| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| #include <linux/sched.h> |
| #include <linux/bio.h> |
| #include <linux/buffer_head.h> |
| #include <linux/blkdev.h> |
| #include <asm/div64.h> |
| #include "ctree.h" |
| #include "extent_map.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "print-tree.h" |
| #include "volumes.h" |
| |
| struct map_lookup { |
| u64 type; |
| int io_align; |
| int io_width; |
| int stripe_len; |
| int sector_size; |
| int num_stripes; |
| int sub_stripes; |
| struct btrfs_bio_stripe stripes[]; |
| }; |
| |
| #define map_lookup_size(n) (sizeof(struct map_lookup) + \ |
| (sizeof(struct btrfs_bio_stripe) * (n))) |
| |
| static DEFINE_MUTEX(uuid_mutex); |
| static LIST_HEAD(fs_uuids); |
| |
| int btrfs_cleanup_fs_uuids(void) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| struct list_head *uuid_cur; |
| struct list_head *devices_cur; |
| struct btrfs_device *dev; |
| |
| list_for_each(uuid_cur, &fs_uuids) { |
| fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices, |
| list); |
| while(!list_empty(&fs_devices->devices)) { |
| devices_cur = fs_devices->devices.next; |
| dev = list_entry(devices_cur, struct btrfs_device, |
| dev_list); |
| if (dev->bdev) { |
| close_bdev_excl(dev->bdev); |
| } |
| list_del(&dev->dev_list); |
| kfree(dev); |
| } |
| } |
| return 0; |
| } |
| |
| static struct btrfs_device *__find_device(struct list_head *head, u64 devid, |
| u8 *uuid) |
| { |
| struct btrfs_device *dev; |
| struct list_head *cur; |
| |
| list_for_each(cur, head) { |
| dev = list_entry(cur, struct btrfs_device, dev_list); |
| if (dev->devid == devid && |
| !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) { |
| return dev; |
| } |
| } |
| return NULL; |
| } |
| |
| static struct btrfs_fs_devices *find_fsid(u8 *fsid) |
| { |
| struct list_head *cur; |
| struct btrfs_fs_devices *fs_devices; |
| |
| list_for_each(cur, &fs_uuids) { |
| fs_devices = list_entry(cur, struct btrfs_fs_devices, list); |
| if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) |
| return fs_devices; |
| } |
| return NULL; |
| } |
| |
| static int device_list_add(const char *path, |
| struct btrfs_super_block *disk_super, |
| u64 devid, struct btrfs_fs_devices **fs_devices_ret) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *fs_devices; |
| u64 found_transid = btrfs_super_generation(disk_super); |
| |
| fs_devices = find_fsid(disk_super->fsid); |
| if (!fs_devices) { |
| fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS); |
| if (!fs_devices) |
| return -ENOMEM; |
| INIT_LIST_HEAD(&fs_devices->devices); |
| INIT_LIST_HEAD(&fs_devices->alloc_list); |
| list_add(&fs_devices->list, &fs_uuids); |
| memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); |
| fs_devices->latest_devid = devid; |
| fs_devices->latest_trans = found_transid; |
| fs_devices->lowest_devid = (u64)-1; |
| fs_devices->num_devices = 0; |
| device = NULL; |
| } else { |
| device = __find_device(&fs_devices->devices, devid, |
| disk_super->dev_item.uuid); |
| } |
| if (!device) { |
| device = kzalloc(sizeof(*device), GFP_NOFS); |
| if (!device) { |
| /* we can safely leave the fs_devices entry around */ |
| return -ENOMEM; |
| } |
| device->devid = devid; |
| memcpy(device->uuid, disk_super->dev_item.uuid, |
| BTRFS_UUID_SIZE); |
| device->barriers = 1; |
| spin_lock_init(&device->io_lock); |
| device->name = kstrdup(path, GFP_NOFS); |
| if (!device->name) { |
| kfree(device); |
| return -ENOMEM; |
| } |
| list_add(&device->dev_list, &fs_devices->devices); |
| list_add(&device->dev_alloc_list, &fs_devices->alloc_list); |
| fs_devices->num_devices++; |
| } |
| |
| if (found_transid > fs_devices->latest_trans) { |
| fs_devices->latest_devid = devid; |
| fs_devices->latest_trans = found_transid; |
| } |
| if (fs_devices->lowest_devid > devid) { |
| fs_devices->lowest_devid = devid; |
| } |
| *fs_devices_ret = fs_devices; |
| return 0; |
| } |
| |
| int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct list_head *head = &fs_devices->devices; |
| struct list_head *cur; |
| struct btrfs_device *device; |
| |
| mutex_lock(&uuid_mutex); |
| list_for_each(cur, head) { |
| device = list_entry(cur, struct btrfs_device, dev_list); |
| if (device->bdev) { |
| close_bdev_excl(device->bdev); |
| } |
| device->bdev = NULL; |
| } |
| mutex_unlock(&uuid_mutex); |
| return 0; |
| } |
| |
| int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, |
| int flags, void *holder) |
| { |
| struct block_device *bdev; |
| struct list_head *head = &fs_devices->devices; |
| struct list_head *cur; |
| struct btrfs_device *device; |
| int ret; |
| |
| mutex_lock(&uuid_mutex); |
| list_for_each(cur, head) { |
| device = list_entry(cur, struct btrfs_device, dev_list); |
| bdev = open_bdev_excl(device->name, flags, holder); |
| |
| if (IS_ERR(bdev)) { |
| printk("open %s failed\n", device->name); |
| ret = PTR_ERR(bdev); |
| goto fail; |
| } |
| if (device->devid == fs_devices->latest_devid) |
| fs_devices->latest_bdev = bdev; |
| if (device->devid == fs_devices->lowest_devid) { |
| fs_devices->lowest_bdev = bdev; |
| } |
| device->bdev = bdev; |
| } |
| mutex_unlock(&uuid_mutex); |
| return 0; |
| fail: |
| mutex_unlock(&uuid_mutex); |
| btrfs_close_devices(fs_devices); |
| return ret; |
| } |
| |
| int btrfs_scan_one_device(const char *path, int flags, void *holder, |
| struct btrfs_fs_devices **fs_devices_ret) |
| { |
| struct btrfs_super_block *disk_super; |
| struct block_device *bdev; |
| struct buffer_head *bh; |
| int ret; |
| u64 devid; |
| u64 transid; |
| |
| mutex_lock(&uuid_mutex); |
| |
| bdev = open_bdev_excl(path, flags, holder); |
| |
| if (IS_ERR(bdev)) { |
| ret = PTR_ERR(bdev); |
| goto error; |
| } |
| |
| ret = set_blocksize(bdev, 4096); |
| if (ret) |
| goto error_close; |
| bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096); |
| if (!bh) { |
| ret = -EIO; |
| goto error_close; |
| } |
| disk_super = (struct btrfs_super_block *)bh->b_data; |
| if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, |
| sizeof(disk_super->magic))) { |
| ret = -EINVAL; |
| goto error_brelse; |
| } |
| devid = le64_to_cpu(disk_super->dev_item.devid); |
| transid = btrfs_super_generation(disk_super); |
| if (disk_super->label[0]) |
| printk("device label %s ", disk_super->label); |
| else { |
| /* FIXME, make a readl uuid parser */ |
| printk("device fsid %llx-%llx ", |
| *(unsigned long long *)disk_super->fsid, |
| *(unsigned long long *)(disk_super->fsid + 8)); |
| } |
| printk("devid %Lu transid %Lu %s\n", devid, transid, path); |
| ret = device_list_add(path, disk_super, devid, fs_devices_ret); |
| |
| error_brelse: |
| brelse(bh); |
| error_close: |
| close_bdev_excl(bdev); |
| error: |
| mutex_unlock(&uuid_mutex); |
| return ret; |
| } |
| |
| /* |
| * this uses a pretty simple search, the expectation is that it is |
| * called very infrequently and that a given device has a small number |
| * of extents |
| */ |
| static int find_free_dev_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, |
| struct btrfs_path *path, |
| u64 num_bytes, u64 *start) |
| { |
| struct btrfs_key key; |
| struct btrfs_root *root = device->dev_root; |
| struct btrfs_dev_extent *dev_extent = NULL; |
| u64 hole_size = 0; |
| u64 last_byte = 0; |
| u64 search_start = 0; |
| u64 search_end = device->total_bytes; |
| int ret; |
| int slot = 0; |
| int start_found; |
| struct extent_buffer *l; |
| |
| start_found = 0; |
| path->reada = 2; |
| |
| /* FIXME use last free of some kind */ |
| |
| /* we don't want to overwrite the superblock on the drive, |
| * so we make sure to start at an offset of at least 1MB |
| */ |
| search_start = max((u64)1024 * 1024, search_start); |
| key.objectid = device->devid; |
| key.offset = search_start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| ret = btrfs_previous_item(root, path, 0, key.type); |
| if (ret < 0) |
| goto error; |
| l = path->nodes[0]; |
| btrfs_item_key_to_cpu(l, &key, path->slots[0]); |
| while (1) { |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(l)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto error; |
| no_more_items: |
| if (!start_found) { |
| if (search_start >= search_end) { |
| ret = -ENOSPC; |
| goto error; |
| } |
| *start = search_start; |
| start_found = 1; |
| goto check_pending; |
| } |
| *start = last_byte > search_start ? |
| last_byte : search_start; |
| if (search_end <= *start) { |
| ret = -ENOSPC; |
| goto error; |
| } |
| goto check_pending; |
| } |
| btrfs_item_key_to_cpu(l, &key, slot); |
| |
| if (key.objectid < device->devid) |
| goto next; |
| |
| if (key.objectid > device->devid) |
| goto no_more_items; |
| |
| if (key.offset >= search_start && key.offset > last_byte && |
| start_found) { |
| if (last_byte < search_start) |
| last_byte = search_start; |
| hole_size = key.offset - last_byte; |
| if (key.offset > last_byte && |
| hole_size >= num_bytes) { |
| *start = last_byte; |
| goto check_pending; |
| } |
| } |
| if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) { |
| goto next; |
| } |
| |
| start_found = 1; |
| dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent); |
| next: |
| path->slots[0]++; |
| cond_resched(); |
| } |
| check_pending: |
| /* we have to make sure we didn't find an extent that has already |
| * been allocated by the map tree or the original allocation |
| */ |
| btrfs_release_path(root, path); |
| BUG_ON(*start < search_start); |
| |
| if (*start + num_bytes > search_end) { |
| ret = -ENOSPC; |
| goto error; |
| } |
| /* check for pending inserts here */ |
| return 0; |
| |
| error: |
| btrfs_release_path(root, path); |
| return ret; |
| } |
| |
| int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, |
| u64 chunk_tree, u64 chunk_objectid, |
| u64 chunk_offset, |
| u64 num_bytes, u64 *start) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_root *root = device->dev_root; |
| struct btrfs_dev_extent *extent; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = find_free_dev_extent(trans, device, path, num_bytes, start); |
| if (ret) { |
| goto err; |
| } |
| |
| key.objectid = device->devid; |
| key.offset = *start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| sizeof(*extent)); |
| BUG_ON(ret); |
| |
| leaf = path->nodes[0]; |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_extent); |
| btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); |
| btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); |
| btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); |
| |
| write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, |
| (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), |
| BTRFS_UUID_SIZE); |
| |
| btrfs_set_dev_extent_length(leaf, extent, num_bytes); |
| btrfs_mark_buffer_dirty(leaf); |
| err: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset) |
| { |
| struct btrfs_path *path; |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_chunk *chunk; |
| struct btrfs_key found_key; |
| |
| path = btrfs_alloc_path(); |
| BUG_ON(!path); |
| |
| key.objectid = objectid; |
| key.offset = (u64)-1; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| |
| BUG_ON(ret == 0); |
| |
| ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); |
| if (ret) { |
| *offset = 0; |
| } else { |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| if (found_key.objectid != objectid) |
| *offset = 0; |
| else { |
| chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_chunk); |
| *offset = found_key.offset + |
| btrfs_chunk_length(path->nodes[0], chunk); |
| } |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path, |
| u64 *objectid) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| |
| BUG_ON(ret == 0); |
| |
| ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, |
| BTRFS_DEV_ITEM_KEY); |
| if (ret) { |
| *objectid = 1; |
| } else { |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| *objectid = found_key.offset + 1; |
| } |
| ret = 0; |
| error: |
| btrfs_release_path(root, path); |
| return ret; |
| } |
| |
| /* |
| * the device information is stored in the chunk root |
| * the btrfs_device struct should be fully filled in |
| */ |
| int btrfs_add_device(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_device *device) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_dev_item *dev_item; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| unsigned long ptr; |
| u64 free_devid; |
| |
| root = root->fs_info->chunk_root; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = find_next_devid(root, path, &free_devid); |
| if (ret) |
| goto out; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = free_devid; |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| sizeof(*dev_item)); |
| if (ret) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); |
| |
| device->devid = free_devid; |
| btrfs_set_device_id(leaf, dev_item, device->devid); |
| btrfs_set_device_type(leaf, dev_item, device->type); |
| btrfs_set_device_io_align(leaf, dev_item, device->io_align); |
| btrfs_set_device_io_width(leaf, dev_item, device->io_width); |
| btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); |
| btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); |
| btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); |
| btrfs_set_device_group(leaf, dev_item, 0); |
| btrfs_set_device_seek_speed(leaf, dev_item, 0); |
| btrfs_set_device_bandwidth(leaf, dev_item, 0); |
| |
| ptr = (unsigned long)btrfs_device_uuid(dev_item); |
| write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); |
| btrfs_mark_buffer_dirty(leaf); |
| ret = 0; |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| int btrfs_update_device(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_root *root; |
| struct btrfs_dev_item *dev_item; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| |
| root = device->dev_root->fs_info->chunk_root; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| if (ret < 0) |
| goto out; |
| |
| if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); |
| |
| btrfs_set_device_id(leaf, dev_item, device->devid); |
| btrfs_set_device_type(leaf, dev_item, device->type); |
| btrfs_set_device_io_align(leaf, dev_item, device->io_align); |
| btrfs_set_device_io_width(leaf, dev_item, device->io_width); |
| btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); |
| btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); |
| btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_add_system_chunk(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_key *key, |
| struct btrfs_chunk *chunk, int item_size) |
| { |
| struct btrfs_super_block *super_copy = &root->fs_info->super_copy; |
| struct btrfs_disk_key disk_key; |
| u32 array_size; |
| u8 *ptr; |
| |
| array_size = btrfs_super_sys_array_size(super_copy); |
| if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) |
| return -EFBIG; |
| |
| ptr = super_copy->sys_chunk_array + array_size; |
| btrfs_cpu_key_to_disk(&disk_key, key); |
| memcpy(ptr, &disk_key, sizeof(disk_key)); |
| ptr += sizeof(disk_key); |
| memcpy(ptr, chunk, item_size); |
| item_size += sizeof(disk_key); |
| btrfs_set_super_sys_array_size(super_copy, array_size + item_size); |
| return 0; |
| } |
| |
| static u64 div_factor(u64 num, int factor) |
| { |
| if (factor == 10) |
| return num; |
| num *= factor; |
| do_div(num, 10); |
| return num; |
| } |
| |
| static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes, |
| int sub_stripes) |
| { |
| if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP)) |
| return calc_size; |
| else if (type & BTRFS_BLOCK_GROUP_RAID10) |
| return calc_size * (num_stripes / sub_stripes); |
| else |
| return calc_size * num_stripes; |
| } |
| |
| |
| int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, |
| struct btrfs_root *extent_root, u64 *start, |
| u64 *num_bytes, u64 type) |
| { |
| u64 dev_offset; |
| struct btrfs_fs_info *info = extent_root->fs_info; |
| struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; |
| struct btrfs_stripe *stripes; |
| struct btrfs_device *device = NULL; |
| struct btrfs_chunk *chunk; |
| struct list_head private_devs; |
| struct list_head *dev_list; |
| struct list_head *cur; |
| struct extent_map_tree *em_tree; |
| struct map_lookup *map; |
| struct extent_map *em; |
| int min_stripe_size = 1 * 1024 * 1024; |
| u64 physical; |
| u64 calc_size = 1024 * 1024 * 1024; |
| u64 max_chunk_size = calc_size; |
| u64 min_free; |
| u64 avail; |
| u64 max_avail = 0; |
| u64 percent_max; |
| int num_stripes = 1; |
| int min_stripes = 1; |
| int sub_stripes = 0; |
| int looped = 0; |
| int ret; |
| int index; |
| int stripe_len = 64 * 1024; |
| struct btrfs_key key; |
| |
| dev_list = &extent_root->fs_info->fs_devices->alloc_list; |
| if (list_empty(dev_list)) |
| return -ENOSPC; |
| |
| if (type & (BTRFS_BLOCK_GROUP_RAID0)) { |
| num_stripes = btrfs_super_num_devices(&info->super_copy); |
| min_stripes = 2; |
| } |
| if (type & (BTRFS_BLOCK_GROUP_DUP)) { |
| num_stripes = 2; |
| min_stripes = 2; |
| } |
| if (type & (BTRFS_BLOCK_GROUP_RAID1)) { |
| num_stripes = min_t(u64, 2, |
| btrfs_super_num_devices(&info->super_copy)); |
| if (num_stripes < 2) |
| return -ENOSPC; |
| min_stripes = 2; |
| } |
| if (type & (BTRFS_BLOCK_GROUP_RAID10)) { |
| num_stripes = btrfs_super_num_devices(&info->super_copy); |
| if (num_stripes < 4) |
| return -ENOSPC; |
| num_stripes &= ~(u32)1; |
| sub_stripes = 2; |
| min_stripes = 4; |
| } |
| |
| if (type & BTRFS_BLOCK_GROUP_DATA) { |
| max_chunk_size = 10 * calc_size; |
| min_stripe_size = 64 * 1024 * 1024; |
| } else if (type & BTRFS_BLOCK_GROUP_METADATA) { |
| max_chunk_size = 4 * calc_size; |
| min_stripe_size = 32 * 1024 * 1024; |
| } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| calc_size = 8 * 1024 * 1024; |
| max_chunk_size = calc_size * 2; |
| min_stripe_size = 1 * 1024 * 1024; |
| } |
| |
| /* we don't want a chunk larger than 10% of the FS */ |
| percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1); |
| max_chunk_size = min(percent_max, max_chunk_size); |
| |
| again: |
| if (calc_size * num_stripes > max_chunk_size) { |
| calc_size = max_chunk_size; |
| do_div(calc_size, num_stripes); |
| do_div(calc_size, stripe_len); |
| calc_size *= stripe_len; |
| } |
| /* we don't want tiny stripes */ |
| calc_size = max_t(u64, min_stripe_size, calc_size); |
| |
| do_div(calc_size, stripe_len); |
| calc_size *= stripe_len; |
| |
| INIT_LIST_HEAD(&private_devs); |
| cur = dev_list->next; |
| index = 0; |
| |
| if (type & BTRFS_BLOCK_GROUP_DUP) |
| min_free = calc_size * 2; |
| else |
| min_free = calc_size; |
| |
| /* we add 1MB because we never use the first 1MB of the device */ |
| min_free += 1024 * 1024; |
| |
| /* build a private list of devices we will allocate from */ |
| while(index < num_stripes) { |
| device = list_entry(cur, struct btrfs_device, dev_alloc_list); |
| |
| avail = device->total_bytes - device->bytes_used; |
| cur = cur->next; |
| if (avail >= min_free) { |
| list_move_tail(&device->dev_alloc_list, &private_devs); |
| index++; |
| if (type & BTRFS_BLOCK_GROUP_DUP) |
| index++; |
| } else if (avail > max_avail) |
| max_avail = avail; |
| if (cur == dev_list) |
| break; |
| } |
| if (index < num_stripes) { |
| list_splice(&private_devs, dev_list); |
| if (index >= min_stripes) { |
| num_stripes = index; |
| if (type & (BTRFS_BLOCK_GROUP_RAID10)) { |
| num_stripes /= sub_stripes; |
| num_stripes *= sub_stripes; |
| } |
| looped = 1; |
| goto again; |
| } |
| if (!looped && max_avail > 0) { |
| looped = 1; |
| calc_size = max_avail; |
| goto again; |
| } |
| return -ENOSPC; |
| } |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, |
| &key.offset); |
| if (ret) |
| return ret; |
| |
| chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS); |
| if (!chunk) |
| return -ENOMEM; |
| |
| map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); |
| if (!map) { |
| kfree(chunk); |
| return -ENOMEM; |
| } |
| |
| stripes = &chunk->stripe; |
| *num_bytes = chunk_bytes_by_type(type, calc_size, |
| num_stripes, sub_stripes); |
| |
| |
| index = 0; |
| printk("new chunk type %Lu start %Lu size %Lu\n", type, key.offset, *num_bytes); |
| while(index < num_stripes) { |
| struct btrfs_stripe *stripe; |
| BUG_ON(list_empty(&private_devs)); |
| cur = private_devs.next; |
| device = list_entry(cur, struct btrfs_device, dev_alloc_list); |
| |
| /* loop over this device again if we're doing a dup group */ |
| if (!(type & BTRFS_BLOCK_GROUP_DUP) || |
| (index == num_stripes - 1)) |
| list_move_tail(&device->dev_alloc_list, dev_list); |
| |
| ret = btrfs_alloc_dev_extent(trans, device, |
| info->chunk_root->root_key.objectid, |
| BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset, |
| calc_size, &dev_offset); |
| BUG_ON(ret); |
| printk("alloc chunk start %Lu size %Lu from dev %Lu type %Lu\n", key.offset, calc_size, device->devid, type); |
| device->bytes_used += calc_size; |
| ret = btrfs_update_device(trans, device); |
| BUG_ON(ret); |
| |
| map->stripes[index].dev = device; |
| map->stripes[index].physical = dev_offset; |
| stripe = stripes + index; |
| btrfs_set_stack_stripe_devid(stripe, device->devid); |
| btrfs_set_stack_stripe_offset(stripe, dev_offset); |
| memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); |
| physical = dev_offset; |
| index++; |
| } |
| BUG_ON(!list_empty(&private_devs)); |
| |
| /* key was set above */ |
| btrfs_set_stack_chunk_length(chunk, *num_bytes); |
| btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); |
| btrfs_set_stack_chunk_stripe_len(chunk, stripe_len); |
| btrfs_set_stack_chunk_type(chunk, type); |
| btrfs_set_stack_chunk_num_stripes(chunk, num_stripes); |
| btrfs_set_stack_chunk_io_align(chunk, stripe_len); |
| btrfs_set_stack_chunk_io_width(chunk, stripe_len); |
| btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); |
| btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes); |
| map->sector_size = extent_root->sectorsize; |
| map->stripe_len = stripe_len; |
| map->io_align = stripe_len; |
| map->io_width = stripe_len; |
| map->type = type; |
| map->num_stripes = num_stripes; |
| map->sub_stripes = sub_stripes; |
| |
| ret = btrfs_insert_item(trans, chunk_root, &key, chunk, |
| btrfs_chunk_item_size(num_stripes)); |
| BUG_ON(ret); |
| *start = key.offset;; |
| |
| em = alloc_extent_map(GFP_NOFS); |
| if (!em) |
| return -ENOMEM; |
| em->bdev = (struct block_device *)map; |
| em->start = key.offset; |
| em->len = *num_bytes; |
| em->block_start = 0; |
| |
| kfree(chunk); |
| |
| em_tree = &extent_root->fs_info->mapping_tree.map_tree; |
| spin_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em); |
| spin_unlock(&em_tree->lock); |
| BUG_ON(ret); |
| free_extent_map(em); |
| return ret; |
| } |
| |
| void btrfs_mapping_init(struct btrfs_mapping_tree *tree) |
| { |
| extent_map_tree_init(&tree->map_tree, GFP_NOFS); |
| } |
| |
| void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) |
| { |
| struct extent_map *em; |
| |
| while(1) { |
| spin_lock(&tree->map_tree.lock); |
| em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); |
| if (em) |
| remove_extent_mapping(&tree->map_tree, em); |
| spin_unlock(&tree->map_tree.lock); |
| if (!em) |
| break; |
| kfree(em->bdev); |
| /* once for us */ |
| free_extent_map(em); |
| /* once for the tree */ |
| free_extent_map(em); |
| } |
| } |
| |
| int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| struct extent_map_tree *em_tree = &map_tree->map_tree; |
| int ret; |
| |
| spin_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, logical, len); |
| spin_unlock(&em_tree->lock); |
| BUG_ON(!em); |
| |
| BUG_ON(em->start > logical || em->start + em->len < logical); |
| map = (struct map_lookup *)em->bdev; |
| if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) |
| ret = map->num_stripes; |
| else if (map->type & BTRFS_BLOCK_GROUP_RAID10) |
| ret = map->sub_stripes; |
| else |
| ret = 1; |
| free_extent_map(em); |
| return ret; |
| } |
| |
| static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, |
| u64 logical, u64 *length, |
| struct btrfs_multi_bio **multi_ret, |
| int mirror_num, struct page *unplug_page) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| struct extent_map_tree *em_tree = &map_tree->map_tree; |
| u64 offset; |
| u64 stripe_offset; |
| u64 stripe_nr; |
| int stripes_allocated = 8; |
| int stripes_required = 1; |
| int stripe_index; |
| int i; |
| int num_stripes; |
| struct btrfs_multi_bio *multi = NULL; |
| |
| if (multi_ret && !(rw & (1 << BIO_RW))) { |
| stripes_allocated = 1; |
| } |
| again: |
| if (multi_ret) { |
| multi = kzalloc(btrfs_multi_bio_size(stripes_allocated), |
| GFP_NOFS); |
| if (!multi) |
| return -ENOMEM; |
| } |
| |
| spin_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, logical, *length); |
| spin_unlock(&em_tree->lock); |
| |
| if (!em && unplug_page) |
| return 0; |
| |
| if (!em) { |
| printk("unable to find logical %Lu\n", logical); |
| BUG(); |
| } |
| |
| BUG_ON(em->start > logical || em->start + em->len < logical); |
| map = (struct map_lookup *)em->bdev; |
| offset = logical - em->start; |
| |
| if (mirror_num > map->num_stripes) |
| mirror_num = 0; |
| |
| /* if our multi bio struct is too small, back off and try again */ |
| if (rw & (1 << BIO_RW)) { |
| if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_DUP)) { |
| stripes_required = map->num_stripes; |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
| stripes_required = map->sub_stripes; |
| } |
| } |
| if (multi_ret && rw == WRITE && |
| stripes_allocated < stripes_required) { |
| stripes_allocated = map->num_stripes; |
| free_extent_map(em); |
| kfree(multi); |
| goto again; |
| } |
| stripe_nr = offset; |
| /* |
| * stripe_nr counts the total number of stripes we have to stride |
| * to get to this block |
| */ |
| do_div(stripe_nr, map->stripe_len); |
| |
| stripe_offset = stripe_nr * map->stripe_len; |
| BUG_ON(offset < stripe_offset); |
| |
| /* stripe_offset is the offset of this block in its stripe*/ |
| stripe_offset = offset - stripe_offset; |
| |
| if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_DUP)) { |
| /* we limit the length of each bio to what fits in a stripe */ |
| *length = min_t(u64, em->len - offset, |
| map->stripe_len - stripe_offset); |
| } else { |
| *length = em->len - offset; |
| } |
| |
| if (!multi_ret && !unplug_page) |
| goto out; |
| |
| num_stripes = 1; |
| stripe_index = 0; |
| if (map->type & BTRFS_BLOCK_GROUP_RAID1) { |
| if (unplug_page || (rw & (1 << BIO_RW))) |
| num_stripes = map->num_stripes; |
| else if (mirror_num) { |
| stripe_index = mirror_num - 1; |
| } else { |
| u64 orig_stripe_nr = stripe_nr; |
| stripe_index = do_div(orig_stripe_nr, num_stripes); |
| } |
| } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { |
| if (rw & (1 << BIO_RW)) |
| num_stripes = map->num_stripes; |
| else if (mirror_num) |
| stripe_index = mirror_num - 1; |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
| int factor = map->num_stripes / map->sub_stripes; |
| |
| stripe_index = do_div(stripe_nr, factor); |
| stripe_index *= map->sub_stripes; |
| |
| if (unplug_page || (rw & (1 << BIO_RW))) |
| num_stripes = map->sub_stripes; |
| else if (mirror_num) |
| stripe_index += mirror_num - 1; |
| else { |
| u64 orig_stripe_nr = stripe_nr; |
| stripe_index += do_div(orig_stripe_nr, |
| map->sub_stripes); |
| } |
| } else { |
| /* |
| * after this do_div call, stripe_nr is the number of stripes |
| * on this device we have to walk to find the data, and |
| * stripe_index is the number of our device in the stripe array |
| */ |
| stripe_index = do_div(stripe_nr, map->num_stripes); |
| } |
| BUG_ON(stripe_index >= map->num_stripes); |
| |
| for (i = 0; i < num_stripes; i++) { |
| if (unplug_page) { |
| struct btrfs_device *device; |
| struct backing_dev_info *bdi; |
| |
| device = map->stripes[stripe_index].dev; |
| bdi = blk_get_backing_dev_info(device->bdev); |
| if (bdi->unplug_io_fn) { |
| bdi->unplug_io_fn(bdi, unplug_page); |
| } |
| } else { |
| multi->stripes[i].physical = |
| map->stripes[stripe_index].physical + |
| stripe_offset + stripe_nr * map->stripe_len; |
| multi->stripes[i].dev = map->stripes[stripe_index].dev; |
| } |
| stripe_index++; |
| } |
| if (multi_ret) { |
| *multi_ret = multi; |
| multi->num_stripes = num_stripes; |
| } |
| out: |
| free_extent_map(em); |
| return 0; |
| } |
| |
| int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, |
| u64 logical, u64 *length, |
| struct btrfs_multi_bio **multi_ret, int mirror_num) |
| { |
| return __btrfs_map_block(map_tree, rw, logical, length, multi_ret, |
| mirror_num, NULL); |
| } |
| |
| int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree, |
| u64 logical, struct page *page) |
| { |
| u64 length = PAGE_CACHE_SIZE; |
| return __btrfs_map_block(map_tree, READ, logical, &length, |
| NULL, 0, page); |
| } |
| |
| |
| #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) |
| static void end_bio_multi_stripe(struct bio *bio, int err) |
| #else |
| static int end_bio_multi_stripe(struct bio *bio, |
| unsigned int bytes_done, int err) |
| #endif |
| { |
| struct btrfs_multi_bio *multi = bio->bi_private; |
| |
| #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) |
| if (bio->bi_size) |
| return 1; |
| #endif |
| if (err) |
| multi->error = err; |
| |
| if (atomic_dec_and_test(&multi->stripes_pending)) { |
| bio->bi_private = multi->private; |
| bio->bi_end_io = multi->end_io; |
| |
| if (!err && multi->error) |
| err = multi->error; |
| kfree(multi); |
| |
| #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) |
| bio_endio(bio, bio->bi_size, err); |
| #else |
| bio_endio(bio, err); |
| #endif |
| } else { |
| bio_put(bio); |
| } |
| #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) |
| return 0; |
| #endif |
| } |
| |
| int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, |
| int mirror_num) |
| { |
| struct btrfs_mapping_tree *map_tree; |
| struct btrfs_device *dev; |
| struct bio *first_bio = bio; |
| u64 logical = bio->bi_sector << 9; |
| u64 length = 0; |
| u64 map_length; |
| struct btrfs_multi_bio *multi = NULL; |
| int ret; |
| int dev_nr = 0; |
| int total_devs = 1; |
| |
| length = bio->bi_size; |
| map_tree = &root->fs_info->mapping_tree; |
| map_length = length; |
| |
| ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi, |
| mirror_num); |
| BUG_ON(ret); |
| |
| total_devs = multi->num_stripes; |
| if (map_length < length) { |
| printk("mapping failed logical %Lu bio len %Lu " |
| "len %Lu\n", logical, length, map_length); |
| BUG(); |
| } |
| multi->end_io = first_bio->bi_end_io; |
| multi->private = first_bio->bi_private; |
| atomic_set(&multi->stripes_pending, multi->num_stripes); |
| |
| while(dev_nr < total_devs) { |
| if (total_devs > 1) { |
| if (dev_nr < total_devs - 1) { |
| bio = bio_clone(first_bio, GFP_NOFS); |
| BUG_ON(!bio); |
| } else { |
| bio = first_bio; |
| } |
| bio->bi_private = multi; |
| bio->bi_end_io = end_bio_multi_stripe; |
| } |
| bio->bi_sector = multi->stripes[dev_nr].physical >> 9; |
| dev = multi->stripes[dev_nr].dev; |
| |
| bio->bi_bdev = dev->bdev; |
| spin_lock(&dev->io_lock); |
| dev->total_ios++; |
| spin_unlock(&dev->io_lock); |
| submit_bio(rw, bio); |
| dev_nr++; |
| } |
| if (total_devs == 1) |
| kfree(multi); |
| return 0; |
| } |
| |
| struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, |
| u8 *uuid) |
| { |
| struct list_head *head = &root->fs_info->fs_devices->devices; |
| |
| return __find_device(head, devid, uuid); |
| } |
| |
| static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, |
| struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk) |
| { |
| struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; |
| struct map_lookup *map; |
| struct extent_map *em; |
| u64 logical; |
| u64 length; |
| u64 devid; |
| u8 uuid[BTRFS_UUID_SIZE]; |
| int num_stripes; |
| int ret; |
| int i; |
| |
| logical = key->offset; |
| length = btrfs_chunk_length(leaf, chunk); |
| spin_lock(&map_tree->map_tree.lock); |
| em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); |
| spin_unlock(&map_tree->map_tree.lock); |
| |
| /* already mapped? */ |
| if (em && em->start <= logical && em->start + em->len > logical) { |
| free_extent_map(em); |
| return 0; |
| } else if (em) { |
| free_extent_map(em); |
| } |
| |
| map = kzalloc(sizeof(*map), GFP_NOFS); |
| if (!map) |
| return -ENOMEM; |
| |
| em = alloc_extent_map(GFP_NOFS); |
| if (!em) |
| return -ENOMEM; |
| num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); |
| if (!map) { |
| free_extent_map(em); |
| return -ENOMEM; |
| } |
| |
| em->bdev = (struct block_device *)map; |
| em->start = logical; |
| em->len = length; |
| em->block_start = 0; |
| |
| map->num_stripes = num_stripes; |
| map->io_width = btrfs_chunk_io_width(leaf, chunk); |
| map->io_align = btrfs_chunk_io_align(leaf, chunk); |
| map->sector_size = btrfs_chunk_sector_size(leaf, chunk); |
| map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); |
| map->type = btrfs_chunk_type(leaf, chunk); |
| map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); |
| for (i = 0; i < num_stripes; i++) { |
| map->stripes[i].physical = |
| btrfs_stripe_offset_nr(leaf, chunk, i); |
| devid = btrfs_stripe_devid_nr(leaf, chunk, i); |
| read_extent_buffer(leaf, uuid, (unsigned long) |
| btrfs_stripe_dev_uuid_nr(chunk, i), |
| BTRFS_UUID_SIZE); |
| map->stripes[i].dev = btrfs_find_device(root, devid, uuid); |
| if (!map->stripes[i].dev) { |
| kfree(map); |
| free_extent_map(em); |
| return -EIO; |
| } |
| } |
| |
| spin_lock(&map_tree->map_tree.lock); |
| ret = add_extent_mapping(&map_tree->map_tree, em); |
| spin_unlock(&map_tree->map_tree.lock); |
| BUG_ON(ret); |
| free_extent_map(em); |
| |
| return 0; |
| } |
| |
| static int fill_device_from_item(struct extent_buffer *leaf, |
| struct btrfs_dev_item *dev_item, |
| struct btrfs_device *device) |
| { |
| unsigned long ptr; |
| |
| device->devid = btrfs_device_id(leaf, dev_item); |
| device->total_bytes = btrfs_device_total_bytes(leaf, dev_item); |
| device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); |
| device->type = btrfs_device_type(leaf, dev_item); |
| device->io_align = btrfs_device_io_align(leaf, dev_item); |
| device->io_width = btrfs_device_io_width(leaf, dev_item); |
| device->sector_size = btrfs_device_sector_size(leaf, dev_item); |
| |
| ptr = (unsigned long)btrfs_device_uuid(dev_item); |
| read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); |
| |
| return 0; |
| } |
| |
| static int read_one_dev(struct btrfs_root *root, |
| struct extent_buffer *leaf, |
| struct btrfs_dev_item *dev_item) |
| { |
| struct btrfs_device *device; |
| u64 devid; |
| int ret; |
| u8 dev_uuid[BTRFS_UUID_SIZE]; |
| |
| devid = btrfs_device_id(leaf, dev_item); |
| read_extent_buffer(leaf, dev_uuid, |
| (unsigned long)btrfs_device_uuid(dev_item), |
| BTRFS_UUID_SIZE); |
| device = btrfs_find_device(root, devid, dev_uuid); |
| if (!device) { |
| printk("warning devid %Lu not found already\n", devid); |
| device = kzalloc(sizeof(*device), GFP_NOFS); |
| if (!device) |
| return -ENOMEM; |
| list_add(&device->dev_list, |
| &root->fs_info->fs_devices->devices); |
| list_add(&device->dev_alloc_list, |
| &root->fs_info->fs_devices->alloc_list); |
| device->barriers = 1; |
| spin_lock_init(&device->io_lock); |
| } |
| |
| fill_device_from_item(leaf, dev_item, device); |
| device->dev_root = root->fs_info->dev_root; |
| ret = 0; |
| #if 0 |
| ret = btrfs_open_device(device); |
| if (ret) { |
| kfree(device); |
| } |
| #endif |
| return ret; |
| } |
| |
| int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf) |
| { |
| struct btrfs_dev_item *dev_item; |
| |
| dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block, |
| dev_item); |
| return read_one_dev(root, buf, dev_item); |
| } |
| |
| int btrfs_read_sys_array(struct btrfs_root *root) |
| { |
| struct btrfs_super_block *super_copy = &root->fs_info->super_copy; |
| struct extent_buffer *sb = root->fs_info->sb_buffer; |
| struct btrfs_disk_key *disk_key; |
| struct btrfs_chunk *chunk; |
| u8 *ptr; |
| unsigned long sb_ptr; |
| int ret = 0; |
| u32 num_stripes; |
| u32 array_size; |
| u32 len = 0; |
| u32 cur; |
| struct btrfs_key key; |
| |
| array_size = btrfs_super_sys_array_size(super_copy); |
| |
| /* |
| * we do this loop twice, once for the device items and |
| * once for all of the chunks. This way there are device |
| * structs filled in for every chunk |
| */ |
| ptr = super_copy->sys_chunk_array; |
| sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); |
| cur = 0; |
| |
| while (cur < array_size) { |
| disk_key = (struct btrfs_disk_key *)ptr; |
| btrfs_disk_key_to_cpu(&key, disk_key); |
| |
| len = sizeof(*disk_key); |
| ptr += len; |
| sb_ptr += len; |
| cur += len; |
| |
| if (key.type == BTRFS_CHUNK_ITEM_KEY) { |
| chunk = (struct btrfs_chunk *)sb_ptr; |
| ret = read_one_chunk(root, &key, sb, chunk); |
| if (ret) |
| break; |
| num_stripes = btrfs_chunk_num_stripes(sb, chunk); |
| len = btrfs_chunk_item_size(num_stripes); |
| } else { |
| ret = -EIO; |
| break; |
| } |
| ptr += len; |
| sb_ptr += len; |
| cur += len; |
| } |
| return ret; |
| } |
| |
| int btrfs_read_chunk_tree(struct btrfs_root *root) |
| { |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| int ret; |
| int slot; |
| |
| root = root->fs_info->chunk_root; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* first we search for all of the device items, and then we |
| * read in all of the chunk items. This way we can create chunk |
| * mappings that reference all of the devices that are afound |
| */ |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.offset = 0; |
| key.type = 0; |
| again: |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| while(1) { |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto error; |
| break; |
| } |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { |
| if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) |
| break; |
| if (found_key.type == BTRFS_DEV_ITEM_KEY) { |
| struct btrfs_dev_item *dev_item; |
| dev_item = btrfs_item_ptr(leaf, slot, |
| struct btrfs_dev_item); |
| ret = read_one_dev(root, leaf, dev_item); |
| BUG_ON(ret); |
| } |
| } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { |
| struct btrfs_chunk *chunk; |
| chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); |
| ret = read_one_chunk(root, &found_key, leaf, chunk); |
| } |
| path->slots[0]++; |
| } |
| if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { |
| key.objectid = 0; |
| btrfs_release_path(root, path); |
| goto again; |
| } |
| |
| btrfs_free_path(path); |
| ret = 0; |
| error: |
| return ret; |
| } |
| |