| /******************************************************************************* |
| |
| Intel(R) Gigabit Ethernet Linux driver |
| Copyright(c) 2007-2012 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| #include <linux/if_ether.h> |
| #include <linux/delay.h> |
| |
| #include "e1000_mac.h" |
| #include "e1000_nvm.h" |
| |
| /** |
| * igb_raise_eec_clk - Raise EEPROM clock |
| * @hw: pointer to the HW structure |
| * @eecd: pointer to the EEPROM |
| * |
| * Enable/Raise the EEPROM clock bit. |
| **/ |
| static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) |
| { |
| *eecd = *eecd | E1000_EECD_SK; |
| wr32(E1000_EECD, *eecd); |
| wrfl(); |
| udelay(hw->nvm.delay_usec); |
| } |
| |
| /** |
| * igb_lower_eec_clk - Lower EEPROM clock |
| * @hw: pointer to the HW structure |
| * @eecd: pointer to the EEPROM |
| * |
| * Clear/Lower the EEPROM clock bit. |
| **/ |
| static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) |
| { |
| *eecd = *eecd & ~E1000_EECD_SK; |
| wr32(E1000_EECD, *eecd); |
| wrfl(); |
| udelay(hw->nvm.delay_usec); |
| } |
| |
| /** |
| * igb_shift_out_eec_bits - Shift data bits our to the EEPROM |
| * @hw: pointer to the HW structure |
| * @data: data to send to the EEPROM |
| * @count: number of bits to shift out |
| * |
| * We need to shift 'count' bits out to the EEPROM. So, the value in the |
| * "data" parameter will be shifted out to the EEPROM one bit at a time. |
| * In order to do this, "data" must be broken down into bits. |
| **/ |
| static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 eecd = rd32(E1000_EECD); |
| u32 mask; |
| |
| mask = 0x01 << (count - 1); |
| if (nvm->type == e1000_nvm_eeprom_spi) |
| eecd |= E1000_EECD_DO; |
| |
| do { |
| eecd &= ~E1000_EECD_DI; |
| |
| if (data & mask) |
| eecd |= E1000_EECD_DI; |
| |
| wr32(E1000_EECD, eecd); |
| wrfl(); |
| |
| udelay(nvm->delay_usec); |
| |
| igb_raise_eec_clk(hw, &eecd); |
| igb_lower_eec_clk(hw, &eecd); |
| |
| mask >>= 1; |
| } while (mask); |
| |
| eecd &= ~E1000_EECD_DI; |
| wr32(E1000_EECD, eecd); |
| } |
| |
| /** |
| * igb_shift_in_eec_bits - Shift data bits in from the EEPROM |
| * @hw: pointer to the HW structure |
| * @count: number of bits to shift in |
| * |
| * In order to read a register from the EEPROM, we need to shift 'count' bits |
| * in from the EEPROM. Bits are "shifted in" by raising the clock input to |
| * the EEPROM (setting the SK bit), and then reading the value of the data out |
| * "DO" bit. During this "shifting in" process the data in "DI" bit should |
| * always be clear. |
| **/ |
| static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) |
| { |
| u32 eecd; |
| u32 i; |
| u16 data; |
| |
| eecd = rd32(E1000_EECD); |
| |
| eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| data = 0; |
| |
| for (i = 0; i < count; i++) { |
| data <<= 1; |
| igb_raise_eec_clk(hw, &eecd); |
| |
| eecd = rd32(E1000_EECD); |
| |
| eecd &= ~E1000_EECD_DI; |
| if (eecd & E1000_EECD_DO) |
| data |= 1; |
| |
| igb_lower_eec_clk(hw, &eecd); |
| } |
| |
| return data; |
| } |
| |
| /** |
| * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion |
| * @hw: pointer to the HW structure |
| * @ee_reg: EEPROM flag for polling |
| * |
| * Polls the EEPROM status bit for either read or write completion based |
| * upon the value of 'ee_reg'. |
| **/ |
| static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) |
| { |
| u32 attempts = 100000; |
| u32 i, reg = 0; |
| s32 ret_val = -E1000_ERR_NVM; |
| |
| for (i = 0; i < attempts; i++) { |
| if (ee_reg == E1000_NVM_POLL_READ) |
| reg = rd32(E1000_EERD); |
| else |
| reg = rd32(E1000_EEWR); |
| |
| if (reg & E1000_NVM_RW_REG_DONE) { |
| ret_val = 0; |
| break; |
| } |
| |
| udelay(5); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * igb_acquire_nvm - Generic request for access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| * Return successful if access grant bit set, else clear the request for |
| * EEPROM access and return -E1000_ERR_NVM (-1). |
| **/ |
| s32 igb_acquire_nvm(struct e1000_hw *hw) |
| { |
| u32 eecd = rd32(E1000_EECD); |
| s32 timeout = E1000_NVM_GRANT_ATTEMPTS; |
| s32 ret_val = 0; |
| |
| |
| wr32(E1000_EECD, eecd | E1000_EECD_REQ); |
| eecd = rd32(E1000_EECD); |
| |
| while (timeout) { |
| if (eecd & E1000_EECD_GNT) |
| break; |
| udelay(5); |
| eecd = rd32(E1000_EECD); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| eecd &= ~E1000_EECD_REQ; |
| wr32(E1000_EECD, eecd); |
| hw_dbg("Could not acquire NVM grant\n"); |
| ret_val = -E1000_ERR_NVM; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * igb_standby_nvm - Return EEPROM to standby state |
| * @hw: pointer to the HW structure |
| * |
| * Return the EEPROM to a standby state. |
| **/ |
| static void igb_standby_nvm(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 eecd = rd32(E1000_EECD); |
| |
| if (nvm->type == e1000_nvm_eeprom_spi) { |
| /* Toggle CS to flush commands */ |
| eecd |= E1000_EECD_CS; |
| wr32(E1000_EECD, eecd); |
| wrfl(); |
| udelay(nvm->delay_usec); |
| eecd &= ~E1000_EECD_CS; |
| wr32(E1000_EECD, eecd); |
| wrfl(); |
| udelay(nvm->delay_usec); |
| } |
| } |
| |
| /** |
| * e1000_stop_nvm - Terminate EEPROM command |
| * @hw: pointer to the HW structure |
| * |
| * Terminates the current command by inverting the EEPROM's chip select pin. |
| **/ |
| static void e1000_stop_nvm(struct e1000_hw *hw) |
| { |
| u32 eecd; |
| |
| eecd = rd32(E1000_EECD); |
| if (hw->nvm.type == e1000_nvm_eeprom_spi) { |
| /* Pull CS high */ |
| eecd |= E1000_EECD_CS; |
| igb_lower_eec_clk(hw, &eecd); |
| } |
| } |
| |
| /** |
| * igb_release_nvm - Release exclusive access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Stop any current commands to the EEPROM and clear the EEPROM request bit. |
| **/ |
| void igb_release_nvm(struct e1000_hw *hw) |
| { |
| u32 eecd; |
| |
| e1000_stop_nvm(hw); |
| |
| eecd = rd32(E1000_EECD); |
| eecd &= ~E1000_EECD_REQ; |
| wr32(E1000_EECD, eecd); |
| } |
| |
| /** |
| * igb_ready_nvm_eeprom - Prepares EEPROM for read/write |
| * @hw: pointer to the HW structure |
| * |
| * Setups the EEPROM for reading and writing. |
| **/ |
| static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 eecd = rd32(E1000_EECD); |
| s32 ret_val = 0; |
| u16 timeout = 0; |
| u8 spi_stat_reg; |
| |
| |
| if (nvm->type == e1000_nvm_eeprom_spi) { |
| /* Clear SK and CS */ |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| wr32(E1000_EECD, eecd); |
| wrfl(); |
| udelay(1); |
| timeout = NVM_MAX_RETRY_SPI; |
| |
| /* |
| * Read "Status Register" repeatedly until the LSB is cleared. |
| * The EEPROM will signal that the command has been completed |
| * by clearing bit 0 of the internal status register. If it's |
| * not cleared within 'timeout', then error out. |
| */ |
| while (timeout) { |
| igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, |
| hw->nvm.opcode_bits); |
| spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); |
| if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) |
| break; |
| |
| udelay(5); |
| igb_standby_nvm(hw); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| hw_dbg("SPI NVM Status error\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_read_nvm_spi - Read EEPROM's using SPI |
| * @hw: pointer to the HW structure |
| * @offset: offset of word in the EEPROM to read |
| * @words: number of words to read |
| * @data: word read from the EEPROM |
| * |
| * Reads a 16 bit word from the EEPROM. |
| **/ |
| s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 i = 0; |
| s32 ret_val; |
| u16 word_in; |
| u8 read_opcode = NVM_READ_OPCODE_SPI; |
| |
| /* |
| * A check for invalid values: offset too large, too many words, |
| * and not enough words. |
| */ |
| if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| (words == 0)) { |
| hw_dbg("nvm parameter(s) out of bounds\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| |
| ret_val = nvm->ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| ret_val = igb_ready_nvm_eeprom(hw); |
| if (ret_val) |
| goto release; |
| |
| igb_standby_nvm(hw); |
| |
| if ((nvm->address_bits == 8) && (offset >= 128)) |
| read_opcode |= NVM_A8_OPCODE_SPI; |
| |
| /* Send the READ command (opcode + addr) */ |
| igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); |
| igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); |
| |
| /* |
| * Read the data. SPI NVMs increment the address with each byte |
| * read and will roll over if reading beyond the end. This allows |
| * us to read the whole NVM from any offset |
| */ |
| for (i = 0; i < words; i++) { |
| word_in = igb_shift_in_eec_bits(hw, 16); |
| data[i] = (word_in >> 8) | (word_in << 8); |
| } |
| |
| release: |
| nvm->ops.release(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_read_nvm_eerd - Reads EEPROM using EERD register |
| * @hw: pointer to the HW structure |
| * @offset: offset of word in the EEPROM to read |
| * @words: number of words to read |
| * @data: word read from the EEPROM |
| * |
| * Reads a 16 bit word from the EEPROM using the EERD register. |
| **/ |
| s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 i, eerd = 0; |
| s32 ret_val = 0; |
| |
| /* |
| * A check for invalid values: offset too large, too many words, |
| * and not enough words. |
| */ |
| if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| (words == 0)) { |
| hw_dbg("nvm parameter(s) out of bounds\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| |
| for (i = 0; i < words; i++) { |
| eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + |
| E1000_NVM_RW_REG_START; |
| |
| wr32(E1000_EERD, eerd); |
| ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); |
| if (ret_val) |
| break; |
| |
| data[i] = (rd32(E1000_EERD) >> |
| E1000_NVM_RW_REG_DATA); |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_write_nvm_spi - Write to EEPROM using SPI |
| * @hw: pointer to the HW structure |
| * @offset: offset within the EEPROM to be written to |
| * @words: number of words to write |
| * @data: 16 bit word(s) to be written to the EEPROM |
| * |
| * Writes data to EEPROM at offset using SPI interface. |
| * |
| * If e1000_update_nvm_checksum is not called after this function , the |
| * EEPROM will most likley contain an invalid checksum. |
| **/ |
| s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| s32 ret_val; |
| u16 widx = 0; |
| |
| /* |
| * A check for invalid values: offset too large, too many words, |
| * and not enough words. |
| */ |
| if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| (words == 0)) { |
| hw_dbg("nvm parameter(s) out of bounds\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| |
| ret_val = hw->nvm.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| msleep(10); |
| |
| while (widx < words) { |
| u8 write_opcode = NVM_WRITE_OPCODE_SPI; |
| |
| ret_val = igb_ready_nvm_eeprom(hw); |
| if (ret_val) |
| goto release; |
| |
| igb_standby_nvm(hw); |
| |
| /* Send the WRITE ENABLE command (8 bit opcode) */ |
| igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, |
| nvm->opcode_bits); |
| |
| igb_standby_nvm(hw); |
| |
| /* |
| * Some SPI eeproms use the 8th address bit embedded in the |
| * opcode |
| */ |
| if ((nvm->address_bits == 8) && (offset >= 128)) |
| write_opcode |= NVM_A8_OPCODE_SPI; |
| |
| /* Send the Write command (8-bit opcode + addr) */ |
| igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); |
| igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), |
| nvm->address_bits); |
| |
| /* Loop to allow for up to whole page write of eeprom */ |
| while (widx < words) { |
| u16 word_out = data[widx]; |
| word_out = (word_out >> 8) | (word_out << 8); |
| igb_shift_out_eec_bits(hw, word_out, 16); |
| widx++; |
| |
| if ((((offset + widx) * 2) % nvm->page_size) == 0) { |
| igb_standby_nvm(hw); |
| break; |
| } |
| } |
| } |
| |
| msleep(10); |
| release: |
| hw->nvm.ops.release(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_read_part_string - Read device part number |
| * @hw: pointer to the HW structure |
| * @part_num: pointer to device part number |
| * @part_num_size: size of part number buffer |
| * |
| * Reads the product board assembly (PBA) number from the EEPROM and stores |
| * the value in part_num. |
| **/ |
| s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size) |
| { |
| s32 ret_val; |
| u16 nvm_data; |
| u16 pointer; |
| u16 offset; |
| u16 length; |
| |
| if (part_num == NULL) { |
| hw_dbg("PBA string buffer was null\n"); |
| ret_val = E1000_ERR_INVALID_ARGUMENT; |
| goto out; |
| } |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer); |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| |
| /* |
| * if nvm_data is not ptr guard the PBA must be in legacy format which |
| * means pointer is actually our second data word for the PBA number |
| * and we can decode it into an ascii string |
| */ |
| if (nvm_data != NVM_PBA_PTR_GUARD) { |
| hw_dbg("NVM PBA number is not stored as string\n"); |
| |
| /* we will need 11 characters to store the PBA */ |
| if (part_num_size < 11) { |
| hw_dbg("PBA string buffer too small\n"); |
| return E1000_ERR_NO_SPACE; |
| } |
| |
| /* extract hex string from data and pointer */ |
| part_num[0] = (nvm_data >> 12) & 0xF; |
| part_num[1] = (nvm_data >> 8) & 0xF; |
| part_num[2] = (nvm_data >> 4) & 0xF; |
| part_num[3] = nvm_data & 0xF; |
| part_num[4] = (pointer >> 12) & 0xF; |
| part_num[5] = (pointer >> 8) & 0xF; |
| part_num[6] = '-'; |
| part_num[7] = 0; |
| part_num[8] = (pointer >> 4) & 0xF; |
| part_num[9] = pointer & 0xF; |
| |
| /* put a null character on the end of our string */ |
| part_num[10] = '\0'; |
| |
| /* switch all the data but the '-' to hex char */ |
| for (offset = 0; offset < 10; offset++) { |
| if (part_num[offset] < 0xA) |
| part_num[offset] += '0'; |
| else if (part_num[offset] < 0x10) |
| part_num[offset] += 'A' - 0xA; |
| } |
| |
| goto out; |
| } |
| |
| ret_val = hw->nvm.ops.read(hw, pointer, 1, &length); |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| |
| if (length == 0xFFFF || length == 0) { |
| hw_dbg("NVM PBA number section invalid length\n"); |
| ret_val = E1000_ERR_NVM_PBA_SECTION; |
| goto out; |
| } |
| /* check if part_num buffer is big enough */ |
| if (part_num_size < (((u32)length * 2) - 1)) { |
| hw_dbg("PBA string buffer too small\n"); |
| ret_val = E1000_ERR_NO_SPACE; |
| goto out; |
| } |
| |
| /* trim pba length from start of string */ |
| pointer++; |
| length--; |
| |
| for (offset = 0; offset < length; offset++) { |
| ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| part_num[offset * 2] = (u8)(nvm_data >> 8); |
| part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); |
| } |
| part_num[offset * 2] = '\0'; |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_read_mac_addr - Read device MAC address |
| * @hw: pointer to the HW structure |
| * |
| * Reads the device MAC address from the EEPROM and stores the value. |
| * Since devices with two ports use the same EEPROM, we increment the |
| * last bit in the MAC address for the second port. |
| **/ |
| s32 igb_read_mac_addr(struct e1000_hw *hw) |
| { |
| u32 rar_high; |
| u32 rar_low; |
| u16 i; |
| |
| rar_high = rd32(E1000_RAH(0)); |
| rar_low = rd32(E1000_RAL(0)); |
| |
| for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) |
| hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); |
| |
| for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) |
| hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); |
| |
| for (i = 0; i < ETH_ALEN; i++) |
| hw->mac.addr[i] = hw->mac.perm_addr[i]; |
| |
| return 0; |
| } |
| |
| /** |
| * igb_validate_nvm_checksum - Validate EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| **/ |
| s32 igb_validate_nvm_checksum(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u16 checksum = 0; |
| u16 i, nvm_data; |
| |
| for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { |
| ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| checksum += nvm_data; |
| } |
| |
| if (checksum != (u16) NVM_SUM) { |
| hw_dbg("NVM Checksum Invalid\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_update_nvm_checksum - Update EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| * up to the checksum. Then calculates the EEPROM checksum and writes the |
| * value to the EEPROM. |
| **/ |
| s32 igb_update_nvm_checksum(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 checksum = 0; |
| u16 i, nvm_data; |
| |
| for (i = 0; i < NVM_CHECKSUM_REG; i++) { |
| ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg("NVM Read Error while updating checksum.\n"); |
| goto out; |
| } |
| checksum += nvm_data; |
| } |
| checksum = (u16) NVM_SUM - checksum; |
| ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); |
| if (ret_val) |
| hw_dbg("NVM Write Error while updating checksum.\n"); |
| |
| out: |
| return ret_val; |
| } |