override bit before enabling the
* pch transcoder. */
reg = TRANS_CHICKEN2(pipe);
val = I915_READ(reg);
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(reg, val);
}
reg = PCH_TRANSCONF(pipe);
val = I915_READ(reg);
pipeconf_val = I915_READ(PIPECONF(pipe));
if (HAS_PCH_IBX(dev_priv->dev)) {
/*
* make the BPC in transcoder be consistent with
* that in pipeconf reg.
*/
val &= ~PIPECONF_BPC_MASK;
val |= pipeconf_val & PIPECONF_BPC_MASK;
}
val &= ~TRANS_INTERLACE_MASK;
if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
if (HAS_PCH_IBX(dev_priv->dev) &&
intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
val |= TRANS_LEGACY_INTERLACED_ILK;
else
val |= TRANS_INTERLACED;
else
val |= TRANS_PROGRESSIVE;
I915_WRITE(reg, val | TRANS_ENABLE);
if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
}
static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
u32 val, pipeconf_val;
/* PCH only available on ILK+ */
BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
/* FDI must be feeding us bits for PCH ports */
assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
/* Workaround: set timing override bit. */
val = I915_READ(_TRANSA_CHICKEN2);
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(_TRANSA_CHICKEN2, val);
val = TRANS_ENABLE;
pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
PIPECONF_INTERLACED_ILK)
val |= TRANS_INTERLACED;
else
val |= TRANS_PROGRESSIVE;
I915_WRITE(LPT_TRANSCONF, val);
if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
DRM_ERROR("Failed to enable PCH transcoder\n");
}
static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct drm_device *dev = dev_priv->dev;
uint32_t reg, val;
/* FDI relies on the transcoder */
assert_fdi_tx_disabled(dev_priv, pipe);
assert_fdi_rx_disabled(dev_priv, pipe);
/* Ports must be off as well */
assert_pch_ports_disabled(dev_priv, pipe);
reg = PCH_TRANSCONF(pipe);
val = I915_READ(reg);
val &= ~TRANS_ENABLE;
I915_WRITE(reg, val);
/* wait for PCH transcoder off, transcoder state */
if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
if (!HAS_PCH_IBX(dev)) {
/* Workaround: Clear the timing override chicken bit again. */
reg = TRANS_CHICKEN2(pipe);
val = I915_READ(reg);
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(reg, val);
}
}
static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
{
u32 val;
val = I915_READ(LPT_TRANSCONF);
val &= ~TRANS_ENABLE;
I915_WRITE(LPT_TRANSCONF, val);
/* wait for PCH transcoder off, transcoder state */
if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
DRM_ERROR("Failed to disable PCH transcoder\n");
/* Workaround: clear timing override bit. */
val = I915_READ(_TRANSA_CHICKEN2);
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(_TRANSA_CHICKEN2, val);
}
/**
* intel_enable_pipe - enable a pipe, asserting requirements
* @crtc: crtc responsible for the pipe
*
* Enable @crtc's pipe, making sure that various hardware specific requirements
* are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
*/
static void intel_enable_pipe(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = crtc->pipe;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
enum pipe pch_transcoder;
int reg;
u32 val;
assert_planes_disabled(dev_priv, pipe);
assert_cursor_disabled(dev_priv, pipe);
assert_sprites_disabled(dev_priv, pipe);
if (HAS_PCH_LPT(dev_priv->dev))
pch_transcoder = TRANSCODER_A;
else
pch_transcoder = pipe;
/*
* A pipe without a PLL won't actually be able to drive bits from
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
* need the check.
*/
if (HAS_GMCH_DISPLAY(dev_priv->dev))
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(dev_priv);
else
assert_pll_enabled(dev_priv, pipe);
else {
if (crtc->config->has_pch_encoder) {
/* if driving the PCH, we need FDI enabled */
assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
assert_fdi_tx_pll_enabled(dev_priv,
(enum pipe) cpu_transcoder);
}
/* FIXME: assert CPU port conditions for SNB+ */
}
reg = PIPECONF(cpu_transcoder);
val = I915_READ(reg);
if (val & PIPECONF_ENABLE) {
WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
return;
}
I915_WRITE(reg, val | PIPECONF_ENABLE);
POSTING_READ(reg);
}
/**
* intel_disable_pipe - disable a pipe, asserting requirements
* @crtc: crtc whose pipes is to be disabled
*
* Disable the pipe of @crtc, making sure that various hardware
* specific requirements are met, if applicable, e.g. plane
* disabled, panel fitter off, etc.
*
* Will wait until the pipe has shut down before returning.
*/
static void intel_disable_pipe(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
enum pipe pipe = crtc->pipe;
int reg;
u32 val;
/*
* Make sure planes won't keep trying to pump pixels to us,
* or we might hang the display.
*/
assert_planes_disabled(dev_priv, pipe);
assert_cursor_disabled(dev_priv, pipe);
assert_sprites_disabled(dev_priv, pipe);
reg = PIPECONF(cpu_transcoder);
val = I915_READ(reg);
if ((val & PIPECONF_ENABLE) == 0)
return;
/*
* Double wide has implications for planes
* so best keep it disabled when not needed.
*/
if (crtc->config->double_wide)
val &= ~PIPECONF_DOUBLE_WIDE;
/* Don't disable pipe or pipe PLLs if needed */
if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
!(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
val &= ~PIPECONF_ENABLE;
I915_WRITE(reg, val);
if ((val & PIPECONF_ENABLE) == 0)
intel_wait_for_pipe_off(crtc);
}
/*
* Plane regs are double buffered, going from enabled->disabled needs a
* trigger in order to latch. The display address reg provides this.
*/
void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
enum plane plane)
{
struct drm_device *dev = dev_priv->dev;
u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
I915_WRITE(reg, I915_READ(reg));
POSTING_READ(reg);
}
/**
* intel_enable_primary_hw_plane - enable the primary plane on a given pipe
* @plane: plane to be enabled
* @crtc: crtc for the plane
*
* Enable @plane on @crtc, making sure that the pipe is running first.
*/
static void intel_enable_primary_hw_plane(struct drm_plane *plane,
struct drm_crtc *crtc)
{
struct drm_device *dev = plane->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
/* If the pipe isn't enabled, we can't pump pixels and may hang */
assert_pipe_enabled(dev_priv, intel_crtc->pipe);
to_intel_plane_state(plane->state)->visible = true;
dev_priv->display.update_primary_plane(crtc, plane->fb,
crtc->x, crtc->y);
}
static bool need_vtd_wa(struct drm_device *dev)
{
#ifdef CONFIG_INTEL_IOMMU
if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
return true;
#endif
return false;
}
unsigned int
intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
uint64_t fb_format_modifier)
{
unsigned int tile_height;
uint32_t pixel_bytes;
switch (fb_format_modifier) {
case DRM_FORMAT_MOD_NONE:
tile_height = 1;
break;
case I915_FORMAT_MOD_X_TILED:
tile_height = IS_GEN2(dev) ? 16 : 8;
break;
case I915_FORMAT_MOD_Y_TILED:
tile_height = 32;
break;
case I915_FORMAT_MOD_Yf_TILED:
pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
switch (pixel_bytes) {
default:
case 1:
tile_height = 64;
break;
case 2:
case 4:
tile_height = 32;
break;
case 8:
tile_height = 16;
break;
case 16:
WARN_ONCE(1,
"128-bit pixels are not supported for display!");
tile_height = 16;
break;
}
break;
default:
MISSING_CASE(fb_format_modifier);
tile_height = 1;
break;
}
return tile_height;
}
unsigned int
intel_fb_align_height(struct drm_device *dev, unsigned int height,
uint32_t pixel_format, uint64_t fb_format_modifier)
{
return ALIGN(height, intel_tile_height(dev, pixel_format,
fb_format_modifier));
}
static int
intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
const struct drm_plane_state *plane_state)
{
struct intel_rotation_info *info = &view->rotation_info;
*view = i915_ggtt_view_normal;
if (!plane_state)
return 0;
if (!intel_rotation_90_or_270(plane_state->rotation))
return 0;
*view = i915_ggtt_view_rotated;
info->height = fb->height;
info->pixel_format = fb->pixel_format;
info->pitch = fb->pitches[0];
info->fb_modifier = fb->modifier[0];
return 0;
}
int
intel_pin_and_fence_fb_obj(struct drm_plane *plane,
struct drm_framebuffer *fb,
const struct drm_plane_state *plane_state,
struct intel_engine_cs *pipelined)
{
struct drm_device *dev = fb->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct i915_ggtt_view view;
u32 alignment;
int ret;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
switch (fb->modifier[0]) {
case DRM_FORMAT_MOD_NONE:
if (INTEL_INFO(dev)->gen >= 9)
alignment = 256 * 1024;
else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
alignment = 128 * 1024;
else if (INTEL_INFO(dev)->gen >= 4)
alignment = 4 * 1024;
else
alignment = 64 * 1024;
break;
case I915_FORMAT_MOD_X_TILED:
if (INTEL_INFO(dev)->gen >= 9)
alignment = 256 * 1024;
else {
/* pin() will align the object as required by fence */
alignment = 0;
}
break;
case I915_FORMAT_MOD_Y_TILED:
case I915_FORMAT_MOD_Yf_TILED:
if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
"Y tiling bo slipped through, driver bug!\n"))
return -EINVAL;
alignment = 1 * 1024 * 1024;
break;
default:
MISSING_CASE(fb->modifier[0]);
return -EINVAL;
}
ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
if (ret)
return ret;
/* Note that the w/a also requires 64 PTE of padding following the
* bo. We currently fill all unused PTE with the shadow page and so
* we should always have valid PTE following the scanout preventing
* the VT-d warning.
*/
if (need_vtd_wa(dev) && alignment < 256 * 1024)
alignment = 256 * 1024;
/*
* Global gtt pte registers are special registers which actually forward
* writes to a chunk of system memory. Which means that there is no risk
* that the register values disappear as soon as we call
* intel_runtime_pm_put(), so it is correct to wrap only the
* pin/unpin/fence and not more.
*/
intel_runtime_pm_get(dev_priv);
dev_priv->mm.interruptible = false;
ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
&view);
if (ret)
goto err_interruptible;
/* Install a fence for tiled scan-out. Pre-i965 always needs a
* fence, whereas 965+ only requires a fence if using
* framebuffer compression. For simplicity, we always install
* a fence as the cost is not that onerous.
*/
ret = i915_gem_object_get_fence(obj);
if (ret)
goto err_unpin;
i915_gem_object_pin_fence(obj);
dev_priv->mm.interruptible = true;
intel_runtime_pm_put(dev_priv);
return 0;
err_unpin:
i915_gem_object_unpin_from_display_plane(obj, &view);
err_interruptible:
dev_priv->mm.interruptible = true;
intel_runtime_pm_put(dev_priv);
return ret;
}
static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
const struct drm_plane_state *plane_state)
{
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct i915_ggtt_view view;
int ret;
WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
WARN_ONCE(ret, "Couldn't get view from plane state!");
i915_gem_object_unpin_fence(obj);
i915_gem_object_unpin_from_display_plane(obj, &view);
}
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
* is assumed to be a power-of-two. */
unsigned long intel_gen4_compute_page_offset(int *x, int *y,
unsigned int tiling_mode,
unsigned int cpp,
unsigned int pitch)
{
if (tiling_mode != I915_TILING_NONE) {
unsigned int tile_rows, tiles;
tile_rows = *y / 8;
*y %= 8;
tiles = *x / (512/cpp);
*x %= 512/cpp;
return tile_rows * pitch * 8 + tiles * 4096;
} else {
unsigned int offset;
offset = *y * pitch + *x * cpp;
*y = 0;
*x = (offset & 4095) / cpp;
return offset & -4096;
}
}
static int i9xx_format_to_fourcc(int format)
{
switch (format) {
case DISPPLANE_8BPP:
return DRM_FORMAT_C8;
case DISPPLANE_BGRX555:
return DRM_FORMAT_XRGB1555;
case DISPPLANE_BGRX565:
return DRM_FORMAT_RGB565;
default:
case DISPPLANE_BGRX888:
return DRM_FORMAT_XRGB8888;
case DISPPLANE_RGBX888:
return DRM_FORMAT_XBGR8888;
case DISPPLANE_BGRX101010:
return DRM_FORMAT_XRGB2101010;
case DISPPLANE_RGBX101010:
return DRM_FORMAT_XBGR2101010;
}
}
static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
{
switch (format) {
case PLANE_CTL_FORMAT_RGB_565:
return DRM_FORMAT_RGB565;
default:
case PLANE_CTL_FORMAT_XRGB_8888:
if (rgb_order) {
if (alpha)
return DRM_FORMAT_ABGR8888;
else
return DRM_FORMAT_XBGR8888;
} else {
if (alpha)
return DRM_FORMAT_ARGB8888;
else
return DRM_FORMAT_XRGB8888;
}
case PLANE_CTL_FORMAT_XRGB_2101010:
if (rgb_order)
return DRM_FORMAT_XBGR2101010;
else
return DRM_FORMAT_XRGB2101010;
}
}
static bool
intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_gem_object *obj = NULL;
struct drm_mode_fb_cmd2 mode_cmd = { 0 };
struct drm_framebuffer *fb = &plane_config->fb->base;
u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
u32 size_aligned = round_up(plane_config->base + plane_config->size,
PAGE_SIZE);
size_aligned -= base_aligned;
if (plane_config->size == 0)
return false;
obj = i915_gem_object_create_stolen_for_preallocated(dev,
base_aligned,
base_aligned,
size_aligned);
if (!obj)
return false;
obj->tiling_mode = plane_config->tiling;
if (obj->tiling_mode == I915_TILING_X)
obj->stride = fb->pitches[0];
mode_cmd.pixel_format = fb->pixel_format;
mode_cmd.width = fb->width;
mode_cmd.height = fb->height;
mode_cmd.pitches[0] = fb->pitches[0];
mode_cmd.modifier[0] = fb->modifier[0];
mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
mutex_lock(&dev->struct_mutex);
if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
&mode_cmd, obj)) {
DRM_DEBUG_KMS("intel fb init failed\n");
goto out_unref_obj;
}
mutex_unlock(&dev->struct_mutex);
DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
return true;
out_unref_obj:
drm_gem_object_unreference(&obj->base);
mutex_unlock(&dev->struct_mutex);
return false;
}
/* Update plane->state->fb to match plane->fb after driver-internal updates */
static void
update_state_fb(struct drm_plane *plane)
{
if (plane->fb == plane->state->fb)
return;
if (plane->state->fb)
drm_framebuffer_unreference(plane->state->fb);
plane->state->fb = plane->fb;
if (plane->state->fb)
drm_framebuffer_reference(plane->state->fb);
}
static void
intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *c;
struct intel_crtc *i;
struct drm_i915_gem_object *obj;
struct drm_plane *primary = intel_crtc->base.primary;
struct drm_framebuffer *fb;
if (!plane_config->fb)
return;
if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
fb = &plane_config->fb->base;
goto valid_fb;
}
kfree(plane_config->fb);
/*
* Failed to alloc the obj, check to see if we should share
* an fb with another CRTC instead
*/
for_each_crtc(dev, c) {
i = to_intel_crtc(c);
if (c == &intel_crtc->base)
continue;
if (!i->active)
continue;
fb = c->primary->fb;
if (!fb)
continue;
obj = intel_fb_obj(fb);
if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
drm_framebuffer_reference(fb);
goto valid_fb;
}
}
return;
valid_fb:
obj = intel_fb_obj(fb);
if (obj->tiling_mode != I915_TILING_NONE)
dev_priv->preserve_bios_swizzle = true;
primary->fb = fb;
primary->state->crtc = &intel_crtc->base;
primary->crtc = &intel_crtc->base;
update_state_fb(primary);
obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
}
static void i9xx_update_primary_plane(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_plane *primary = crtc->primary;
bool visible = to_intel_plane_state(primary->state)->visible;
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long linear_offset;
u32 dspcntr;
u32 reg = DSPCNTR(plane);
int pixel_size;
if (!visible || !fb) {
I915_WRITE(reg, 0);
if (INTEL_INFO(dev)->gen >= 4)
I915_WRITE(DSPSURF(plane), 0);
else
I915_WRITE(DSPADDR(plane), 0);
POSTING_READ(reg);
return;
}
obj = intel_fb_obj(fb);
if (WARN_ON(obj == NULL))
return;
pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
dspcntr = DISPPLANE_GAMMA_ENABLE;
dspcntr |= DISPLAY_PLANE_ENABLE;
if (INTEL_INFO(dev)->gen < 4) {
if (intel_crtc->pipe == PIPE_B)
dspcntr |= DISPPLANE_SEL_PIPE_B;
/* pipesrc and dspsize control the size that is scaled from,
* which should always be the user's requested size.
*/
I915_WRITE(DSPSIZE(plane),
((intel_crtc->config->pipe_src_h - 1) << 16) |
(intel_crtc->config->pipe_src_w - 1));
I915_WRITE(DSPPOS(plane), 0);
} else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
I915_WRITE(PRIMSIZE(plane),
((intel_crtc->config->pipe_src_h - 1) << 16) |
(intel_crtc->config->pipe_src_w - 1));
I915_WRITE(PRIMPOS(plane), 0);
I915_WRITE(PRIMCNSTALPHA(plane), 0);
}
switch (fb->pixel_format) {
case DRM_FORMAT_C8:
dspcntr |= DISPPLANE_8BPP;
break;
case DRM_FORMAT_XRGB1555:
dspcntr |= DISPPLANE_BGRX555;
break;
case DRM_FORMAT_RGB565:
dspcntr |= DISPPLANE_BGRX565;
break;
case DRM_FORMAT_XRGB8888:
dspcntr |= DISPPLANE_BGRX888;
break;
case DRM_FORMAT_XBGR8888:
dspcntr |= DISPPLANE_RGBX888;
break;
case DRM_FORMAT_XRGB2101010:
dspcntr |= DISPPLANE_BGRX101010;
break;
case DRM_FORMAT_XBGR2101010:
dspcntr |= DISPPLANE_RGBX101010;
break;
default:
BUG();
}
if (INTEL_INFO(dev)->gen >= 4 &&
obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
if (IS_G4X(dev))
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
linear_offset = y * fb->pitches[0] + x * pixel_size;
if (INTEL_INFO(dev)->gen >= 4) {
intel_crtc->dspaddr_offset =
intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
pixel_size,
fb->pitches[0]);
linear_offset -= intel_crtc->dspaddr_offset;
} else {
intel_crtc->dspaddr_offset = linear_offset;
}
if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
dspcntr |= DISPPLANE_ROTATE_180;
x += (intel_crtc->config->pipe_src_w - 1);
y += (intel_crtc->config->pipe_src_h - 1);
/* Finding the last pixel of the last line of the display
data and adding to linear_offset*/
linear_offset +=
(intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
(intel_crtc->config->pipe_src_w - 1) * pixel_size;
}
I915_WRITE(reg, dspcntr);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
if (INTEL_INFO(dev)->gen >= 4) {
I915_WRITE(DSPSURF(plane),
i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
I915_WRITE(DSPLINOFF(plane), linear_offset);
} else
I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
POSTING_READ(reg);
}
static void ironlake_update_primary_plane(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_plane *primary = crtc->primary;
bool visible = to_intel_plane_state(primary->state)->visible;
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long linear_offset;
u32 dspcntr;
u32 reg = DSPCNTR(plane);
int pixel_size;
if (!visible || !fb) {
I915_WRITE(reg, 0);
I915_WRITE(DSPSURF(plane), 0);
POSTING_READ(reg);
return;
}
obj = intel_fb_obj(fb);
if (WARN_ON(obj == NULL))
return;
pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
dspcntr = DISPPLANE_GAMMA_ENABLE;
dspcntr |= DISPLAY_PLANE_ENABLE;
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
switch (fb->pixel_format) {
case DRM_FORMAT_C8:
dspcntr |= DISPPLANE_8BPP;
break;
case DRM_FORMAT_RGB565:
dspcntr |= DISPPLANE_BGRX565;
break;
case DRM_FORMAT_XRGB8888:
dspcntr |= DISPPLANE_BGRX888;
break;
case DRM_FORMAT_XBGR8888:
dspcntr |= DISPPLANE_RGBX888;
break;
case DRM_FORMAT_XRGB2101010:
dspcntr |= DISPPLANE_BGRX101010;
break;
case DRM_FORMAT_XBGR2101010:
dspcntr |= DISPPLANE_RGBX101010;
break;
default:
BUG();
}
if (obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
linear_offset = y * fb->pitches[0] + x * pixel_size;
intel_crtc->dspaddr_offset =
intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
pixel_size,
fb->pitches[0]);
linear_offset -= intel_crtc->dspaddr_offset;
if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
dspcntr |= DISPPLANE_ROTATE_180;
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
x += (intel_crtc->config->pipe_src_w - 1);
y += (intel_crtc->config->pipe_src_h - 1);
/* Finding the last pixel of the last line of the display
data and adding to linear_offset*/
linear_offset +=
(intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
(intel_crtc->config->pipe_src_w - 1) * pixel_size;
}
}
I915_WRITE(reg, dspcntr);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
I915_WRITE(DSPSURF(plane),
i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
} else {
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
I915_WRITE(DSPLINOFF(plane), linear_offset);
}
POSTING_READ(reg);
}
u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
uint32_t pixel_format)
{
u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
/*
* The stride is either expressed as a multiple of 64 bytes
* chunks for linear buffers or in number of tiles for tiled
* buffers.
*/
switch (fb_modifier) {
case DRM_FORMAT_MOD_NONE:
return 64;
case I915_FORMAT_MOD_X_TILED:
if (INTEL_INFO(dev)->gen == 2)
return 128;
return 512;
case I915_FORMAT_MOD_Y_TILED:
/* No need to check for old gens and Y tiling since this is
* about the display engine and those will be blocked before
* we get here.
*/
return 128;
case I915_FORMAT_MOD_Yf_TILED:
if (bits_per_pixel == 8)
return 64;
else
return 128;
default:
MISSING_CASE(fb_modifier);
return 64;
}
}
unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
struct drm_i915_gem_object *obj)
{
const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
view = &i915_ggtt_view_rotated;
return i915_gem_obj_ggtt_offset_view(obj, view);
}
/*
* This function detaches (aka. unbinds) unused scalers in hardware
*/
void skl_detach_scalers(struct intel_crtc *intel_crtc)
{
struct drm_device *dev;
struct drm_i915_private *dev_priv;
struct intel_crtc_scaler_state *scaler_state;
int i;
if (!intel_crtc || !intel_crtc->config)
return;
dev = intel_crtc->base.dev;
dev_priv = dev->dev_private;
scaler_state = &intel_crtc->config->scaler_state;
/* loop through and disable scalers that aren't in use */
for (i = 0; i < intel_crtc->num_scalers; i++) {
if (!scaler_state->scalers[i].in_use) {
I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
intel_crtc->base.base.id, intel_crtc->pipe, i);
}
}
}
u32 skl_plane_ctl_format(uint32_t pixel_format)
{
switch (pixel_format) {
case DRM_FORMAT_C8:
return PLANE_CTL_FORMAT_INDEXED;
case DRM_FORMAT_RGB565:
return PLANE_CTL_FORMAT_RGB_565;
case DRM_FORMAT_XBGR8888:
return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
case DRM_FORMAT_XRGB8888:
return PLANE_CTL_FORMAT_XRGB_8888;
/*
* XXX: For ARBG/ABGR formats we default to expecting scanout buffers
* to be already pre-multiplied. We need to add a knob (or a different
* DRM_FORMAT) for user-space to configure that.
*/
case DRM_FORMAT_ABGR8888:
return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
PLANE_CTL_ALPHA_SW_PREMULTIPLY;
case DRM_FORMAT_ARGB8888:
return PLANE_CTL_FORMAT_XRGB_8888 |
PLANE_CTL_ALPHA_SW_PREMULTIPLY;
case DRM_FORMAT_XRGB2101010:
return PLANE_CTL_FORMAT_XRGB_2101010;
case DRM_FORMAT_XBGR2101010:
return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
case DRM_FORMAT_YUYV:
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
case DRM_FORMAT_YVYU:
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
case DRM_FORMAT_UYVY:
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
case DRM_FORMAT_VYUY:
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
default:
MISSING_CASE(pixel_format);
}
return 0;
}
u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
{
switch (fb_modifier) {
case DRM_FORMAT_MOD_NONE:
break;
case I915_FORMAT_MOD_X_TILED:
return PLANE_CTL_TILED_X;
case I915_FORMAT_MOD_Y_TILED:
return PLANE_CTL_TILED_Y;
case I915_FORMAT_MOD_Yf_TILED:
return PLANE_CTL_TILED_YF;
default:
MISSING_CASE(fb_modifier);
}
return 0;
}
u32 skl_plane_ctl_rotation(unsigned int rotation)
{
switch (rotation) {
case BIT(DRM_ROTATE_0):
break;
/*
* DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
* while i915 HW rotation is clockwise, thats why this swapping.
*/
case BIT(DRM_ROTATE_90):
return PLANE_CTL_ROTATE_270;
case BIT(DRM_ROTATE_180):
return PLANE_CTL_ROTATE_180;
case BIT(DRM_ROTATE_270):
return PLANE_CTL_ROTATE_90;
default:
MISSING_CASE(rotation);
}
return 0;
}
static void skylake_update_primary_plane(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_plane *plane = crtc->primary;
bool visible = to_intel_plane_state(plane->state)->visible;
struct drm_i915_gem_object *obj;
int pipe = intel_crtc->pipe;
u32 plane_ctl, stride_div, stride;
u32 tile_height, plane_offset, plane_size;
unsigned int rotation;
int x_offset, y_offset;
unsigned long surf_addr;
struct intel_crtc_state *crtc_state = intel_crtc->config;
struct intel_plane_state *plane_state;
int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
int scaler_id = -1;
plane_state = to_intel_plane_state(plane->state);
if (!visible || !fb) {
I915_WRITE(PLANE_CTL(pipe, 0), 0);
I915_WRITE(PLANE_SURF(pipe, 0), 0);
POSTING_READ(PLANE_CTL(pipe, 0));
return;
}
plane_ctl = PLANE_CTL_ENABLE |
PLANE_CTL_PIPE_GAMMA_ENABLE |
PLANE_CTL_PIPE_CSC_ENABLE;
plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
rotation = plane->state->rotation;
plane_ctl |= skl_plane_ctl_rotation(rotation);
obj = intel_fb_obj(fb);
stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
fb->pixel_format);
surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
/*
* FIXME: intel_plane_state->src, dst aren't set when transitional
* update_plane helpers are called from legacy paths.
* Once full atomic crtc is available, below check can be avoided.
*/
if (drm_rect_width(&plane_state->src)) {
scaler_id = plane_state->scaler_id;
src_x = plane_state->src.x1 >> 16;
src_y = plane_state->src.y1 >> 16;
src_w = drm_rect_width(&plane_state->src) >> 16;
src_h = drm_rect_height(&plane_state->src) >> 16;
dst_x = plane_state->dst.x1;
dst_y = plane_state->dst.y1;
dst_w = drm_rect_width(&plane_state->dst);
dst_h = drm_rect_height(&plane_state->dst);
WARN_ON(x != src_x || y != src_y);
} else {
src_w = intel_crtc->config->pipe_src_w;
src_h = intel_crtc->config->pipe_src_h;
}
if (intel_rotation_90_or_270(rotation)) {
/* stride = Surface height in tiles */
tile_height = intel_tile_height(dev, fb->pixel_format,
fb->modifier[0]);
stride = DIV_ROUND_UP(fb->height, tile_height);
x_offset = stride * tile_height - y - src_h;
y_offset = x;
plane_size = (src_w - 1) << 16 | (src_h - 1);
} else {
stride = fb->pitches[0] / stride_div;
x_offset = x;
y_offset = y;
plane_size = (src_h - 1) << 16 | (src_w - 1);
}
plane_offset = y_offset << 16 | x_offset;
I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
if (scaler_id >= 0) {
uint32_t ps_ctrl = 0;
WARN_ON(!dst_w || !dst_h);
ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
crtc_state->scaler_state.scalers[scaler_id].mode;
I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
I915_WRITE(PLANE_POS(pipe, 0), 0);
} else {
I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
}
I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
POSTING_READ(PLANE_SURF(pipe, 0));
}
/* Assume fb object is pinned & idle & fenced and just update base pointers */
static int
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
int x, int y, enum mode_set_atomic state)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->display.disable_fbc)
dev_priv->display.disable_fbc(dev);
dev_priv->display.update_primary_plane(crtc, fb, x, y);
return 0;
}
static void intel_complete_page_flips(struct drm_device *dev)
{
struct drm_crtc *crtc;
for_each_crtc(dev, crtc) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum plane plane = intel_crtc->plane;
intel_prepare_page_flip(dev, plane);
intel_finish_page_flip_plane(dev, plane);
}
}
static void intel_update_primary_planes(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
for_each_crtc(dev, crtc) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
drm_modeset_lock(&crtc->mutex, NULL);
/*
* FIXME: Once we have proper support for primary planes (and
* disabling them without disabling the entire crtc) allow again
* a NULL crtc->primary->fb.
*/
if (intel_crtc->active && crtc->primary->fb)
dev_priv->display.update_primary_plane(crtc,
crtc->primary->fb,
crtc->x,
crtc->y);
drm_modeset_unlock(&crtc->mutex);
}
}
void intel_crtc_reset(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (!crtc->active)
return;
intel_crtc_disable_planes(&crtc->base);
dev_priv->display.crtc_disable(&crtc->base);
dev_priv->display.crtc_enable(&crtc->base);
intel_crtc_enable_planes(&crtc->base);
}
void intel_prepare_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *crtc;
/* no reset support for gen2 */
if (IS_GEN2(dev))
return;
/* reset doesn't touch the display */
if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
return;
drm_modeset_lock_all(dev);
/*
* Disabling the crtcs gracefully seems nicer. Also the
* g33 docs say we should at least disable all the planes.
*/
for_each_intel_crtc(dev, crtc) {
if (!crtc->active)
continue;
intel_crtc_disable_planes(&crtc->base);
dev_priv->display.crtc_disable(&crtc->base);
}
}
void intel_finish_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
/*
* Flips in the rings will be nuked by the reset,
* so complete all pending flips so that user space
* will get its events and not get stuck.
*/
intel_complete_page_flips(dev);
/* no reset support for gen2 */
if (IS_GEN2(dev))
return;
/* reset doesn't touch the display */
if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
/*
* Flips in the rings have been nuked by the reset,
* so update the base address of all primary
* planes to the the last fb to make sure we're
* showing the correct fb after a reset.
*/
intel_update_primary_planes(dev);
return;
}
/*
* The display has been reset as well,
* so need a full re-initialization.
*/
intel_runtime_pm_disable_interrupts(dev_priv);
intel_runtime_pm_enable_interrupts(dev_priv);
intel_modeset_init_hw(dev);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display.hpd_irq_setup)
dev_priv->display.hpd_irq_setup(dev);
spin_unlock_irq(&dev_priv->irq_lock);
intel_modeset_setup_hw_state(dev, true);
intel_hpd_init(dev_priv);
drm_modeset_unlock_all(dev);
}
static void
intel_finish_fb(struct drm_framebuffer *old_fb)
{
struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
bool was_interruptible = dev_priv->mm.interruptible;
int ret;
/* Big Hammer, we also need to ensure that any pending
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
* current scanout is retired before unpinning the old
* framebuffer. Note that we rely on userspace rendering
* into the buffer attached to the pipe they are waiting
* on. If not, userspace generates a GPU hang with IPEHR
* point to the MI_WAIT_FOR_EVENT.
*
* This should only fail upon a hung GPU, in which case we
* can safely continue.
*/
dev_priv->mm.interruptible = false;
ret = i915_gem_object_wait_rendering(obj, true);
dev_priv->mm.interruptible = was_interruptible;
WARN_ON(ret);
}
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bool pending;
if (i915_reset_in_progress(&dev_priv->gpu_error) ||
intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
return false;
spin_lock_irq(&dev->event_lock);
pending = to_intel_crtc(crtc)->unpin_work != NULL;
spin_unlock_irq(&dev->event_lock);
return pending;
}
static void intel_update_pipe_size(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const struct drm_display_mode *adjusted_mode;
if (!i915.fastboot)
return;
/*
* Update pipe size and adjust fitter if needed: the reason for this is
* that in compute_mode_changes we check the native mode (not the pfit
* mode) to see if we can flip rather than do a full mode set. In the
* fastboot case, we'll flip, but if we don't update the pipesrc and
* pfit state, we'll end up with a big fb scanned out into the wrong
* sized surface.
*
* To fix this properly, we need to hoist the checks up into
* compute_mode_changes (or above), check the actual pfit state and
* whether the platform allows pfit disable with pipe active, and only
* then update the pipesrc and pfit state, even on the flip path.
*/
adjusted_mode = &crtc->config->base.adjusted_mode;
I915_WRITE(PIPESRC(crtc->pipe),
((adjusted_mode->crtc_hdisplay - 1) << 16) |
(adjusted_mode->crtc_vdisplay - 1));
if (!crtc->config->pch_pfit.enabled &&
(intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
I915_WRITE(PF_CTL(crtc->pipe), 0);
I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
}
crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
}
static void intel_fdi_normal_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* enable normal train */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
if (IS_IVYBRIDGE(dev)) {
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
}
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_NORMAL_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE;
}
I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
/* wait one idle pattern time */
POSTING_READ(reg);
udelay(1000);
/* IVB wants error correction enabled */
if (IS_IVYBRIDGE(dev))
I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
FDI_FE_ERRC_ENABLE);
}
/* The FDI link training functions for ILK/Ibexpeak. */
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, tries;
/* FDI needs bits from pipe first */
assert_pipe_enabled(dev_priv, pipe);
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
I915_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
/* Ironlake workaround, enable clock pointer after FDI enable*/
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
FDI_RX_PHASE_SYNC_POINTER_EN);
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if ((temp & FDI_RX_BIT_LOCK)) {
DRM_DEBUG_KMS("FDI train 1 done.\n");
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
break;
}
}
if (tries == 5)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
}
if (tries == 5)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done\n");
}
static const int snb_b_fdi_train_param[] = {
FDI_LINK_TRAIN_400MV_0DB_SNB_B,
FDI_LINK_TRAIN_400MV_6DB_SNB_B,
FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
FDI_LINK_TRAIN_800MV_0DB_SNB_B,
};
/* The FDI link training functions for SNB/Cougarpoint. */
static void gen6_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, i, retry;
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
I915_WRITE(FDI_RX_MISC(pipe),
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
if (IS_GEN6(dev)) {
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
}
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
}
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done.\n");
}
/* Manual link training for Ivy Bridge A0 parts */
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, i, j;
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
I915_READ(FDI_RX_IIR(pipe)));
/* Try each vswing and preemphasis setting twice before moving on */
for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
/* disable first in case we need to retry */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
temp &= ~FDI_TX_ENABLE;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_AUTO;
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp &= ~FDI_RX_ENABLE;
I915_WRITE(reg, temp);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[j/2];
temp |= FDI_COMPOSITE_SYNC;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
I915_WRITE(FDI_RX_MISC(pipe),
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
temp |= FDI_COMPOSITE_SYNC;
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(1); /* should be 0.5us */
for (i = 0; i < 4; i++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK ||
(I915_READ(reg) & FDI_RX_BIT_LOCK)) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
i);
break;
}
udelay(1); /* should be 0.5us */
}
if (i == 4) {
DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
continue;
}
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(2); /* should be 1.5us */
for (i = 0; i < 4; i++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK ||
(I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
i);
goto train_done;
}
udelay(2); /* should be 1.5us */
}
if (i == 4)
DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
}
train_done:
DRM_DEBUG_KMS("FDI train done.\n");
}
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
POSTING_READ(reg);
udelay(200);
/* Switch from Rawclk to PCDclk */
temp = I915_READ(reg);
I915_WRITE(reg, temp | FDI_PCDCLK);
POSTING_READ(reg);
udelay(200);
/* Enable CPU FDI TX PLL, always on for Ironlake */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
POSTING_READ(reg);
udelay(100);
}
}
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* Switch from PCDclk to Rawclk */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_PCDCLK);
/* Disable CPU FDI TX PLL */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
POSTING_READ(reg);
udelay(100);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
/* Wait for the clocks to turn off. */
POSTING_READ(reg);
udelay(100);
}
static void ironlake_fdi_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* disable CPU FDI tx and PCH FDI rx */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
POSTING_READ(reg);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(0x7 << 16);
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(100);
/* Ironlake workaround, disable clock pointer after downing FDI */
if (HAS_PCH_IBX(dev))
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
/* still set train pattern 1 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
/* BPC in FDI rx is consistent with that in PIPECONF */
temp &= ~(0x07 << 16);
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(100);
}
bool intel_has_pending_fb_unpin(struct drm_device *dev)
{
struct intel_crtc *crtc;
/* Note that we don't need to be called with mode_config.lock here
* as our list of CRTC objects is static for the lifetime of the
* device and so cannot disappear as we iterate. Similarly, we can
* happily treat the predicates as racy, atomic checks as userspace
* cannot claim and pin a new fb without at least acquring the
* struct_mutex and so serialising with us.
*/
for_each_intel_crtc(dev, crtc) {
if (atomic_read(&crtc->unpin_work_count) == 0)
continue;
if (crtc->unpin_work)
intel_wait_for_vblank(dev, crtc->pipe);
return true;
}
return false;
}
static void page_flip_completed(struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
struct intel_unpin_work *work = intel_crtc->unpin_work;
/* ensure that the unpin work is consistent wrt ->pending. */
smp_rmb();
intel_crtc->unpin_work = NULL;
if (work->event)
drm_send_vblank_event(intel_crtc->base.dev,
intel_crtc->pipe,
work->event);
drm_crtc_vblank_put(&intel_crtc->base);
wake_up_all(&dev_priv->pending_flip_queue);
queue_work(dev_priv->wq, &work->work);
trace_i915_flip_complete(intel_crtc->plane,
work->pending_flip_obj);
}
void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
!intel_crtc_has_pending_flip(crtc),
60*HZ) == 0)) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
spin_lock_irq(&dev->event_lock);
if (intel_crtc->unpin_work) {
WARN_ONCE(1, "Removing stuck page flip\n");
page_flip_completed(intel_crtc);
}
spin_unlock_irq(&dev->event_lock);
}
if (crtc->primary->fb) {
mutex_lock(&dev->struct_mutex);
intel_finish_fb(crtc->primary->fb);
mutex_unlock(&dev->struct_mutex);
}
}
/* Program iCLKIP clock to the desired frequency */
static void lpt_program_iclkip(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
u32 divsel, phaseinc, auxdiv, phasedir = 0;
u32 temp;
mutex_lock(&dev_priv->dpio_lock);
/* It is necessary to ungate the pixclk gate prior to programming
* the divisors, and gate it back when it is done.
*/
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
/* Disable SSCCTL */
intel_sbi_write(dev_priv, SBI_SSCCTL6,
intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
SBI_SSCCTL_DISABLE,
SBI_ICLK);
/* 20MHz is a corner case which is out of range for the 7-bit divisor */
if (clock == 20000) {
auxdiv = 1;
divsel = 0x41;
phaseinc = 0x20;
} else {
/* The iCLK virtual clock root frequency is in MHz,
* but the adjusted_mode->crtc_clock in in KHz. To get the
* divisors, it is necessary to divide one by another, so we
* convert the virtual clock precision to KHz here for higher
* precision.
*/
u32 iclk_virtual_root_freq = 172800 * 1000;
u32 iclk_pi_range = 64;
u32 desired_divisor, msb_divisor_value, pi_value;
desired_divisor = (iclk_virtual_root_freq / clock);
msb_divisor_value = desired_divisor / iclk_pi_range;
pi_value = desired_divisor % iclk_pi_range;
auxdiv = 0;
divsel = msb_divisor_value - 2;
phaseinc = pi_value;
}
/* This should not happen with any sane values */
WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
~SBI_SSCDIVINTPHASE_INCVAL_MASK);
DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
clock,
auxdiv,
divsel,
phasedir,
phaseinc);
/* Program SSCDIVINTPHASE6 */
temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
/* Program SSCAUXDIV */
temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
/* Enable modulator and associated divider */
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
temp &= ~SBI_SSCCTL_DISABLE;
intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
/* Wait for initialization time */
udelay(24);
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
mutex_unlock(&dev_priv->dpio_lock);
}
static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
enum pipe pch_transcoder)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
I915_READ(HTOTAL(cpu_transcoder)));
I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
I915_READ(HBLANK(cpu_transcoder)));
I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
I915_READ(HSYNC(cpu_transcoder)));
I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
I915_READ(VTOTAL(cpu_transcoder)));
I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
I915_READ(VBLANK(cpu_transcoder)));
I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
I915_READ(VSYNC(cpu_transcoder)));
I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
I915_READ(VSYNCSHIFT(cpu_transcoder)));
}
static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t temp;
temp = I915_READ(SOUTH_CHICKEN1);
if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
return;
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
temp &= ~FDI_BC_BIFURCATION_SELECT;
if (enable)
temp |= FDI_BC_BIFURCATION_SELECT;
DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
I915_WRITE(SOUTH_CHICKEN1, temp);
POSTING_READ(SOUTH_CHICKEN1);
}
static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
switch (intel_crtc->pipe) {
case PIPE_A:
break;
case PIPE_B:
if (intel_crtc->config->fdi_lanes > 2)
cpt_set_fdi_bc_bifurcation(dev, false);
else
cpt_set_fdi_bc_bifurcation(dev, true);
break;
case PIPE_C:
cpt_set_fdi_bc_bifurcation(dev, true);
break;
default:
BUG();
}
}
/*
* Enable PCH resources required for PCH ports:
* - PCH PLLs
* - FDI training & RX/TX
* - update transcoder timings
* - DP transcoding bits
* - transcoder
*/
static void ironlake_pch_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
assert_pch_transcoder_disabled(dev_priv, pipe);
if (IS_IVYBRIDGE(dev))
ivybridge_update_fdi_bc_bifurcation(intel_crtc);
/* Write the TU size bits before fdi link training, so that error
* detection works. */
I915_WRITE(FDI_RX_TUSIZE1(pipe),
I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
/* For PCH output, training FDI link */
dev_priv->display.fdi_link_train(crtc);
/* We need to program the right clock selection before writing the pixel
* mutliplier into the DPLL. */
if (HAS_PCH_CPT(dev)) {
u32 sel;
temp = I915_READ(PCH_DPLL_SEL);
temp |= TRANS_DPLL_ENABLE(pipe);
sel = TRANS_DPLLB_SEL(pipe);
if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
temp |= sel;
else
temp &= ~sel;
I915_WRITE(PCH_DPLL_SEL, temp);
}
/* XXX: pch pll's can be enabled any time before we enable the PCH
* transcoder, and we actually should do this to not upset any PCH
* transcoder that already use the clock when we share it.
*
* Note that enable_shared_dpll tries to do the right thing, but
* get_shared_dpll unconditionally resets the pll - we need that to have
* the right LVDS enable sequence. */
intel_enable_shared_dpll(intel_crtc);
/* set transcoder timing, panel must allow it */
assert_panel_unlocked(dev_priv, pipe);
ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
intel_fdi_normal_train(crtc);
/* For PCH DP, enable TRANS_DP_CTL */
if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
reg = TRANS_DP_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(TRANS_DP_PORT_SEL_MASK |
TRANS_DP_SYNC_MASK |
TRANS_DP_BPC_MASK);
temp |= (TRANS_DP_OUTPUT_ENABLE |
TRANS_DP_ENH_FRAMING);
temp |= bpc << 9; /* same format but at 11:9 */
if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
switch (intel_trans_dp_port_sel(crtc)) {
case PCH_DP_B:
temp |= TRANS_DP_PORT_SEL_B;
break;
case PCH_DP_C:
temp |= TRANS_DP_PORT_SEL_C;
break;
case PCH_DP_D:
temp |= TRANS_DP_PORT_SEL_D;
break;
default:
BUG();
}
I915_WRITE(reg, temp);
}
ironlake_enable_pch_transcoder(dev_priv, pipe);
}
static void lpt_pch_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
lpt_program_iclkip(crtc);
/* Set transcoder timing. */
ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
}
void intel_put_shared_dpll(struct intel_crtc *crtc)
{
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
if (pll == NULL)
return;
if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
WARN(1, "bad %s crtc mask\n", pll->name);
return;
}
pll->config.crtc_mask &= ~(1 << crtc->pipe);
if (pll->config.crtc_mask == 0) {
WARN_ON(pll->on);
WARN_ON(pll->active);
}
crtc->config->shared_dpll = DPLL_ID_PRIVATE;
}
struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_shared_dpll *pll;
enum intel_dpll_id i;
if (HAS_PCH_IBX(dev_priv->dev)) {
/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
i = (enum intel_dpll_id) crtc->pipe;
pll = &dev_priv->shared_dplls[i];
DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
crtc->base.base.id, pll->name);
WARN_ON(pll->new_config->crtc_mask);
goto found;
}
if (IS_BROXTON(dev_priv->dev)) {
/* PLL is attached to port in bxt */
struct intel_encoder *encoder;
struct intel_digital_port *intel_dig_port;
encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
if (WARN_ON(!encoder))
return NULL;
intel_dig_port = enc_to_dig_port(&encoder->base);
/* 1:1 mapping between ports and PLLs */
i = (enum intel_dpll_id)intel_dig_port->port;
pll = &dev_priv->shared_dplls[i];
DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
crtc->base.base.id, pll->name);
WARN_ON(pll->new_config->crtc_mask);
goto found;
}
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
pll = &dev_priv->shared_dplls[i];
/* Only want to check enabled timings first */
if (pll->new_config->crtc_mask == 0)
continue;
if (memcmp(&crtc_state->dpll_hw_state,
&pll->new_config->hw_state,
sizeof(pll->new_config->hw_state)) == 0) {
DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
crtc->base.base.id, pll->name,
pll->new_config->crtc_mask,
pll->active);
goto found;
}
}
/* Ok no matching timings, maybe there's a free one? */
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
pll = &dev_priv->shared_dplls[i];
if (pll->new_config->crtc_mask == 0) {
DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
crtc->base.base.id, pll->name);
goto found;
}
}
return NULL;
found:
if (pll->new_config->crtc_mask == 0)
pll->new_config->hw_state = crtc_state->dpll_hw_state;
crtc_state->shared_dpll = i;
DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
pipe_name(crtc->pipe));
pll->new_config->crtc_mask |= 1 << crtc->pipe;
return pll;
}
/**
* intel_shared_dpll_start_config - start a new PLL staged config
* @dev_priv: DRM device
* @clear_pipes: mask of pipes that will have their PLLs freed
*
* Starts a new PLL staged config, copying the current config but
* releasing the references of pipes specified in clear_pipes.
*/
static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
unsigned clear_pipes)
{
struct intel_shared_dpll *pll;
enum intel_dpll_id i;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
pll = &dev_priv->shared_dplls[i];
pll->new_config = kmemdup(&pll->config, sizeof pll->config,
GFP_KERNEL);
if (!pll->new_config)
goto cleanup;
pll->new_config->crtc_mask &= ~clear_pipes;
}
return 0;
cleanup:
while (--i >= 0) {
pll = &dev_priv->shared_dplls[i];
kfree(pll->new_config);
pll->new_config = NULL;
}
return -ENOMEM;
}
static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
{
struct intel_shared_dpll *pll;
enum intel_dpll_id i;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
pll = &dev_priv->shared_dplls[i];
WARN_ON(pll->new_config == &pll->config);
pll->config = *pll->new_config;
kfree(pll->new_config);
pll->new_config = NULL;
}
}
static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
{
struct intel_shared_dpll *pll;
enum intel_dpll_id i;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
pll = &dev_priv->shared_dplls[i];
WARN_ON(pll->new_config == &pll->config);
kfree(pll->new_config);
pll->new_config = NULL;
}
}
static void cpt_verify_modeset(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int dslreg = PIPEDSL(pipe);
u32 temp;
temp = I915_READ(dslreg);
udelay(500);
if (wait_for(I915_READ(dslreg) != temp, 5)) {
if (wait_for(I915_READ(dslreg) != temp, 5))
DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
}
}
/**
* skl_update_scaler_users - Stages update to crtc's scaler state
* @intel_crtc: crtc
* @crtc_state: crtc_state
* @plane: plane (NULL indicates crtc is requesting update)
* @plane_state: plane's state
* @force_detach: request unconditional detachment of scaler
*
* This function updates scaler state for requested plane or crtc.
* To request scaler usage update for a plane, caller shall pass plane pointer.
* To request scaler usage update for crtc, caller shall pass plane pointer
* as NULL.
*
* Return
* 0 - scaler_usage updated successfully
* error - requested scaling cannot be supported or other error condition
*/
int
skl_update_scaler_users(
struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
int force_detach)
{
int need_scaling;
int idx;
int src_w, src_h, dst_w, dst_h;
int *scaler_id;
struct drm_framebuffer *fb;
struct intel_crtc_scaler_state *scaler_state;
unsigned int rotation;
if (!intel_crtc || !crtc_state)
return 0;
scaler_state = &crtc_state->scaler_state;
idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
fb = intel_plane ? plane_state->base.fb : NULL;
if (intel_plane) {
src_w = drm_rect_width(&plane_state->src) >> 16;
src_h = drm_rect_height(&plane_state->src) >> 16;
dst_w = drm_rect_width(&plane_state->dst);
dst_h = drm_rect_height(&plane_state->dst);
scaler_id = &plane_state->scaler_id;
rotation = plane_state->base.rotation;
} else {
struct drm_display_mode *adjusted_mode =
&crtc_state->base.adjusted_mode;
src_w = crtc_state->pipe_src_w;
src_h = crtc_state->pipe_src_h;
dst_w = adjusted_mode->hdisplay;
dst_h = adjusted_mode->vdisplay;
scaler_id = &scaler_state->scaler_id;
rotation = DRM_ROTATE_0;
}
need_scaling = intel_rotation_90_or_270(rotation) ?
(src_h != dst_w || src_w != dst_h):
(src_w != dst_w || src_h != dst_h);
/*
* if plane is being disabled or scaler is no more required or force detach
* - free scaler binded to this plane/crtc
* - in order to do this, update crtc->scaler_usage
*
* Here scaler state in crtc_state is set free so that
* scaler can be assigned to other user. Actual register
* update to free the scaler is done in plane/panel-fit programming.
* For this purpose crtc/plane_state->scaler_id isn't reset here.
*/
if (force_detach || !need_scaling || (intel_plane &&
(!fb || !plane_state->visible))) {
if (*scaler_id >= 0) {
scaler_state->scaler_users &= ~(1 << idx);
scaler_state->scalers[*scaler_id].in_use = 0;
DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
"crtc_state = %p scaler_users = 0x%x\n",
intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
intel_plane ? intel_plane->base.base.id :
intel_crtc->base.base.id, crtc_state,
scaler_state->scaler_users);
*scaler_id = -1;
}
return 0;
}
/* range checks */
if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
"size is out of scaler range\n",
intel_plane ? "PLANE" : "CRTC",
intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
return -EINVAL;
}
/* check colorkey */
if (intel_plane && intel_plane->ckey.flags != I915_SET_COLORKEY_NONE) {
DRM_DEBUG_KMS("PLANE:%d scaling with color key not allowed",
intel_plane->base.base.id);
return -EINVAL;
}
/* Check src format */
if (intel_plane) {
switch (fb->pixel_format) {
case DRM_FORMAT_RGB565:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_YUYV:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_VYUY:
break;
default:
DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
intel_plane->base.base.id, fb->base.id, fb->pixel_format);
return -EINVAL;
}
}
/* mark this plane as a scaler user in crtc_state */
scaler_state->scaler_users |= (1 << idx);
DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
"crtc_state = %p scaler_users = 0x%x\n",
intel_plane ? "PLANE" : "CRTC",
intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
return 0;
}
static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
struct intel_crtc_scaler_state *scaler_state =
&crtc->config->scaler_state;
DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
/* To update pfit, first update scaler state */
skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
skl_detach_scalers(crtc);
if (!enable)
return;
if (crtc->config->pch_pfit.enabled) {
int id;
if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
DRM_ERROR("Requesting pfit without getting a scaler first\n");
return;
}
id = scaler_state->scaler_id;
I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
}
}
static void ironlake_pfit_enable(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
if (crtc->config->pch_pfit.enabled) {
/* Force use of hard-coded filter coefficients
* as some pre-programmed values are broken,
* e.g. x201.
*/
if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
PF_PIPE_SEL_IVB(pipe));
else
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
}
}
static void intel_enable_sprite_planes(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
struct drm_plane *plane;
struct intel_plane *intel_plane;
drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
intel_plane = to_intel_plane(plane);
if (intel_plane->pipe == pipe)
intel_plane_restore(&intel_plane->base);
}
}
void hsw_enable_ips(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!crtc->config->ips_enabled)
return;
/* We can only enable IPS after we enable a plane and wait for a vblank */
intel_wait_for_vblank(dev, crtc->pipe);
assert_plane_enabled(dev_priv, crtc->plane);
if (IS_BROADWELL(dev)) {
mutex_lock(&dev_priv->rps.hw_lock);
WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
mutex_unlock(&dev_priv->rps.hw_lock);
/* Quoting Art Runyan: "its not safe to expect any particular
* value in IPS_CTL bit 31 after enabling IPS through the
* mailbox." Moreover, the mailbox may return a bogus state,
* so we need to just enable it and continue on.
*/
} else {
I915_WRITE(IPS_CTL, IPS_ENABLE);
/* The bit only becomes 1 in the next vblank, so this wait here
* is essentially intel_wait_for_vblank. If we don't have this
* and don't wait for vblanks until the end of crtc_enable, then
* the HW state readout code will complain that the expected
* IPS_CTL value is not the one we read. */
if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
DRM_ERROR("Timed out waiting for IPS enable\n");
}
}
void hsw_disable_ips(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!crtc->config->ips_enabled)
return;
assert_plane_enabled(dev_priv, crtc->plane);
if (IS_BROADWELL(dev)) {
mutex_lock(&dev_priv->rps.hw_lock);
WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
mutex_unlock(&dev_priv->rps.hw_lock);
/* wait for pcode to finish disabling IPS, which may take up to 42ms */
if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
DRM_ERROR("Timed out waiting for IPS disable\n");
} else {
I915_WRITE(IPS_CTL, 0);
POSTING_READ(IPS_CTL);
}
/* We need to wait for a vblank before we can disable the plane. */
intel_wait_for_vblank(dev, crtc->pipe);
}
/** Loads the palette/gamma unit for the CRTC with the prepared values */
static void intel_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
int palreg = PALETTE(pipe);
int i;
bool reenable_ips = false;
/* The clocks have to be on to load the palette. */
if (!crtc->state->enable || !intel_crtc->active)
return;
if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(dev_priv);
else
assert_pll_enabled(dev_priv, pipe);
}
/* use legacy palette for Ironlake */
if (!HAS_GMCH_DISPLAY(dev))
palreg = LGC_PALETTE(pipe);
/* Workaround : Do not read or write the pipe palette/gamma data while
* GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
*/
if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
GAMMA_MODE_MODE_SPLIT)) {
hsw_disable_ips(intel_crtc);
reenable_ips = true;
}
for (i = 0; i < 256; i++) {
I915_WRITE(palreg + 4 * i,
(intel_crtc->lut_r[i] << 16) |
(intel_crtc->lut_g[i] << 8) |
intel_crtc->lut_b[i]);
}
if (reenable_ips)
hsw_enable_ips(intel_crtc);
}
static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
{
if (intel_crtc->overlay) {
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev->struct_mutex);
dev_priv->mm.interruptible = false;
(void) intel_overlay_switch_off(intel_crtc->overlay);
dev_priv->mm.interruptible = true;
mutex_unlock(&dev->struct_mutex);
}
/* Let userspace switch the overlay on again. In most cases userspace
* has to recompute where to put it anyway.
*/
}
/**
* intel_post_enable_primary - Perform operations after enabling primary plane
* @crtc: the CRTC whose primary plane was just enabled
*
* Performs potentially sleeping operations that must be done after the primary
* plane is enabled, such as updating FBC and IPS. Note that this may be
* called due to an explicit primary plane update, or due to an implicit
* re-enable that is caused when a sprite plane is updated to no longer
* completely hide the primary plane.
*/
static void
intel_post_enable_primary(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
/*
* BDW signals flip done immediately if the plane
* is disabled, even if the plane enable is already
* armed to occur at the next vblank :(
*/
if (IS_BROADWELL(dev))
intel_wait_for_vblank(dev, pipe);
/*
* FIXME IPS should be fine as long as one plane is
* enabled, but in practice it seems to have problems
* when going from primary only to sprite only and vice
* versa.
*/
hsw_enable_ips(intel_crtc);
mutex_lock(&dev->struct_mutex);
intel_fbc_update(dev);
mutex_unlock(&dev->struct_mutex);
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So don't enable underrun reporting before at least some planes
* are enabled.
* FIXME: Need to fix the logic to work when we turn off all planes
* but leave the pipe running.
*/
if (IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
/* Underruns don't raise interrupts, so check manually. */
if (HAS_GMCH_DISPLAY(dev))
i9xx_check_fifo_underruns(dev_priv);
}
/**
* intel_pre_disable_primary - Perform operations before disabling primary plane
* @crtc: the CRTC whose primary plane is to be disabled
*
* Performs potentially sleeping operations that must be done before the
* primary plane is disabled, such as updating FBC and IPS. Note that this may
* be called due to an explicit primary plane update, or due to an implicit
* disable that is caused when a sprite plane completely hides the primary
* plane.
*/
static void
intel_pre_disable_primary(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So diasble underrun reporting before all the planes get disabled.
* FIXME: Need to fix the logic to work when we turn off all planes
* but leave the pipe running.
*/
if (IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
/*
* Vblank time updates from the shadow to live plane control register
* are blocked if the memory self-refresh mode is active at that
* moment. So to make sure the plane gets truly disabled, disable
* first the self-refresh mode. The self-refresh enable bit in turn
* will be checked/applied by the HW only at the next frame start
* event which is after the vblank start event, so we need to have a
* wait-for-vblank between disabling the plane and the pipe.
*/
if (HAS_GMCH_DISPLAY(dev))
intel_set_memory_cxsr(dev_priv, false);
mutex_lock(&dev->struct_mutex);
if (dev_priv->fbc.crtc == intel_crtc)
intel_fbc_disable(dev);
mutex_unlock(&dev->struct_mutex);
/*
* FIXME IPS should be fine as long as one plane is
* enabled, but in practice it seems to have problems
* when going from primary only to sprite only and vice
* versa.
*/
hsw_disable_ips(intel_crtc);
}
static void intel_crtc_enable_planes(struct drm_crtc *crtc)
{
intel_enable_primary_hw_plane(crtc->primary, crtc);
intel_enable_sprite_planes(crtc);
intel_crtc_update_cursor(crtc, true);
intel_post_enable_primary(crtc);
}
static void intel_crtc_disable_planes(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_plane *intel_plane;
int pipe = intel_crtc->pipe;
intel_crtc_wait_for_pending_flips(crtc);
intel_pre_disable_primary(crtc);
intel_crtc_dpms_overlay_disable(intel_crtc);
for_each_intel_plane(dev, intel_plane) {
if (intel_plane->pipe == pipe) {
struct drm_crtc *from = intel_plane->base.crtc;
intel_plane->disable_plane(&intel_plane->base,
from ?: crtc, true);
}
}
/*
* FIXME: Once we grow proper nuclear flip support out of this we need
* to compute the mask of flip planes precisely. For the time being
* consider this a flip to a NULL plane.
*/
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
}
static void ironlake_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
WARN_ON(!crtc->state->enable);
if (intel_crtc->active)
return;
if (intel_crtc->config->has_pch_encoder)
intel_prepare_shared_dpll(intel_crtc);
if (intel_crtc->config->has_dp_encoder)
intel_dp_set_m_n(intel_crtc, M1_N1);
intel_set_pipe_timings(intel_crtc);
if (intel_crtc->config->has_pch_encoder) {
intel_cpu_transcoder_set_m_n(intel_crtc,
&intel_crtc->config->fdi_m_n, NULL);
}
ironlake_set_pipeconf(crtc);
intel_crtc->active = true;
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->pre_enable)
encoder->pre_enable(encoder);
if (intel_crtc->config->has_pch_encoder) {
/* Note: FDI PLL enabling _must_ be done before we enable the
* cpu pipes, hence this is separate from all the other fdi/pch
* enabling. */
ironlake_fdi_pll_enable(intel_crtc);
} else {
assert_fdi_tx_disabled(dev_priv, pipe);
assert_fdi_rx_disabled(dev_priv, pipe);
}
ironlake_pfit_enable(intel_crtc);
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_crtc_load_lut(crtc);
intel_update_watermarks(crtc);
intel_enable_pipe(intel_crtc);
if (intel_crtc->config->has_pch_encoder)
ironlake_pch_enable(crtc);
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
if (HAS_PCH_CPT(dev))
cpt_verify_modeset(dev, intel_crtc->pipe);
}
/* IPS only exists on ULT machines and is tied to pipe A. */
static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
{
return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
}
/*
* This implements the workaround described in the "notes" section of the mode
* set sequence documentation. When going from no pipes or single pipe to
* multiple pipes, and planes are enabled after the pipe, we need to wait at
* least 2 vblanks on the first pipe before enabling planes on the second pipe.
*/
static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct intel_crtc *crtc_it, *other_active_crtc = NULL;
/* We want to get the other_active_crtc only if there's only 1 other
* active crtc. */
for_each_intel_crtc(dev, crtc_it) {
if (!crtc_it->active || crtc_it == crtc)
continue;
if (other_active_crtc)
return;
other_active_crtc = crtc_it;
}
if (!other_active_crtc)
return;
intel_wait_for_vblank(dev, other_active_crtc->pipe);
intel_wait_for_vblank(dev, other_active_crtc->pipe);
}
static void haswell_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
WARN_ON(!crtc->state->enable);
if (intel_crtc->active)
return;
if (intel_crtc_to_shared_dpll(intel_crtc))
intel_enable_shared_dpll(intel_crtc);
if (intel_crtc->config->has_dp_encoder)
intel_dp_set_m_n(intel_crtc, M1_N1);
intel_set_pipe_timings(intel_crtc);
if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
intel_crtc->config->pixel_multiplier - 1);
}
if (intel_crtc->config->has_pch_encoder) {
intel_cpu_transcoder_set_m_n(intel_crtc,
&intel_crtc->config->fdi_m_n, NULL);
}
haswell_set_pipeconf(crtc);
intel_set_pipe_csc(crtc);
intel_crtc->active = true;
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->pre_enable)
encoder->pre_enable(encoder);
if (intel_crtc->config->has_pch_encoder) {
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
true);
dev_priv->display.fdi_link_train(crtc);
}
intel_ddi_enable_pipe_clock(intel_crtc);
if (INTEL_INFO(dev)->gen == 9)
skylake_pfit_update(intel_crtc, 1);
else if (INTEL_INFO(dev)->gen < 9)
ironlake_pfit_enable(intel_crtc);
else
MISSING_CASE(INTEL_INFO(dev)->gen);
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_crtc_load_lut(crtc);
intel_ddi_set_pipe_settings(crtc);
intel_ddi_enable_transcoder_func(crtc);
intel_update_watermarks(crtc);
intel_enable_pipe(intel_crtc);
if (intel_crtc->config->has_pch_encoder)
lpt_pch_enable(crtc);
if (intel_crtc->config->dp_encoder_is_mst)
intel_ddi_set_vc_payload_alloc(crtc, true);
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
for_each_encoder_on_crtc(dev, crtc, encoder) {
encoder->enable(encoder);
intel_opregion_notify_encoder(encoder, true);
}
/* If we change the relative order between pipe/planes enabling, we need
* to change the workaround. */
haswell_mode_set_planes_workaround(intel_crtc);
}
static void ironlake_pfit_disable(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
/* To avoid upsetting the power well on haswell only disable the pfit if
* it's in use. The hw state code will make sure we get this right. */
if (crtc->config->pch_pfit.enabled) {
I915_WRITE(PF_CTL(pipe), 0);
I915_WRITE(PF_WIN_POS(pipe), 0);
I915_WRITE(PF_WIN_SZ(pipe), 0);
}
}
static void ironlake_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
u32 reg, temp;
if (!intel_crtc->active)
return;
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->disable(encoder);
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
if (intel_crtc->config->has_pch_encoder)
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
intel_disable_pipe(intel_crtc);
ironlake_pfit_disable(intel_crtc);
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->post_disable)
encoder->post_disable(encoder);
if (intel_crtc->config->has_pch_encoder) {
ironlake_fdi_disable(crtc);
ironlake_disable_pch_transcoder(dev_priv, pipe);
if (HAS_PCH_CPT(dev)) {
/* disable TRANS_DP_CTL */
reg = TRANS_DP_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(TRANS_DP_OUTPUT_ENABLE |
TRANS_DP_PORT_SEL_MASK);
temp |= TRANS_DP_PORT_SEL_NONE;
I915_WRITE(reg, temp);
/* disable DPLL_SEL */
temp = I915_READ(PCH_DPLL_SEL);
temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
I915_WRITE(PCH_DPLL_SEL, temp);
}
/* disable PCH DPLL */
intel_disable_shared_dpll(intel_crtc);
ironlake_fdi_pll_disable(intel_crtc);
}
intel_crtc->active = false;
intel_update_watermarks(crtc);
mutex_lock(&dev->struct_mutex);
intel_fbc_update(dev);
mutex_unlock(&dev->struct_mutex);
}
static void haswell_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
if (!intel_crtc->active)
return;
for_each_encoder_on_crtc(dev, crtc, encoder) {
intel_opregion_notify_encoder(encoder, false);
encoder->disable(encoder);
}
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
if (intel_crtc->config->has_pch_encoder)
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
false);
intel_disable_pipe(intel_crtc);
if (intel_crtc->config->dp_encoder_is_mst)
intel_ddi_set_vc_payload_alloc(crtc, false);
intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
if (INTEL_INFO(dev)->gen == 9)
skylake_pfit_update(intel_crtc, 0);
else if (INTEL_INFO(dev)->gen < 9)
ironlake_pfit_disable(intel_crtc);
else
MISSING_CASE(INTEL_INFO(dev)->gen);
intel_ddi_disable_pipe_clock(intel_crtc);
if (intel_crtc->config->has_pch_encoder) {
lpt_disable_pch_transcoder(dev_priv);
intel_ddi_fdi_disable(crtc);
}
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->post_disable)
encoder->post_disable(encoder);
intel_crtc->active = false;
intel_update_watermarks(crtc);
mutex_lock(&dev->struct_mutex);
intel_fbc_update(dev);
mutex_unlock(&dev->struct_mutex);
if (intel_crtc_to_shared_dpll(intel_crtc))
intel_disable_shared_dpll(intel_crtc);
}
static void ironlake_crtc_off(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_put_shared_dpll(intel_crtc);
}
static void i9xx_pfit_enable(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc_state *pipe_config = crtc->config;
if (!pipe_config->gmch_pfit.control)
return;
/*
* The panel fitter should only be adjusted whilst the pipe is disabled,
* according to register description and PRM.
*/
WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
assert_pipe_disabled(dev_priv, crtc->pipe);
I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
/* Border color in case we don't scale up to the full screen. Black by
* default, change to something else for debugging. */
I915_WRITE(BCLRPAT(crtc->pipe), 0);
}
static enum intel_display_power_domain port_to_power_domain(enum port port)
{
switch (port) {
case PORT_A:
return POWER_DOMAIN_PORT_DDI_A_4_LANES;
case PORT_B:
return POWER_DOMAIN_PORT_DDI_B_4_LANES;
case PORT_C:
return POWER_DOMAIN_PORT_DDI_C_4_LANES;
case PORT_D:
return POWER_DOMAIN_PORT_DDI_D_4_LANES;
default:
WARN_ON_ONCE(1);
return POWER_DOMAIN_PORT_OTHER;
}
}
#define for_each_power_domain(domain, mask) \
for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
if ((1 << (domain)) & (mask))
enum intel_display_power_domain
intel_display_port_power_domain(struct intel_encoder *intel_encoder)
{
struct drm_device *dev = intel_encoder->base.dev;
struct intel_digital_port *intel_dig_port;
switch (intel_encoder->type) {
case INTEL_OUTPUT_UNKNOWN:
/* Only DDI platforms should ever use this output type */
WARN_ON_ONCE(!HAS_DDI(dev));
case INTEL_OUTPUT_DISPLAYPORT:
case INTEL_OUTPUT_HDMI:
case INTEL_OUTPUT_EDP:
intel_dig_port = enc_to_dig_port(&intel_encoder->base);
return port_to_power_domain(intel_dig_port->port);
case INTEL_OUTPUT_DP_MST:
intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
return port_to_power_domain(intel_dig_port->port);
case INTEL_OUTPUT_ANALOG:
return POWER_DOMAIN_PORT_CRT;
case INTEL_OUTPUT_DSI:
return POWER_DOMAIN_PORT_DSI;
default:
return POWER_DOMAIN_PORT_OTHER;
}
}
static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *intel_encoder;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
unsigned long mask;
enum transcoder transcoder;
transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
mask = BIT(POWER_DOMAIN_PIPE(pipe));
mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
if (intel_crtc->config->pch_pfit.enabled ||
intel_crtc->config->pch_pfit.force_thru)
mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
mask |= BIT(intel_display_port_power_domain(intel_encoder));
return mask;
}
static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
struct intel_crtc *crtc;
/*
* First get all needed power domains, then put all unneeded, to avoid
* any unnecessary toggling of the power wells.
*/
for_each_intel_crtc(dev, crtc) {
enum intel_display_power_domain domain;
if (!crtc->base.state->enable)
continue;
pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
for_each_power_domain(domain, pipe_domains[crtc->pipe])
intel_display_power_get(dev_priv, domain);
}
if (dev_priv->display.modeset_global_resources)
dev_priv->display.modeset_global_resources(state);
for_each_intel_crtc(dev, crtc) {
enum intel_display_power_domain domain;
for_each_power_domain(domain, crtc->enabled_power_domains)
intel_display_power_put(dev_priv, domain);
crtc->enabled_power_domains = pipe_domains[crtc->pipe];
}
intel_display_set_init_power(dev_priv, false);
}
void broxton_set_cdclk(struct drm_device *dev, int frequency)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t divider;
uint32_t ratio;
uint32_t current_freq;
int ret;
/* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
switch (frequency) {
case 144000:
divider = BXT_CDCLK_CD2X_DIV_SEL_4;
ratio = BXT_DE_PLL_RATIO(60);
break;
case 288000:
divider = BXT_CDCLK_CD2X_DIV_SEL_2;
ratio = BXT_DE_PLL_RATIO(60);
break;
case 384000:
divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
ratio = BXT_DE_PLL_RATIO(60);
break;
case 576000:
divider = BXT_CDCLK_CD2X_DIV_SEL_1;
ratio = BXT_DE_PLL_RATIO(60);
break;
case 624000:
divider = BXT_CDCLK_CD2X_DIV_SEL_1;
ratio = BXT_DE_PLL_RATIO(65);
break;
case 19200:
/*
* Bypass frequency with DE PLL disabled. Init ratio, divider
* to suppress GCC warning.
*/
ratio = 0;
divider = 0;
break;
default:
DRM_ERROR("unsupported CDCLK freq %d", frequency);
return;
}
mutex_lock(&dev_priv->rps.hw_lock);
/* Inform power controller of upcoming frequency change */
ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
0x80000000);
mutex_unlock(&dev_priv->rps.hw_lock);
if (ret) {
DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
ret, frequency);
return;
}
current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
/* convert from .1 fixpoint MHz with -1MHz offset to kHz */
current_freq = current_freq * 500 + 1000;
/*
* DE PLL has to be disabled when
* - setting to 19.2MHz (bypass, PLL isn't used)
* - before setting to 624MHz (PLL needs toggling)
* - before setting to any frequency from 624MHz (PLL needs toggling)
*/
if (frequency == 19200 || frequency == 624000 ||
current_freq == 624000) {
I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
/* Timeout 200us */
if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
1))
DRM_ERROR("timout waiting for DE PLL unlock\n");
}
if (frequency != 19200) {
uint32_t val;
val = I915_READ(BXT_DE_PLL_CTL);
val &= ~BXT_DE_PLL_RATIO_MASK;
val |= ratio;
I915_WRITE(BXT_DE_PLL_CTL, val);
I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
/* Timeout 200us */
if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
DRM_ERROR("timeout waiting for DE PLL lock\n");
val = I915_READ(CDCLK_CTL);
val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
val |= divider;
/*
* Disable SSA Precharge when CD clock frequency < 500 MHz,
* enable otherwise.
*/
val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
if (frequency >= 500000)
val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
val &= ~CDCLK_FREQ_DECIMAL_MASK;
/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
val |= (frequency - 1000) / 500;
I915_WRITE(CDCLK_CTL, val);
}
mutex_lock(&dev_priv->rps.hw_lock);
ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
DIV_ROUND_UP(frequency, 25000));
mutex_unlock(&dev_priv->rps.hw_lock);
if (ret) {
DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
ret, frequency);
return;
}
dev_priv->cdclk_freq = frequency;
}
void broxton_init_cdclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t val;
/*
* NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
* or else the reset will hang because there is no PCH to respond.
* Move the handshake programming to initialization sequence.
* Previously was left up to BIOS.
*/
val = I915_READ(HSW_NDE_RSTWRN_OPT);
val &= ~RESET_PCH_HANDSHAKE_ENABLE;
I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
/* Enable PG1 for cdclk */
intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
/* check if cd clock is enabled */
if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
DRM_DEBUG_KMS("Display already initialized\n");
return;
}
/*
* FIXME:
* - The initial CDCLK needs to be read from VBT.
* Need to make this change after VBT has changes for BXT.
* - check if setting the max (or any) cdclk freq is really necessary
* here, it belongs to modeset time
*/
broxton_set_cdclk(dev, 624000);
I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
POSTING_READ(DBUF_CTL);
udelay(10);
if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
DRM_ERROR("DBuf power enable timeout!\n");
}
void broxton_uninit_cdclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
POSTING_READ(DBUF_CTL);
udelay(10);
if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
DRM_ERROR("DBuf power disable timeout!\n");
/* Set minimum (bypass) frequency, in effect turning off the DE PLL */
broxton_set_cdclk(dev, 19200);
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
}
static const struct skl_cdclk_entry {
unsigned int freq;
unsigned int vco;
} skl_cdclk_frequencies[] = {
{ .freq = 308570, .vco = 8640 },
{ .freq = 337500, .vco = 8100 },
{ .freq = 432000, .vco = 8640 },
{ .freq = 450000, .vco = 8100 },
{ .freq = 540000, .vco = 8100 },
{ .freq = 617140, .vco = 8640 },
{ .freq = 675000, .vco = 8100 },
};
static unsigned int skl_cdclk_decimal(unsigned int freq)
{
return (freq - 1000) / 500;
}
static unsigned int skl_cdclk_get_vco(unsigned int freq)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
if (e->freq == freq)
return e->vco;
}
return 8100;
}
static void
skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
{
unsigned int min_freq;
u32 val;
/* select the minimum CDCLK before enabling DPLL 0 */
val = I915_READ(CDCLK_CTL);
val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
val |= CDCLK_FREQ_337_308;
if (required_vco == 8640)
min_freq = 308570;
else
min_freq = 337500;
val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
I915_WRITE(CDCLK_CTL, val);
POSTING_READ(CDCLK_CTL);
/*
* We always enable DPLL0 with the lowest link rate possible, but still
* taking into account the VCO required to operate the eDP panel at the
* desired frequency. The usual DP link rates operate with a VCO of
* 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
* The modeset code is responsible for the selection of the exact link
* rate later on, with the constraint of choosing a frequency that
* works with required_vco.
*/
val = I915_READ(DPLL_CTRL1);
val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
if (required_vco == 8640)
val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
SKL_DPLL0);
else
val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
SKL_DPLL0);
I915_WRITE(DPLL_CTRL1, val);
POSTING_READ(DPLL_CTRL1);
I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
DRM_ERROR("DPLL0 not locked\n");
}
static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
{
int ret;
u32 val;
/* inform PCU we want to change CDCLK */
val = SKL_CDCLK_PREPARE_FOR_CHANGE;
mutex_lock(&dev_priv->rps.hw_lock);
ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
mutex_unlock(&dev_priv->rps.hw_lock);
return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
}
static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
{
unsigned int i;
for (i = 0; i < 15; i++) {
if (skl_cdclk_pcu_ready(dev_priv))
return true;
udelay(10);
}
return false;
}
static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
{
u32 freq_select, pcu_ack;
DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
DRM_ERROR("failed to inform PCU about cdclk change\n");
return;
}
/* set CDCLK_CTL */
switch(freq) {
case 450000:
case 432000:
freq_select = CDCLK_FREQ_450_432;
pcu_ack = 1;
break;
case 540000:
freq_select = CDCLK_FREQ_540;
pcu_ack = 2;
break;
case 308570:
case 337500:
default:
freq_select = CDCLK_FREQ_337_308;
pcu_ack = 0;
break;
case 617140:
case 675000:
freq_select = CDCLK_FREQ_675_617;
pcu_ack = 3;
break;
}
I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
POSTING_READ(CDCLK_CTL);
/* inform PCU of the change */
mutex_lock(&dev_priv->rps.hw_lock);
sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
mutex_unlock(&dev_priv->rps.hw_lock);
}
void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
{
/* disable DBUF power */
I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
POSTING_READ(DBUF_CTL);
udelay(10);
if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
DRM_ERROR("DBuf power disable timeout\n");
/* disable DPLL0 */
I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
DRM_ERROR("Couldn't disable DPLL0\n");
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
}
void skl_init_cdclk(struct drm_i915_private *dev_priv)
{
u32 val;
unsigned int required_vco;
/* enable PCH reset handshake */
val = I915_READ(HSW_NDE_RSTWRN_OPT);
I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
/* enable PG1 and Misc I/O */
intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
/* DPLL0 already enabed !? */
if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
DRM_DEBUG_DRIVER("DPLL0 already running\n");
return;
}
/* enable DPLL0 */
required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
skl_dpll0_enable(dev_priv, required_vco);
/* set CDCLK to the frequency the BIOS chose */
skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
/* enable DBUF power */
I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
POSTING_READ(DBUF_CTL);
udelay(10);
if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
DRM_ERROR("DBuf power enable timeout\n");
}
/* returns HPLL frequency in kHz */
static int valleyview_get_vco(struct drm_i915_private *dev_priv)
{
int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
/* Obtain SKU information */
mutex_lock(&dev_priv->dpio_lock);
hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
CCK_FUSE_HPLL_FREQ_MASK;
mutex_unlock(&dev_priv->dpio_lock);
return vco_freq[hpll_freq] * 1000;
}
static void vlv_update_cdclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
dev_priv->cdclk_freq);
/*
* Program the gmbus_freq based on the cdclk frequency.
* BSpec erroneously claims we should aim for 4MHz, but
* in fact 1MHz is the correct frequency.
*/
I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
}
/* Adjust CDclk dividers to allow high res or save power if possible */
static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, cmd;
WARN_ON(dev_priv->display.get_display_clock_speed(dev)
!= dev_priv->cdclk_freq);
if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
cmd = 2;
else if (cdclk == 266667)
cmd = 1;
else
cmd = 0;
mutex_lock(&dev_priv->rps.hw_lock);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
val &= ~DSPFREQGUAR_MASK;
val |= (cmd << DSPFREQGUAR_SHIFT);
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
50)) {
DRM_ERROR("timed out waiting for CDclk change\n");
}
mutex_unlock(&dev_priv->rps.hw_lock);
if (cdclk == 400000) {
u32 divider;
divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
mutex_lock(&dev_priv->dpio_lock);
/* adjust cdclk divider */
val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
val &= ~DISPLAY_FREQUENCY_VALUES;
val |= divider;
vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
50))
DRM_ERROR("timed out waiting for CDclk change\n");
mutex_unlock(&dev_priv->dpio_lock);
}
mutex_lock(&dev_priv->dpio_lock);
/* adjust self-refresh exit latency value */
val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
val &= ~0x7f;
/*
* For high bandwidth configs, we set a higher latency in the bunit
* so that the core display fetch happens in time to avoid underruns.
*/
if (cdclk == 400000)
val |= 4500 / 250; /* 4.5 usec */
else
val |= 3000 / 250; /* 3.0 usec */
vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
mutex_unlock(&dev_priv->dpio_lock);
vlv_update_cdclk(dev);
}
static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, cmd;
WARN_ON(dev_priv->display.get_display_clock_speed(dev)
!= dev_priv->cdclk_freq);
switch (cdclk) {
case 333333:
case 320000:
case 266667:
case 200000:
break;
default:
MISSING_CASE(cdclk);
return;
}
/*
* Specs are full of misinformation, but testing on actual
* hardware has shown that we just need to write the desired
* CCK divider into the Punit register.
*/
cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
mutex_lock(&dev_priv->rps.hw_lock);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
val &= ~DSPFREQGUAR_MASK_CHV;
val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
50)) {
DRM_ERROR("timed out waiting for CDclk change\n");
}
mutex_unlock(&dev_priv->rps.hw_lock);
vlv_update_cdclk(dev);
}
static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
int max_pixclk)
{
int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
/*
* Really only a few cases to deal with, as only 4 CDclks are supported:
* 200MHz
* 267MHz
* 320/333MHz (depends on HPLL freq)
* 400MHz (VLV only)
* So we check to see whether we're above 90% (VLV) or 95% (CHV)
* of the lower bin and adjust if needed.
*
* We seem to get an unstable or solid color picture at 200MHz.
* Not sure what's wrong. For now use 200MHz only when all pipes
* are off.
*/
if (!IS_CHERRYVIEW(dev_priv) &&
max_pixclk > freq_320*limit/100)
return 400000;
else if (max_pixclk > 266667*limit/100)
return freq_320;
else if (max_pixclk > 0)
return 266667;
else
return 200000;
}
static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
int max_pixclk)
{
/*
* FIXME:
* - remove the guardband, it's not needed on BXT
* - set 19.2MHz bypass frequency if there are no active pipes
*/
if (max_pixclk > 576000*9/10)
return 624000;
else if (max_pixclk > 384000*9/10)
return 576000;
else if (max_pixclk > 288000*9/10)
return 384000;
else if (max_pixclk > 144000*9/10)
return 288000;
else
return 144000;
}
/* Compute the max pixel clock for new configuration. Uses atomic state if
* that's non-NULL, look at current state otherwise. */
static int intel_mode_max_pixclk(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct intel_crtc *intel_crtc;
struct intel_crtc_state *crtc_state;
int max_pixclk = 0;
for_each_intel_crtc(dev, intel_crtc) {
if (state)
crtc_state =
intel_atomic_get_crtc_state(state, intel_crtc);
else
crtc_state = intel_crtc->config;
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
if (!crtc_state->base.enable)
continue;
max_pixclk = max(max_pixclk,
crtc_state->base.adjusted_mode.crtc_clock);
}
return max_pixclk;
}
static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->dev);
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
int max_pixclk = intel_mode_max_pixclk(state->dev, state);
int cdclk, i;
if (max_pixclk < 0)
return max_pixclk;
if (IS_VALLEYVIEW(dev_priv))
cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
else
cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
if (cdclk == dev_priv->cdclk_freq)
return 0;
/* add all active pipes to the state */
for_each_crtc(state->dev, crtc) {
if (!crtc->state->enable)
continue;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
}
/* disable/enable all currently active pipes while we change cdclk */
for_each_crtc_in_state(state, crtc, crtc_state, i)
if (crtc_state->enable)
crtc_state->mode_changed = true;
return 0;
}
static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
{
unsigned int credits, default_credits;
if (IS_CHERRYVIEW(dev_priv))
default_credits = PFI_CREDIT(12);
else
default_credits = PFI_CREDIT(8);
if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
/* CHV suggested value is 31 or 63 */
if (IS_CHERRYVIEW(dev_priv))
credits = PFI_CREDIT_31;
else
credits = PFI_CREDIT(15);
} else {
credits = default_credits;
}
/*
* WA - write default credits before re-programming
* FIXME: should we also set the resend bit here?
*/
I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
default_credits);
I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
credits | PFI_CREDIT_RESEND);
/*
* FIXME is this guaranteed to clear
* immediately or should we poll for it?
*/
WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
}
static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
{
struct drm_device *dev = old_state->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int max_pixclk = intel_mode_max_pixclk(dev, NULL);
int req_cdclk;
/* The path in intel_mode_max_pixclk() with a NULL atomic state should
* never fail. */
if (WARN_ON(max_pixclk < 0))
return;
req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
if (req_cdclk != dev_priv->cdclk_freq) {
/*
* FIXME: We can end up here with all power domains off, yet
* with a CDCLK frequency other than the minimum. To account
* for this take the PIPE-A power domain, which covers the HW
* blocks needed for the following programming. This can be
* removed once it's guaranteed that we get here either with
* the minimum CDCLK set, or the required power domains
* enabled.
*/
intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
if (IS_CHERRYVIEW(dev))
cherryview_set_cdclk(dev, req_cdclk);
else
valleyview_set_cdclk(dev, req_cdclk);
vlv_program_pfi_credits(dev_priv);
intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
}
}
static void valleyview_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
bool is_dsi;
WARN_ON(!crtc->state->enable);
if (intel_crtc->active)
return;
is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
if (!is_dsi) {
if (IS_CHERRYVIEW(dev))
chv_prepare_pll(intel_crtc, intel_crtc->config);
else
vlv_prepare_pll(intel_crtc, intel_crtc->config);
}
if (intel_crtc->config->has_dp_encoder)
intel_dp_set_m_n(intel_crtc, M1_N1);
intel_set_pipe_timings(intel_crtc);
if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
I915_WRITE(CHV_CANVAS(pipe), 0);
}
i9xx_set_pipeconf(intel_crtc);
intel_crtc->active = true;
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->pre_pll_enable)
encoder->pre_pll_enable(encoder);
if (!is_dsi) {
if (IS_CHERRYVIEW(dev))
chv_enable_pll(intel_crtc, intel_crtc->config);
else
vlv_enable_pll(intel_crtc, intel_crtc->config);
}
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->pre_enable)
encoder->pre_enable(encoder);
i9xx_pfit_enable(intel_crtc);
intel_crtc_load_lut(crtc);
intel_update_watermarks(crtc);
intel_enable_pipe(intel_crtc);
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
}
static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
}
static void i9xx_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
WARN_ON(!crtc->state->enable);
if (intel_crtc->active)
return;
i9xx_set_pll_dividers(intel_crtc);
if (intel_crtc->config->has_dp_encoder)
intel_dp_set_m_n(intel_crtc, M1_N1);
intel_set_pipe_timings(intel_crtc);
i9xx_set_pipeconf(intel_crtc);
intel_crtc->active = true;
if (!IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->pre_enable)
encoder->pre_enable(encoder);
i9xx_enable_pll(intel_crtc);
i9xx_pfit_enable(intel_crtc);
intel_crtc_load_lut(crtc);
intel_update_watermarks(crtc);
intel_enable_pipe(intel_crtc);
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
}
static void i9xx_pfit_disable(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!crtc->config->gmch_pfit.control)
return;
assert_pipe_disabled(dev_priv, crtc->pipe);
DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
I915_READ(PFIT_CONTROL));
I915_WRITE(PFIT_CONTROL, 0);
}
static void i9xx_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
if (!intel_crtc->active)
return;
/*
* On gen2 planes are double buffered but the pipe isn't, so we must
* wait for planes to fully turn off before disabling the pipe.
* We also need to wait on all gmch platforms because of the
* self-refresh mode constraint explained above.
*/
intel_wait_for_vblank(dev, pipe);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->disable(encoder);
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
intel_disable_pipe(intel_crtc);
i9xx_pfit_disable(intel_crtc);
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->post_disable)
encoder->post_disable(encoder);
if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
if (IS_CHERRYVIEW(dev))
chv_disable_pll(dev_priv, pipe);
else if (IS_VALLEYVIEW(dev))
vlv_disable_pll(dev_priv, pipe);
else
i9xx_disable_pll(intel_crtc);
}
if (!IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
intel_crtc->active = false;
intel_update_watermarks(crtc);
mutex_lock(&dev->struct_mutex);
intel_fbc_update(dev);
mutex_unlock(&dev->struct_mutex);
}
static void i9xx_crtc_off(struct drm_crtc *crtc)
{
}
/* Master function to enable/disable CRTC and corresponding power wells */
void intel_crtc_control(struct drm_crtc *crtc, bool enable)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum intel_display_power_domain domain;
unsigned long domains;
if (enable) {
if (!intel_crtc->active) {
domains = get_crtc_power_domains(crtc);
for_each_power_domain(domain, domains)
intel_display_power_get(dev_priv, domain);
intel_crtc->enabled_power_domains = domains;
dev_priv->display.crtc_enable(crtc);
intel_crtc_enable_planes(crtc);
}
} else {
if (intel_crtc->active) {
intel_crtc_disable_planes(crtc);
dev_priv->display.crtc_disable(crtc);
domains = intel_crtc->enabled_power_domains;
for_each_power_domain(domain, domains)
intel_display_power_put(dev_priv, domain);
intel_crtc->enabled_power_domains = 0;
}
}
}
/**
* Sets the power management mode of the pipe and plane.
*/
void intel_crtc_update_dpms(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *intel_encoder;
bool enable = false;
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
enable |= intel_encoder->connectors_active;
intel_crtc_control(crtc, enable);
crtc->state->active = enable;
}
static void intel_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_connector *connector;
struct drm_i915_private *dev_priv = dev->dev_private;
/* crtc should still be enabled when we disable it. */
WARN_ON(!crtc->state->enable);
intel_crtc_disable_planes(crtc);
dev_priv->display.crtc_disable(crtc);
dev_priv->display.off(crtc);
drm_plane_helper_disable(crtc->primary);
/* Update computed state. */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (!connector->encoder || !connector->encoder->crtc)
continue;
if (connector->encoder->crtc != crtc)
continue;
connector->dpms = DRM_MODE_DPMS_OFF;
to_intel_encoder(connector->encoder)->connectors_active = false;
}
}
void intel_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
}
/* Simple dpms helper for encoders with just one connector, no cloning and only
* one kind of off state. It clamps all !ON modes to fully OFF and changes the
* state of the entire output pipe. */
static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
{
if (mode == DRM_MODE_DPMS_ON) {
encoder->connectors_active = true;
intel_crtc_update_dpms(encoder->base.crtc);
} else {
encoder->connectors_active = false;
intel_crtc_update_dpms(encoder->base.crtc);
}
}
/* Cross check the actual hw state with our own modeset state tracking (and it's
* internal consistency). */
static void intel_connector_check_state(struct intel_connector *connector)
{
if (connector->get_hw_state(connector)) {
struct intel_encoder *encoder = connector->encoder;
struct drm_crtc *crtc;
bool encoder_enabled;
enum pipe pipe;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.base.id,
connector->base.name);
/* there is no real hw state for MST connectors */
if (connector->mst_port)
return;
I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
"wrong connector dpms state\n");
I915_STATE_WARN(connector->base.encoder != &encoder->base,
"active connector not linked to encoder\n");
if (encoder) {
I915_STATE_WARN(!encoder->connectors_active,
"encoder->connectors_active not set\n");
encoder_enabled = encoder->get_hw_state(encoder, &pipe);
I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
if (I915_STATE_WARN_ON(!encoder->base.crtc))
return;
crtc = encoder->base.crtc;
I915_STATE_WARN(!crtc->state->enable,
"crtc not enabled\n");
I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
"encoder active on the wrong pipe\n");
}
}
}
int intel_connector_init(struct intel_connector *connector)
{
struct drm_connector_state *connector_state;
connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
if (!connector_state)
return -ENOMEM;
connector->base.state = connector_state;
return 0;
}
struct intel_connector *intel_connector_alloc(void)
{
struct intel_connector *connector;
connector = kzalloc(sizeof *connector, GFP_KERNEL);
if (!connector)
return NULL;
if (intel_connector_init(connector) < 0) {
kfree(connector);
return NULL;
}
return connector;
}
/* Even simpler default implementation, if there's really no special case to
* consider. */
void intel_connector_dpms(struct drm_connector *connector, int mode)
{
/* All the simple cases only support two dpms states. */
if (mode != DRM_MODE_DPMS_ON)
mode = DRM_MODE_DPMS_OFF;
if (mode == connector->dpms)
return;
connector->dpms = mode;
/* Only need to change hw state when actually enabled */
if (connector->encoder)
intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
intel_modeset_check_state(connector->dev);
}
/* Simple connector->get_hw_state implementation for encoders that support only
* one connector and no cloning and hence the encoder state determines the state
* of the connector. */
bool intel_connector_get_hw_state(struct intel_connector *connector)
{
enum pipe pipe = 0;
struct intel_encoder *encoder = connector->encoder;
return encoder->get_hw_state(encoder, &pipe);
}
static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
{
if (crtc_state->base.enable && crtc_state->has_pch_encoder)
return crtc_state->fdi_lanes;
return 0;
}
static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
struct intel_crtc_state *pipe_config)
{
struct drm_atomic_state *state = pipe_config->base.state;
struct intel_crtc *other_crtc;
struct intel_crtc_state *other_crtc_state;
DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
pipe_name(pipe), pipe_config->fdi_lanes);
if (pipe_config->fdi_lanes > 4) {
DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return -EINVAL;
}
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
if (pipe_config->fdi_lanes > 2) {
DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
pipe_config->fdi_lanes);
return -EINVAL;
} else {
return 0;
}
}
if (INTEL_INFO(dev)->num_pipes == 2)
return 0;
/* Ivybridge 3 pipe is really complicated */
switch (pipe) {
case PIPE_A:
return 0;
case PIPE_B:
if (pipe_config->fdi_lanes <= 2)
return 0;
other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
other_crtc_state =
intel_atomic_get_crtc_state(state, other_crtc);
if (IS_ERR(other_crtc_state))
return PTR_ERR(other_crtc_state);
if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return -EINVAL;
}
return 0;
case PIPE_C:
if (pipe_config->fdi_lanes > 2) {
DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return -EINVAL;
}
other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
other_crtc_state =
intel_atomic_get_crtc_state(state, other_crtc);
if (IS_ERR(other_crtc_state))
return PTR_ERR(other_crtc_state);
if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
return -EINVAL;
}
return 0;
default:
BUG();
}
}
#define RETRY 1
static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
int lane, link_bw, fdi_dotclock, ret;
bool needs_recompute = false;
retry:
/* FDI is a binary signal running at ~2.7GHz, encoding
* each output octet as 10 bits. The actual frequency
* is stored as a divider into a 100MHz clock, and the
* mode pixel clock is stored in units of 1KHz.
* Hence the bw of each lane in terms of the mode signal
* is:
*/
link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
fdi_dotclock = adjusted_mode->crtc_clock;
lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
pipe_config->pipe_bpp);
pipe_config->fdi_lanes = lane;
intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
link_bw, &pipe_config->fdi_m_n);
ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
intel_crtc->pipe, pipe_config);
if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
pipe_config->pipe_bpp -= 2*3;
DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
pipe_config->pipe_bpp);
needs_recompute = true;
pipe_config->bw_constrained = true;
goto retry;
}
if (needs_recompute)
return RETRY;
return ret;
}
static void hsw_compute_ips_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
pipe_config->ips_enabled = i915.enable_ips &&
hsw_crtc_supports_ips(crtc) &&
pipe_config->pipe_bpp <= 24;
}
static int intel_crtc_compute_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
int ret;
/* FIXME should check pixel clock limits on all platforms */
if (INTEL_INFO(dev)->gen < 4) {
int clock_limit =
dev_priv->display.get_display_clock_speed(dev);
/*
* Enable pixel doubling when the dot clock
* is > 90% of the (display) core speed.
*
* GDG double wide on either pipe,
* otherwise pipe A only.
*/
if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
clock_limit *= 2;
pipe_config->double_wide = true;
}
if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
return -EINVAL;
}
/*
* Pipe horizontal size must be even in:
* - DVO ganged mode
* - LVDS dual channel mode
* - Double wide pipe
*/
if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
pipe_config->pipe_src_w &= ~1;
/* Cantiga+ cannot handle modes with a hsync front porch of 0.
* WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
*/
if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
adjusted_mode->hsync_start == adjusted_mode->hdisplay)
return -EINVAL;
if (HAS_IPS(dev))
hsw_compute_ips_config(crtc, pipe_config);
if (pipe_config->has_pch_encoder)
return ironlake_fdi_compute_config(crtc, pipe_config);
/* FIXME: remove below call once atomic mode set is place and all crtc
* related checks called from atomic_crtc_check function */
ret = 0;
DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
crtc, pipe_config->base.state);
ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
return ret;
}
static int skylake_get_display_clock_speed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
uint32_t cdctl = I915_READ(CDCLK_CTL);
uint32_t linkrate;
if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
WARN(1, "LCPLL1 not enabled\n");
return 24000; /* 24MHz is the cd freq with NSSC ref */
}
if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
return 540000;
linkrate = (I915_READ(DPLL_CTRL1) &
DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
linkrate == DPLL_CTRL1_LINK_RATE_1080) {
/* vco 8640 */
switch (cdctl & CDCLK_FREQ_SEL_MASK) {
case CDCLK_FREQ_450_432:
return 432000;
case CDCLK_FREQ_337_308:
return 308570;
case CDCLK_FREQ_675_617:
return 617140;
default:
WARN(1, "Unknown cd freq selection\n");
}
} else {
/* vco 8100 */
switch (cdctl & CDCLK_FREQ_SEL_MASK) {
case CDCLK_FREQ_450_432:
return 450000;
case CDCLK_FREQ_337_308:
return 337500;
case CDCLK_FREQ_675_617:
return 675000;
default:
WARN(1, "Unknown cd freq selection\n");
}
}
/* error case, do as if DPLL0 isn't enabled */
return 24000;
}
static int broadwell_get_display_clock_speed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t lcpll = I915_READ(LCPLL_CTL);
uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
if (lcpll & LCPLL_CD_SOURCE_FCLK)
return 800000;
else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
return 450000;
else if (freq == LCPLL_CLK_FREQ_450)
return 450000;
else if (freq == LCPLL_CLK_FREQ_54O_BDW)
return 540000;
else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
return 337500;
else
return 675000;
}
static int haswell_get_display_clock_speed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t lcpll = I915_READ(LCPLL_CTL);
uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
if (lcpll & LCPLL_CD_SOURCE_FCLK)
return 800000;
else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
return 450000;
else if (freq == LCPLL_CLK_FREQ_450)
return 450000;
else if (IS_HSW_ULT(dev))
return 337500;
else
return 540000;
}
static int valleyview_get_display_clock_speed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val;
int divider;
if (dev_priv->hpll_freq == 0)
dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
mutex_lock(&dev_priv->dpio_lock);
val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
mutex_unlock(&dev_priv->dpio_lock);
divider = val & DISPLAY_FREQUENCY_VALUES;
WARN((val & DISPLAY_FREQUENCY_STATUS) !=
(divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
"cdclk change in progress\n");
return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
}
static int ilk_get_display_clock_speed(struct drm_device *dev)
{
return 450000;
}
static int i945_get_display_clock_speed(struct drm_device *dev)
{
return 400000;
}
static int i915_get_display_clock_speed(struct drm_device *dev)
{
return 333333;
}
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
{
return 200000;
}
static int pnv_get_display_clock_speed(struct drm_device *dev)
{
u16 gcfgc = 0;
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_267_MHZ_PNV:
return 266667;
case GC_DISPLAY_CLOCK_333_MHZ_PNV:
return 333333;
case GC_DISPLAY_CLOCK_444_MHZ_PNV:
return 444444;
case GC_DISPLAY_CLOCK_200_MHZ_PNV:
return 200000;
default:
DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
case GC_DISPLAY_CLOCK_133_MHZ_PNV:
return 133333;
case GC_DISPLAY_CLOCK_167_MHZ_PNV:
return 166667;
}
}
static int i915gm_get_display_clock_speed(struct drm_device *dev)
{
u16 gcfgc = 0;
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
return 133333;
else {
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_333_MHZ:
return 333333;
default:
case GC_DISPLAY_CLOCK_190_200_MHZ:
return 190000;
}
}
}
static int i865_get_display_clock_speed(struct drm_device *dev)
{
return 266667;
}
static int i855_get_display_clock_speed(struct drm_device *dev)
{
u16 hpllcc = 0;
/* Assume that the hardware is in the high speed state. This
* should be the default.
*/
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
case GC_CLOCK_133_200:
case GC_CLOCK_100_200:
return 200000;
case GC_CLOCK_166_250:
return 250000;
case GC_CLOCK_100_133:
return 133333;
}
/* Shouldn't happen */
return 0;
}
static int i830_get_display_clock_speed(struct drm_device *dev)
{
return 133333;
}
static void
intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
{
while (*num > DATA_LINK_M_N_MASK ||
*den > DATA_LINK_M_N_MASK) {
*num >>= 1;
*den >>= 1;
}
}
static void compute_m_n(unsigned int m, unsigned int n,
uint32_t *ret_m, uint32_t *ret_n)
{
*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
*ret_m = div_u64((uint64_t) m * *ret_n, n);
intel_reduce_m_n_ratio(ret_m, ret_n);
}
void
intel_link_compute_m_n(int bits_per_pixel, int nlanes,
int pixel_clock, int link_clock,
struct intel_link_m_n *m_n)
{
m_n->tu = 64;
compute_m_n(bits_per_pixel * pixel_clock,
link_clock * nlanes * 8,
&m_n->gmch_m, &m_n->gmch_n);
compute_m_n(pixel_clock, link_clock,
&m_n->link_m, &m_n->link_n);
}
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
{
if (i915.panel_use_ssc >= 0)
return i915.panel_use_ssc != 0;
return dev_priv->vbt.lvds_use_ssc
&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
}
static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
int num_connectors)
{
struct drm_device *dev = crtc_state->base.crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk;
WARN_ON(!crtc_state->base.state);
if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
refclk = 100000;
} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
refclk = dev_priv->vbt.lvds_ssc_freq;
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
} else if (!IS_GEN2(dev)) {
refclk = 96000;
} else {
refclk = 48000;
}
return refclk;
}
static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
{
return (1 << dpll->n) << 16 | dpll->m2;
}
static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
{
return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
}
static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
intel_clock_t *reduced_clock)
{
struct drm_device *dev = crtc->base.dev;
u32 fp, fp2 = 0;
if (IS_PINEVIEW(dev)) {
fp = pnv_dpll_compute_fp(&crtc_state->dpll);
if (reduced_clock)
fp2 = pnv_dpll_compute_fp(reduced_clock);
} else {
fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
if (reduced_clock)
fp2 = i9xx_dpll_compute_fp(reduced_clock);
}
crtc_state->dpll_hw_state.fp0 = fp;
crtc->lowfreq_avail = false;
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
reduced_clock) {
crtc_state->dpll_hw_state.fp1 = fp2;
crtc->lowfreq_avail = true;
} else {
crtc_state->dpll_hw_state.fp1 = fp;
}
}
static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
pipe)
{
u32 reg_val;
/*
* PLLB opamp always calibrates to max value of 0x3f, force enable it
* and set it to a reasonable value instead.
*/
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
reg_val &= 0xffffff00;
reg_val |= 0x00000030;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
reg_val &= 0x8cffffff;
reg_val = 0x8c000000;
vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
reg_val &= 0xffffff00;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
reg_val &= 0x00ffffff;
reg_val |= 0xb0000000;
vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
}
static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
struct intel_link_m_n *m_n)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
}
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
struct intel_link_m_n *m_n,
struct intel_link_m_n *m2_n2)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
enum transcoder transcoder = crtc->config->cpu_transcoder;
if (INTEL_INFO(dev)->gen >= 5) {
I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
* for gen < 8) and if DRRS is supported (to make sure the
* registers are not unnecessarily accessed).
*/
if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
crtc->config->has_drrs) {
I915_WRITE(PIPE_DATA_M2(transcoder),
TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
}
} else {
I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
}
}
void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
{
struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
if (m_n == M1_N1) {
dp_m_n = &crtc->config->dp_m_n;
dp_m2_n2 = &crtc->config->dp_m2_n2;
} else if (m_n == M2_N2) {
/*
* M2_N2 registers are not supported. Hence m2_n2 divider value
* needs to be programmed into M1_N1.
*/
dp_m_n = &crtc->config->dp_m2_n2;
} else {
DRM_ERROR("Unsupported divider value\n");
return;
}
if (crtc->config->has_pch_encoder)
intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
else
intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
}
static void vlv_update_pll(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
u32 dpll, dpll_md;
/*
* Enable DPIO clock input. We should never disable the reference
* clock for pipe B, since VGA hotplug / manual detection depends
* on it.
*/
dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
/* We should never disable this, set it here for state tracking */
if (crtc->pipe == PIPE_B)
dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
dpll |= DPLL_VCO_ENABLE;
pipe_config->dpll_hw_state.dpll = dpll;
dpll_md = (pipe_config->pixel_multiplier - 1)
<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
pipe_config->dpll_hw_state.dpll_md = dpll_md;
}
static void vlv_prepare_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
u32 mdiv;
u32 bestn, bestm1, bestm2, bestp1, bestp2;
u32 coreclk, reg_val;
mutex_lock(&dev_priv->dpio_lock);
bestn = pipe_config->dpll.n;
bestm1 = pipe_config->dpll.m1;
bestm2 = pipe_config->dpll.m2;
bestp1 = pipe_config->dpll.p1;
bestp2 = pipe_config->dpll.p2;
/* See eDP HDMI DPIO driver vbios notes doc */
/* PLL B needs special handling */
if (pipe == PIPE_B)
vlv_pllb_recal_opamp(dev_priv, pipe);
/* Set up Tx target for periodic Rcomp update */
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
/* Disable target IRef on PLL */
reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
reg_val &= 0x00ffffff;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
/* Disable fast lock */
vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
/* Set idtafcrecal before PLL is enabled */
mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
mdiv |= ((bestn << DPIO_N_SHIFT));
mdiv |= (1 << DPIO_K_SHIFT);
/*
* Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
* but we don't support that).
* Note: don't use the DAC post divider as it seems unstable.
*/
mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
mdiv |= DPIO_ENABLE_CALIBRATION;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
/* Set HBR and RBR LPF coefficients */
if (pipe_config->port_clock == 162000 ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
0x009f0003);
else
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
0x00d0000f);
if (pipe_config->has_dp_encoder) {
/* Use SSC source */
if (pipe == PIPE_A)
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df40000);
else
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df70000);
} else { /* HDMI or VGA */
/* Use bend source */
if (pipe == PIPE_A)
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df70000);
else
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
0x0df40000);
}
coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
coreclk |= 0x01000000;
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
mutex_unlock(&dev_priv->dpio_lock);
}
static void chv_update_pll(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
DPLL_VCO_ENABLE;
if (crtc->pipe != PIPE_A)
pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
pipe_config->dpll_hw_state.dpll_md =
(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
}
static void chv_prepare_pll(struct intel_crtc *crtc,
const struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
int dpll_reg = DPLL(crtc->pipe);
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 loopfilter, tribuf_calcntr;
u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
u32 dpio_val;
int vco;
bestn = pipe_config->dpll.n;
bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
bestm1 = pipe_config->dpll.m1;
bestm2 = pipe_config->dpll.m2 >> 22;
bestp1 = pipe_config->dpll.p1;
bestp2 = pipe_config->dpll.p2;
vco = pipe_config->dpll.vco;
dpio_val = 0;
loopfilter = 0;
/*
* Enable Refclk and SSC
*/
I915_WRITE(dpll_reg,
pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
mutex_lock(&dev_priv->dpio_lock);
/* p1 and p2 divider */
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5 << DPIO_CHV_S1_DIV_SHIFT |
bestp1 << DPIO_CHV_P1_DIV_SHIFT |
bestp2 << DPIO_CHV_P2_DIV_SHIFT |
1 << DPIO_CHV_K_DIV_SHIFT);
/* Feedback post-divider - m2 */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
/* Feedback refclk divider - n and m1 */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
DPIO_CHV_M1_DIV_BY_2 |
1 << DPIO_CHV_N_DIV_SHIFT);
/* M2 fraction division */
if (bestm2_frac)
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
/* M2 fraction division enable */
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
if (bestm2_frac)
dpio_val |= DPIO_CHV_FRAC_DIV_EN;
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
/* Program digital lock detect threshold */
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
if (!bestm2_frac)
dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
/* Loop filter */
if (vco == 5400000) {
loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0x9;
} else if (vco <= 6200000) {
loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0x9;
} else if (vco <= 6480000) {
loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0x8;
} else {
/* Not supported. Apply the same limits as in the max case */
loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0;
}
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
/* AFC Recal */
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
DPIO_AFC_RECAL);
mutex_unlock(&dev_priv->dpio_lock);
}
/**
* vlv_force_pll_on - forcibly enable just the PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to enable
* @dpll: PLL configuration
*
* Enable the PLL for @pipe using the supplied @dpll config. To be used
* in cases where we need the PLL enabled even when @pipe is not going to
* be enabled.
*/
void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
const struct dpll *dpll)
{
struct intel_crtc *crtc =
to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
struct intel_crtc_state pipe_config = {
.base.crtc = &crtc->base,
.pixel_multiplier = 1,
.dpll = *dpll,
};
if (IS_CHERRYVIEW(dev)) {
chv_update_pll(crtc, &pipe_config);
chv_prepare_pll(crtc, &pipe_config);
chv_enable_pll(crtc, &pipe_config);
} else {
vlv_update_pll(crtc, &pipe_config);
vlv_prepare_pll(crtc, &pipe_config);
vlv_enable_pll(crtc, &pipe_config);
}
}
/**
* vlv_force_pll_off - forcibly disable just the PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to disable
*
* Disable the PLL for @pipe. To be used in cases where we need
* the PLL enabled even when @pipe is not going to be enabled.
*/
void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
{
if (IS_CHERRYVIEW(dev))
chv_disable_pll(to_i915(dev), pipe);
else
vlv_disable_pll(to_i915(dev), pipe);
}
static void i9xx_update_pll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
intel_clock_t *reduced_clock,
int num_connectors)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpll;
bool is_sdvo;
struct dpll *clock = &crtc_state->dpll;
i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
dpll = DPLL_VGA_MODE_DIS;
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
dpll |= (crtc_state->pixel_multiplier - 1)
<< SDVO_MULTIPLIER_SHIFT_HIRES;
}
if (is_sdvo)
dpll |= DPLL_SDVO_HIGH_SPEED;
if (crtc_state->has_dp_encoder)
dpll |= DPLL_SDVO_HIGH_SPEED;
/* compute bitmask from p1 value */
if (IS_PINEVIEW(dev))
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
else {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (IS_G4X(dev) && reduced_clock)
dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
}
switch (clock->p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (INTEL_INFO(dev)->gen >= 4)
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
if (crtc_state->sdvo_tv_clock)
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
crtc_state->dpll_hw_state.dpll = dpll;
if (INTEL_INFO(dev)->gen >= 4) {
u32 dpll_md = (crtc_state->pixel_multiplier - 1)
<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
crtc_state->dpll_hw_state.dpll_md = dpll_md;
}
}
static void i8xx_update_pll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
intel_clock_t *reduced_clock,
int num_connectors)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpll;
struct dpll *clock = &crtc_state->dpll;
i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
dpll = DPLL_VGA_MODE_DIS;
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock->p1 == 2)
dpll |= PLL_P1_DIVIDE_BY_TWO;
else
dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock->p2 == 4)
dpll |= PLL_P2_DIVIDE_BY_4;
}
if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
dpll |= DPLL_DVO_2X_MODE;
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
crtc_state->dpll_hw_state.dpll = dpll;
}
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = intel_crtc->pipe;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
struct drm_display_mode *adjusted_mode =
&intel_crtc->config->base.adjusted_mode;
uint32_t crtc_vtotal, crtc_vblank_end;
int vsyncshift = 0;
/* We need to be careful not to changed the adjusted mode, for otherwise
* the hw state checker will get angry at the mismatch. */
crtc_vtotal = adjusted_mode->crtc_vtotal;
crtc_vblank_end = adjusted_mode->crtc_vblank_end;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
/* the chip adds 2 halflines automatically */
crtc_vtotal -= 1;
crtc_vblank_end -= 1;
if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
else
vsyncshift = adjusted_mode->crtc_hsync_start -
adjusted_mode->crtc_htotal / 2;
if (vsyncshift < 0)
vsyncshift += adjusted_mode->crtc_htotal;
}
if (INTEL_INFO(dev)->gen > 3)
I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
I915_WRITE(HTOTAL(cpu_transcoder),
(adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
I915_WRITE(HBLANK(cpu_transcoder),
(adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
I915_WRITE(HSYNC(cpu_transcoder),
(adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
I915_WRITE(VTOTAL(cpu_transcoder),
(adjusted_mode->crtc_vdisplay - 1) |
((crtc_vtotal - 1) << 16));
I915_WRITE(VBLANK(cpu_transcoder),
(adjusted_mode->crtc_vblank_start - 1) |
((crtc_vblank_end - 1) << 16));
I915_WRITE(VSYNC(cpu_transcoder),
(adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
* programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
* documented on the DDI_FUNC_CTL register description, EDP Input Select
* bits. */
if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
(pipe == PIPE_B || pipe == PIPE_C))
I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
/* pipesrc controls the size that is scaled from, which should
* always be the user's requested size.
*/
I915_WRITE(PIPESRC(pipe),
((intel_crtc->config->pipe_src_w - 1) << 16) |
(intel_crtc->config->pipe_src_h - 1));
}
static void intel_get_pipe_timings(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
uint32_t tmp;
tmp = I915_READ(HTOTAL(cpu_transcoder));
pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(HBLANK(cpu_transcoder));
pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(HSYNC(cpu_transcoder));
pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(VTOTAL(cpu_transcoder));
pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(VBLANK(cpu_transcoder));
pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(VSYNC(cpu_transcoder));
pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
pipe_config->base.adjusted_mode.crtc_vtotal += 1;
pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
}
tmp = I915_READ(PIPESRC(crtc->pipe));
pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
}
void intel_mode_from_pipe_config(struct drm_display_mode *mode,
struct intel_crtc_state *pipe_config)
{
mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
mode->flags = pipe_config->base.adjusted_mode.flags;
mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
mode->flags |= pipe_config->base.adjusted_mode.flags;
}
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t pipeconf;
pipeconf = 0;
if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
if (intel_crtc->config->double_wide)
pipeconf |= PIPECONF_DOUBLE_WIDE;
/* only g4x and later have fancy bpc/dither controls */
if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
/* Bspec claims that we can't use dithering for 30bpp pipes. */
if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
pipeconf |= PIPECONF_DITHER_EN |
PIPECONF_DITHER_TYPE_SP;
switch (intel_crtc->config->pipe_bpp) {
case 18:
pipeconf |= PIPECONF_6BPC;
break;
case 24:
pipeconf |= PIPECONF_8BPC;
break;
case 30:
pipeconf |= PIPECONF_10BPC;
break;
default:
/* Case prevented by intel_choose_pipe_bpp_dither. */
BUG();
}
}
if (HAS_PIPE_CXSR(dev)) {
if (intel_crtc->lowfreq_avail) {
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
} else {
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
}
}
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
if (INTEL_INFO(dev)->gen < 4 ||
intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
else
pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
} else
pipeconf |= PIPECONF_PROGRESSIVE;
if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
POSTING_READ(PIPECONF(intel_crtc->pipe));
}
static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk, num_connectors = 0;
intel_clock_t clock, reduced_clock;
bool ok, has_reduced_clock = false;
bool is_lvds = false, is_dsi = false;
struct intel_encoder *encoder;
const intel_limit_t *limit;
struct drm_atomic_state *state = crtc_state->base.state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int i;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_DSI:
is_dsi = true;
break;
default:
break;
}
num_connectors++;
}
if (is_dsi)
return 0;
if (!crtc_state->clock_set) {
refclk = i9xx_get_refclk(crtc_state, num_connectors);
/*
* Returns a set of divisors for the desired target clock with
* the given refclk, or FALSE. The returned values represent
* the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
* 2) / p1 / p2.
*/
limit = intel_limit(crtc_state, refclk);
ok = dev_priv->display.find_dpll(limit, crtc_state,
crtc_state->port_clock,
refclk, NULL, &clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target
* clock. If the clocks don't match, we can't switch
* the display clock by using the FP0/FP1. In such case
* we will disable the LVDS downclock feature.
*/
has_reduced_clock =
dev_priv->display.find_dpll(limit, crtc_state,
dev_priv->lvds_downclock,
refclk, &clock,
&reduced_clock);
}
/* Compat-code for transition, will disappear. */
crtc_state->dpll.n = clock.n;
crtc_state->dpll.m1 = clock.m1;
crtc_state->dpll.m2 = clock.m2;
crtc_state->dpll.p1 = clock.p1;
crtc_state->dpll.p2 = clock.p2;
}
if (IS_GEN2(dev)) {
i8xx_update_pll(crtc, crtc_state,
has_reduced_clock ? &reduced_clock : NULL,
num_connectors);
} else if (IS_CHERRYVIEW(dev)) {
chv_update_pll(crtc, crtc_state);
} else if (IS_VALLEYVIEW(dev)) {
vlv_update_pll(crtc, crtc_state);
} else {
i9xx_update_pll(crtc, crtc_state,
has_reduced_clock ? &reduced_clock : NULL,
num_connectors);
}
return 0;
}
static void i9xx_get_pfit_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
return;
tmp = I915_READ(PFIT_CONTROL);
if (!(tmp & PFIT_ENABLE))
return;
/* Check whether the pfit is attached to our pipe. */
if (INTEL_INFO(dev)->gen < 4) {
if (crtc->pipe != PIPE_B)
return;
} else {
if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
return;
}
pipe_config->gmch_pfit.control = tmp;
pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
if (INTEL_INFO(dev)->gen < 5)
pipe_config->gmch_pfit.lvds_border_bits =
I915_READ(LVDS) & LVDS_BORDER_ENABLE;
}
static void vlv_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = pipe_config->cpu_transcoder;
intel_clock_t clock;
u32 mdiv;
int refclk = 100000;
/* In case of MIPI DPLL will not even be used */
if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
return;
mutex_lock(&dev_priv->dpio_lock);
mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
mutex_unlock(&dev_priv->dpio_lock);
clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
clock.m2 = mdiv & DPIO_M2DIV_MASK;
clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
vlv_clock(refclk, &clock);
/* clock.dot is the fast clock */
pipe_config->port_clock = clock.dot / 5;
}
static void
i9xx_get_initial_plane_config(struct intel_crtc *crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, base, offset;
int pipe = crtc->pipe, plane = crtc->plane;
int fourcc, pixel_format;
unsigned int aligned_height;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
val = I915_READ(DSPCNTR(plane));
if (!(val & DISPLAY_PLANE_ENABLE))
return;
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
DRM_DEBUG_KMS("failed to alloc fb\n");
return;
}
fb = &intel_fb->base;
if (INTEL_INFO(dev)->gen >= 4) {
if (val & DISPPLANE_TILED) {
plane_config->tiling = I915_TILING_X;
fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
}
}
pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
fourcc = i9xx_format_to_fourcc(pixel_format);
fb->pixel_format = fourcc;
fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
if (INTEL_INFO(dev)->gen >= 4) {
if (plane_config->tiling)
offset = I915_READ(DSPTILEOFF(plane));
else
offset = I915_READ(DSPLINOFF(plane));
base = I915_READ(DSPSURF(plane)) & 0xfffff000;
} else {
base = I915_READ(DSPADDR(plane));
}
plane_config->base = base;
val = I915_READ(PIPESRC(pipe));
fb->width = ((val >> 16) & 0xfff) + 1;
fb->height = ((val >> 0) & 0xfff) + 1;
val = I915_READ(DSPSTRIDE(pipe));
fb->pitches[0] = val & 0xffffffc0;
aligned_height = intel_fb_align_height(dev, fb->height,
fb->pixel_format,
fb->modifier[0]);
plane_config->size = fb->pitches[0] * aligned_height;
DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
pipe_name(pipe), plane, fb->width, fb->height,
fb->bits_per_pixel, base, fb->pitches[0],
plane_config->size);
plane_config->fb = intel_fb;
}
static void chv_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = pipe_config->cpu_transcoder;
enum dpio_channel port = vlv_pipe_to_channel(pipe);
intel_clock_t clock;
u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
int refclk = 100000;
mutex_lock(&dev_priv->dpio_lock);
cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
mutex_unlock(&dev_priv->dpio_lock);
clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
chv_clock(refclk, &clock);
/* clock.dot is the fast clock */
pipe_config->port_clock = clock.dot / 5;
}
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
if (!intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(crtc->pipe)))
return false;
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
pipe_config->shared_dpll = DPLL_ID_PRIVATE;
tmp = I915_READ(PIPECONF(crtc->pipe));
if (!(tmp & PIPECONF_ENABLE))
return false;
if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
switch (tmp & PIPECONF_BPC_MASK) {
case PIPECONF_6BPC:
pipe_config->pipe_bpp = 18;
break;
case PIPECONF_8BPC:
pipe_config->pipe_bpp = 24;
break;
case PIPECONF_10BPC:
pipe_config->pipe_bpp = 30;
break;
default:
break;
}
}
if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
pipe_config->limited_color_range = true;
if (INTEL_INFO(dev)->gen < 4)
pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
intel_get_pipe_timings(crtc, pipe_config);
i9xx_get_pfit_config(crtc, pipe_config);
if (INTEL_INFO(dev)->gen >= 4) {
tmp = I915_READ(DPLL_MD(crtc->pipe));
pipe_config->pixel_multiplier =
((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
>> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
pipe_config->dpll_hw_state.dpll_md = tmp;
} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
tmp = I915_READ(DPLL(crtc->pipe));
pipe_config->pixel_multiplier =
((tmp & SDVO_MULTIPLIER_MASK)
>> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
} else {
/* Note that on i915G/GM the pixel multiplier is in the sdvo
* port and will be fixed up in the encoder->get_config
* function. */
pipe_config->pixel_multiplier = 1;
}
pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
if (!IS_VALLEYVIEW(dev)) {
/*
* DPLL_DVO_2X_MODE must be enabled for both DPLLs
* on 830. Filter it out here so that we don't
* report errors due to that.
*/
if (IS_I830(dev))
pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
} else {
/* Mask out read-only status bits. */
pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
DPLL_PORTC_READY_MASK |
DPLL_PORTB_READY_MASK);
}
if (IS_CHERRYVIEW(dev))
chv_crtc_clock_get(crtc, pipe_config);
else if (IS_VALLEYVIEW(dev))
vlv_crtc_clock_get(crtc, pipe_config);
else
i9xx_crtc_clock_get(crtc, pipe_config);
return true;
}
static void ironlake_init_pch_refclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
u32 val, final;
bool has_lvds = false;
bool has_cpu_edp = false;
bool has_panel = false;
bool has_ck505 = false;
bool can_ssc = false;
/* We need to take the global config into account */
for_each_intel_encoder(dev, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
has_panel = true;
has_lvds = true;
break;
case INTEL_OUTPUT_EDP:
has_panel = true;
if (enc_to_dig_port(&encoder->base)->port == PORT_A)
has_cpu_edp = true;
break;
default:
break;
}
}
if (HAS_PCH_IBX(dev)) {
has_ck505 = dev_priv->vbt.display_clock_mode;
can_ssc = has_ck505;
} else {
has_ck505 = false;
can_ssc = true;
}
DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
has_panel, has_lvds, has_ck505);
/* Ironlake: try to setup display ref clock before DPLL
* enabling. This is only under driver's control after
* PCH B stepping, previous chipset stepping should be
* ignoring this setting.
*/
val = I915_READ(PCH_DREF_CONTROL);
/* As we must carefully and slowly disable/enable each source in turn,
* compute the final state we want first and check if we need to
* make any changes at all.
*/
final = val;
final &= ~DREF_NONSPREAD_SOURCE_MASK;
if (has_ck505)
final |= DREF_NONSPREAD_CK505_ENABLE;
else
final |= DREF_NONSPREAD_SOURCE_ENABLE;
final &= ~DREF_SSC_SOURCE_MASK;
final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
final &= ~DREF_SSC1_ENABLE;
if (has_panel) {
final |= DREF_SSC_SOURCE_ENABLE;
if (intel_panel_use_ssc(dev_priv) && can_ssc)
final |= DREF_SSC1_ENABLE;
if (has_cpu_edp) {
if (intel_panel_use_ssc(dev_priv) && can_ssc)
final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
else
final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
} else
final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
} else {
final |= DREF_SSC_SOURCE_DISABLE;
final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
}
if (final == val)
return;
/* Always enable nonspread source */
val &= ~DREF_NONSPREAD_SOURCE_MASK;
if (has_ck505)
val |= DREF_NONSPREAD_CK505_ENABLE;
else
val |= DREF_NONSPREAD_SOURCE_ENABLE;
if (has_panel) {
val &= ~DREF_SSC_SOURCE_MASK;
val |= DREF_SSC_SOURCE_ENABLE;
/* SSC must be turned on before enabling the CPU output */
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on panel\n");
val |= DREF_SSC1_ENABLE;
} else
val &= ~DREF_SSC1_ENABLE;
/* Get SSC going before enabling the outputs */
I915_WRITE(PCH_DREF_CONTROL, val);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
/* Enable CPU source on CPU attached eDP */
if (has_cpu_edp) {
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on eDP\n");
val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
} else
val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
} else
val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, val);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
} else {
DRM_DEBUG_KMS("Disabling SSC entirely\n");
val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
/* Turn off CPU output */
val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, val);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
/* Turn off the SSC source */
val &= ~DREF_SSC_SOURCE_MASK;
val |= DREF_SSC_SOURCE_DISABLE;
/* Turn off SSC1 */
val &= ~DREF_SSC1_ENABLE;
I915_WRITE(PCH_DREF_CONTROL, val);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
}
BUG_ON(val != final);
}
static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
{
uint32_t tmp;
tmp = I915_READ(SOUTH_CHICKEN2);
tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
I915_WRITE(SOUTH_CHICKEN2, tmp);
if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
FDI_MPHY_IOSFSB_RESET_STATUS, 100))
DRM_ERROR("FDI mPHY reset assert timeout\n");
tmp = I915_READ(SOUTH_CHICKEN2);
tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
I915_WRITE(SOUTH_CHICKEN2, tmp);
if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
DRM_ERROR("FDI mPHY reset de-assert timeout\n");
}
/* WaMPhyProgramming:hsw */
static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
{
uint32_t tmp;
tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
tmp &= ~(0xFF << 24);
tmp |= (0x12 << 24);
intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
tmp |= (1 << 11);
intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
tmp |= (1 << 11);
intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
tmp |= (1 << 24) | (1 << 21) | (1 << 18);
intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
tmp |= (1 << 24) | (1 << 21) | (1 << 18);
intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
tmp &= ~(7 << 13);
tmp |= (5 << 13);
intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
tmp &= ~(7 << 13);
tmp |= (5 << 13);
intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
tmp &= ~0xFF;
tmp |= 0x1C;
intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
tmp &= ~0xFF;
tmp |= 0x1C;
intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
tmp &= ~(0xFF << 16);
tmp |= (0x1C << 16);
intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
tmp &= ~(0xFF << 16);
tmp |= (0x1C << 16);
intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
tmp |= (1 << 27);
intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
tmp |= (1 << 27);
intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
tmp &= ~(0xF << 28);
tmp |= (4 << 28);
intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
tmp &= ~(0xF << 28);
tmp |= (4 << 28);
intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
}
/* Implements 3 different sequences from BSpec chapter "Display iCLK
* Programming" based on the parameters passed:
* - Sequence to enable CLKOUT_DP
* - Sequence to enable CLKOUT_DP without spread
* - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
*/
static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
bool with_fdi)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t reg, tmp;
if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
with_spread = true;
if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
with_fdi, "LP PCH doesn't have FDI\n"))
with_fdi = false;
mutex_lock(&dev_priv->dpio_lock);
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
tmp &= ~SBI_SSCCTL_DISABLE;
tmp |= SBI_SSCCTL_PATHALT;
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
udelay(24);
if (with_spread) {
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
tmp &= ~SBI_SSCCTL_PATHALT;
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
if (with_fdi) {
lpt_reset_fdi_mphy(dev_priv);
lpt_program_fdi_mphy(dev_priv);
}
}
reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
SBI_GEN0 : SBI_DBUFF0;
tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
mutex_unlock(&dev_priv->dpio_lock);
}
/* Sequence to disable CLKOUT_DP */
static void lpt_disable_clkout_dp(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t reg, tmp;
mutex_lock(&dev_priv->dpio_lock);
reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
SBI_GEN0 : SBI_DBUFF0;
tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
if (!(tmp & SBI_SSCCTL_DISABLE)) {
if (!(tmp & SBI_SSCCTL_PATHALT)) {
tmp |= SBI_SSCCTL_PATHALT;
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
udelay(32);
}
tmp |= SBI_SSCCTL_DISABLE;
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
}
mutex_unlock(&dev_priv->dpio_lock);
}
static void lpt_init_pch_refclk(struct drm_device *dev)
{
struct intel_encoder *encoder;
bool has_vga = false;
for_each_intel_encoder(dev, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_ANALOG:
has_vga = true;
break;
default:
break;
}
}
if (has_vga)
lpt_enable_clkout_dp(dev, true, true);
else
lpt_disable_clkout_dp(dev);
}
/*
* Initialize reference clocks when the driver loads
*/
void intel_init_pch_refclk(struct drm_device *dev)
{
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
ironlake_init_pch_refclk(dev);
else if (HAS_PCH_LPT(dev))
lpt_init_pch_refclk(dev);
}
static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc_state->base.crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_atomic_state *state = crtc_state->base.state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
struct intel_encoder *encoder;
int num_connectors = 0, i;
bool is_lvds = false;
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc_state->base.crtc)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
default:
break;
}
num_connectors++;
}
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
dev_priv->vbt.lvds_ssc_freq);
return dev_priv->vbt.lvds_ssc_freq;
}
return 120000;
}
static void ironlake_set_pipeconf(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
uint32_t val;
val = 0;
switch (intel_crtc->config->pipe_bpp) {
case 18:
val |= PIPECONF_6BPC;
break;
case 24:
val |= PIPECONF_8BPC;
break;
case 30:
val |= PIPECONF_10BPC;
break;
case 36:
val |= PIPECONF_12BPC;
break;
default:
/* Case prevented by intel_choose_pipe_bpp_dither. */
BUG();
}
if (intel_crtc->config->dither)
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= PIPECONF_INTERLACED_ILK;
else
val |= PIPECONF_PROGRESSIVE;
if (intel_crtc->config->limited_color_range)
val |= PIPECONF_COLOR_RANGE_SELECT;
I915_WRITE(PIPECONF(pipe), val);
POSTING_READ(PIPECONF(pipe));
}
/*
* Set up the pipe CSC unit.
*
* Currently only full range RGB to limited range RGB conversion
* is supported, but eventually this should handle various
* RGB<->YCbCr scenarios as well.
*/
static void intel_set_pipe_csc(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
uint16_t coeff = 0x7800; /* 1.0 */
/*
* TODO: Check what kind of values actually come out of the pipe
* with these coeff/postoff values and adjust to get the best
* accuracy. Perhaps we even need to take the bpc value into
* consideration.
*/
if (intel_crtc->config->limited_color_range)
coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
/*
* GY/GU and RY/RU should be the other way around according
* to BSpec, but reality doesn't agree. Just set them up in
* a way that results in the correct picture.
*/
I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
if (INTEL_INFO(dev)->gen > 6) {
uint16_t postoff = 0;
if (intel_crtc->config->limited_color_range)
postoff = (16 * (1 << 12) / 255) & 0x1fff;
I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
I915_WRITE(PIPE_CSC_MODE(pipe), 0);
} else {
uint32_t mode = CSC_MODE_YUV_TO_RGB;
if (intel_crtc->config->limited_color_range)
mode |= CSC_BLACK_SCREEN_OFFSET;
I915_WRITE(PIPE_CSC_MODE(pipe), mode);
}
}
static void haswell_set_pipeconf(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
uint32_t val;
val = 0;
if (IS_HASWELL(dev) && intel_crtc->config->dither)
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= PIPECONF_INTERLACED_ILK;
else
val |= PIPECONF_PROGRESSIVE;
I915_WRITE(PIPECONF(cpu_transcoder), val);
POSTING_READ(PIPECONF(cpu_transcoder));
I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
val = 0;
switch (intel_crtc->config->pipe_bpp) {
case 18:
val |= PIPEMISC_DITHER_6_BPC;
break;
case 24:
val |= PIPEMISC_DITHER_8_BPC;
break;
case 30:
val |= PIPEMISC_DITHER_10_BPC;
break;
case 36:
val |= PIPEMISC_DITHER_12_BPC;
break;
default:
/* Case prevented by pipe_config_set_bpp. */
BUG();
}
if (intel_crtc->config->dither)
val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
I915_WRITE(PIPEMISC(pipe), val);
}
}
static bool ironlake_compute_clocks(struct drm_crtc *crtc,
struct intel_crtc_state *crtc_state,
intel_clock_t *clock,
bool *has_reduced_clock,
intel_clock_t *reduced_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk;
const intel_limit_t *limit;
bool ret, is_lvds = false;
is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
refclk = ironlake_get_refclk(crtc_state);
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc_state, refclk);
ret = dev_priv->display.find_dpll(limit, crtc_state,
crtc_state->port_clock,
refclk, NULL, clock);
if (!ret)
return false;
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target clock.
* If the clocks don't match, we can't switch the display clock
* by using the FP0/FP1. In such case we will disable the LVDS
* downclock feature.
*/
*has_reduced_clock =
dev_priv->display.find_dpll(limit, crtc_state,
dev_priv->lvds_downclock,
refclk, clock,
reduced_clock);
}
return true;
}
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
{
/*
* Account for spread spectrum to avoid
* oversubscribing the link. Max center spread
* is 2.5%; use 5% for safety's sake.
*/
u32 bps = target_clock * bpp * 21 / 20;
return DIV_ROUND_UP(bps, link_bw * 8);
}
static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
{
return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
}
static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state,
u32 *fp,
intel_clock_t *reduced_clock, u32 *fp2)
{
struct drm_crtc *crtc = &intel_crtc->base;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_atomic_state *state = crtc_state->base.state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
struct intel_encoder *encoder;
uint32_t dpll;
int factor, num_connectors = 0, i;
bool is_lvds = false, is_sdvo = false;
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc_state->base.crtc)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
break;
default:
break;
}
num_connectors++;
}
/* Enable autotuning of the PLL clock (if permissible) */
factor = 21;
if (is_lvds) {
if ((intel_panel_use_ssc(dev_priv) &&
dev_priv->vbt.lvds_ssc_freq == 100000) ||
(HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
factor = 25;
} else if (crtc_state->sdvo_tv_clock)
factor = 20;
if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
*fp |= FP_CB_TUNE;
if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
*fp2 |= FP_CB_TUNE;
dpll = 0;
if (is_lvds)
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
dpll |= (crtc_state->pixel_multiplier - 1)
<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
if (is_sdvo)
dpll |= DPLL_SDVO_HIGH_SPEED;
if (crtc_state->has_dp_encoder)
dpll |= DPLL_SDVO_HIGH_SPEED;
/* compute bitmask from p1 value */
dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
/* also FPA1 */
dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
switch (crtc_state->dpll.p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
return dpll | DPLL_VCO_ENABLE;
}
static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock, reduced_clock;
u32 dpll = 0, fp = 0, fp2 = 0;
bool ok, has_reduced_clock = false;
bool is_lvds = false;
struct intel_shared_dpll *pll;
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
"Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
&has_reduced_clock, &reduced_clock);
if (!ok && !crtc_state->clock_set) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
/* Compat-code for transition, will disappear. */
if (!crtc_state->clock_set) {
crtc_state->dpll.n = clock.n;
crtc_state->dpll.m1 = clock.m1;
crtc_state->dpll.m2 = clock.m2;
crtc_state->dpll.p1 = clock.p1;
crtc_state->dpll.p2 = clock.p2;
}
/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
if (crtc_state->has_pch_encoder) {
fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
if (has_reduced_clock)
fp2 = i9xx_dpll_compute_fp(&reduced_clock);
dpll = ironlake_compute_dpll(crtc, crtc_state,
&fp, &reduced_clock,
has_reduced_clock ? &fp2 : NULL);
crtc_state->dpll_hw_state.dpll = dpll;
crtc_state->dpll_hw_state.fp0 = fp;
if (has_reduced_clock)
crtc_state->dpll_hw_state.fp1 = fp2;
else
crtc_state->dpll_hw_state.fp1 = fp;
pll = intel_get_shared_dpll(crtc, crtc_state);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
pipe_name(crtc->pipe));
return -EINVAL;
}
}
if (is_lvds && has_reduced_clock)
crtc->lowfreq_avail = true;
else
crtc->lowfreq_avail = false;
return 0;
}
static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
struct intel_link_m_n *m_n)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = crtc->pipe;
m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
& ~TU_SIZE_MASK;
m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
}
static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
enum transcoder transcoder,
struct intel_link_m_n *m_n,
struct intel_link_m_n *m2_n2)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = crtc->pipe;
if (INTEL_INFO(dev)->gen >= 5) {
m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
& ~TU_SIZE_MASK;
m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
* gen < 8) and if DRRS is supported (to make sure the
* registers are not unnecessarily read).
*/
if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
crtc->config->has_drrs) {
m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
& ~TU_SIZE_MASK;
m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
}
} else {
m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
& ~TU_SIZE_MASK;
m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
}
}
void intel_dp_get_m_n(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
if (pipe_config->has_pch_encoder)
intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
else
intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
&pipe_config->dp_m_n,
&pipe_config->dp_m2_n2);
}
static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
&pipe_config->fdi_m_n, NULL);
}
static void skylake_get_pfit_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
uint32_t ps_ctrl = 0;
int id = -1;
int i;
/* find scaler attached to this pipe */
for (i = 0; i < crtc->num_scalers; i++) {
ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
id = i;
pipe_config->pch_pfit.enabled = true;
pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
break;
}
}
scaler_state->scaler_id = id;
if (id >= 0) {
scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
} else {
scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
}
}
static void
skylake_get_initial_plane_config(struct intel_crtc *crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, base, offset, stride_mult, tiling;
int pipe = crtc->pipe;
int fourcc, pixel_format;
unsigned int aligned_height;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
DRM_DEBUG_KMS("failed to alloc fb\n");
return;
}
fb = &intel_fb->base;
val = I915_READ(PLANE_CTL(pipe, 0));
if (!(val & PLANE_CTL_ENABLE))
goto error;
pixel_format = val & PLANE_CTL_FORMAT_MASK;
fourcc = skl_format_to_fourcc(pixel_format,
val & PLANE_CTL_ORDER_RGBX,
val & PLANE_CTL_ALPHA_MASK);
fb->pixel_format = fourcc;
fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
tiling = val & PLANE_CTL_TILED_MASK;
switch (tiling) {
case PLANE_CTL_TILED_LINEAR:
fb->modifier[0] = DRM_FORMAT_MOD_NONE;
break;
case PLANE_CTL_TILED_X:
plane_config->tiling = I915_TILING_X;
fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
break;
case PLANE_CTL_TILED_Y:
fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
break;
case PLANE_CTL_TILED_YF:
fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
break;
default:
MISSING_CASE(tiling);
goto error;
}
base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
plane_config->base = base;
offset = I915_READ(PLANE_OFFSET(pipe, 0));
val = I915_READ(PLANE_SIZE(pipe, 0));
fb->height = ((val >> 16) & 0xfff) + 1;
fb->width = ((val >> 0) & 0x1fff) + 1;
val = I915_READ(PLANE_STRIDE(pipe, 0));
stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
fb->pixel_format);
fb->pitches[0] = (val & 0x3ff) * stride_mult;
aligned_height = intel_fb_align_height(dev, fb->height,
fb->pixel_format,
fb->modifier[0]);
plane_config->size = fb->pitches[0] * aligned_height;
DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
pipe_name(pipe), fb->width, fb->height,
fb->bits_per_pixel, base, fb->pitches[0],
plane_config->size);
plane_config->fb = intel_fb;
return;
error:
kfree(fb);
}
static void ironlake_get_pfit_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
tmp = I915_READ(PF_CTL(crtc->pipe));
if (tmp & PF_ENABLE) {
pipe_config->pch_pfit.enabled = true;
pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
/* We currently do not free assignements of panel fitters on
* ivb/hsw (since we don't use the higher upscaling modes which
* differentiates them) so just WARN about this case for now. */
if (IS_GEN7(dev)) {
WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
PF_PIPE_SEL_IVB(crtc->pipe));
}
}
}
static void
ironlake_get_initial_plane_config(struct intel_crtc *crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, base, offset;
int pipe = crtc->pipe;
int fourcc, pixel_format;
unsigned int aligned_height;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
val = I915_READ(DSPCNTR(pipe));
if (!(val & DISPLAY_PLANE_ENABLE))
return;
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
DRM_DEBUG_KMS("failed to alloc fb\n");
return;
}
fb = &intel_fb->base;
if (INTEL_INFO(dev)->gen >= 4) {
if (val & DISPPLANE_TILED) {
plane_config->tiling = I915_TILING_X;
fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
}
}
pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
fourcc = i9xx_format_to_fourcc(pixel_format);
fb->pixel_format = fourcc;
fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
offset = I915_READ(DSPOFFSET(pipe));
} else {
if (plane_config->tiling)
offset = I915_READ(DSPTILEOFF(pipe));
else
offset = I915_READ(DSPLINOFF(pipe));
}
plane_config->base = base;
val = I915_READ(PIPESRC(pipe));
fb->width = ((val >> 16) & 0xfff) + 1;
fb->height = ((val >> 0) & 0xfff) + 1;
val = I915_READ(DSPSTRIDE(pipe));
fb->pitches[0] = val & 0xffffffc0;
aligned_height = intel_fb_align_height(dev, fb->height,
fb->pixel_format,
fb->modifier[0]);
plane_config->size = fb->pitches[0] * aligned_height;
DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
pipe_name(pipe), fb->width, fb->height,
fb->bits_per_pixel, base, fb->pitches[0],
plane_config->size);
plane_config->fb = intel_fb;
}
static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
if (!intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(crtc->pipe)))
return false;
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
pipe_config->shared_dpll = DPLL_ID_PRIVATE;
tmp = I915_READ(PIPECONF(crtc->pipe));
if (!(tmp & PIPECONF_ENABLE))
return false;
switch (tmp & PIPECONF_BPC_MASK) {
case PIPECONF_6BPC:
pipe_config->pipe_bpp = 18;
break;
case PIPECONF_8BPC:
pipe_config->pipe_bpp = 24;
break;
case PIPECONF_10BPC:
pipe_config->pipe_bpp = 30;
break;
case PIPECONF_12BPC:
pipe_config->pipe_bpp = 36;
break;
default:
break;
}
if (tmp & PIPECONF_COLOR_RANGE_SELECT)
pipe_config->limited_color_range = true;
if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
struct intel_shared_dpll *pll;
pipe_config->has_pch_encoder = true;
tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
FDI_DP_PORT_WIDTH_SHIFT) + 1;
ironlake_get_fdi_m_n_config(crtc, pipe_config);
if (HAS_PCH_IBX(dev_priv->dev)) {
pipe_config->shared_dpll =
(enum intel_dpll_id) crtc->pipe;
} else {
tmp = I915_READ(PCH_DPLL_SEL);
if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
else
pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
}
pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
WARN_ON(!pll->get_hw_state(dev_priv, pll,
&pipe_config->dpll_hw_state));
tmp = pipe_config->dpll_hw_state.dpll;
pipe_config->pixel_multiplier =
((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
>> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
ironlake_pch_clock_get(crtc, pipe_config);
} else {
pipe_config->pixel_multiplier = 1;
}
intel_get_pipe_timings(crtc, pipe_config);
ironlake_get_pfit_config(crtc, pipe_config);
return true;
}
static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct intel_crtc *crtc;
for_each_intel_crtc(dev, crtc)
I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
pipe_name(crtc->pipe));
I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
"CPU PWM1 enabled\n");
if (IS_HASWELL(dev))
I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
"CPU PWM2 enabled\n");
I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
"PCH PWM1 enabled\n");
I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
"Utility pin enabled\n");
I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
/*
* In theory we can still leave IRQs enabled, as long as only the HPD
* interrupts remain enabled. We used to check for that, but since it's
* gen-specific and since we only disable LCPLL after we fully disable
* the interrupts, the check below should be enough.
*/
I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
}
static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
if (IS_HASWELL(dev))
return I915_READ(D_COMP_HSW);
else
return I915_READ(D_COMP_BDW);
}
static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
{
struct drm_device *dev = dev_priv->dev;
if (IS_HASWELL(dev)) {
mutex_lock(&dev_priv->rps.hw_lock);
if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
val))
DRM_ERROR("Failed to write to D_COMP\n");
mutex_unlock(&dev_priv->rps.hw_lock);
} else {
I915_WRITE(D_COMP_BDW, val);
POSTING_READ(D_COMP_BDW);
}
}
/*
* This function implements pieces of two sequences from BSpec:
* - Sequence for display software to disable LCPLL
* - Sequence for display software to allow package C8+
* The steps implemented here are just the steps that actually touch the LCPLL
* register. Callers should take care of disabling all the display engine
* functions, doing the mode unset, fixing interrupts, etc.
*/
static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
bool switch_to_fclk, bool allow_power_down)
{
uint32_t val;
assert_can_disable_lcpll(dev_priv);
val = I915_READ(LCPLL_CTL);
if (switch_to_fclk) {
val |= LCPLL_CD_SOURCE_FCLK;
I915_WRITE(LCPLL_CTL, val);
if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE, 1))
DRM_ERROR("Switching to FCLK failed\n");
val = I915_READ(LCPLL_CTL);
}
val |= LCPLL_PLL_DISABLE;
I915_WRITE(LCPLL_CTL, val);
POSTING_READ(LCPLL_CTL);
if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
DRM_ERROR("LCPLL still locked\n");
val = hsw_read_dcomp(dev_priv);
val |= D_COMP_COMP_DISABLE;
hsw_write_dcomp(dev_priv, val);
ndelay(100);
if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
1))
DRM_ERROR("D_COMP RCOMP still in progress\n");
if (allow_power_down) {
val = I915_READ(LCPLL_CTL);
val |= LCPLL_POWER_DOWN_ALLOW;
I915_WRITE(LCPLL_CTL, val);
POSTING_READ(LCPLL_CTL);
}
}
/*
* Fully restores LCPLL, disallowing power down and switching back to LCPLL
* source.
*/
static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
{
uint32_t val;
val = I915_READ(LCPLL_CTL);
if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
return;
/*
* Make sure we're not on PC8 state before disabling PC8, otherwise
* we'll hang the machine. To prevent PC8 state, just enable force_wake.
*/
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
if (val & LCPLL_POWER_DOWN_ALLOW) {
val &= ~LCPLL_POWER_DOWN_ALLOW;
I915_WRITE(LCPLL_CTL, val);
POSTING_READ(LCPLL_CTL);
}
val = hsw_read_dcomp(dev_priv);
val |= D_COMP_COMP_FORCE;
val &= ~D_COMP_COMP_DISABLE;
hsw_write_dcomp(dev_priv, val);
val = I915_READ(LCPLL_CTL);
val &= ~LCPLL_PLL_DISABLE;
I915_WRITE(LCPLL_CTL, val);
if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
DRM_ERROR("LCPLL not locked yet\n");
if (val & LCPLL_CD_SOURCE_FCLK) {
val = I915_READ(LCPLL_CTL);
val &= ~LCPLL_CD_SOURCE_FCLK;
I915_WRITE(LCPLL_CTL, val);
if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
DRM_ERROR("Switching back to LCPLL failed\n");
}
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}
/*
* Package states C8 and deeper are really deep PC states that can only be
* reached when all the devices on the system allow it, so even if the graphics
* device allows PC8+, it doesn't mean the system will actually get to these
* states. Our driver only allows PC8+ when going into runtime PM.
*
* The requirements for PC8+ are that all the outputs are disabled, the power
* well is disabled and most interrupts are disabled, and these are also
* requirements for runtime PM. When these conditions are met, we manually do
* the other conditions: disable the interrupts, clocks and switch LCPLL refclk
* to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
* hang the machine.
*
* When we really reach PC8 or deeper states (not just when we allow it) we lose
* the state of some registers, so when we come back from PC8+ we need to
* restore this state. We don't get into PC8+ if we're not in RC6, so we don't
* need to take care of the registers kept by RC6. Notice that this happens even
* if we don't put the device in PCI D3 state (which is what currently happens
* because of the runtime PM support).
*
* For more, read "Display Sequences for Package C8" on the hardware
* documentation.
*/
void hsw_enable_pc8(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
uint32_t val;
DRM_DEBUG_KMS("Enabling package C8+\n");
if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
val = I915_READ(SOUTH_DSPCLK_GATE_D);
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
}
lpt_disable_clkout_dp(dev);
hsw_disable_lcpll(dev_priv, true, true);
}
void hsw_disable_pc8(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
uint32_t val;
DRM_DEBUG_KMS("Disabling package C8+\n");
hsw_restore_lcpll(dev_priv);
lpt_init_pch_refclk(dev);
if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
val = I915_READ(SOUTH_DSPCLK_GATE_D);
val |= PCH_LP_PARTITION_LEVEL_DISABLE;
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
}
intel_prepare_ddi(dev);
}
static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
{
struct drm_device *dev = old_state->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int max_pixclk = intel_mode_max_pixclk(dev, NULL);
int req_cdclk;
/* see the comment in valleyview_modeset_global_resources */
if (WARN_ON(max_pixclk < 0))
return;
req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
if (req_cdclk != dev_priv->cdclk_freq)
broxton_set_cdclk(dev, req_cdclk);
}
static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
if (!intel_ddi_pll_select(crtc, crtc_state))
return -EINVAL;
crtc->lowfreq_avail = false;
return 0;
}
static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
enum port port,
struct intel_crtc_state *pipe_config)
{
switch (port) {
case PORT_A:
pipe_config->ddi_pll_sel = SKL_DPLL0;
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
break;
case PORT_B:
pipe_config->ddi_pll_sel = SKL_DPLL1;
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
break;
case PORT_C:
pipe_config->ddi_pll_sel = SKL_DPLL2;
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
break;
default:
DRM_ERROR("Incorrect port type\n");
}
}
static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
enum port port,
struct intel_crtc_state *pipe_config)
{
u32 temp, dpll_ctl1;
temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
switch (pipe_config->ddi_pll_sel) {
case SKL_DPLL0:
/*
* On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
* of the shared DPLL framework and thus needs to be read out
* separately
*/
dpll_ctl1 = I915_READ(DPLL_CTRL1);
pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
break;
case SKL_DPLL1:
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
break;
case SKL_DPLL2:
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
break;
case SKL_DPLL3:
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
break;
}
}
static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
enum port port,
struct intel_crtc_state *pipe_config)
{
pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
switch (pipe_config->ddi_pll_sel) {
case PORT_CLK_SEL_WRPLL1:
pipe_config->shared_dpll = DPLL_ID_WRPLL1;
break;
case PORT_CLK_SEL_WRPLL2:
pipe_config->shared_dpll = DPLL_ID_WRPLL2;
break;
}
}
static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_shared_dpll *pll;
enum port port;
uint32_t tmp;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
if (IS_SKYLAKE(dev))
skylake_get_ddi_pll(dev_priv, port, pipe_config);
else if (IS_BROXTON(dev))
bxt_get_ddi_pll(dev_priv, port, pipe_config);
else
haswell_get_ddi_pll(dev_priv, port, pipe_config);
if (pipe_config->shared_dpll >= 0) {
pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
WARN_ON(!pll->get_hw_state(dev_priv, pll,
&pipe_config->dpll_hw_state));
}
/*
* Haswell has only FDI/PCH transcoder A. It is which is connected to
* DDI E. So just check whether this pipe is wired to DDI E and whether
* the PCH transcoder is on.
*/
if (INTEL_INFO(dev)->gen < 9 &&
(port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
pipe_config->has_pch_encoder = true;
tmp = I915_READ(FDI_RX_CTL(PIPE_A));
pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
FDI_DP_PORT_WIDTH_SHIFT) + 1;
ironlake_get_fdi_m_n_config(crtc, pipe_config);
}
}
static bool haswell_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum intel_display_power_domain pfit_domain;
uint32_t tmp;
if (!intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(crtc->pipe)))
return false;
pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
pipe_config->shared_dpll = DPLL_ID_PRIVATE;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
if (tmp & TRANS_DDI_FUNC_ENABLE) {
enum pipe trans_edp_pipe;
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
default:
WARN(1, "unknown pipe linked to edp transcoder\n");
case TRANS_DDI_EDP_INPUT_A_ONOFF:
case TRANS_DDI_EDP_INPUT_A_ON:
trans_edp_pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
trans_edp_pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
trans_edp_pipe = PIPE_C;
break;
}
if (trans_edp_pipe == crtc->pipe)
pipe_config->cpu_transcoder = TRANSCODER_EDP;
}
if (!intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
return false;
tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
if (!(tmp & PIPECONF_ENABLE))
return false;
haswell_get_ddi_port_state(crtc, pipe_config);
intel_get_pipe_timings(crtc, pipe_config);
if (INTEL_INFO(dev)->gen >= 9) {
skl_init_scalers(dev, crtc, pipe_config);
}
pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
if (INTEL_INFO(dev)->gen >= 9) {
pipe_config->scaler_state.scaler_id = -1;
pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
}
if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
if (INTEL_INFO(dev)->gen == 9)
skylake_get_pfit_config(crtc, pipe_config);
else if (INTEL_INFO(dev)->gen < 9)
ironlake_get_pfit_config(crtc, pipe_config);
else
MISSING_CASE(INTEL_INFO(dev)->gen);
}
if (IS_HASWELL(dev))
pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
(I915_READ(IPS_CTL) & IPS_ENABLE);
if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
pipe_config->pixel_multiplier =
I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
} else {
pipe_config->pixel_multiplier = 1;
}
return true;
}
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t cntl = 0, size = 0;
if (base) {
unsigned int width = intel_crtc->base.cursor->state->crtc_w;
unsigned int height = intel_crtc->base.cursor->state->crtc_h;
unsigned int stride = roundup_pow_of_two(width) * 4;
switch (stride) {
default:
WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
width, stride);
stride = 256;
/* fallthrough */
case 256:
case 512:
case 1024:
case 2048:
break;
}
cntl |= CURSOR_ENABLE |
CURSOR_GAMMA_ENABLE |
CURSOR_FORMAT_ARGB |
CURSOR_STRIDE(stride);
size = (height << 12) | width;
}
if (intel_crtc->cursor_cntl != 0 &&
(intel_crtc->cursor_base != base ||
intel_crtc->cursor_size != size ||
intel_crtc->cursor_cntl != cntl)) {
/* On these chipsets we can only modify the base/size/stride
* whilst the cursor is disabled.
*/
I915_WRITE(_CURACNTR, 0);
POSTING_READ(_CURACNTR);
intel_crtc->cursor_cntl = 0;
}
if (intel_crtc->cursor_base != base) {
I915_WRITE(_CURABASE, base);
intel_crtc->cursor_base = base;
}
if (intel_crtc->cursor_size != size) {
I915_WRITE(CURSIZE, size);
intel_crtc->cursor_size = size;
}
if (intel_crtc->cursor_cntl != cntl) {
I915_WRITE(_CURACNTR, cntl);
POSTING_READ(_CURACNTR);
intel_crtc->cursor_cntl = cntl;
}
}
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
uint32_t cntl;
cntl = 0;
if (base) {
cntl = MCURSOR_GAMMA_ENABLE;
switch (intel_crtc->base.cursor->state->crtc_w) {
case 64:
cntl |= CURSOR_MODE_64_ARGB_AX;
break;
case 128:
cntl |= CURSOR_MODE_128_ARGB_AX;
break;
case 256:
cntl |= CURSOR_MODE_256_ARGB_AX;
break;
default:
MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
return;
}
cntl |= pipe << 28; /* Connect to correct pipe */
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
cntl |= CURSOR_PIPE_CSC_ENABLE;
}
if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
cntl |= CURSOR_ROTATE_180;
if (intel_crtc->cursor_cntl != cntl) {
I915_WRITE(CURCNTR(pipe), cntl);
POSTING_READ(CURCNTR(pipe));
intel_crtc->cursor_cntl = cntl;
}
/* and commit changes on next vblank */
I915_WRITE(CURBASE(pipe), base);
POSTING_READ(CURBASE(pipe));
intel_crtc->cursor_base = base;
}
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
bool on)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int x = crtc->cursor_x;
int y = crtc->cursor_y;
u32 base = 0, pos = 0;
if (on)
base = intel_crtc->cursor_addr;
if (x >= intel_crtc->config->pipe_src_w)
base = 0;
if (y >= intel_crtc->config->pipe_src_h)
base = 0;
if (x < 0) {
if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
base = 0;
pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
x = -x;
}
pos |= x << CURSOR_X_SHIFT;
if (y < 0) {
if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
base = 0;
pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
y = -y;
}
pos |= y << CURSOR_Y_SHIFT;
if (base == 0 && intel_crtc->cursor_base == 0)
return;
I915_WRITE(CURPOS(pipe), pos);
/* ILK+ do this automagically */
if (HAS_GMCH_DISPLAY(dev) &&
crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
base += (intel_crtc->base.cursor->state->crtc_h *
intel_crtc->base.cursor->state->crtc_w - 1) * 4;
}
if (IS_845G(dev) || IS_I865G(dev))
i845_update_cursor(crtc, base);
else
i9xx_update_cursor(crtc, base);
}
static bool cursor_size_ok(struct drm_device *dev,
uint32_t width, uint32_t height)
{
if (width == 0 || height == 0)
return false;
/*
* 845g/865g are special in that they are only limited by
* the width of their cursors, the height is arbitrary up to
* the precision of the register. Everything else requires
* square cursors, limited to a few power-of-two sizes.
*/
if (IS_845G(dev) || IS_I865G(dev)) {
if ((width & 63) != 0)
return false;
if (width > (IS_845G(dev) ? 64 : 512))
return false;
if (height > 1023)
return false;
} else {
switch (width | height) {
case 256:
case 128:
if (IS_GEN2(dev))
return false;
case 64:
break;
default:
return false;
}
}
return true;
}
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t start, uint32_t size)
{
int end = (start + size > 256) ? 256 : start + size, i;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
for (i = start; i < end; i++) {
intel_crtc->lut_r[i] = red[i] >> 8;
intel_crtc->lut_g[i] = green[i] >> 8;
intel_crtc->lut_b[i] = blue[i] >> 8;
}
intel_crtc_load_lut(crtc);
}
/* VESA 640x480x72Hz mode to set on the pipe */
static struct drm_display_mode load_detect_mode = {
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};
struct drm_framebuffer *
__intel_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
struct intel_framebuffer *intel_fb;
int ret;
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
drm_gem_object_unreference(&obj->base);
return ERR_PTR(-ENOMEM);
}
ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
if (ret)
goto err;
return &intel_fb->base;
err:
drm_gem_object_unreference(&obj->base);
kfree(intel_fb);
return ERR_PTR(ret);
}
static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
struct drm_framebuffer *fb;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ERR_PTR(ret);
fb = __intel_framebuffer_create(dev, mode_cmd, obj);
mutex_unlock(&dev->struct_mutex);
return fb;
}
static u32
intel_framebuffer_pitch_for_width(int width, int bpp)
{
u32 pitch = DIV_ROUND_UP(width * bpp, 8);
return ALIGN(pitch, 64);
}
static u32
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
{
u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
return PAGE_ALIGN(pitch * mode->vdisplay);
}
static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device *dev,
struct drm_display_mode *mode,
int depth, int bpp)
{
struct drm_i915_gem_object *obj;
struct drm_mode_fb_cmd2 mode_cmd = { 0 };
obj = i915_gem_alloc_object(dev,
intel_framebuffer_size_for_mode(mode, bpp));
if (obj == NULL)
return ERR_PTR(-ENOMEM);
mode_cmd.width = mode->hdisplay;
mode_cmd.height = mode->vdisplay;
mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
bpp);
mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
return intel_framebuffer_create(dev, &mode_cmd, obj);
}
static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device *dev,
struct drm_display_mode *mode)
{
#ifdef CONFIG_DRM_I915_FBDEV
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct drm_framebuffer *fb;
if (!dev_priv->fbdev)
return NULL;
if (!dev_priv->fbdev->fb)
return NULL;
obj = dev_priv->fbdev->fb->obj;
BUG_ON(!obj);
fb = &dev_priv->fbdev->fb->base;
if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
fb->bits_per_pixel))
return NULL;
if (obj->base.size < mode->vdisplay * fb->pitches[0])
return NULL;
return fb;
#else
return NULL;
#endif
}
static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_framebuffer *fb,
int x, int y)
{
struct drm_plane_state *plane_state;
int hdisplay, vdisplay;
int ret;
plane_state = drm_atomic_get_plane_state(state, crtc->primary);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
if (mode)
drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
else
hdisplay = vdisplay = 0;
ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
if (ret)
return ret;
drm_atomic_set_fb_for_plane(plane_state, fb);
plane_state->crtc_x = 0;
plane_state->crtc_y = 0;
plane_state->crtc_w = hdisplay;
plane_state->crtc_h = vdisplay;
plane_state->src_x = x << 16;
plane_state->src_y = y << 16;
plane_state->src_w = hdisplay << 16;
plane_state->src_h = vdisplay << 16;
return 0;
}
bool intel_get_load_detect_pipe(struct drm_connector *connector,
struct drm_display_mode *mode,
struct intel_load_detect_pipe *old,
struct drm_modeset_acquire_ctx *ctx)
{
struct intel_crtc *intel_crtc;
struct intel_encoder *intel_encoder =
intel_attached_encoder(connector);
struct drm_crtc *possible_crtc;
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = NULL;
struct drm_device *dev = encoder->dev;
struct drm_framebuffer *fb;
struct drm_mode_config *config = &dev->mode_config;
struct drm_atomic_state *state = NULL;
struct drm_connector_state *connector_state;
struct intel_crtc_state *crtc_state;
int ret, i = -1;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, connector->name,
encoder->base.id, encoder->name);
retry:
ret = drm_modeset_lock(&config->connection_mutex, ctx);
if (ret)
goto fail_unlock;
/*
* Algorithm gets a little messy:
*
* - if the connector already has an assigned crtc, use it (but make
* sure it's on first)
*
* - try to find the first unused crtc that can drive this connector,
* and use that if we find one
*/
/* See if we already have a CRTC for this connector */
if (encoder->crtc) {
crtc = encoder->crtc;
ret = drm_modeset_lock(&crtc->mutex, ctx);
if (ret)
goto fail_unlock;
ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
if (ret)
goto fail_unlock;
old->dpms_mode = connector->dpms;
old->load_detect_temp = false;
/* Make sure the crtc and connector are running */
if (connector->dpms != DRM_MODE_DPMS_ON)
connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
return true;
}
/* Find an unused one (if possible) */
for_each_crtc(dev, possible_crtc) {
i++;
if (!(encoder->possible_crtcs & (1 << i)))
continue;
if (possible_crtc->state->enable)
continue;
/* This can occur when applying the pipe A quirk on resume. */
if (to_intel_crtc(possible_crtc)->new_enabled)
continue;
crtc = possible_crtc;
break;
}
/*
* If we didn't find an unused CRTC, don't use any.
*/
if (!crtc) {
DRM_DEBUG_KMS("no pipe available for load-detect\n");
goto fail_unlock;
}
ret = drm_modeset_lock(&crtc->mutex, ctx);
if (ret)
goto fail_unlock;
ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
if (ret)
goto fail_unlock;
intel_encoder->new_crtc = to_intel_crtc(crtc);
to_intel_connector(connector)->new_encoder = intel_encoder;
intel_crtc = to_intel_crtc(crtc);
intel_crtc->new_enabled = true;
old->dpms_mode = connector->dpms;
old->load_detect_temp = true;
old->release_fb = NULL;
state = drm_atomic_state_alloc(dev);
if (!state)
return false;
state->acquire_ctx = ctx;
connector_state = drm_atomic_get_connector_state(state, connector);
if (IS_ERR(connector_state)) {
ret = PTR_ERR(connector_state);
goto fail;
}
connector_state->crtc = crtc;
connector_state->best_encoder = &intel_encoder->base;
crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto fail;
}
crtc_state->base.active = crtc_state->base.enable = true;
if (!mode)
mode = &load_detect_mode;
/* We need a framebuffer large enough to accommodate all accesses
* that the plane may generate whilst we perform load detection.
* We can not rely on the fbcon either being present (we get called
* during its initialisation to detect all boot displays, or it may
* not even exist) or that it is large enough to satisfy the
* requested mode.
*/
fb = mode_fits_in_fbdev(dev, mode);
if (fb == NULL) {
DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
old->release_fb = fb;
} else
DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
if (IS_ERR(fb)) {
DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
goto fail;
}
ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
if (ret)
goto fail;
drm_mode_copy(&crtc_state->base.mode, mode);
if (intel_set_mode(crtc, state)) {
DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
if (old->release_fb)
old->release_fb->funcs->destroy(old->release_fb);
goto fail;
}
crtc->primary->crtc = crtc;
/* let the connector get through one full cycle before testing */
intel_wait_for_vblank(dev, intel_crtc->pipe);
return true;
fail:
intel_crtc->new_enabled = crtc->state->enable;
fail_unlock:
drm_atomic_state_free(state);
state = NULL;
if (ret == -EDEADLK) {
drm_modeset_backoff(ctx);
goto retry;
}
return false;
}
void intel_release_load_detect_pipe(struct drm_connector *connector,
struct intel_load_detect_pipe *old,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_device *dev = connector->dev;
struct intel_encoder *intel_encoder =
intel_attached_encoder(connector);
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_atomic_state *state;
struct drm_connector_state *connector_state;
struct intel_crtc_state *crtc_state;
int ret;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, connector->name,
encoder->base.id, encoder->name);
if (old->load_detect_temp) {
state = drm_atomic_state_alloc(dev);
if (!state)
goto fail;
state->acquire_ctx = ctx;
connector_state = drm_atomic_get_connector_state(state, connector);
if (IS_ERR(connector_state))
goto fail;
crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(crtc_state))
goto fail;
to_intel_connector(connector)->new_encoder = NULL;
intel_encoder->new_crtc = NULL;
intel_crtc->new_enabled = false;
connector_state->best_encoder = NULL;
connector_state->crtc = NULL;
crtc_state->base.enable = crtc_state->base.active = false;
ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
0, 0);
if (ret)
goto fail;
ret = intel_set_mode(crtc, state);
if (ret)
goto fail;
if (old->release_fb) {
drm_framebuffer_unregister_private(old->release_fb);
drm_framebuffer_unreference(old->release_fb);
}
return;
}
/* Switch crtc and encoder back off if necessary */
if (old->dpms_mode != DRM_MODE_DPMS_ON)
connector->funcs->dpms(connector, old->dpms_mode);
return;
fail:
DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
drm_atomic_state_free(state);
}
static int i9xx_pll_refclk(struct drm_device *dev,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpll = pipe_config->dpll_hw_state.dpll;
if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
return dev_priv->vbt.lvds_ssc_freq;
else if (HAS_PCH_SPLIT(dev))
return 120000;
else if (!IS_GEN2(dev))
return 96000;
else
return 48000;
}
/* Returns the clock of the currently programmed mode of the given pipe. */
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = pipe_config->cpu_transcoder;
u32 dpll = pipe_config->dpll_hw_state.dpll;
u32 fp;
intel_clock_t clock;
int refclk = i9xx_pll_refclk(dev, pipe_config);
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = pipe_config->dpll_hw_state.fp0;
else
fp = pipe_config->dpll_hw_state.fp1;
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
if (IS_PINEVIEW(dev)) {
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
} else {
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
}
if (!IS_GEN2(dev)) {
if (IS_PINEVIEW(dev))
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
else
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
switch (dpll & DPLL_MODE_MASK) {
case DPLLB_MODE_DAC_SERIAL:
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5 : 10;
break;
case DPLLB_MODE_LVDS:
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7 : 14;
break;
default:
DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
"mode\n", (int)(dpll & DPLL_MODE_MASK));
return;
}
if (IS_PINEVIEW(dev))
pineview_clock(refclk, &clock);
else
i9xx_clock(refclk, &clock);
} else {
u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
if (is_lvds) {
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
if (lvds & LVDS_CLKB_POWER_UP)
clock.p2 = 7;
else
clock.p2 = 14;
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO)
clock.p1 = 2;
else {
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
}
i9xx_clock(refclk, &clock);
}
/*
* This value includes pixel_multiplier. We will use
* port_clock to compute adjusted_mode.crtc_clock in the
* encoder's get_config() function.
*/
pipe_config->port_clock = clock.dot;
}
int intel_dotclock_calculate(int link_freq,
const struct intel_link_m_n *m_n)
{
/*
* The calculation for the data clock is:
* pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
* But we want to avoid losing precison if possible, so:
* pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
*
* and the link clock is simpler:
* link_clock = (m * link_clock) / n
*/
if (!m_n->link_n)
return 0;
return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
}
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
/* read out port_clock from the DPLL */
i9xx_crtc_clock_get(crtc, pipe_config);
/*
* This value does not include pixel_multiplier.
* We will check that port_clock and adjusted_mode.crtc_clock
* agree once we know their relationship in the encoder's
* get_config() function.
*/
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
&pipe_config->fdi_m_n);
}
/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
struct drm_display_mode *mode;
struct intel_crtc_state pipe_config;
int htot = I915_READ(HTOTAL(cpu_transcoder));
int hsync = I915_READ(HSYNC(cpu_transcoder));
int vtot = I915_READ(VTOTAL(cpu_transcoder));
int vsync = I915_READ(VSYNC(cpu_transcoder));
enum pipe pipe = intel_crtc->pipe;
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
/*
* Construct a pipe_config sufficient for getting the clock info
* back out of crtc_clock_get.
*
* Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
* to use a real value here instead.
*/
pipe_config.cpu_transcoder = (enum transcoder) pipe;
pipe_config.pixel_multiplier = 1;
pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
i9xx_crtc_clock_get(intel_crtc, &pipe_config);
mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
mode->hdisplay = (htot & 0xffff) + 1;
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
mode->hsync_start = (hsync & 0xffff) + 1;
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
mode->vdisplay = (vtot & 0xffff) + 1;
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
mode->vsync_start = (vsync & 0xffff) + 1;
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
drm_mode_set_name(mode);
return mode;
}
static void intel_decrease_pllclock(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (!HAS_GMCH_DISPLAY(dev))
return;
if (!dev_priv->lvds_downclock_avail)
return;
/*
* Since this is called by a timer, we should never get here in
* the manual case.
*/
if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
int pipe = intel_crtc->pipe;
int dpll_reg = DPLL(pipe);
int dpll;
DRM_DEBUG_DRIVER("downclocking LVDS\n");
assert_panel_unlocked(dev_priv, pipe);
dpll = I915_READ(dpll_reg);
dpll |= DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
intel_wait_for_vblank(dev, pipe);
dpll = I915_READ(dpll_reg);
if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
}
}
void intel_mark_busy(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->mm.busy)
return;
intel_runtime_pm_get(dev_priv);
i915_update_gfx_val(dev_priv);
if (INTEL_INFO(dev)->gen >= 6)
gen6_rps_busy(dev_priv);
dev_priv->mm.busy = true;
}
void intel_mark_idle(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
if (!dev_priv->mm.busy)
return;
dev_priv->mm.busy = false;
for_each_crtc(dev, crtc) {
if (!crtc->primary->fb)
continue;
intel_decrease_pllclock(crtc);
}
if (INTEL_INFO(dev)->gen >= 6)
gen6_rps_idle(dev->dev_private);
intel_runtime_pm_put(dev_priv);
}
static void intel_crtc_destroy(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct intel_unpin_work *work;
spin_lock_irq(&dev->event_lock);
work = intel_crtc->unpin_work;
intel_crtc->unpin_work = NULL;
spin_unlock_irq(&dev->event_lock);
if (work) {
cancel_work_sync(&work->work);
kfree(work);
}
drm_crtc_cleanup(crtc);
kfree(intel_crtc);
}
static void intel_unpin_work_fn(struct work_struct *__work)
{
struct intel_unpin_work *work =
container_of(__work, struct intel_unpin_work, work);
struct drm_device *dev = work->crtc->dev;
enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
drm_gem_object_unreference(&work->pending_flip_obj->base);
intel_fbc_update(dev);
if (work->flip_queued_req)
i915_gem_request_assign(&work->flip_queued_req, NULL);
mutex_unlock(&dev->struct_mutex);
intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
drm_framebuffer_unreference(work->old_fb);
BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
kfree(work);
}
static void do_intel_finish_page_flip(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
unsigned long flags;
/* Ignore early vblank irqs */
if (intel_crtc == NULL)
return;
/*
* This is called both by irq handlers and the reset code (to complete
* lost pageflips) so needs the full irqsave spinlocks.
*/
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
/* Ensure we don't miss a work->pending update ... */
smp_rmb();
if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
spin_unlock_irqrestore(&dev->event_lock, flags);
return;
}
page_flip_completed(intel_crtc);
spin_unlock_irqrestore(&dev->event_lock, flags);
}
void intel_finish_page_flip(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
do_intel_finish_page_flip(dev, crtc);
}
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
do_intel_finish_page_flip(dev, crtc);
}
/* Is 'a' after or equal to 'b'? */
static bool g4x_flip_count_after_eq(u32 a, u32 b)
{
return !((a - b) & 0x80000000);
}
static bool page_flip_finished(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (i915_reset_in_progress(&dev_priv->gpu_error) ||
crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
return true;
/*
* The relevant registers doen't exist on pre-ctg.
* As the flip done interrupt doesn't trigger for mmio
* flips on gmch platforms, a flip count check isn't
* really needed there. But since ctg has the registers,
* include it in the check anyway.
*/
if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
return true;
/*
* A DSPSURFLIVE check isn't enough in case the mmio and CS flips
* used the same base address. In that case the mmio flip might
* have completed, but the CS hasn't even executed the flip yet.
*
* A flip count check isn't enough as the CS might have updated
* the base address just after start of vblank, but before we
* managed to process the interrupt. This means we'd complete the
* CS flip too soon.
*
* Combining both checks should get us a good enough result. It may
* still happen that the CS flip has been executed, but has not
* yet actually completed. But in case the base address is the same
* anyway, we don't really care.
*/
return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
crtc->unpin_work->gtt_offset &&
g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
crtc->unpin_work->flip_count);
}
void intel_prepare_page_flip(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
unsigned long flags;
/*
* This is called both by irq handlers and the reset code (to complete
* lost pageflips) so needs the full irqsave spinlocks.
*
* NB: An MMIO update of the plane base pointer will also
* generate a page-flip completion irq, i.e. every modeset
* is also accompanied by a spurious intel_prepare_page_flip().
*/
spin_lock_irqsave(&dev->event_lock, flags);
if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
spin_unlock_irqrestore(&dev->event_lock, flags);
}
static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
{
/* Ensure that the work item is consistent when activating it ... */
smp_wmb();
atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
/* and that it is marked active as soon as the irq could fire. */
smp_wmb();
}
static int intel_gen2_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 flip_mask;
int ret;
ret = intel_ring_begin(ring, 6);
if (ret)
return ret;
/* Can't queue multiple flips, so wait for the previous
* one to finish before executing the next.
*/
if (intel_crtc->plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
intel_ring_emit(ring, 0); /* aux display base address, unused */
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
return 0;
}
static int intel_gen3_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 flip_mask;
int ret;
ret = intel_ring_begin(ring, 6);
if (ret)
return ret;
if (intel_crtc->plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
intel_ring_emit(ring, MI_NOOP);
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
return 0;
}
static int intel_gen4_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pf, pipesrc;
int ret;
ret = intel_ring_begin(ring, 4);
if (ret)
return ret;
/* i965+ uses the linear or tiled offsets from the
* Display Registers (which do not change across a page-flip)
* so we need only reprogram the base address.
*/
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
obj->tiling_mode);
/* XXX Enabling the panel-fitter across page-flip is so far
* untested on non-native modes, so ignore it for now.
* pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
*/
pf = 0;
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
intel_ring_emit(ring, pf | pipesrc);
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
return 0;
}
static int intel_gen6_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pf, pipesrc;
int ret;
ret = intel_ring_begin(ring, 4);
if (ret)
return ret;
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
/* Contrary to the suggestions in the documentation,
* "Enable Panel Fitter" does not seem to be required when page
* flipping with a non-native mode, and worse causes a normal
* modeset to fail.
* pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
*/
pf = 0;
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
intel_ring_emit(ring, pf | pipesrc);
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
return 0;
}
static int intel_gen7_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t plane_bit = 0;
int len, ret;
switch (intel_crtc->plane) {
case PLANE_A:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
break;
case PLANE_B:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
break;
case PLANE_C:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
break;
default:
WARN_ONCE(1, "unknown plane in flip command\n");
return -ENODEV;
}
len = 4;
if (ring->id == RCS) {
len += 6;
/*
* On Gen 8, SRM is now taking an extra dword to accommodate
* 48bits addresses, and we need a NOOP for the batch size to
* stay even.
*/
if (IS_GEN8(dev))
len += 2;
}
/*
* BSpec MI_DISPLAY_FLIP for IVB:
* "The full packet must be contained within the same cache line."
*
* Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
* cacheline, if we ever start emitting more commands before
* the MI_DISPLAY_FLIP we may need to first emit everything else,
* then do the cacheline alignment, and finally emit the
* MI_DISPLAY_FLIP.
*/
ret = intel_ring_cacheline_align(ring);
if (ret)
return ret;
ret = intel_ring_begin(ring, len);
if (ret)
return ret;
/* Unmask the flip-done completion message. Note that the bspec says that
* we should do this for both the BCS and RCS, and that we must not unmask
* more than one flip event at any time (or ensure that one flip message
* can be sent by waiting for flip-done prior to queueing new flips).
* Experimentation says that BCS works despite DERRMR masking all
* flip-done completion events and that unmasking all planes at once
* for the RCS also doesn't appear to drop events. Setting the DERRMR
* to zero does lead to lockups within MI_DISPLAY_FLIP.
*/
if (ring->id == RCS) {
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit(ring, DERRMR);
intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
DERRMR_PIPEB_PRI_FLIP_DONE |
DERRMR_PIPEC_PRI_FLIP_DONE));
if (IS_GEN8(dev))
intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
MI_SRM_LRM_GLOBAL_GTT);
else
intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
MI_SRM_LRM_GLOBAL_GTT);
intel_ring_emit(ring, DERRMR);
intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
if (IS_GEN8(dev)) {
intel_ring_emit(ring, 0);
intel_ring_emit(ring, MI_NOOP);
}
}
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
intel_ring_emit(ring, (MI_NOOP));
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
return 0;
}
static bool use_mmio_flip(struct intel_engine_cs *ring,
struct drm_i915_gem_object *obj)
{
/*
* This is not being used for older platforms, because
* non-availability of flip done interrupt forces us to use
* CS flips. Older platforms derive flip done using some clever
* tricks involving the flip_pending status bits and vblank irqs.
* So using MMIO flips there would disrupt this mechanism.
*/
if (ring == NULL)
return true;
if (INTEL_INFO(ring->dev)->gen < 5)
return false;
if (i915.use_mmio_flip < 0)
return false;
else if (i915.use_mmio_flip > 0)
return true;
else if (i915.enable_execlists)
return true;
else
return ring != i915_gem_request_get_ring(obj->last_write_req);
}
static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
const enum pipe pipe = intel_crtc->pipe;
u32 ctl, stride;
ctl = I915_READ(PLANE_CTL(pipe, 0));
ctl &= ~PLANE_CTL_TILED_MASK;
switch (fb->modifier[0]) {
case DRM_FORMAT_MOD_NONE:
break;
case I915_FORMAT_MOD_X_TILED:
ctl |= PLANE_CTL_TILED_X;
break;
case I915_FORMAT_MOD_Y_TILED:
ctl |= PLANE_CTL_TILED_Y;
break;
case I915_FORMAT_MOD_Yf_TILED:
ctl |= PLANE_CTL_TILED_YF;
break;
default:
MISSING_CASE(fb->modifier[0]);
}
/*
* The stride is either expressed as a multiple of 64 bytes chunks for
* linear buffers or in number of tiles for tiled buffers.
*/
stride = fb->pitches[0] /
intel_fb_stride_alignment(dev, fb->modifier[0],
fb->pixel_format);
/*
* Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
* PLANE_SURF updates, the update is then guaranteed to be atomic.
*/
I915_WRITE(PLANE_CTL(pipe, 0), ctl);
I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
POSTING_READ(PLANE_SURF(pipe, 0));
}
static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_framebuffer *intel_fb =
to_intel_framebuffer(intel_crtc->base.primary->fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
u32 dspcntr;
u32 reg;
reg = DSPCNTR(intel_crtc->plane);
dspcntr = I915_READ(reg);
if (obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
else
dspcntr &= ~DISPPLANE_TILED;
I915_WRITE(reg, dspcntr);
I915_WRITE(DSPSURF(intel_crtc->plane),
intel_crtc->unpin_work->gtt_offset);
POSTING_READ(DSPSURF(intel_crtc->plane));
}
/*
* XXX: This is the temporary way to update the plane registers until we get
* around to using the usual plane update functions for MMIO flips
*/
static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
bool atomic_update;
u32 start_vbl_count;
intel_mark_page_flip_active(intel_crtc);
atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
if (INTEL_INFO(dev)->gen >= 9)
skl_do_mmio_flip(intel_crtc);
else
/* use_mmio_flip() retricts MMIO flips to ilk+ */
ilk_do_mmio_flip(intel_crtc);
if (atomic_update)
intel_pipe_update_end(intel_crtc, start_vbl_count);
}
static void intel_mmio_flip_work_func(struct work_struct *work)
{
struct intel_mmio_flip *mmio_flip =
container_of(work, struct intel_mmio_flip, work);
if (mmio_flip->req)
WARN_ON(__i915_wait_request(mmio_flip->req,
mmio_flip->crtc->reset_counter,
false, NULL,
&mmio_flip->i915->rps.mmioflips));
intel_do_mmio_flip(mmio_flip->crtc);
i915_gem_request_unreference__unlocked(mmio_flip->req);
kfree(mmio_flip);
}
static int intel_queue_mmio_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
struct intel_mmio_flip *mmio_flip;
mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
if (mmio_flip == NULL)
return -ENOMEM;
mmio_flip->i915 = to_i915(dev);
mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
mmio_flip->crtc = to_intel_crtc(crtc);
INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
schedule_work(&mmio_flip->work);
return 0;
}
static int intel_default_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
uint32_t flags)
{
return -ENODEV;
}
static bool __intel_pageflip_stall_check(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work = intel_crtc->unpin_work;
u32 addr;
if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
return true;
if (!work->enable_stall_check)
return false;
if (work->flip_ready_vblank == 0) {
if (work->flip_queued_req &&
!i915_gem_request_completed(work->flip_queued_req, true))
return false;
work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
}
if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
return false;
/* Potential stall - if we see that the flip has happened,
* assume a missed interrupt. */
if (INTEL_INFO(dev)->gen >= 4)
addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
else
addr = I915_READ(DSPADDR(intel_crtc->plane));
/* There is a potential issue here with a false positive after a flip
* to the same address. We could address this by checking for a
* non-incrementing frame counter.
*/
return addr == work->gtt_offset;
}
void intel_check_page_flip(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
WARN_ON(!in_interrupt());
if (crtc == NULL)
return;
spin_lock(&dev->event_lock);
work = intel_crtc->unpin_work;
if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
work->flip_queued_vblank, drm_vblank_count(dev, pipe));
page_flip_completed(intel_crtc);
work = NULL;
}
if (work != NULL &&
drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
spin_unlock(&dev->event_lock);
}
static int intel_crtc_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event,
uint32_t page_flip_flags)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *old_fb = crtc->primary->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_plane *primary = crtc->primary;
enum pipe pipe = intel_crtc->pipe;
struct intel_unpin_work *work;
struct intel_engine_cs *ring;
bool mmio_flip;
int ret;
/*
* drm_mode_page_flip_ioctl() should already catch this, but double
* check to be safe. In the future we may enable pageflipping from
* a disabled primary plane.
*/
if (WARN_ON(intel_fb_obj(old_fb) == NULL))
return -EBUSY;
/* Can't change pixel format via MI display flips. */
if (fb->pixel_format != crtc->primary->fb->pixel_format)
return -EINVAL;
/*
* TILEOFF/LINOFF registers can't be changed via MI display flips.
* Note that pitch changes could also affect these register.
*/
if (INTEL_INFO(dev)->gen > 3 &&
(fb->offsets[0] != crtc->primary->fb->offsets[0] ||
fb->pitches[0] != crtc->primary->fb->pitches[0]))
return -EINVAL;
if (i915_terminally_wedged(&dev_priv->gpu_error))
goto out_hang;
work = kzalloc(sizeof(*work), GFP_KERNEL);
if (work == NULL)
return -ENOMEM;
work->event = event;
work->crtc = crtc;
work->old_fb = old_fb;
INIT_WORK(&work->work, intel_unpin_work_fn);
ret = drm_crtc_vblank_get(crtc);
if (ret)
goto free_work;
/* We borrow the event spin lock for protecting unpin_work */
spin_lock_irq(&dev->event_lock);
if (intel_crtc->unpin_work) {
/* Before declaring the flip queue wedged, check if
* the hardware completed the operation behind our backs.
*/
if (__intel_pageflip_stall_check(dev, crtc)) {
DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
page_flip_completed(intel_crtc);
} else {
DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
spin_unlock_irq(&dev->event_lock);
drm_crtc_vblank_put(crtc);
kfree(work);
return -EBUSY;
}
}
intel_crtc->unpin_work = work;
spin_unlock_irq(&dev->event_lock);
if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
flush_workqueue(dev_priv->wq);
/* Reference the objects for the scheduled work. */
drm_framebuffer_reference(work->old_fb);
drm_gem_object_reference(&obj->base);
crtc->primary->fb = fb;
update_state_fb(crtc->primary);
work->pending_flip_obj = obj;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto cleanup;
atomic_inc(&intel_crtc->unpin_work_count);
intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
if (IS_VALLEYVIEW(dev)) {
ring = &dev_priv->ring[BCS];
if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
/* vlv: DISPLAY_FLIP fails to change tiling */
ring = NULL;
} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
ring = &dev_priv->ring[BCS];
} else if (INTEL_INFO(dev)->gen >= 7) {
ring = i915_gem_request_get_ring(obj->last_write_req);
if (ring == NULL || ring->id != RCS)
ring = &dev_priv->ring[BCS];
} else {
ring = &dev_priv->ring[RCS];
}
mmio_flip = use_mmio_flip(ring, obj);
/* When using CS flips, we want to emit semaphores between rings.
* However, when using mmio flips we will create a task to do the
* synchronisation, so all we want here is to pin the framebuffer
* into the display plane and skip any waits.
*/
ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
crtc->primary->state,
mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring);
if (ret)
goto cleanup_pending;
work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
+ intel_crtc->dspaddr_offset;
if (mmio_flip) {
ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
page_flip_flags);
if (ret)
goto cleanup_unpin;
i915_gem_request_assign(&work->flip_queued_req,
obj->last_write_req);
} else {
if (obj->last_write_req) {
ret = i915_gem_check_olr(obj->last_write_req);
if (ret)
goto cleanup_unpin;
}
ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
page_flip_flags);
if (ret)
goto cleanup_unpin;
i915_gem_request_assign(&work->flip_queued_req,
intel_ring_get_request(ring));
}
work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
work->enable_stall_check = true;
i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
INTEL_FRONTBUFFER_PRIMARY(pipe));
intel_fbc_disable(dev);
intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
mutex_unlock(&dev->struct_mutex);
trace_i915_flip_request(intel_crtc->plane, obj);
return 0;
cleanup_unpin:
intel_unpin_fb_obj(fb, crtc->primary->state);
cleanup_pending:
atomic_dec(&intel_crtc->unpin_work_count);
mutex_unlock(&dev->struct_mutex);
cleanup:
crtc->primary->fb = old_fb;
update_state_fb(crtc->primary);
drm_gem_object_unreference_unlocked(&obj->base);
drm_framebuffer_unreference(work->old_fb);
spin_lock_irq(&dev->event_lock);
intel_crtc->unpin_work = NULL;
spin_unlock_irq(&dev->event_lock);
drm_crtc_vblank_put(crtc);
free_work:
kfree(work);
if (ret == -EIO) {
out_hang:
ret = intel_plane_restore(primary);
if (ret == 0 && event) {
spin_lock_irq(&dev->event_lock);
drm_send_vblank_event(dev, pipe, event);
spin_unlock_irq(&dev->event_lock);
}
}
return ret;
}
static const struct drm_crtc_helper_funcs intel_helper_funcs = {
.mode_set_base_atomic = intel_pipe_set_base_atomic,
.load_lut = intel_crtc_load_lut,
.atomic_begin = intel_begin_crtc_commit,
.atomic_flush = intel_finish_crtc_commit,
};
/**
* intel_modeset_update_staged_output_state
*
* Updates the staged output configuration state, e.g. after we've read out the
* current hw state.
*/
static void intel_modeset_update_staged_output_state(struct drm_device *dev)
{
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
for_each_intel_connector(dev, connector) {
connector->new_encoder =
to_intel_encoder(connector->base.encoder);
}
for_each_intel_encoder(dev, encoder) {
encoder->new_crtc =
to_intel_crtc(encoder->base.crtc);
}
for_each_intel_crtc(dev, crtc) {
crtc->new_enabled = crtc->base.state->enable;
}
}
/* Transitional helper to copy current connector/encoder state to
* connector->state. This is needed so that code that is partially
* converted to atomic does the right thing.
*/
static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
{
struct intel_connector *connector;
for_each_intel_connector(dev, connector) {
if (connector->base.encoder) {
connector->base.state->best_encoder =
connector->base.encoder;
connector->base.state->crtc =
connector->base.encoder->crtc;
} else {
connector->base.state->best_encoder = NULL;
connector->base.state->crtc = NULL;
}
}
}
/* Fixup legacy state after an atomic state swap.
*/
static void intel_modeset_fixup_state(struct drm_atomic_state *state)
{
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
for_each_intel_connector(state->dev, connector) {
connector->base.encoder = connector->base.state->best_encoder;
if (connector->base.encoder)
connector->base.encoder->crtc =
connector->base.state->crtc;
}
/* Update crtc of disabled encoders */
for_each_intel_encoder(state->dev, encoder) {
int num_connectors = 0;
for_each_intel_connector(state->dev, connector)
if (connector->base.encoder == &encoder->base)
num_connectors++;
if (num_connectors == 0)
encoder->base.crtc = NULL;
}
for_each_intel_crtc(state->dev, crtc) {
crtc->base.enabled = crtc->base.state->enable;
crtc->config = to_intel_crtc_state(crtc->base.state);
}
/* Copy the new configuration to the staged state, to keep the few
* pieces of code that haven't been converted yet happy */
intel_modeset_update_staged_output_state(state->dev);
}
static void
connected_sink_compute_bpp(struct intel_connector *connector,
struct intel_crtc_state *pipe_config)
{
int bpp = pipe_config->pipe_bpp;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
connector->base.base.id,
connector->base.name);
/* Don't use an invalid EDID bpc value */
if (connector->base.display_info.bpc &&
connector->base.display_info.bpc * 3 < bpp) {
DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
bpp, connector->base.display_info.bpc*3);
pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
}
/* Clamp bpp to 8 on screens without EDID 1.4 */
if (connector->base.display_info.bpc == 0 && bpp > 24) {
DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
bpp);
pipe_config->pipe_bpp = 24;
}
}
static int
compute_baseline_pipe_bpp(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_atomic_state *state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int bpp, i;
if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
bpp = 10*3;
else if (INTEL_INFO(dev)->gen >= 5)
bpp = 12*3;
else
bpp = 8*3;
pipe_config->pipe_bpp = bpp;
state = pipe_config->base.state;
/* Clamp display bpp to EDID value */
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
connected_sink_compute_bpp(to_intel_connector(connector),
pipe_config);
}
return bpp;
}
static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
{
DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
"type: 0x%x flags: 0x%x\n",
mode->crtc_clock,
mode->crtc_hdisplay, mode->crtc_hsync_start,
mode->crtc_hsync_end, mode->crtc_htotal,
mode->crtc_vdisplay, mode->crtc_vsync_start,
mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
}
static void intel_dump_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config,
const char *context)
{
struct drm_device *dev = crtc->base.dev;
struct drm_plane *plane;
struct intel_plane *intel_plane;
struct intel_plane_state *state;
struct drm_framebuffer *fb;
DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
context, pipe_config, pipe_name(crtc->pipe));
DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
pipe_config->pipe_bpp, pipe_config->dither);
DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
pipe_config->has_pch_encoder,
pipe_config->fdi_lanes,
pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
pipe_config->fdi_m_n.tu);
DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
pipe_config->has_dp_encoder,
pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
pipe_config->dp_m_n.tu);
DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
pipe_config->has_dp_encoder,
pipe_config->dp_m2_n2.gmch_m,
pipe_config->dp_m2_n2.gmch_n,
pipe_config->dp_m2_n2.link_m,
pipe_config->dp_m2_n2.link_n,
pipe_config->dp_m2_n2.tu);
DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
pipe_config->has_audio,
pipe_config->has_infoframe);
DRM_DEBUG_KMS("requested mode:\n");
drm_mode_debug_printmodeline(&pipe_config->base.mode);
DRM_DEBUG_KMS("adjusted mode:\n");
drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
DRM_DEBUG_KMS("pipe src size: %dx%d\n",
pipe_config->pipe_src_w, pipe_config->pipe_src_h);
DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
crtc->num_scalers,
pipe_config->scaler_state.scaler_users,
pipe_config->scaler_state.scaler_id);
DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
pipe_config->gmch_pfit.control,
pipe_config->gmch_pfit.pgm_ratios,
pipe_config->gmch_pfit.lvds_border_bits);
DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
pipe_config->pch_pfit.pos,
pipe_config->pch_pfit.size,
pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
if (IS_BROXTON(dev)) {
DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
"pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
"pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
pipe_config->ddi_pll_sel,
pipe_config->dpll_hw_state.ebb0,
pipe_config->dpll_hw_state.pll0,
pipe_config->dpll_hw_state.pll1,
pipe_config->dpll_hw_state.pll2,
pipe_config->dpll_hw_state.pll3,
pipe_config->dpll_hw_state.pll6,
pipe_config->dpll_hw_state.pll8,
pipe_config->dpll_hw_state.pcsdw12);
} else if (IS_SKYLAKE(dev)) {
DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
"ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
pipe_config->ddi_pll_sel,
pipe_config->dpll_hw_state.ctrl1,
pipe_config->dpll_hw_state.cfgcr1,
pipe_config->dpll_hw_state.cfgcr2);
} else if (HAS_DDI(dev)) {
DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
pipe_config->ddi_pll_sel,
pipe_config->dpll_hw_state.wrpll);
} else {
DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
"fp0: 0x%x, fp1: 0x%x\n",
pipe_config->dpll_hw_state.dpll,
pipe_config->dpll_hw_state.dpll_md,
pipe_config->dpll_hw_state.fp0,
pipe_config->dpll_hw_state.fp1);
}
DRM_DEBUG_KMS("planes on this crtc\n");
list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
intel_plane = to_intel_plane(plane);
if (intel_plane->pipe != crtc->pipe)
continue;
state = to_intel_plane_state(plane->state);
fb = state->base.fb;
if (!fb) {
DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
"disabled, scaler_id = %d\n",
plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
plane->base.id, intel_plane->pipe,
(crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
drm_plane_index(plane), state->scaler_id);
continue;
}
DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
plane->base.id, intel_plane->pipe,
crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
drm_plane_index(plane));
DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
fb->base.id, fb->width, fb->height, fb->pixel_format);
DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
state->scaler_id,
state->src.x1 >> 16, state->src.y1 >> 16,
drm_rect_width(&state->src) >> 16,
drm_rect_height(&state->src) >> 16,
state->dst.x1, state->dst.y1,
drm_rect_width(&state->dst), drm_rect_height(&state->dst));
}
}
static bool encoders_cloneable(const struct intel_encoder *a,
const struct intel_encoder *b)
{
/* masks could be asymmetric, so check both ways */
return a == b || (a->cloneable & (1 << b->type) &&
b->cloneable & (1 << a->type));
}
static bool check_single_encoder_cloning(struct drm_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_encoder *source_encoder;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int i;
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
source_encoder =
to_intel_encoder(connector_state->best_encoder);
if (!encoders_cloneable(encoder, source_encoder))
return false;
}
return true;
}
static bool check_encoder_cloning(struct drm_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_encoder *encoder;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int i;
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
if (!check_single_encoder_cloning(state, crtc, encoder))
return false;
}
return true;
}
static bool check_digital_port_conflicts(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct intel_encoder *encoder;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
unsigned int used_ports = 0;
int i;
/*
* Walk the connector list instead of the encoder
* list to detect the problem on ddi platforms
* where there's just one encoder per digital port.
*/
for_each_connector_in_state(state, connector, connector_state, i) {
if (!connector_state->best_encoder)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
WARN_ON(!connector_state->crtc);
switch (encoder->type) {
unsigned int port_mask;
case INTEL_OUTPUT_UNKNOWN:
if (WARN_ON(!HAS_DDI(dev)))
break;
case INTEL_OUTPUT_DISPLAYPORT:
case INTEL_OUTPUT_HDMI:
case INTEL_OUTPUT_EDP:
port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
/* the same port mustn't appear more than once */
if (used_ports & port_mask)
return false;
used_ports |= port_mask;
default:
break;
}
}
return true;
}
static void
clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
{
struct drm_crtc_state tmp_state;
struct intel_crtc_scaler_state scaler_state;
struct intel_dpll_hw_state dpll_hw_state;
enum intel_dpll_id shared_dpll;
uint32_t ddi_pll_sel;
/* FIXME: before the switch to atomic started, a new pipe_config was
* kzalloc'd. Code that depends on any field being zero should be
* fixed, so that the crtc_state can be safely duplicated. For now,
* only fields that are know to not cause problems are preserved. */
tmp_state = crtc_state->base;
scaler_state = crtc_state->scaler_state;
shared_dpll = crtc_state->shared_dpll;
dpll_hw_state = crtc_state->dpll_hw_state;
ddi_pll_sel = crtc_state->ddi_pll_sel;
memset(crtc_state, 0, sizeof *crtc_state);
crtc_state->base = tmp_state;
crtc_state->scaler_state = scaler_state;
crtc_state->shared_dpll = shared_dpll;
crtc_state->dpll_hw_state = dpll_hw_state;
crtc_state->ddi_pll_sel = ddi_pll_sel;
}
static int
intel_modeset_pipe_config(struct drm_crtc *crtc,
struct drm_atomic_state *state,
struct intel_crtc_state *pipe_config)
{
struct intel_encoder *encoder;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int base_bpp, ret = -EINVAL;
int i;
bool retry = true;
if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
return -EINVAL;
}
if (!check_digital_port_conflicts(state)) {
DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
return -EINVAL;
}
clear_intel_crtc_state(pipe_config);
pipe_config->cpu_transcoder =
(enum transcoder) to_intel_crtc(crtc)->pipe;
/*
* Sanitize sync polarity flags based on requested ones. If neither
* positive or negative polarity is requested, treat this as meaning
* negative polarity.
*/
if (!(pipe_config->base.adjusted_mode.flags &
(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
if (!(pipe_config->base.adjusted_mode.flags &
(DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
/* Compute a starting value for pipe_config->pipe_bpp taking the source
* plane pixel format and any sink constraints into account. Returns the
* source plane bpp so that dithering can be selected on mismatches
* after encoders and crtc also have had their say. */
base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
pipe_config);
if (base_bpp < 0)
goto fail;
/*
* Determine the real pipe dimensions. Note that stereo modes can
* increase the actual pipe size due to the frame doubling and
* insertion of additional space for blanks between the frame. This
* is stored in the crtc timings. We use the requested mode to do this
* computation to clearly distinguish it from the adjusted mode, which
* can be changed by the connectors in the below retry loop.
*/
drm_crtc_get_hv_timing(&pipe_config->base.mode,
&pipe_config->pipe_src_w,
&pipe_config->pipe_src_h);
encoder_retry:
/* Ensure the port clock defaults are reset when retrying. */
pipe_config->port_clock = 0;
pipe_config->pixel_multiplier = 1;
/* Fill in default crtc timings, allow encoders to overwrite them. */
drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
CRTC_STEREO_DOUBLE);
/* Pass our mode to the connectors and the CRTC to give them a chance to
* adjust it according to limitations or connector properties, and also
* a chance to reject the mode entirely.
*/
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
if (!(encoder->compute_config(encoder, pipe_config))) {
DRM_DEBUG_KMS("Encoder config failure\n");
goto fail;
}
}
/* Set default port clock if not overwritten by the encoder. Needs to be
* done afterwards in case the encoder adjusts the mode. */
if (!pipe_config->port_clock)
pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
* pipe_config->pixel_multiplier;
ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
if (ret < 0) {
DRM_DEBUG_KMS("CRTC fixup failed\n");
goto fail;
}
if (ret == RETRY) {
if (WARN(!retry, "loop in pipe configuration computation\n")) {
ret = -EINVAL;
goto fail;
}
DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
retry = false;
goto encoder_retry;
}
pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
return 0;
fail:
return ret;
}
static bool intel_crtc_in_use(struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
struct drm_device *dev = crtc->dev;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
if (encoder->crtc == crtc)
return true;
return false;
}
static bool
needs_modeset(struct drm_crtc_state *state)
{
return state->mode_changed || state->active_changed;
}
static void
intel_modeset_update_state(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *intel_encoder;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
struct drm_connector *connector;
int i;
intel_shared_dpll_commit(dev_priv);
for_each_intel_encoder(dev, intel_encoder) {
if (!intel_encoder->base.crtc)
continue;
for_each_crtc_in_state(state, crtc, crtc_state, i)
if (crtc == intel_encoder->base.crtc)
break;
if (crtc != intel_encoder->base.crtc)
continue;
if (crtc_state->enable && needs_modeset(crtc_state))
intel_encoder->connectors_active = false;
}
drm_atomic_helper_swap_state(state->dev, state);
intel_modeset_fixup_state(state);
/* Double check state. */
for_each_crtc(dev, crtc) {
WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
}
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (!connector->encoder || !connector->encoder->crtc)
continue;
for_each_crtc_in_state(state, crtc, crtc_state, i)
if (crtc == connector->encoder->crtc)
break;
if (crtc != connector->encoder->crtc)
continue;
if (crtc->state->enable && needs_modeset(crtc->state)) {
struct drm_property *dpms_property =
dev->mode_config.dpms_property;
connector->dpms = DRM_MODE_DPMS_ON;
drm_object_property_set_value(&connector->base,
dpms_property,
DRM_MODE_DPMS_ON);
intel_encoder = to_intel_encoder(connector->encoder);
intel_encoder->connectors_active = true;
}
}
}
static bool intel_fuzzy_clock_check(int clock1, int clock2)
{
int diff;
if (clock1 == clock2)
return true;
if (!clock1 || !clock2)
return false;
diff = abs(clock1 - clock2);
if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
return true;
return false;
}
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
list_for_each_entry((intel_crtc), \
&(dev)->mode_config.crtc_list, \
base.head) \
if (mask & (1 <<(intel_crtc)->pipe))
static bool
intel_pipe_config_compare(struct drm_device *dev,
struct intel_crtc_state *current_config,
struct intel_crtc_state *pipe_config)
{
#define PIPE_CONF_CHECK_X(name) \
if (current_config->name != pipe_config->name) { \
DRM_ERROR("mismatch in " #name " " \
"(expected 0x%08x, found 0x%08x)\n", \
current_config->name, \
pipe_config->name); \
return false; \
}
#define PIPE_CONF_CHECK_I(name) \
if (current_config->name != pipe_config->name) { \
DRM_ERROR("mismatch in " #name " " \
"(expected %i, found %i)\n", \
current_config->name, \
pipe_config->name); \
return false; \
}
/* This is required for BDW+ where there is only one set of registers for
* switching between high and low RR.
* This macro can be used whenever a comparison has to be made between one
* hw state and multiple sw state variables.
*/
#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
if ((current_config->name != pipe_config->name) && \
(current_config->alt_name != pipe_config->name)) { \
DRM_ERROR("mismatch in " #name " " \
"(expected %i or %i, found %i)\n", \
current_config->name, \
current_config->alt_name, \
pipe_config->name); \
return false; \
}
#define PIPE_CONF_CHECK_FLAGS(name, mask) \
if ((current_config->name ^ pipe_config->name) & (mask)) { \
DRM_ERROR("mismatch in " #name "(" #mask ") " \
"(expected %i, found %i)\n", \
current_config->name & (mask), \
pipe_config->name & (mask)); \
return false; \
}
#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
DRM_ERROR("mismatch in " #name " " \
"(expected %i, found %i)\n", \
current_config->name, \
pipe_config->name); \
return false; \
}
#define PIPE_CONF_QUIRK(quirk) \
((current_config->quirks | pipe_config->quirks) & (quirk))
PIPE_CONF_CHECK_I(cpu_transcoder);
PIPE_CONF_CHECK_I(has_pch_encoder);
PIPE_CONF_CHECK_I(fdi_lanes);
PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
PIPE_CONF_CHECK_I(fdi_m_n.link_m);
PIPE_CONF_CHECK_I(fdi_m_n.link_n);
PIPE_CONF_CHECK_I(fdi_m_n.tu);
PIPE_CONF_CHECK_I(has_dp_encoder);
if (INTEL_INFO(dev)->gen < 8) {
PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
PIPE_CONF_CHECK_I(dp_m_n.link_m);
PIPE_CONF_CHECK_I(dp_m_n.link_n);
PIPE_CONF_CHECK_I(dp_m_n.tu);
if (current_config->has_drrs) {
PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
PIPE_CONF_CHECK_I(dp_m2_n2.tu);
}
} else {
PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
}
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
PIPE_CONF_CHECK_I(pixel_multiplier);
PIPE_CONF_CHECK_I(has_hdmi_sink);
if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
IS_VALLEYVIEW(dev))
PIPE_CONF_CHECK_I(limited_color_range);
PIPE_CONF_CHECK_I(has_infoframe);
PIPE_CONF_CHECK_I(has_audio);
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_INTERLACE);
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_PHSYNC);
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_NHSYNC);
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_PVSYNC);
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_NVSYNC);
}
PIPE_CONF_CHECK_I(pipe_src_w);
PIPE_CONF_CHECK_I(pipe_src_h);
/*
* FIXME: BIOS likes to set up a cloned config with lvds+external
* screen. Since we don't yet re-compute the pipe config when moving
* just the lvds port away to another pipe the sw tracking won't match.
*
* Proper atomic modesets with recomputed global state will fix this.
* Until then just don't check gmch state for inherited modes.
*/
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
PIPE_CONF_CHECK_I(gmch_pfit.control);
/* pfit ratios are autocomputed by the hw on gen4+ */
if (INTEL_INFO(dev)->gen < 4)
PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
}
PIPE_CONF_CHECK_I(pch_pfit.enabled);
if (current_config->pch_pfit.enabled) {
PIPE_CONF_CHECK_I(pch_pfit.pos);
PIPE_CONF_CHECK_I(pch_pfit.size);
}
PIPE_CONF_CHECK_I(scaler_state.scaler_id);
/* BDW+ don't expose a synchronous way to read the state */
if (IS_HASWELL(dev))
PIPE_CONF_CHECK_I(ips_enabled);
PIPE_CONF_CHECK_I(double_wide);
PIPE_CONF_CHECK_X(ddi_pll_sel);
PIPE_CONF_CHECK_I(shared_dpll);
PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
PIPE_CONF_CHECK_I(pipe_bpp);
PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
#undef PIPE_CONF_CHECK_X
#undef PIPE_CONF_CHECK_I
#undef PIPE_CONF_CHECK_I_ALT
#undef PIPE_CONF_CHECK_FLAGS
#undef PIPE_CONF_CHECK_CLOCK_FUZZY
#undef PIPE_CONF_QUIRK
return true;
}
static void check_wm_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct skl_ddb_allocation hw_ddb, *sw_ddb;
struct intel_crtc *intel_crtc;
int plane;
if (INTEL_INFO(dev)->gen < 9)
return;
skl_ddb_get_hw_state(dev_priv, &hw_ddb);
sw_ddb = &dev_priv->wm.skl_hw.ddb;
for_each_intel_crtc(dev, intel_crtc) {
struct skl_ddb_entry *hw_entry, *sw_entry;
const enum pipe pipe = intel_crtc->pipe;
if (!intel_crtc->active)
continue;
/* planes */
for_each_plane(dev_priv, pipe, plane) {
hw_entry = &hw_ddb.plane[pipe][plane];
sw_entry = &sw_ddb->plane[pipe][plane];
if (skl_ddb_entry_equal(hw_entry, sw_entry))
continue;
DRM_ERROR("mismatch in DDB state pipe %c plane %d "
"(expected (%u,%u), found (%u,%u))\n",
pipe_name(pipe), plane + 1,
sw_entry->start, sw_entry->end,
hw_entry->start, hw_entry->end);
}
/* cursor */
hw_entry = &hw_ddb.cursor[pipe];
sw_entry = &sw_ddb->cursor[pipe];
if (skl_ddb_entry_equal(hw_entry, sw_entry))
continue;
DRM_ERROR("mismatch in DDB state pipe %c cursor "
"(expected (%u,%u), found (%u,%u))\n",
pipe_name(pipe),
sw_entry->start, sw_entry->end,
hw_entry->start, hw_entry->end);
}
}
static void
check_connector_state(struct drm_device *dev)
{
struct intel_connector *connector;
for_each_intel_connector(dev, connector) {
/* This also checks the encoder/connector hw state with the
* ->get_hw_state callbacks. */
intel_connector_check_state(connector);
I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
"connector's staged encoder doesn't match current encoder\n");
}
}
static void
check_encoder_state(struct drm_device *dev)
{
struct intel_encoder *encoder;
struct intel_connector *connector;
for_each_intel_encoder(dev, encoder) {
bool enabled = false;
bool active = false;
enum pipe pipe, tracked_pipe;
DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
encoder->base.base.id,
encoder->base.name);
I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
"encoder's stage crtc doesn't match current crtc\n");
I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
"encoder's active_connectors set, but no crtc\n");
for_each_intel_connector(dev, connector) {
if (connector->base.encoder != &encoder->base)
continue;
enabled = true;
if (connector->base.dpms != DRM_MODE_DPMS_OFF)
active = true;
}
/*
* for MST connectors if we unplug the connector is gone
* away but the encoder is still connected to a crtc
* until a modeset happens in response to the hotplug.
*/
if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
continue;
I915_STATE_WARN(!!encoder->base.crtc != enabled,
"encoder's enabled state mismatch "
"(expected %i, found %i)\n",
!!encoder->base.crtc, enabled);
I915_STATE_WARN(active && !encoder->base.crtc,
"active encoder with no crtc\n");
I915_STATE_WARN(encoder->connectors_active != active,
"encoder's computed active state doesn't match tracked active state "
"(expected %i, found %i)\n", active, encoder->connectors_active);
active = encoder->get_hw_state(encoder, &pipe);
I915_STATE_WARN(active != encoder->connectors_active,
"encoder's hw state doesn't match sw tracking "
"(expected %i, found %i)\n",
encoder->connectors_active, active);
if (!encoder->base.crtc)
continue;
tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
I915_STATE_WARN(active && pipe != tracked_pipe,
"active encoder's pipe doesn't match"
"(expected %i, found %i)\n",
tracked_pipe, pipe);
}
}
static void
check_crtc_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_crtc_state pipe_config;
for_each_intel_crtc(dev, crtc) {
bool enabled = false;
bool active = false;
memset(&pipe_config, 0, sizeof(pipe_config));
DRM_DEBUG_KMS("[CRTC:%d]\n",
crtc->base.base.id);
I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
"active crtc, but not enabled in sw tracking\n");
for_each_intel_encoder(dev, encoder) {
if (encoder->base.crtc != &crtc->base)
continue;
enabled = true;
if (encoder->connectors_active)
active = true;
}
I915_STATE_WARN(active != crtc->active,
"crtc's computed active state doesn't match tracked active state "
"(expected %i, found %i)\n", active, crtc->active);
I915_STATE_WARN(enabled != crtc->base.state->enable,
"crtc's computed enabled state doesn't match tracked enabled state "
"(expected %i, found %i)\n", enabled,
crtc->base.state->enable);
active = dev_priv->display.get_pipe_config(crtc,
&pipe_config);
/* hw state is inconsistent with the pipe quirk */
if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
active = crtc->active;
for_each_intel_encoder(dev, encoder) {
enum pipe pipe;
if (encoder->base.crtc != &crtc->base)
continue;
if (encoder->get_hw_state(encoder, &pipe))
encoder->get_config(encoder, &pipe_config);
}
I915_STATE_WARN(crtc->active != active,
"crtc active state doesn't match with hw state "
"(expected %i, found %i)\n", crtc->active, active);
if (active &&
!intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
I915_STATE_WARN(1, "pipe state doesn't match!\n");
intel_dump_pipe_config(crtc, &pipe_config,
"[hw state]");
intel_dump_pipe_config(crtc, crtc->config,
"[sw state]");
}
}
}
static void
check_shared_dpll_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc;
struct intel_dpll_hw_state dpll_hw_state;
int i;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
int enabled_crtcs = 0, active_crtcs = 0;
bool active;
memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
DRM_DEBUG_KMS("%s\n", pll->name);
active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
"more active pll users than references: %i vs %i\n",
pll->active, hweight32(pll->config.crtc_mask));
I915_STATE_WARN(pll->active && !pll->on,
"pll in active use but not on in sw tracking\n");
I915_STATE_WARN(pll->on && !pll->active,
"pll in on but not on in use in sw tracking\n");
I915_STATE_WARN(pll->on != active,
"pll on state mismatch (expected %i, found %i)\n",
pll->on, active);
for_each_intel_crtc(dev, crtc) {
if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
enabled_crtcs++;
if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
active_crtcs++;
}
I915_STATE_WARN(pll->active != active_crtcs,
"pll active crtcs mismatch (expected %i, found %i)\n",
pll->active, active_crtcs);
I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
"pll enabled crtcs mismatch (expected %i, found %i)\n",
hweight32(pll->config.crtc_mask), enabled_crtcs);
I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
sizeof(dpll_hw_state)),
"pll hw state mismatch\n");
}
}
void
intel_modeset_check_state(struct drm_device *dev)
{
check_wm_state(dev);
check_connector_state(dev);
check_encoder_state(dev);
check_crtc_state(dev);
check_shared_dpll_state(dev);
}
void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
int dotclock)
{
/*
* FDI already provided one idea for the dotclock.
* Yell if the encoder disagrees.
*/
WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
"FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
pipe_config->base.adjusted_mode.crtc_clock, dotclock);
}
static void update_scanline_offset(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
/*
* The scanline counter increments at the leading edge of hsync.
*
* On most platforms it starts counting from vtotal-1 on the
* first active line. That means the scanline counter value is
* always one less than what we would expect. Ie. just after
* start of vblank, which also occurs at start of hsync (on the
* last active line), the scanline counter will read vblank_start-1.
*
* On gen2 the scanline counter starts counting from 1 instead
* of vtotal-1, so we have to subtract one (or rather add vtotal-1
* to keep the value positive), instead of adding one.
*
* On HSW+ the behaviour of the scanline counter depends on the output
* type. For DP ports it behaves like most other platforms, but on HDMI
* there's an extra 1 line difference. So we need to add two instead of
* one to the value.
*/
if (IS_GEN2(dev)) {
const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
int vtotal;
vtotal = mode->crtc_vtotal;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vtotal /= 2;
crtc->scanline_offset = vtotal - 1;
} else if (HAS_DDI(dev) &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
crtc->scanline_offset = 2;
} else
crtc->scanline_offset = 1;
}
static struct intel_crtc_state *
intel_modeset_compute_config(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct intel_crtc_state *pipe_config;
int ret = 0;
ret = drm_atomic_add_affected_connectors(state, crtc);
if (ret)
return ERR_PTR(ret);
ret = drm_atomic_helper_check_modeset(state->dev, state);
if (ret)
return ERR_PTR(ret);
/*
* Note this needs changes when we start tracking multiple modes
* and crtcs. At that point we'll need to compute the whole config
* (i.e. one pipe_config for each crtc) rather than just the one
* for this crtc.
*/
pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
if (IS_ERR(pipe_config))
return pipe_config;
if (!pipe_config->base.enable)
return pipe_config;
ret = intel_modeset_pipe_config(crtc, state, pipe_config);
if (ret)
return ERR_PTR(ret);
/* Check things that can only be changed through modeset */
if (pipe_config->has_audio !=
to_intel_crtc(crtc)->config->has_audio)
pipe_config->base.mode_changed = true;
/*
* Note we have an issue here with infoframes: current code
* only updates them on the full mode set path per hw
* requirements. So here we should be checking for any
* required changes and forcing a mode set.
*/
intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,"[modeset]");
ret = drm_atomic_helper_check_planes(state->dev, state);
if (ret)
return ERR_PTR(ret);
return pipe_config;
}
static int __intel_set_mode_setup_plls(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
unsigned clear_pipes = 0;
struct intel_crtc *intel_crtc;
struct intel_crtc_state *intel_crtc_state;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
int ret = 0;
int i;
if (!dev_priv->display.crtc_compute_clock)
return 0;
for_each_crtc_in_state(state, crtc, crtc_state, i) {
intel_crtc = to_intel_crtc(crtc);
intel_crtc_state = to_intel_crtc_state(crtc_state);
if (needs_modeset(crtc_state)) {
clear_pipes |= 1 << intel_crtc->pipe;
intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
}
}
ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
if (ret)
goto done;
for_each_crtc_in_state(state, crtc, crtc_state, i) {
if (!needs_modeset(crtc_state) || !crtc_state->enable)
continue;
intel_crtc = to_intel_crtc(crtc);
intel_crtc_state = to_intel_crtc_state(crtc_state);
ret = dev_priv->display.crtc_compute_clock(intel_crtc,
intel_crtc_state);
if (ret) {
intel_shared_dpll_abort_config(dev_priv);
goto done;
}
}
done:
return ret;
}
/* Code that should eventually be part of atomic_check() */
static int __intel_set_mode_checks(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
int ret;
/*
* See if the config requires any additional preparation, e.g.
* to adjust global state with pipes off. We need to do this
* here so we can get the modeset_pipe updated config for the new
* mode set on this crtc. For other crtcs we need to use the
* adjusted_mode bits in the crtc directly.
*/
if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
ret = valleyview_modeset_global_pipes(state);
if (ret)
return ret;
}
ret = __intel_set_mode_setup_plls(state);
if (ret)
return ret;
return 0;
}
static int __intel_set_mode(struct drm_crtc *modeset_crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = modeset_crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_atomic_state *state = pipe_config->base.state;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
int ret = 0;
int i;
ret = __intel_set_mode_checks(state);
if (ret < 0)
return ret;
ret = drm_atomic_helper_prepare_planes(dev, state);
if (ret)
return ret;
for_each_crtc_in_state(state, crtc, crtc_state, i) {
if (!needs_modeset(crtc_state))
continue;
if (!crtc_state->enable) {
intel_crtc_disable(crtc);
} else if (crtc->state->enable) {
intel_crtc_disable_planes(crtc);
dev_priv->display.crtc_disable(crtc);
}
}
/* crtc->mode is already used by the ->mode_set callbacks, hence we need
* to set it here already despite that we pass it down the callchain.
*
* Note we'll need to fix this up when we start tracking multiple
* pipes; here we assume a single modeset_pipe and only track the
* single crtc and mode.
*/
if (pipe_config->base.enable && needs_modeset(&pipe_config->base)) {
modeset_crtc->mode = pipe_config->base.mode;
/*
* Calculate and store various constants which
* are later needed by vblank and swap-completion
* timestamping. They are derived from true hwmode.
*/
drm_calc_timestamping_constants(modeset_crtc,
&pipe_config->base.adjusted_mode);
}
/* Only after disabling all output pipelines that will be changed can we
* update the the output configuration. */
intel_modeset_update_state(state);
/* The state has been swaped above, so state actually contains the
* old state now. */
modeset_update_crtc_power_domains(state);
drm_atomic_helper_commit_planes(dev, state);
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
for_each_crtc_in_state(state, crtc, crtc_state, i) {
if (!needs_modeset(crtc->state) || !crtc->state->enable)
continue;
update_scanline_offset(to_intel_crtc(crtc));
dev_priv->display.crtc_enable(crtc);
intel_crtc_enable_planes(crtc);
}
/* FIXME: add subpixel order */
drm_atomic_helper_cleanup_planes(dev, state);
drm_atomic_state_free(state);
return 0;
}
static int intel_set_mode_with_config(struct drm_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
int ret;
ret = __intel_set_mode(crtc, pipe_config);
if (ret == 0)
intel_modeset_check_state(crtc->dev);
return ret;
}
static int intel_set_mode(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct intel_crtc_state *pipe_config;
int ret = 0;
pipe_config = intel_modeset_compute_config(crtc, state);
if (IS_ERR(pipe_config)) {
ret = PTR_ERR(pipe_config);
goto out;
}
ret = intel_set_mode_with_config(crtc, pipe_config);
if (ret)
goto out;
out:
return ret;
}
void intel_crtc_restore_mode(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_atomic_state *state;
struct intel_crtc *intel_crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
struct drm_connector_state *connector_state;
struct intel_crtc_state *crtc_state;
int ret;
state = drm_atomic_state_alloc(dev);
if (!state) {
DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
crtc->base.id);
return;
}
state->acquire_ctx = dev->mode_config.acquire_ctx;
/* The force restore path in the HW readout code relies on the staged
* config still keeping the user requested config while the actual
* state has been overwritten by the configuration read from HW. We
* need to copy the staged config to the atomic state, otherwise the
* mode set will just reapply the state the HW is already in. */
for_each_intel_encoder(dev, encoder) {
if (&encoder->new_crtc->base != crtc)
continue;
for_each_intel_connector(dev, connector) {
if (connector->new_encoder != encoder)
continue;
connector_state = drm_atomic_get_connector_state(state, &connector->base);
if (IS_ERR(connector_state)) {
DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
connector->base.base.id,
connector->base.name,
PTR_ERR(connector_state));
continue;
}
connector_state->crtc = crtc;
connector_state->best_encoder = &encoder->base;
}
}
for_each_intel_crtc(dev, intel_crtc) {
if (intel_crtc->new_enabled == intel_crtc->base.enabled)
continue;
crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(crtc_state)) {
DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
intel_crtc->base.base.id,
PTR_ERR(crtc_state));
continue;
}
crtc_state->base.active = crtc_state->base.enable =
intel_crtc->new_enabled;
if (&intel_crtc->base == crtc)
drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
}
intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
crtc->primary->fb, crtc->x, crtc->y);
ret = intel_set_mode(crtc, state);
if (ret)
drm_atomic_state_free(state);
}
#undef for_each_intel_crtc_masked
static bool intel_connector_in_mode_set(struct intel_connector *connector,
struct drm_mode_set *set)
{
int ro;
for (ro = 0; ro < set->num_connectors; ro++)
if (set->connectors[ro] == &connector->base)
return true;
return false;
}
static int
intel_modeset_stage_output_state(struct drm_device *dev,
struct drm_mode_set *set,
struct drm_atomic_state *state)
{
struct intel_connector *connector;
struct drm_connector *drm_connector;
struct drm_connector_state *connector_state;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
int i, ret;
/* The upper layers ensure that we either disable a crtc or have a list
* of connectors. For paranoia, double-check this. */
WARN_ON(!set->fb && (set->num_connectors != 0));
WARN_ON(set->fb && (set->num_connectors == 0));
for_each_intel_connector(dev, connector) {
bool in_mode_set = intel_connector_in_mode_set(connector, set);
if (!in_mode_set && connector->base.state->crtc != set->crtc)
continue;
connector_state =
drm_atomic_get_connector_state(state, &connector->base);
if (IS_ERR(connector_state))
return PTR_ERR(connector_state);
if (in_mode_set) {
int pipe = to_intel_crtc(set->crtc)->pipe;
connector_state->best_encoder =
&intel_find_encoder(connector, pipe)->base;
}
if (connector->base.state->crtc != set->crtc)
continue;
/* If we disable the crtc, disable all its connectors. Also, if
* the connector is on the changing crtc but not on the new
* connector list, disable it. */
if (!set->fb || !in_mode_set) {
connector_state->best_encoder = NULL;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
connector->base.base.id,
connector->base.name);
}
}
/* connector->new_encoder is now updated for all connectors. */
for_each_connector_in_state(state, drm_connector, connector_state, i) {
connector = to_intel_connector(drm_connector);
if (!connector_state->best_encoder) {
ret = drm_atomic_set_crtc_for_connector(connector_state,
NULL);
if (ret)
return ret;
continue;
}
if (intel_connector_in_mode_set(connector, set)) {
struct drm_crtc *crtc = connector->base.state->crtc;
/* If this connector was in a previous crtc, add it
* to the state. We might need to disable it. */
if (crtc) {
crtc_state =
drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
}
ret = drm_atomic_set_crtc_for_connector(connector_state,
set->crtc);
if (ret)
return ret;
}
/* Make sure the new CRTC will work with the encoder */
if (!drm_encoder_crtc_ok(connector_state->best_encoder,
connector_state->crtc)) {
return -EINVAL;
}
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
connector->base.base.id,
connector->base.name,
connector_state->crtc->base.id);
if (connector_state->best_encoder != &connector->encoder->base)
connector->encoder =
to_intel_encoder(connector_state->best_encoder);
}
for_each_crtc_in_state(state, crtc, crtc_state, i) {
bool has_connectors;
ret = drm_atomic_add_affected_connectors(state, crtc);
if (ret)
return ret;
has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
if (has_connectors != crtc_state->enable)
crtc_state->enable =
crtc_state->active = has_connectors;
}
ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
set->fb, set->x, set->y);
if (ret)
return ret;
crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
if (set->mode)
drm_mode_copy(&crtc_state->mode, set->mode);
if (set->num_connectors)
crtc_state->active = true;
return 0;
}
static bool primary_plane_visible(struct drm_crtc *crtc)
{
struct intel_plane_state *plane_state =
to_intel_plane_state(crtc->primary->state);
return plane_state->visible;
}
static int intel_crtc_set_config(struct drm_mode_set *set)
{
struct drm_device *dev;
struct drm_atomic_state *state = NULL;
struct intel_crtc_state *pipe_config;
bool primary_plane_was_visible;
int ret;
BUG_ON(!set);
BUG_ON(!set->crtc);
BUG_ON(!set->crtc->helper_private);
/* Enforce sane interface api - has been abused by the fb helper. */
BUG_ON(!set->mode && set->fb);
BUG_ON(set->fb && set->num_connectors == 0);
if (set->fb) {
DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
set->crtc->base.id, set->fb->base.id,
(int)set->num_connectors, set->x, set->y);
} else {
DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
}
dev = set->crtc->dev;
state = drm_atomic_state_alloc(dev);
if (!state)
return -ENOMEM;
state->acquire_ctx = dev->mode_config.acquire_ctx;
ret = intel_modeset_stage_output_state(dev, set, state);
if (ret)
goto out;
pipe_config = intel_modeset_compute_config(set->crtc, state);
if (IS_ERR(pipe_config)) {
ret = PTR_ERR(pipe_config);
goto out;
}
intel_update_pipe_size(to_intel_crtc(set->crtc));
primary_plane_was_visible = primary_plane_visible(set->crtc);
ret = intel_set_mode_with_config(set->crtc, pipe_config);
if (ret == 0 &&
pipe_config->base.enable &&
pipe_config->base.planes_changed &&
!needs_modeset(&pipe_config->base)) {
struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
/*
* We need to make sure the primary plane is re-enabled if it
* has previously been turned off.
*/
if (ret == 0 && !primary_plane_was_visible &&
primary_plane_visible(set->crtc)) {
WARN_ON(!intel_crtc->active);
intel_post_enable_primary(set->crtc);
}
/*
* In the fastboot case this may be our only check of the
* state after boot. It would be better to only do it on
* the first update, but we don't have a nice way of doing that
* (and really, set_config isn't used much for high freq page
* flipping, so increasing its cost here shouldn't be a big
* deal).
*/
if (i915.fastboot && ret == 0)
intel_modeset_check_state(set->crtc->dev);
}
if (ret) {
DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
set->crtc->base.id, ret);
}
out:
if (ret)
drm_atomic_state_free(state);
return ret;
}
static const struct drm_crtc_funcs intel_crtc_funcs = {
.gamma_set = intel_crtc_gamma_set,
.set_config = intel_crtc_set_config,
.destroy = intel_crtc_destroy,
.page_flip = intel_crtc_page_flip,
.atomic_duplicate_state = intel_crtc_duplicate_state,
.atomic_destroy_state = intel_crtc_destroy_state,
};
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll,
struct intel_dpll_hw_state *hw_state)
{
uint32_t val;
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
return false;
val = I915_READ(PCH_DPLL(pll->id));
hw_state->dpll = val;
hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
return val & DPLL_VCO_ENABLE;
}
static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
}
static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
/* PCH refclock must be enabled first */
ibx_assert_pch_refclk_enabled(dev_priv);
I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(PCH_DPLL(pll->id));
udelay(150);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
POSTING_READ(PCH_DPLL(pll->id));
udelay(200);
}
static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
struct intel_shared_dpll *pll)
{
struct drm_device *dev = dev_priv->dev;
struct intel_crtc *crtc;
/* Make sure no transcoder isn't still depending on us. */
for_each_intel_crtc(dev, crtc) {
if (intel_crtc_to_shared_dpll(crtc) == pll)
assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
}
I915_WRITE(PCH_DPLL(pll->id), 0);
POSTING_READ(PCH_DPLL(pll->id));
udelay(200);
}
static char *ibx_pch_dpll_names[] = {
"PCH DPLL A",
"PCH DPLL B",
};
static void ibx_pch_dpll_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
dev_priv->num_shared_dpll = 2;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
dev_priv->shared_dplls[i].id = i;
dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
dev_priv->shared_dplls[i].get_hw_state =
ibx_pch_dpll_get_hw_state;
}
}
static void intel_shared_dpll_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (HAS_DDI(dev))
intel_ddi_pll_init(dev);
else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
ibx_pch_dpll_init(dev);
else
dev_priv->num_shared_dpll = 0;
BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
}
/**
* intel_wm_need_update - Check whether watermarks need updating
* @plane: drm plane
* @state: new plane state
*
* Check current plane state versus the new one to determine whether
* watermarks need to be recalculated.
*
* Returns true or false.
*/
bool intel_wm_need_update(struct drm_plane *plane,
struct drm_plane_state *state)
{
/* Update watermarks on tiling changes. */
if (!plane->state->fb || !state->fb ||
plane->state->fb->modifier[0] != state->fb->modifier[0] ||
plane->state->rotation != state->rotation)
return true;
return false;
}
/**
* intel_prepare_plane_fb - Prepare fb for usage on plane
* @plane: drm plane to prepare for
* @fb: framebuffer to prepare for presentation
*
* Prepares a framebuffer for usage on a display plane. Generally this
* involves pinning the underlying object and updating the frontbuffer tracking
* bits. Some older platforms need special physical address handling for
* cursor planes.
*
* Returns 0 on success, negative error code on failure.
*/
int
intel_prepare_plane_fb(struct drm_plane *plane,
struct drm_framebuffer *fb,
const struct drm_plane_state *new_state)
{
struct drm_device *dev = plane->dev;
struct intel_plane *intel_plane = to_intel_plane(plane);
enum pipe pipe = intel_plane->pipe;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
unsigned frontbuffer_bits = 0;
int ret = 0;
if (!obj)
return 0;
switch (plane->type) {
case DRM_PLANE_TYPE_PRIMARY:
frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
break;
case DRM_PLANE_TYPE_CURSOR:
frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
break;
case DRM_PLANE_TYPE_OVERLAY:
frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
break;
}
mutex_lock(&dev->struct_mutex);
if (plane->type == DRM_PLANE_TYPE_CURSOR &&
INTEL_INFO(dev)->cursor_needs_physical) {
int align = IS_I830(dev) ? 16 * 1024 : 256;
ret = i915_gem_object_attach_phys(obj, align);
if (ret)
DRM_DEBUG_KMS("failed to attach phys object\n");
} else {
ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
}
if (ret == 0)
i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* intel_cleanup_plane_fb - Cleans up an fb after plane use
* @plane: drm plane to clean up for
* @fb: old framebuffer that was on plane
*
* Cleans up a framebuffer that has just been removed from a plane.
*/
void
intel_cleanup_plane_fb(struct drm_plane *plane,
struct drm_framebuffer *fb,
const struct drm_plane_state *old_state)
{
struct drm_device *dev = plane->dev;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
if (WARN_ON(!obj))
return;
if (plane->type != DRM_PLANE_TYPE_CURSOR ||
!INTEL_INFO(dev)->cursor_needs_physical) {
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(fb, old_state);
mutex_unlock(&dev->struct_mutex);
}
}
int
skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
{
int max_scale;
struct drm_device *dev;
struct drm_i915_private *dev_priv;
int crtc_clock, cdclk;
if (!intel_crtc || !crtc_state)
return DRM_PLANE_HELPER_NO_SCALING;
dev = intel_crtc->base.dev;
dev_priv = dev->dev_private;
crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
cdclk = dev_priv->display.get_display_clock_speed(dev);
if (!crtc_clock || !cdclk)
return DRM_PLANE_HELPER_NO_SCALING;
/*
* skl max scale is lower of:
* close to 3 but not 3, -1 is for that purpose
* or
* cdclk/crtc_clock
*/
max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
return max_scale;
}
static int
intel_check_primary_plane(struct drm_plane *plane,
struct intel_plane_state *state)
{
struct drm_device *dev = plane->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = state->base.crtc;
struct intel_crtc *intel_crtc;
struct intel_crtc_state *crtc_state;
struct drm_framebuffer *fb = state->base.fb;
struct drm_rect *dest = &state->dst;
struct drm_rect *src = &state->src;
const struct drm_rect *clip = &state->clip;
bool can_position = false;
int max_scale = DRM_PLANE_HELPER_NO_SCALING;
int min_scale = DRM_PLANE_HELPER_NO_SCALING;
int ret;
crtc = crtc ? crtc : plane->crtc;
intel_crtc = to_intel_crtc(crtc);
crtc_state = state->base.state ?
intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
if (INTEL_INFO(dev)->gen >= 9) {
min_scale = 1;
max_scale = skl_max_scale(intel_crtc, crtc_state);
can_position = true;
}
ret = drm_plane_helper_check_update(plane, crtc, fb,
src, dest, clip,
min_scale,
max_scale,
can_position, true,
&state->visible);
if (ret)
return ret;
if (intel_crtc->active) {
struct intel_plane_state *old_state =
to_intel_plane_state(plane->state);
intel_crtc->atomic.wait_for_flips = true;
/*
* FBC does not work on some platforms for rotated
* planes, so disable it when rotation is not 0 and
* update it when rotation is set back to 0.
*
* FIXME: This is redundant with the fbc update done in
* the primary plane enable function except that that
* one is done too late. We eventually need to unify
* this.
*/
if (state->visible &&
INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
dev_priv->fbc.crtc == intel_crtc &&
state->base.rotation != BIT(DRM_ROTATE_0)) {
intel_crtc->atomic.disable_fbc = true;
}
if (state->visible && !old_state->visible) {
/*
* BDW signals flip done immediately if the plane
* is disabled, even if the plane enable is already
* armed to occur at the next vblank :(
*/
if (IS_BROADWELL(dev))
intel_crtc->atomic.wait_vblank = true;
}
intel_crtc->atomic.fb_bits |=
INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
intel_crtc->atomic.update_fbc = true;
if (intel_wm_need_update(plane, &state->base))
intel_crtc->atomic.update_wm = true;
}
if (INTEL_INFO(dev)->gen >= 9) {
ret = skl_update_scaler_users(intel_crtc, crtc_state,
to_intel_plane(plane), state, 0);
if (ret)
return ret;
}
return 0;
}
static void
intel_commit_primary_plane(struct drm_plane *plane,
struct intel_plane_state *state)
{
struct drm_crtc *crtc = state->base.crtc;
struct drm_framebuffer *fb = state->base.fb;
struct drm_device *dev = plane->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
struct drm_rect *src = &state->src;
crtc = crtc ? crtc : plane->crtc;
intel_crtc = to_intel_crtc(crtc);
plane->fb = fb;
crtc->x = src->x1 >> 16;
crtc->y = src->y1 >> 16;
if (intel_crtc->active) {
if (state->visible)
/* FIXME: kill this fastboot hack */
intel_update_pipe_size(intel_crtc);
dev_priv->display.update_primary_plane(crtc, plane->fb,
crtc->x, crtc->y);
}
}
static void
intel_disable_primary_plane(struct drm_plane *plane,
struct drm_crtc *crtc,
bool force)
{
struct drm_device *dev = plane->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
}
static void intel_begin_crtc_commit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_plane *intel_plane;
struct drm_plane *p;
unsigned fb_bits = 0;
/* Track fb's for any planes being disabled */
list_for_each_entry(p, &dev->mode_config.plane_list, head) {
intel_plane = to_intel_plane(p);
if (intel_crtc->atomic.disabled_planes &
(1 << drm_plane_index(p))) {
switch (p->type) {
case DRM_PLANE_TYPE_PRIMARY:
fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
break;
case DRM_PLANE_TYPE_CURSOR:
fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
break;
case DRM_PLANE_TYPE_OVERLAY:
fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
break;
}
mutex_lock(&dev->struct_mutex);
i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
mutex_unlock(&dev->struct_mutex);
}
}
if (intel_crtc->atomic.wait_for_flips)
intel_crtc_wait_for_pending_flips(crtc);
if (intel_crtc->atomic.disable_fbc)
intel_fbc_disable(dev);
if (intel_crtc->atomic.pre_disable_primary)
intel_pre_disable_primary(crtc);
if (intel_crtc->atomic.update_wm)
intel_update_watermarks(crtc);
intel_runtime_pm_get(dev_priv);
/* Perform vblank evasion around commit operation */
if (intel_crtc->active)
intel_crtc->atomic.evade =
intel_pipe_update_start(intel_crtc,
&intel_crtc->atomic.start_vbl_count);
}
static void intel_finish_crtc_commit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_plane *p;
if (intel_crtc->atomic.evade)
intel_pipe_update_end(intel_crtc,
intel_crtc->atomic.start_vbl_count);
intel_runtime_pm_put(dev_priv);
if (intel_crtc->atomic.wait_vblank)
intel_wait_for_vblank(dev, intel_crtc->pipe);
intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
if (intel_crtc->atomic.update_fbc) {
mutex_lock(&dev->struct_mutex);
intel_fbc_update(dev);
mutex_unlock(&dev->struct_mutex);
}
if (intel_crtc->atomic.post_enable_primary)
intel_post_enable_primary(crtc);
drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
false, false);
memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
}
/**
* intel_plane_destroy - destroy a plane
* @plane: plane to destroy
*
* Common destruction function for all types of planes (primary, cursor,
* sprite).
*/
void intel_plane_destroy(struct drm_plane *plane)
{
struct intel_plane *intel_plane = to_intel_plane(plane);
drm_plane_cleanup(plane);
kfree(intel_plane);
}
const struct drm_plane_funcs intel_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = intel_plane_destroy,
.set_property = drm_atomic_helper_plane_set_property,
.atomic_get_property = intel_plane_atomic_get_property,
.atomic_set_property = intel_plane_atomic_set_property,
.atomic_duplicate_state = intel_plane_duplicate_state,
.atomic_destroy_state = intel_plane_destroy_state,
};
static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
int pipe)
{
struct intel_plane *primary;
struct intel_plane_state *state;
const uint32_t *intel_primary_formats;
int num_formats;
primary = kzalloc(sizeof(*primary), GFP_KERNEL);
if (primary == NULL)
return NULL;
state = intel_create_plane_state(&primary->base);
if (!state) {
kfree(primary);
return NULL;
}
primary->base.state = &state->base;
primary->can_scale = false;
primary->max_downscale = 1;
if (INTEL_INFO(dev)->gen >= 9) {
primary->can_scale = true;
state->scaler_id = -1;
}
primary->pipe = pipe;
primary->plane = pipe;
primary->check_plane = intel_check_primary_plane;
primary->commit_plane = intel_commit_primary_plane;
primary->disable_plane = intel_disable_primary_plane;
primary->ckey.flags = I915_SET_COLORKEY_NONE;
if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
primary->plane = !pipe;
if (INTEL_INFO(dev)->gen >= 9) {
intel_primary_formats = skl_primary_formats;
num_formats = ARRAY_SIZE(skl_primary_formats);
} else if (INTEL_INFO(dev)->gen >= 4) {
intel_primary_formats = i965_primary_formats;
num_formats = ARRAY_SIZE(i965_primary_formats);
} else {
intel_primary_formats = i8xx_primary_formats;
num_formats = ARRAY_SIZE(i8xx_primary_formats);
}
drm_universal_plane_init(dev, &primary->base, 0,
&intel_plane_funcs,
intel_primary_formats, num_formats,
DRM_PLANE_TYPE_PRIMARY);
if (INTEL_INFO(dev)->gen >= 4)
intel_create_rotation_property(dev, primary);
drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
return &primary->base;
}
void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
{
if (!dev->mode_config.rotation_property) {
unsigned long flags = BIT(DRM_ROTATE_0) |
BIT(DRM_ROTATE_180);
if (INTEL_INFO(dev)->gen >= 9)
flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
dev->mode_config.rotation_property =
drm_mode_create_rotation_property(dev, flags);
}
if (dev->mode_config.rotation_property)
drm_object_attach_property(&plane->base.base,
dev->mode_config.rotation_property,
plane->base.state->rotation);
}
static int
intel_check_cursor_plane(struct drm_plane *plane,
struct intel_plane_state *state)
{
struct drm_crtc *crtc = state->base.crtc;
struct drm_device *dev = plane->dev;
struct drm_framebuffer *fb = state->base.fb;
struct drm_rect *dest = &state->dst;
struct drm_rect *src = &state->src;
const struct drm_rect *clip = &state->clip;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct intel_crtc *intel_crtc;
unsigned stride;
int ret;
crtc = crtc ? crtc : plane->crtc;
intel_crtc = to_intel_crtc(crtc);
ret = drm_plane_helper_check_update(plane, crtc, fb,
src, dest, clip,
DRM_PLANE_HELPER_NO_SCALING,
DRM_PLANE_HELPER_NO_SCALING,
true, true, &state->visible);
if (ret)
return ret;
/* if we want to turn off the cursor ignore width and height */
if (!obj)
goto finish;
/* Check for which cursor types we support */
if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
DRM_DEBUG("Cursor dimension %dx%d not supported\n",
state->base.crtc_w, state->base.crtc_h);
return -EINVAL;
}
stride = roundup_pow_of_two(state->base.crtc_w) * 4;
if (obj->base.size < stride * state->base.crtc_h) {
DRM_DEBUG_KMS("buffer is too small\n");
return -ENOMEM;
}
if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
DRM_DEBUG_KMS("cursor cannot be tiled\n");
ret = -EINVAL;
}
finish:
if (intel_crtc->active) {
if (plane->state->crtc_w != state->base.crtc_w)
intel_crtc->atomic.update_wm = true;
intel_crtc->atomic.fb_bits |=
INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
}
return ret;
}
static void
intel_disable_cursor_plane(struct drm_plane *plane,
struct drm_crtc *crtc,
bool force)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (!force) {
plane->fb = NULL;
intel_crtc->cursor_bo = NULL;
intel_crtc->cursor_addr = 0;
}
intel_crtc_update_cursor(crtc, false);
}
static void
intel_commit_cursor_plane(struct drm_plane *plane,
struct intel_plane_state *state)
{
struct drm_crtc *crtc = state->base.crtc;
struct drm_device *dev = plane->dev;
struct intel_crtc *intel_crtc;
struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
uint32_t addr;
crtc = crtc ? crtc : plane->crtc;
intel_crtc = to_intel_crtc(crtc);
plane->fb = state->base.fb;
crtc->cursor_x = state->base.crtc_x;
crtc->cursor_y = state->base.crtc_y;
if (intel_crtc->cursor_bo == obj)
goto update;
if (!obj)
addr = 0;
else if (!INTEL_INFO(dev)->cursor_needs_physical)
addr = i915_gem_obj_ggtt_offset(obj);
else
addr = obj->phys_handle->busaddr;
intel_crtc->cursor_addr = addr;
intel_crtc->cursor_bo = obj;
update:
if (intel_crtc->active)
intel_crtc_update_cursor(crtc, state->visible);
}
static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
int pipe)
{
struct intel_plane *cursor;
struct intel_plane_state *state;
cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
if (cursor == NULL)
return NULL;
state = intel_create_plane_state(&cursor->base);
if (!state) {
kfree(cursor);
return NULL;
}
cursor->base.state = &state->base;
cursor->can_scale = false;
cursor->max_downscale = 1;
cursor->pipe = pipe;
cursor->plane = pipe;
cursor->check_plane = intel_check_cursor_plane;
cursor->commit_plane = intel_commit_cursor_plane;
cursor->disable_plane = intel_disable_cursor_plane;
drm_universal_plane_init(dev, &cursor->base, 0,
&intel_plane_funcs,
intel_cursor_formats,
ARRAY_SIZE(intel_cursor_formats),
DRM_PLANE_TYPE_CURSOR);
if (INTEL_INFO(dev)->gen >= 4) {
if (!dev->mode_config.rotation_property)
dev->mode_config.rotation_property =
drm_mode_create_rotation_property(dev,
BIT(DRM_ROTATE_0) |
BIT(DRM_ROTATE_180));
if (dev->mode_config.rotation_property)
drm_object_attach_property(&cursor->base.base,
dev->mode_config.rotation_property,
state->base.rotation);
}
if (INTEL_INFO(dev)->gen >=9)
state->scaler_id = -1;
drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
return &cursor->base;
}
static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state)
{
int i;
struct intel_scaler *intel_scaler;
struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
for (i = 0; i < intel_crtc->num_scalers; i++) {
intel_scaler = &scaler_state->scalers[i];
intel_scaler->in_use = 0;
intel_scaler->id = i;
intel_scaler->mode = PS_SCALER_MODE_DYN;
}
scaler_state->scaler_id = -1;
}
static void intel_crtc_init(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
struct intel_crtc_state *crtc_state = NULL;
struct drm_plane *primary = NULL;
struct drm_plane *cursor = NULL;
int i, ret;
intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
if (intel_crtc == NULL)
return;
crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
if (!crtc_state)
goto fail;
intel_crtc->config = crtc_state;
intel_crtc->base.state = &crtc_state->base;
crtc_state->base.crtc = &intel_crtc->base;
/* initialize shared scalers */
if (INTEL_INFO(dev)->gen >= 9) {
if (pipe == PIPE_C)
intel_crtc->num_scalers = 1;
else
intel_crtc->num_scalers = SKL_NUM_SCALERS;
skl_init_scalers(dev, intel_crtc, crtc_state);
}
primary = intel_primary_plane_create(dev, pipe);
if (!primary)
goto fail;
cursor = intel_cursor_plane_create(dev, pipe);
if (!cursor)
goto fail;
ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
cursor, &intel_crtc_funcs);
if (ret)
goto fail;
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = i;
intel_crtc->lut_g[i] = i;
intel_crtc->lut_b[i] = i;
}
/*
* On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
* is hooked to pipe B. Hence we want plane A feeding pipe B.
*/
intel_crtc->pipe = pipe;
intel_crtc->plane = pipe;
if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
intel_crtc->plane = !pipe;
}
intel_crtc->cursor_base = ~0;
intel_crtc->cursor_cntl = ~0;
intel_crtc->cursor_size = ~0;
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
return;
fail:
if (primary)
drm_plane_cleanup(primary);
if (cursor)
drm_plane_cleanup(cursor);
kfree(crtc_state);
kfree(intel_crtc);
}
enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
{
struct drm_encoder *encoder = connector->base.encoder;
struct drm_device *dev = connector->base.dev;
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
if (!encoder || WARN_ON(!encoder->crtc))
return INVALID_PIPE;
return to_intel_crtc(encoder->crtc)->pipe;
}
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
struct drm_crtc *drmmode_crtc;
struct intel_crtc *crtc;
drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
if (!drmmode_crtc) {
DRM_ERROR("no such CRTC id\n");
return -ENOENT;
}
crtc = to_intel_crtc(drmmode_crtc);
pipe_from_crtc_id->pipe = crtc->pipe;
return 0;
}
static int intel_encoder_clones(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct intel_encoder *source_encoder;
int index_mask = 0;
int entry = 0;
for_each_intel_encoder(dev, source_encoder) {
if (encoders_cloneable(encoder, source_encoder))
index_mask |= (1 << entry);
entry++;
}
return index_mask;
}
static bool has_edp_a(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!IS_MOBILE(dev))
return false;
if ((I915_READ(DP_A) & DP_DETECTED) == 0)
return false;
if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
return false;
return true;
}
static bool intel_crt_present(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen >= 9)
return false;
if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
return false;
if (IS_CHERRYVIEW(dev))
return false;
if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
return false;
return true;
}
static void intel_setup_outputs(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
bool dpd_is_edp = false;
intel_lvds_init(dev);
if (intel_crt_present(dev))
intel_crt_init(dev);
if (IS_BROXTON(dev)) {
/*
* FIXME: Broxton doesn't support port detection via the
* DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
* detect the ports.
*/
intel_ddi_init(dev, PORT_A);
intel_ddi_init(dev, PORT_B);
intel_ddi_init(dev, PORT_C);
} else if (HAS_DDI(dev)) {
int found;
/*
* Haswell uses DDI functions to detect digital outputs.
* On SKL pre-D0 the strap isn't connected, so we assume
* it's there.
*/
found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
/* WaIgnoreDDIAStrap: skl */
if (found ||
(IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
intel_ddi_init(dev, PORT_A);
/* DDI B, C and D detection is indicated by the SFUSE_STRAP
* register */
found = I915_READ(SFUSE_STRAP);
if (found & SFUSE_STRAP_DDIB_DETECTED)
intel_ddi_init(dev, PORT_B);
if (found & SFUSE_STRAP_DDIC_DETECTED)
intel_ddi_init(dev, PORT_C);
if (found & SFUSE_STRAP_DDID_DETECTED)
intel_ddi_init(dev, PORT_D);
} else if (HAS_PCH_SPLIT(dev)) {
int found;
dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
if (has_edp_a(dev))
intel_dp_init(dev, DP_A, PORT_A);
if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
/* PCH SDVOB multiplex with HDMIB */
found = intel_sdvo_init(dev, PCH_SDVOB, true);
if (!found)
intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_B, PORT_B);
}
if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
intel_hdmi_init(dev, PCH_HDMID, PORT_D);
if (I915_READ(PCH_DP_C) & DP_DETECTED)
intel_dp_init(dev, PCH_DP_C, PORT_C);
if (I915_READ(PCH_DP_D) & DP_DETECTED)
intel_dp_init(dev, PCH_DP_D, PORT_D);
} else if (IS_VALLEYVIEW(dev)) {
/*
* The DP_DETECTED bit is the latched state of the DDC
* SDA pin at boot. However since eDP doesn't require DDC
* (no way to plug in a DP->HDMI dongle) the DDC pins for
* eDP ports may have been muxed to an alternate function.
* Thus we can't rely on the DP_DETECTED bit alone to detect
* eDP ports. Consult the VBT as well as DP_DETECTED to
* detect eDP ports.
*/
if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
!intel_dp_is_edp(dev, PORT_B))
intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
PORT_B);
if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
intel_dp_is_edp(dev, PORT_B))
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
!intel_dp_is_edp(dev, PORT_C))
intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
PORT_C);
if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
intel_dp_is_edp(dev, PORT_C))
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
if (IS_CHERRYVIEW(dev)) {
if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
PORT_D);
/* eDP not supported on port D, so don't check VBT */
if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
}
intel_dsi_init(dev);
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
bool found = false;
if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOB\n");
found = intel_sdvo_init(dev, GEN3_SDVOB, true);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
}
if (!found && SUPPORTS_INTEGRATED_DP(dev))
intel_dp_init(dev, DP_B, PORT_B);
}
/* Before G4X SDVOC doesn't have its own detect register */
if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOC\n");
found = intel_sdvo_init(dev, GEN3_SDVOC, false);
}
if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
if (SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
}
if (SUPPORTS_INTEGRATED_DP(dev))
intel_dp_init(dev, DP_C, PORT_C);
}
if (SUPPORTS_INTEGRATED_DP(dev) &&
(I915_READ(DP_D) & DP_DETECTED))
intel_dp_init(dev, DP_D, PORT_D);
} else if (IS_GEN2(dev))
intel_dvo_init(dev);
if (SUPPORTS_TV(dev))
intel_tv_init(dev);
intel_psr_init(dev);
for_each_intel_encoder(dev, encoder) {
encoder->base.possible_crtcs = encoder->crtc_mask;
encoder->base.possible_clones =
intel_encoder_clones(encoder);
}
intel_init_pch_refclk(dev);
drm_helper_move_panel_connectors_to_head(dev);
}
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct drm_device *dev = fb->dev;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
drm_framebuffer_cleanup(fb);
mutex_lock(&dev->struct_mutex);
WARN_ON(!intel_fb->obj->framebuffer_references--);
drm_gem_object_unreference(&intel_fb->obj->base);
mutex_unlock(&dev->struct_mutex);
kfree(intel_fb);
}
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file,
unsigned int *handle)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
return drm_gem_handle_create(file, &obj->base, handle);
}
static const struct drm_framebuffer_funcs intel_fb_funcs = {
.destroy = intel_user_framebuffer_destroy,
.create_handle = intel_user_framebuffer_create_handle,
};
static
u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
uint32_t pixel_format)
{
u32 gen = INTEL_INFO(dev)->gen;
if (gen >= 9) {
/* "The stride in bytes must not exceed the of the size of 8K
* pixels and 32K bytes."
*/
return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
} else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
return 32*1024;
} else if (gen >= 4) {
if (fb_modifier == I915_FORMAT_MOD_X_TILED)
return 16*1024;
else
return 32*1024;
} else if (gen >= 3) {
if (fb_modifier == I915_FORMAT_MOD_X_TILED)
return 8*1024;
else
return 16*1024;
} else {
/* XXX DSPC is limited to 4k tiled */
return 8*1024;
}
}
static int intel_framebuffer_init(struct drm_device *dev,
struct intel_framebuffer *intel_fb,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
unsigned int aligned_height;
int ret;
u32 pitch_limit, stride_alignment;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
/* Enforce that fb modifier and tiling mode match, but only for
* X-tiled. This is needed for FBC. */
if (!!(obj->tiling_mode == I915_TILING_X) !=
!!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
return -EINVAL;
}
} else {
if (obj->tiling_mode == I915_TILING_X)
mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
else if (obj->tiling_mode == I915_TILING_Y) {
DRM_DEBUG("No Y tiling for legacy addfb\n");
return -EINVAL;
}
}
/* Passed in modifier sanity checking. */
switch (mode_cmd->modifier[0]) {
case I915_FORMAT_MOD_Y_TILED:
case I915_FORMAT_MOD_Yf_TILED:
if (INTEL_INFO(dev)->gen < 9) {
DRM_DEBUG("Unsupported tiling 0x%llx!\n",
mode_cmd->modifier[0]);
return -EINVAL;
}
case DRM_FORMAT_MOD_NONE:
case I915_FORMAT_MOD_X_TILED:
break;
default:
DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
mode_cmd->modifier[0]);
return -EINVAL;
}
stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
mode_cmd->pixel_format);
if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
mode_cmd->pitches[0], stride_alignment);
return -EINVAL;
}
pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
mode_cmd->pixel_format);
if (mode_cmd->pitches[0] > pitch_limit) {
DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
"tiled" : "linear",
mode_cmd->pitches[0], pitch_limit);
return -EINVAL;
}
if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
mode_cmd->pitches[0] != obj->stride) {
DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
mode_cmd->pitches[0], obj->stride);
return -EINVAL;
}
/* Reject formats not supported by any plane early. */
switch (mode_cmd->pixel_format) {
case DRM_FORMAT_C8:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
break;
case DRM_FORMAT_XRGB1555:
if (INTEL_INFO(dev)->gen > 3) {
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
return -EINVAL;
}
break;
case DRM_FORMAT_ABGR8888:
if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
return -EINVAL;
}
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_XBGR2101010:
if (INTEL_INFO(dev)->gen < 4) {
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
return -EINVAL;
}
break;
case DRM_FORMAT_ABGR2101010:
if (!IS_VALLEYVIEW(dev)) {
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
return -EINVAL;
}
break;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_VYUY:
if (INTEL_INFO(dev)->gen < 5) {
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
return -EINVAL;
}
break;
default:
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
return -EINVAL;
}
/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
if (mode_cmd->offsets[0] != 0)
return -EINVAL;
aligned_height = intel_fb_align_height(dev, mode_cmd->height,
mode_cmd->pixel_format,
mode_cmd->modifier[0]);
/* FIXME drm helper for size checks (especially planar formats)? */
if (obj->base.size < aligned_height * mode_cmd->pitches[0])
return -EINVAL;
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
intel_fb->obj = obj;
intel_fb->obj->framebuffer_references++;
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
if (ret) {
DRM_ERROR("framebuffer init failed %d\n", ret);
return ret;
}
return 0;
}
static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device *dev,
struct drm_file *filp,
struct drm_mode_fb_cmd2 *mode_cmd)
{
struct drm_i915_gem_object *obj;
obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
mode_cmd->handles[0]));
if (&obj->base == NULL)
return ERR_PTR(-ENOENT);
return intel_framebuffer_create(dev, mode_cmd, obj);
}
#ifndef CONFIG_DRM_I915_FBDEV
static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
{
}
#endif
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = intel_user_framebuffer_create,
.output_poll_changed = intel_fbdev_output_poll_changed,
.atomic_check = intel_atomic_check,
.atomic_commit = intel_atomic_commit,
};
/* Set up chip specific display functions */
static void intel_init_display(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
dev_priv->display.find_dpll = g4x_find_best_dpll;
else if (IS_CHERRYVIEW(dev))
dev_priv->display.find_dpll = chv_find_best_dpll;
else if (IS_VALLEYVIEW(dev))
dev_priv->display.find_dpll = vlv_find_best_dpll;
else if (IS_PINEVIEW(dev))
dev_priv->display.find_dpll = pnv_find_best_dpll;
else
dev_priv->display.find_dpll = i9xx_find_best_dpll;
if (INTEL_INFO(dev)->gen >= 9) {
dev_priv->display.get_pipe_config = haswell_get_pipe_config;
dev_priv->display.get_initial_plane_config =
skylake_get_initial_plane_config;
dev_priv->display.crtc_compute_clock =
haswell_crtc_compute_clock;
dev_priv->display.crtc_enable = haswell_crtc_enable;
dev_priv->display.crtc_disable = haswell_crtc_disable;
dev_priv->display.off = ironlake_crtc_off;
dev_priv->display.update_primary_plane =
skylake_update_primary_plane;
} else if (HAS_DDI(dev)) {
dev_priv->display.get_pipe_config = haswell_get_pipe_config;
dev_priv->display.get_initial_plane_config =
ironlake_get_initial_plane_config;
dev_priv->display.crtc_compute_clock =
haswell_crtc_compute_clock;
dev_priv->display.crtc_enable = haswell_crtc_enable;
dev_priv->display.crtc_disable = haswell_crtc_disable;
dev_priv->display.off = ironlake_crtc_off;
dev_priv->display.update_primary_plane =
ironlake_update_primary_plane;
} else if (HAS_PCH_SPLIT(dev)) {
dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
dev_priv->display.get_initial_plane_config =
ironlake_get_initial_plane_config;
dev_priv->display.crtc_compute_clock =
ironlake_crtc_compute_clock;
dev_priv->display.crtc_enable = ironlake_crtc_enable;
dev_priv->display.crtc_disable = ironlake_crtc_disable;
dev_priv->display.off = ironlake_crtc_off;
dev_priv->display.update_primary_plane =
ironlake_update_primary_plane;
} else if (IS_VALLEYVIEW(dev)) {
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
dev_priv->display.get_initial_plane_config =
i9xx_get_initial_plane_config;
dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
dev_priv->display.crtc_enable = valleyview_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
dev_priv->display.off = i9xx_crtc_off;
dev_priv->display.update_primary_plane =
i9xx_update_primary_plane;
} else {
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
dev_priv->display.get_initial_plane_config =
i9xx_get_initial_plane_config;
dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
dev_priv->display.crtc_enable = i9xx_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
dev_priv->display.off = i9xx_crtc_off;
dev_priv->display.update_primary_plane =
i9xx_update_primary_plane;
}
/* Returns the core display clock speed */
if (IS_SKYLAKE(dev))
dev_priv->display.get_display_clock_speed =
skylake_get_display_clock_speed;
else if (IS_BROADWELL(dev))
dev_priv->display.get_display_clock_speed =
broadwell_get_display_clock_speed;
else if (IS_HASWELL(dev))
dev_priv->display.get_display_clock_speed =
haswell_get_display_clock_speed;
else if (IS_VALLEYVIEW(dev))
dev_priv->display.get_display_clock_speed =
valleyview_get_display_clock_speed;
else if (IS_GEN5(dev))
dev_priv->display.get_display_clock_speed =
ilk_get_display_clock_speed;
else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
dev_priv->display.get_display_clock_speed =
i945_get_display_clock_speed;
else if (IS_I915G(dev))
dev_priv->display.get_display_clock_speed =
i915_get_display_clock_speed;
else if (IS_I945GM(dev) || IS_845G(dev))
dev_priv->display.get_display_clock_speed =
i9xx_misc_get_display_clock_speed;
else if (IS_PINEVIEW(dev))
dev_priv->display.get_display_clock_speed =
pnv_get_display_clock_speed;
else if (IS_I915GM(dev))
dev_priv->display.get_display_clock_speed =
i915gm_get_display_clock_speed;
else if (IS_I865G(dev))
dev_priv->display.get_display_clock_speed =
i865_get_display_clock_speed;
else if (IS_I85X(dev))
dev_priv->display.get_display_clock_speed =
i855_get_display_clock_speed;
else /* 852, 830 */
dev_priv->display.get_display_clock_speed =
i830_get_display_clock_speed;
if (IS_GEN5(dev)) {
dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
} else if (IS_GEN6(dev)) {
dev_priv->display.fdi_link_train = gen6_fdi_link_train;
} else if (IS_IVYBRIDGE(dev)) {
/* FIXME: detect B0+ stepping and use auto training */
dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
dev_priv->display.fdi_link_train = hsw_fdi_link_train;
} else if (IS_VALLEYVIEW(dev)) {
dev_priv->display.modeset_global_resources =
valleyview_modeset_global_resources;
} else if (IS_BROXTON(dev)) {
dev_priv->display.modeset_global_resources =
broxton_modeset_global_resources;
}
switch (INTEL_INFO(dev)->gen) {
case 2:
dev_priv->display.queue_flip = intel_gen2_queue_flip;
break;
case 3:
dev_priv->display.queue_flip = intel_gen3_queue_flip;
break;
case 4:
case 5:
dev_priv->display.queue_flip = intel_gen4_queue_flip;
break;
case 6:
dev_priv->display.queue_flip = intel_gen6_queue_flip;
break;
case 7:
case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
dev_priv->display.queue_flip = intel_gen7_queue_flip;
break;
case 9:
/* Drop through - unsupported since execlist only. */
default:
/* Default just returns -ENODEV to indicate unsupported */
dev_priv->display.queue_flip = intel_default_queue_flip;
}
intel_panel_init_backlight_funcs(dev);
mutex_init(&dev_priv->pps_mutex);
}
/*
* Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
* resume, or other times. This quirk makes sure that's the case for
* affected systems.
*/
static void quirk_pipea_force(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_PIPEA_FORCE;
DRM_INFO("applying pipe a force quirk\n");
}
static void quirk_pipeb_force(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_PIPEB_FORCE;
DRM_INFO("applying pipe b force quirk\n");
}
/*
* Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
*/
static void quirk_ssc_force_disable(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
DRM_INFO("applying lvds SSC disable quirk\n");
}
/*
* A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
* brightness value
*/
static void quirk_invert_brightness(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
DRM_INFO("applying inverted panel brightness quirk\n");
}
/* Some VBT's incorrectly indicate no backlight is present */
static void quirk_backlight_present(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
DRM_INFO("applying backlight present quirk\n");
}
struct intel_quirk {
int device;
int subsystem_vendor;
int subsystem_device;
void (*hook)(struct drm_device *dev);
};
/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
struct intel_dmi_quirk {
void (*hook)(struct drm_device *dev);
const struct dmi_system_id (*dmi_id_list)[];
};
static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
{
DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
return 1;
}
static const struct intel_dmi_quirk intel_dmi_quirks[] = {
{
.dmi_id_list = &(const struct dmi_system_id[]) {
{
.callback = intel_dmi_reverse_brightness,
.ident = "NCR Corporation",
.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, ""),
},
},
{ } /* terminating entry */
},
.hook = quirk_invert_brightness,
},
};
static struct intel_quirk intel_quirks[] = {
/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
/* 830 needs to leave pipe A & dpll A up */
{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
/* 830 needs to leave pipe B & dpll B up */
{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
/* Lenovo U160 cannot use SSC on LVDS */
{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
/* Sony Vaio Y cannot use SSC on LVDS */
{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
/* Acer Aspire 5734Z must invert backlight brightness */
{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
/* Acer/eMachines G725 */
{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
/* Acer/eMachines e725 */
{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
/* Acer/Packard Bell NCL20 */
{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
/* Acer Aspire 4736Z */
{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
/* Acer Aspire 5336 */
{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
/* Acer C720 Chromebook (Core i3 4005U) */
{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
/* Apple Macbook 2,1 (Core 2 T7400) */
{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
/* Toshiba CB35 Chromebook (Celeron 2955U) */
{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
/* HP Chromebook 14 (Celeron 2955U) */
{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
/* Dell Chromebook 11 */
{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
};
static void intel_init_quirks(struct drm_device *dev)
{
struct pci_dev *d = dev->pdev;
int i;
for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
struct intel_quirk *q = &intel_quirks[i];
if (d->device == q->device &&
(d->subsystem_vendor == q->subsystem_vendor ||
q->subsystem_vendor == PCI_ANY_ID) &&
(d->subsystem_device == q->subsystem_device ||
q->subsystem_device == PCI_ANY_ID))
q->hook(dev);
}
for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
intel_dmi_quirks[i].hook(dev);
}
}
/* Disable the VGA plane that we never use */
static void i915_disable_vga(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u8 sr1;
u32 vga_reg = i915_vgacntrl_reg(dev);
/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
outb(SR01, VGA_SR_INDEX);
sr1 = inb(VGA_SR_DATA);
outb(sr1 | 1<<5, VGA_SR_DATA);
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
udelay(300);
I915_WRITE(vga_reg, VGA_DISP_DISABLE);
POSTING_READ(vga_reg);
}
void intel_modeset_init_hw(struct drm_device *dev)
{
intel_prepare_ddi(dev);
if (IS_VALLEYVIEW(dev))
vlv_update_cdclk(dev);
intel_init_clock_gating(dev);
intel_enable_gt_powersave(dev);
}
void intel_modeset_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int sprite, ret;
enum pipe pipe;
struct intel_crtc *crtc;
drm_mode_config_init(dev);
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
dev->mode_config.preferred_depth = 24;
dev->mode_config.prefer_shadow = 1;
dev->mode_config.allow_fb_modifiers = true;
dev->mode_config.funcs = &intel_mode_funcs;
intel_init_quirks(dev);
intel_init_pm(dev);
if (INTEL_INFO(dev)->num_pipes == 0)
return;
intel_init_display(dev);
intel_init_audio(dev);
if (IS_GEN2(dev)) {
dev->mode_config.max_width = 2048;
dev->mode_config.max_height = 2048;
} else if (IS_GEN3(dev)) {
dev->mode_config.max_width = 4096;
dev->mode_config.max_height = 4096;
} else {
dev->mode_config.max_width = 8192;
dev->mode_config.max_height = 8192;
}
if (IS_845G(dev) || IS_I865G(dev)) {
dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
dev->mode_config.cursor_height = 1023;
} else if (IS_GEN2(dev)) {
dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
} else {
dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
}
dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
DRM_DEBUG_KMS("%d display pipe%s available.\n",
INTEL_INFO(dev)->num_pipes,
INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
for_each_pipe(dev_priv, pipe) {
intel_crtc_init(dev, pipe);
for_each_sprite(dev_priv, pipe, sprite) {
ret = intel_plane_init(dev, pipe, sprite);
if (ret)
DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
pipe_name(pipe), sprite_name(pipe, sprite), ret);
}
}
intel_init_dpio(dev);
intel_shared_dpll_init(dev);
/* Just disable it once at startup */
i915_disable_vga(dev);
intel_setup_outputs(dev);
/* Just in case the BIOS is doing something questionable. */
intel_fbc_disable(dev);
drm_modeset_lock_all(dev);
intel_modeset_setup_hw_state(dev, false);
drm_modeset_unlock_all(dev);
for_each_intel_crtc(dev, crtc) {
if (!crtc->active)
continue;
/*
* Note that reserving the BIOS fb up front prevents us
* from stuffing other stolen allocations like the ring
* on top. This prevents some ugliness at boot time, and
* can even allow for smooth boot transitions if the BIOS
* fb is large enough for the active pipe configuration.
*/
if (dev_priv->display.get_initial_plane_config) {
dev_priv->display.get_initial_plane_config(crtc,
&crtc->plane_config);
/*
* If the fb is shared between multiple heads, we'll
* just get the first one.
*/
intel_find_initial_plane_obj(crtc, &crtc->plane_config);
}
}
}
static void intel_enable_pipe_a(struct drm_device *dev)
{
struct intel_connector *connector;
struct drm_connector *crt = NULL;
struct intel_load_detect_pipe load_detect_temp;
struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
/* We can't just switch on the pipe A, we need to set things up with a
* proper mode and output configuration. As a gross hack, enable pipe A
* by enabling the load detect pipe once. */
for_each_intel_connector(dev, connector) {
if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
crt = &connector->base;
break;
}
}
if (!crt)
return;
if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
}
static bool
intel_check_plane_mapping(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg, val;
if (INTEL_INFO(dev)->num_pipes == 1)
return true;
reg = DSPCNTR(!crtc->plane);
val = I915_READ(reg);
if ((val & DISPLAY_PLANE_ENABLE) &&
(!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
return false;
return true;
}
static void intel_sanitize_crtc(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
/* Clear any frame start delays used for debugging left by the BIOS */
reg = PIPECONF(crtc->config->cpu_transcoder);
I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
/* restore vblank interrupts to correct state */
drm_crtc_vblank_reset(&crtc->base);
if (crtc->active) {
update_scanline_offset(crtc);
drm_crtc_vblank_on(&crtc->base);
}
/* We need to sanitize the plane -> pipe mapping first because this will
* disable the crtc (and hence change the state) if it is wrong. Note
* that gen4+ has a fixed plane -> pipe mapping. */
if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
struct intel_connector *connector;
bool plane;
DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
crtc->base.base.id);
/* Pipe has the wrong plane attached and the plane is active.
* Temporarily change the plane mapping and disable everything
* ... */
plane = crtc->plane;
to_intel_plane_state(crtc->base.primary->state)->visible = true;
crtc->plane = !plane;
intel_crtc_disable_planes(&crtc->base);
dev_priv->display.crtc_disable(&crtc->base);
crtc->plane = plane;
/* ... and break all links. */
for_each_intel_connector(dev, connector) {
if (connector->encoder->base.crtc != &crtc->base)
continue;
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
}
/* multiple connectors may have the same encoder:
* handle them and break crtc link separately */
for_each_intel_connector(dev, connector)
if (connector->encoder->base.crtc == &crtc->base) {
connector->encoder->base.crtc = NULL;
connector->encoder->connectors_active = false;
}
WARN_ON(crtc->active);
crtc->base.state->enable = false;
crtc->base.state->active = false;
crtc->base.enabled = false;
}
if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
crtc->pipe == PIPE_A && !crtc->active) {
/* BIOS forgot to enable pipe A, this mostly happens after
* resume. Force-enable the pipe to fix this, the update_dpms
* call below we restore the pipe to the right state, but leave
* the required bits on. */
intel_enable_pipe_a(dev);
}
/* Adjust the state of the output pipe according to whether we
* have active connectors/encoders. */
intel_crtc_update_dpms(&crtc->base);
if (crtc->active != crtc->base.state->enable) {
struct intel_encoder *encoder;
/* This can happen either due to bugs in the get_hw_state
* functions or because the pipe is force-enabled due to the
* pipe A quirk. */
DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
crtc->base.base.id,
crtc->base.state->enable ? "enabled" : "disabled",
crtc->active ? "enabled" : "disabled");
crtc->base.state->enable = crtc->active;
crtc->base.state->active = crtc->active;
crtc->base.enabled = crtc->active;
/* Because we only establish the connector -> encoder ->
* crtc links if something is active, this means the
* crtc is now deactivated. Break the links. connector
* -> encoder links are only establish when things are
* actually up, hence no need to break them. */
WARN_ON(crtc->active);
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
WARN_ON(encoder->connectors_active);
encoder->base.crtc = NULL;
}
}
if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
/*
* We start out with underrun reporting disabled to avoid races.
* For correct bookkeeping mark this on active crtcs.
*
* Also on gmch platforms we dont have any hardware bits to
* disable the underrun reporting. Which means we need to start
* out with underrun reporting disabled also on inactive pipes,
* since otherwise we'll complain about the garbage we read when
* e.g. coming up after runtime pm.
*
* No protection against concurrent access is required - at
* worst a fifo underrun happens which also sets this to false.
*/
crtc->cpu_fifo_underrun_disabled = true;
crtc->pch_fifo_underrun_disabled = true;
}
}
static void intel_sanitize_encoder(struct intel_encoder *encoder)
{
struct intel_connector *connector;
struct drm_device *dev = encoder->base.dev;
/* We need to check both for a crtc link (meaning that the
* encoder is active and trying to read from a pipe) and the
* pipe itself being active. */
bool has_active_crtc = encoder->base.crtc &&
to_intel_crtc(encoder->base.crtc)->active;
if (encoder->connectors_active && !has_active_crtc) {
DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
encoder->base.base.id,
encoder->base.name);
/* Connector is active, but has no active pipe. This is
* fallout from our resume register restoring. Disable
* the encoder manually again. */
if (encoder->base.crtc) {
DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
encoder->base.base.id,
encoder->base.name);
encoder->disable(encoder);
if (encoder->post_disable)
encoder->post_disable(encoder);
}
encoder->base.crtc = NULL;
encoder->connectors_active = false;
/* Inconsistent output/port/pipe state happens presumably due to
* a bug in one of the get_hw_state functions. Or someplace else
* in our code, like the register restore mess on resume. Clamp
* things to off as a safer default. */
for_each_intel_connector(dev, connector) {
if (connector->encoder != encoder)
continue;
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
}
}
/* Enabled encoders without active connectors will be fixed in
* the crtc fixup. */
}
void i915_redisable_vga_power_on(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 vga_reg = i915_vgacntrl_reg(dev);
if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
i915_disable_vga(dev);
}
}
void i915_redisable_vga(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* This function can be called both from intel_modeset_setup_hw_state or
* at a very early point in our resume sequence, where the power well
* structures are not yet restored. Since this function is at a very
* paranoid "someone might have enabled VGA while we were not looking"
* level, just check if the power well is enabled instead of trying to
* follow the "don't touch the power well if we don't need it" policy
* the rest of the driver uses. */
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
return;
i915_redisable_vga_power_on(dev);
}
static bool primary_get_hw_state(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
if (!crtc->active)
return false;
return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
}
static void intel_modeset_readout_hw_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
int i;
for_each_intel_crtc(dev, crtc) {
struct drm_plane *primary = crtc->base.primary;
struct intel_plane_state *plane_state;
memset(crtc->config, 0, sizeof(*crtc->config));
crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
crtc->active = dev_priv->display.get_pipe_config(crtc,
crtc->config);
crtc->base.state->enable = crtc->active;
crtc->base.state->active = crtc->active;
crtc->base.enabled = crtc->active;
plane_state = to_intel_plane_state(primary->state);
plane_state->visible = primary_get_hw_state(crtc);
DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
crtc->base.base.id,
crtc->active ? "enabled" : "disabled");
}
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
pll->on = pll->get_hw_state(dev_priv, pll,
&pll->config.hw_state);
pll->active = 0;
pll->config.crtc_mask = 0;
for_each_intel_crtc(dev, crtc) {
if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
pll->active++;
pll->config.crtc_mask |= 1 << crtc->pipe;
}
}
DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
pll->name, pll->config.crtc_mask, pll->on);
if (pll->config.crtc_mask)
intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
}
for_each_intel_encoder(dev, encoder) {
pipe = 0;
if (encoder->get_hw_state(encoder, &pipe)) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
encoder->base.crtc = &crtc->base;
encoder->get_config(encoder, crtc->config);
} else {
encoder->base.crtc = NULL;
}
encoder->connectors_active = false;
DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
encoder->base.base.id,
encoder->base.name,
encoder->base.crtc ? "enabled" : "disabled",
pipe_name(pipe));
}
for_each_intel_connector(dev, connector) {
if (connector->get_hw_state(connector)) {
connector->base.dpms = DRM_MODE_DPMS_ON;
connector->encoder->connectors_active = true;
connector->base.encoder = &connector->encoder->base;
} else {
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
}
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
connector->base.base.id,
connector->base.name,
connector->base.encoder ? "enabled" : "disabled");
}
}
/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
* and i915 state tracking structures. */
void intel_modeset_setup_hw_state(struct drm_device *dev,
bool force_restore)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
struct intel_crtc *crtc;
struct intel_encoder *encoder;
int i;
intel_modeset_readout_hw_state(dev);
/*
* Now that we have the config, copy it to each CRTC struct
* Note that this could go away if we move to using crtc_config
* checking everywhere.
*/
for_each_intel_crtc(dev, crtc) {
if (crtc->active && i915.fastboot) {
intel_mode_from_pipe_config(&crtc->base.mode,
crtc->config);
DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
crtc->base.base.id);
drm_mode_debug_printmodeline(&crtc->base.mode);
}
}
/* HW state is read out, now we need to sanitize this mess. */
for_each_intel_encoder(dev, encoder) {
intel_sanitize_encoder(encoder);
}
for_each_pipe(dev_priv, pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
intel_sanitize_crtc(crtc);
intel_dump_pipe_config(crtc, crtc->config,
"[setup_hw_state]");
}
intel_modeset_update_connector_atomic_state(dev);
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
if (!pll->on || pll->active)
continue;
DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
pll->disable(dev_priv, pll);
pll->on = false;
}
if (IS_GEN9(dev))
skl_wm_get_hw_state(dev);
else if (HAS_PCH_SPLIT(dev))
ilk_wm_get_hw_state(dev);
if (force_restore) {
i915_redisable_vga(dev);
/*
* We need to use raw interfaces for restoring state to avoid
* checking (bogus) intermediate states.
*/
for_each_pipe(dev_priv, pipe) {
struct drm_crtc *crtc =
dev_priv->pipe_to_crtc_mapping[pipe];
intel_crtc_restore_mode(crtc);
}
} else {
intel_modeset_update_staged_output_state(dev);
}
intel_modeset_check_state(dev);
}
void intel_modeset_gem_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *c;
struct drm_i915_gem_object *obj;
int ret;
mutex_lock(&dev->struct_mutex);
intel_init_gt_powersave(dev);
mutex_unlock(&dev->struct_mutex);
/*
* There may be no VBT; and if the BIOS enabled SSC we can
* just keep using it to avoid unnecessary flicker. Whereas if the
* BIOS isn't using it, don't assume it will work even if the VBT
* indicates as much.
*/
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
DREF_SSC1_ENABLE);
intel_modeset_init_hw(dev);
intel_setup_overlay(dev);
/*
* Make sure any fbs we allocated at startup are properly
* pinned & fenced. When we do the allocation it's too early
* for this.
*/
for_each_crtc(dev, c) {
obj = intel_fb_obj(c->primary->fb);
if (obj == NULL)
continue;
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(c->primary,
c->primary->fb,
c->primary->state,
NULL);
mutex_unlock(&dev->struct_mutex);
if (ret) {
DRM_ERROR("failed to pin boot fb on pipe %d\n",
to_intel_crtc(c)->pipe);
drm_framebuffer_unreference(c->primary->fb);
c->primary->fb = NULL;
update_state_fb(c->primary);
}
}
intel_backlight_register(dev);
}
void intel_connector_unregister(struct intel_connector *intel_connector)
{
struct drm_connector *connector = &intel_connector->base;
intel_panel_destroy_backlight(connector);
drm_connector_unregister(connector);
}
void intel_modeset_cleanup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_connector *connector;
intel_disable_gt_powersave(dev);
intel_backlight_unregister(dev);
/*
* Interrupts and polling as the first thing to avoid creating havoc.
* Too much stuff here (turning of connectors, ...) would
* experience fancy races otherwise.
*/
intel_irq_uninstall(dev_priv);
/*
* Due to the hpd irq storm handling the hotplug work can re-arm the
* poll handlers. Hence disable polling after hpd handling is shut down.
*/
drm_kms_helper_poll_fini(dev);
mutex_lock(&dev->struct_mutex);
intel_unregister_dsm_handler();
intel_fbc_disable(dev);
mutex_unlock(&dev->struct_mutex);
/* flush any delayed tasks or pending work */
flush_scheduled_work();
/* destroy the backlight and sysfs files before encoders/connectors */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct intel_connector *intel_connector;
intel_connector = to_intel_connector(connector);
intel_connector->unregister(intel_connector);
}
drm_mode_config_cleanup(dev);
intel_cleanup_overlay(dev);
mutex_lock(&dev->struct_mutex);
intel_cleanup_gt_powersave(dev);
mutex_unlock(&dev->struct_mutex);
}
/*
* Return which encoder is currently attached for connector.
*/
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
{
return &intel_attached_encoder(connector)->base;
}
void intel_connector_attach_encoder(struct intel_connector *connector,
struct intel_encoder *encoder)
{
connector->encoder = encoder;
drm_mode_connector_attach_encoder(&connector->base,
&encoder->base);
}
/*
* set vga decode state - true == enable VGA decode
*/
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
u16 gmch_ctrl;
if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
DRM_ERROR("failed to read control word\n");
return -EIO;
}
if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
return 0;
if (state)
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
else
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
DRM_ERROR("failed to write control word\n");
return -EIO;
}
return 0;
}
struct intel_display_error_state {
u32 power_well_driver;
int num_transcoders;
struct intel_cursor_error_state {
u32 control;
u32 position;
u32 base;
u32 size;
} cursor[I915_MAX_PIPES];
struct intel_pipe_error_state {
bool power_domain_on;
u32 source;
u32 stat;
} pipe[I915_MAX_PIPES];
struct intel_plane_error_state {
u32 control;
u32 stride;
u32 size;
u32 pos;
u32 addr;
u32 surface;
u32 tile_offset;
} plane[I915_MAX_PIPES];
struct intel_transcoder_error_state {
bool power_domain_on;
enum transcoder cpu_transcoder;
u32 conf;
u32 htotal;
u32 hblank;
u32 hsync;
u32 vtotal;
u32 vblank;
u32 vsync;
} transcoder[4];
};
struct intel_display_error_state *
intel_display_capture_error_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_display_error_state *error;
int transcoders[] = {
TRANSCODER_A,
TRANSCODER_B,
TRANSCODER_C,
TRANSCODER_EDP,
};
int i;
if (INTEL_INFO(dev)->num_pipes == 0)
return NULL;
error = kzalloc(sizeof(*error), GFP_ATOMIC);
if (error == NULL)
return NULL;
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
for_each_pipe(dev_priv, i) {
error->pipe[i].power_domain_on =
__intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(i));
if (!error->pipe[i].power_domain_on)
continue;
error->cursor[i].control = I915_READ(CURCNTR(i));
error->cursor[i].position = I915_READ(CURPOS(i));
error->cursor[i].base = I915_READ(CURBASE(i));
error->plane[i].control = I915_READ(DSPCNTR(i));
error->plane[i].stride = I915_READ(DSPSTRIDE(i));
if (INTEL_INFO(dev)->gen <= 3) {
error->plane[i].size = I915_READ(DSPSIZE(i));
error->plane[i].pos = I915_READ(DSPPOS(i));
}
if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
error->plane[i].addr = I915_READ(DSPADDR(i));
if (INTEL_INFO(dev)->gen >= 4) {
error->plane[i].surface = I915_READ(DSPSURF(i));
error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
}
error->pipe[i].source = I915_READ(PIPESRC(i));
if (HAS_GMCH_DISPLAY(dev))
error->pipe[i].stat = I915_READ(PIPESTAT(i));
}
error->num_transcoders = INTEL_INFO(dev)->num_pipes;
if (HAS_DDI(dev_priv->dev))
error->num_transcoders++; /* Account for eDP. */
for (i = 0; i < error->num_transcoders; i++) {
enum transcoder cpu_transcoder = transcoders[i];
error->transcoder[i].power_domain_on =
__intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_TRANSCODER(cpu_transcoder));
if (!error->transcoder[i].power_domain_on)
continue;
error->transcoder[i].cpu_transcoder = cpu_transcoder;
error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
}
return error;
}
#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
void
intel_display_print_error_state(struct drm_i915_error_state_buf *m,
struct drm_device *dev,
struct intel_display_error_state *error)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
if (!error)
return;
err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
err_printf(m, "PWR_WELL_CTL2: %08x\n",
error->power_well_driver);
for_each_pipe(dev_priv, i) {
err_printf(m, "Pipe [%d]:\n", i);
err_printf(m, " Power: %s\n",
error->pipe[i].power_domain_on ? "on" : "off");
err_printf(m, " SRC: %08x\n", error->pipe[i].source);
err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
err_printf(m, "Plane [%d]:\n", i);
err_printf(m, " CNTR: %08x\n", error->plane[i].control);
err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
if (INTEL_INFO(dev)->gen <= 3) {
err_printf(m, " SIZE: %08x\n", error->plane[i].size);
err_printf(m, " POS: %08x\n", error->plane[i].pos);
}
if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
if (INTEL_INFO(dev)->gen >= 4) {
err_printf(m, " SURF: %08x\n", error->plane[i].surface);
err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
}
err_printf(m, "Cursor [%d]:\n", i);
err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
err_printf(m, " POS: %08x\n", error->cursor[i].position);
err_printf(m, " BASE: %08x\n", error->cursor[i].base);
}
for (i = 0; i < error->num_transcoders; i++) {
err_printf(m, "CPU transcoder: %c\n",
transcoder_name(error->transcoder[i].cpu_transcoder));
err_printf(m, " Power: %s\n",
error->transcoder[i].power_domain_on ? "on" : "off");
err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
}
}
void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
{
struct intel_crtc *crtc;
for_each_intel_crtc(dev, crtc) {
struct intel_unpin_work *work;
spin_lock_irq(&dev->event_lock);
work = crtc->unpin_work;
if (work && work->event &&
work->event->base.file_priv == file) {
kfree(work->event);
work->event = NULL;
}
spin_unlock_irq(&dev->event_lock);
}
}