| /* |
| * Intel X38 Memory Controller kernel module |
| * Copyright (C) 2008 Cluster Computing, Inc. |
| * |
| * This file may be distributed under the terms of the |
| * GNU General Public License. |
| * |
| * This file is based on i3200_edac.c |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/pci_ids.h> |
| #include <linux/edac.h> |
| #include "edac_core.h" |
| |
| #define X38_REVISION "1.1" |
| |
| #define EDAC_MOD_STR "x38_edac" |
| |
| #define PCI_DEVICE_ID_INTEL_X38_HB 0x29e0 |
| |
| #define X38_RANKS 8 |
| #define X38_RANKS_PER_CHANNEL 4 |
| #define X38_CHANNELS 2 |
| |
| /* Intel X38 register addresses - device 0 function 0 - DRAM Controller */ |
| |
| #define X38_MCHBAR_LOW 0x48 /* MCH Memory Mapped Register BAR */ |
| #define X38_MCHBAR_HIGH 0x4c |
| #define X38_MCHBAR_MASK 0xfffffc000ULL /* bits 35:14 */ |
| #define X38_MMR_WINDOW_SIZE 16384 |
| |
| #define X38_TOM 0xa0 /* Top of Memory (16b) |
| * |
| * 15:10 reserved |
| * 9:0 total populated physical memory |
| */ |
| #define X38_TOM_MASK 0x3ff /* bits 9:0 */ |
| #define X38_TOM_SHIFT 26 /* 64MiB grain */ |
| |
| #define X38_ERRSTS 0xc8 /* Error Status Register (16b) |
| * |
| * 15 reserved |
| * 14 Isochronous TBWRR Run Behind FIFO Full |
| * (ITCV) |
| * 13 Isochronous TBWRR Run Behind FIFO Put |
| * (ITSTV) |
| * 12 reserved |
| * 11 MCH Thermal Sensor Event |
| * for SMI/SCI/SERR (GTSE) |
| * 10 reserved |
| * 9 LOCK to non-DRAM Memory Flag (LCKF) |
| * 8 reserved |
| * 7 DRAM Throttle Flag (DTF) |
| * 6:2 reserved |
| * 1 Multi-bit DRAM ECC Error Flag (DMERR) |
| * 0 Single-bit DRAM ECC Error Flag (DSERR) |
| */ |
| #define X38_ERRSTS_UE 0x0002 |
| #define X38_ERRSTS_CE 0x0001 |
| #define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE) |
| |
| |
| /* Intel MMIO register space - device 0 function 0 - MMR space */ |
| |
| #define X38_C0DRB 0x200 /* Channel 0 DRAM Rank Boundary (16b x 4) |
| * |
| * 15:10 reserved |
| * 9:0 Channel 0 DRAM Rank Boundary Address |
| */ |
| #define X38_C1DRB 0x600 /* Channel 1 DRAM Rank Boundary (16b x 4) */ |
| #define X38_DRB_MASK 0x3ff /* bits 9:0 */ |
| #define X38_DRB_SHIFT 26 /* 64MiB grain */ |
| |
| #define X38_C0ECCERRLOG 0x280 /* Channel 0 ECC Error Log (64b) |
| * |
| * 63:48 Error Column Address (ERRCOL) |
| * 47:32 Error Row Address (ERRROW) |
| * 31:29 Error Bank Address (ERRBANK) |
| * 28:27 Error Rank Address (ERRRANK) |
| * 26:24 reserved |
| * 23:16 Error Syndrome (ERRSYND) |
| * 15: 2 reserved |
| * 1 Multiple Bit Error Status (MERRSTS) |
| * 0 Correctable Error Status (CERRSTS) |
| */ |
| #define X38_C1ECCERRLOG 0x680 /* Channel 1 ECC Error Log (64b) */ |
| #define X38_ECCERRLOG_CE 0x1 |
| #define X38_ECCERRLOG_UE 0x2 |
| #define X38_ECCERRLOG_RANK_BITS 0x18000000 |
| #define X38_ECCERRLOG_SYNDROME_BITS 0xff0000 |
| |
| #define X38_CAPID0 0xe0 /* see P.94 of spec for details */ |
| |
| static int x38_channel_num; |
| |
| static int how_many_channel(struct pci_dev *pdev) |
| { |
| unsigned char capid0_8b; /* 8th byte of CAPID0 */ |
| |
| pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b); |
| if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */ |
| debugf0("In single channel mode.\n"); |
| x38_channel_num = 1; |
| } else { |
| debugf0("In dual channel mode.\n"); |
| x38_channel_num = 2; |
| } |
| |
| return x38_channel_num; |
| } |
| |
| static unsigned long eccerrlog_syndrome(u64 log) |
| { |
| return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16; |
| } |
| |
| static int eccerrlog_row(int channel, u64 log) |
| { |
| return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) | |
| (channel * X38_RANKS_PER_CHANNEL); |
| } |
| |
| enum x38_chips { |
| X38 = 0, |
| }; |
| |
| struct x38_dev_info { |
| const char *ctl_name; |
| }; |
| |
| struct x38_error_info { |
| u16 errsts; |
| u16 errsts2; |
| u64 eccerrlog[X38_CHANNELS]; |
| }; |
| |
| static const struct x38_dev_info x38_devs[] = { |
| [X38] = { |
| .ctl_name = "x38"}, |
| }; |
| |
| static struct pci_dev *mci_pdev; |
| static int x38_registered = 1; |
| |
| |
| static void x38_clear_error_info(struct mem_ctl_info *mci) |
| { |
| struct pci_dev *pdev; |
| |
| pdev = to_pci_dev(mci->dev); |
| |
| /* |
| * Clear any error bits. |
| * (Yes, we really clear bits by writing 1 to them.) |
| */ |
| pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS, |
| X38_ERRSTS_BITS); |
| } |
| |
| static u64 x38_readq(const void __iomem *addr) |
| { |
| return readl(addr) | (((u64)readl(addr + 4)) << 32); |
| } |
| |
| static void x38_get_and_clear_error_info(struct mem_ctl_info *mci, |
| struct x38_error_info *info) |
| { |
| struct pci_dev *pdev; |
| void __iomem *window = mci->pvt_info; |
| |
| pdev = to_pci_dev(mci->dev); |
| |
| /* |
| * This is a mess because there is no atomic way to read all the |
| * registers at once and the registers can transition from CE being |
| * overwritten by UE. |
| */ |
| pci_read_config_word(pdev, X38_ERRSTS, &info->errsts); |
| if (!(info->errsts & X38_ERRSTS_BITS)) |
| return; |
| |
| info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG); |
| if (x38_channel_num == 2) |
| info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG); |
| |
| pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2); |
| |
| /* |
| * If the error is the same for both reads then the first set |
| * of reads is valid. If there is a change then there is a CE |
| * with no info and the second set of reads is valid and |
| * should be UE info. |
| */ |
| if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) { |
| info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG); |
| if (x38_channel_num == 2) |
| info->eccerrlog[1] = |
| x38_readq(window + X38_C1ECCERRLOG); |
| } |
| |
| x38_clear_error_info(mci); |
| } |
| |
| static void x38_process_error_info(struct mem_ctl_info *mci, |
| struct x38_error_info *info) |
| { |
| int channel; |
| u64 log; |
| |
| if (!(info->errsts & X38_ERRSTS_BITS)) |
| return; |
| |
| if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) { |
| edac_mc_handle_ce_no_info(mci, "UE overwrote CE"); |
| info->errsts = info->errsts2; |
| } |
| |
| for (channel = 0; channel < x38_channel_num; channel++) { |
| log = info->eccerrlog[channel]; |
| if (log & X38_ECCERRLOG_UE) { |
| edac_mc_handle_ue(mci, 0, 0, |
| eccerrlog_row(channel, log), "x38 UE"); |
| } else if (log & X38_ECCERRLOG_CE) { |
| edac_mc_handle_ce(mci, 0, 0, |
| eccerrlog_syndrome(log), |
| eccerrlog_row(channel, log), 0, "x38 CE"); |
| } |
| } |
| } |
| |
| static void x38_check(struct mem_ctl_info *mci) |
| { |
| struct x38_error_info info; |
| |
| debugf1("MC%d: %s()\n", mci->mc_idx, __func__); |
| x38_get_and_clear_error_info(mci, &info); |
| x38_process_error_info(mci, &info); |
| } |
| |
| |
| void __iomem *x38_map_mchbar(struct pci_dev *pdev) |
| { |
| union { |
| u64 mchbar; |
| struct { |
| u32 mchbar_low; |
| u32 mchbar_high; |
| }; |
| } u; |
| void __iomem *window; |
| |
| pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low); |
| pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1); |
| pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high); |
| u.mchbar &= X38_MCHBAR_MASK; |
| |
| if (u.mchbar != (resource_size_t)u.mchbar) { |
| printk(KERN_ERR |
| "x38: mmio space beyond accessible range (0x%llx)\n", |
| (unsigned long long)u.mchbar); |
| return NULL; |
| } |
| |
| window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE); |
| if (!window) |
| printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n", |
| (unsigned long long)u.mchbar); |
| |
| return window; |
| } |
| |
| |
| static void x38_get_drbs(void __iomem *window, |
| u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]) |
| { |
| int i; |
| |
| for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) { |
| drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK; |
| drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK; |
| } |
| } |
| |
| static bool x38_is_stacked(struct pci_dev *pdev, |
| u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]) |
| { |
| u16 tom; |
| |
| pci_read_config_word(pdev, X38_TOM, &tom); |
| tom &= X38_TOM_MASK; |
| |
| return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom; |
| } |
| |
| static unsigned long drb_to_nr_pages( |
| u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL], |
| bool stacked, int channel, int rank) |
| { |
| int n; |
| |
| n = drbs[channel][rank]; |
| if (rank > 0) |
| n -= drbs[channel][rank - 1]; |
| if (stacked && (channel == 1) && drbs[channel][rank] == |
| drbs[channel][X38_RANKS_PER_CHANNEL - 1]) { |
| n -= drbs[0][X38_RANKS_PER_CHANNEL - 1]; |
| } |
| |
| n <<= (X38_DRB_SHIFT - PAGE_SHIFT); |
| return n; |
| } |
| |
| static int x38_probe1(struct pci_dev *pdev, int dev_idx) |
| { |
| int rc; |
| int i, j; |
| struct mem_ctl_info *mci = NULL; |
| u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]; |
| bool stacked; |
| void __iomem *window; |
| |
| debugf0("MC: %s()\n", __func__); |
| |
| window = x38_map_mchbar(pdev); |
| if (!window) |
| return -ENODEV; |
| |
| x38_get_drbs(window, drbs); |
| |
| how_many_channel(pdev); |
| |
| /* FIXME: unconventional pvt_info usage */ |
| mci = edac_mc_alloc(0, X38_RANKS, x38_channel_num, 0); |
| if (!mci) |
| return -ENOMEM; |
| |
| debugf3("MC: %s(): init mci\n", __func__); |
| |
| mci->dev = &pdev->dev; |
| mci->mtype_cap = MEM_FLAG_DDR2; |
| |
| mci->edac_ctl_cap = EDAC_FLAG_SECDED; |
| mci->edac_cap = EDAC_FLAG_SECDED; |
| |
| mci->mod_name = EDAC_MOD_STR; |
| mci->mod_ver = X38_REVISION; |
| mci->ctl_name = x38_devs[dev_idx].ctl_name; |
| mci->dev_name = pci_name(pdev); |
| mci->edac_check = x38_check; |
| mci->ctl_page_to_phys = NULL; |
| mci->pvt_info = window; |
| |
| stacked = x38_is_stacked(pdev, drbs); |
| |
| /* |
| * The dram rank boundary (DRB) reg values are boundary addresses |
| * for each DRAM rank with a granularity of 64MB. DRB regs are |
| * cumulative; the last one will contain the total memory |
| * contained in all ranks. |
| */ |
| for (i = 0; i < mci->nr_csrows; i++) { |
| unsigned long nr_pages; |
| struct csrow_info *csrow = &mci->csrows[i]; |
| |
| nr_pages = drb_to_nr_pages(drbs, stacked, |
| i / X38_RANKS_PER_CHANNEL, |
| i % X38_RANKS_PER_CHANNEL); |
| |
| if (nr_pages == 0) |
| continue; |
| |
| csrow->nr_pages = nr_pages; |
| |
| for (j = 0; j < x38_channel_num; j++) { |
| struct dimm_info *dimm = csrow->channels[j].dimm; |
| dimm->grain = nr_pages << PAGE_SHIFT; |
| dimm->mtype = MEM_DDR2; |
| dimm->dtype = DEV_UNKNOWN; |
| dimm->edac_mode = EDAC_UNKNOWN; |
| } |
| } |
| |
| x38_clear_error_info(mci); |
| |
| rc = -ENODEV; |
| if (edac_mc_add_mc(mci)) { |
| debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__); |
| goto fail; |
| } |
| |
| /* get this far and it's successful */ |
| debugf3("MC: %s(): success\n", __func__); |
| return 0; |
| |
| fail: |
| iounmap(window); |
| if (mci) |
| edac_mc_free(mci); |
| |
| return rc; |
| } |
| |
| static int __devinit x38_init_one(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| int rc; |
| |
| debugf0("MC: %s()\n", __func__); |
| |
| if (pci_enable_device(pdev) < 0) |
| return -EIO; |
| |
| rc = x38_probe1(pdev, ent->driver_data); |
| if (!mci_pdev) |
| mci_pdev = pci_dev_get(pdev); |
| |
| return rc; |
| } |
| |
| static void __devexit x38_remove_one(struct pci_dev *pdev) |
| { |
| struct mem_ctl_info *mci; |
| |
| debugf0("%s()\n", __func__); |
| |
| mci = edac_mc_del_mc(&pdev->dev); |
| if (!mci) |
| return; |
| |
| iounmap(mci->pvt_info); |
| |
| edac_mc_free(mci); |
| } |
| |
| static DEFINE_PCI_DEVICE_TABLE(x38_pci_tbl) = { |
| { |
| PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, |
| X38}, |
| { |
| 0, |
| } /* 0 terminated list. */ |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, x38_pci_tbl); |
| |
| static struct pci_driver x38_driver = { |
| .name = EDAC_MOD_STR, |
| .probe = x38_init_one, |
| .remove = __devexit_p(x38_remove_one), |
| .id_table = x38_pci_tbl, |
| }; |
| |
| static int __init x38_init(void) |
| { |
| int pci_rc; |
| |
| debugf3("MC: %s()\n", __func__); |
| |
| /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| opstate_init(); |
| |
| pci_rc = pci_register_driver(&x38_driver); |
| if (pci_rc < 0) |
| goto fail0; |
| |
| if (!mci_pdev) { |
| x38_registered = 0; |
| mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_X38_HB, NULL); |
| if (!mci_pdev) { |
| debugf0("x38 pci_get_device fail\n"); |
| pci_rc = -ENODEV; |
| goto fail1; |
| } |
| |
| pci_rc = x38_init_one(mci_pdev, x38_pci_tbl); |
| if (pci_rc < 0) { |
| debugf0("x38 init fail\n"); |
| pci_rc = -ENODEV; |
| goto fail1; |
| } |
| } |
| |
| return 0; |
| |
| fail1: |
| pci_unregister_driver(&x38_driver); |
| |
| fail0: |
| if (mci_pdev) |
| pci_dev_put(mci_pdev); |
| |
| return pci_rc; |
| } |
| |
| static void __exit x38_exit(void) |
| { |
| debugf3("MC: %s()\n", __func__); |
| |
| pci_unregister_driver(&x38_driver); |
| if (!x38_registered) { |
| x38_remove_one(mci_pdev); |
| pci_dev_put(mci_pdev); |
| } |
| } |
| |
| module_init(x38_init); |
| module_exit(x38_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake"); |
| MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers"); |
| |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |