| /* |
| * Device driver for the thermostats & fan controller of the |
| * Apple G5 "PowerMac7,2" desktop machines. |
| * |
| * (c) Copyright IBM Corp. 2003-2004 |
| * |
| * Maintained by: Benjamin Herrenschmidt |
| * <benh@kernel.crashing.org> |
| * |
| * |
| * The algorithm used is the PID control algorithm, used the same |
| * way the published Darwin code does, using the same values that |
| * are present in the Darwin 7.0 snapshot property lists. |
| * |
| * As far as the CPUs control loops are concerned, I use the |
| * calibration & PID constants provided by the EEPROM, |
| * I do _not_ embed any value from the property lists, as the ones |
| * provided by Darwin 7.0 seem to always have an older version that |
| * what I've seen on the actual computers. |
| * It would be interesting to verify that though. Darwin has a |
| * version code of 1.0.0d11 for all control loops it seems, while |
| * so far, the machines EEPROMs contain a dataset versioned 1.0.0f |
| * |
| * Darwin doesn't provide source to all parts, some missing |
| * bits like the AppleFCU driver or the actual scale of some |
| * of the values returned by sensors had to be "guessed" some |
| * way... or based on what Open Firmware does. |
| * |
| * I didn't yet figure out how to get the slots power consumption |
| * out of the FCU, so that part has not been implemented yet and |
| * the slots fan is set to a fixed 50% PWM, hoping this value is |
| * safe enough ... |
| * |
| * Note: I have observed strange oscillations of the CPU control |
| * loop on a dual G5 here. When idle, the CPU exhaust fan tend to |
| * oscillates slowly (over several minutes) between the minimum |
| * of 300RPMs and approx. 1000 RPMs. I don't know what is causing |
| * this, it could be some incorrect constant or an error in the |
| * way I ported the algorithm, or it could be just normal. I |
| * don't have full understanding on the way Apple tweaked the PID |
| * algorithm for the CPU control, it is definitely not a standard |
| * implementation... |
| * |
| * TODO: - Check MPU structure version/signature |
| * - Add things like /sbin/overtemp for non-critical |
| * overtemp conditions so userland can take some policy |
| * decisions, like slewing down CPUs |
| * - Deal with fan and i2c failures in a better way |
| * - Maybe do a generic PID based on params used for |
| * U3 and Drives ? Definitely need to factor code a bit |
| * bettter... also make sensor detection more robust using |
| * the device-tree to probe for them |
| * - Figure out how to get the slots consumption and set the |
| * slots fan accordingly |
| * |
| * History: |
| * |
| * Nov. 13, 2003 : 0.5 |
| * - First release |
| * |
| * Nov. 14, 2003 : 0.6 |
| * - Read fan speed from FCU, low level fan routines now deal |
| * with errors & check fan status, though higher level don't |
| * do much. |
| * - Move a bunch of definitions to .h file |
| * |
| * Nov. 18, 2003 : 0.7 |
| * - Fix build on ppc64 kernel |
| * - Move back statics definitions to .c file |
| * - Avoid calling schedule_timeout with a negative number |
| * |
| * Dec. 18, 2003 : 0.8 |
| * - Fix typo when reading back fan speed on 2 CPU machines |
| * |
| * Mar. 11, 2004 : 0.9 |
| * - Rework code accessing the ADC chips, make it more robust and |
| * closer to the chip spec. Also make sure it is configured properly, |
| * I've seen yet unexplained cases where on startup, I would have stale |
| * values in the configuration register |
| * - Switch back to use of target fan speed for PID, thus lowering |
| * pressure on i2c |
| * |
| * Oct. 20, 2004 : 1.1 |
| * - Add device-tree lookup for fan IDs, should detect liquid cooling |
| * pumps when present |
| * - Enable driver for PowerMac7,3 machines |
| * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does |
| * - Add new CPU cooling algorithm for machines with liquid cooling |
| * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree |
| * - Fix a signed/unsigned compare issue in some PID loops |
| * |
| * Mar. 10, 2005 : 1.2 |
| * - Add basic support for Xserve G5 |
| * - Retreive pumps min/max from EEPROM image in device-tree (broken) |
| * - Use min/max macros here or there |
| * - Latest darwin updated U3H min fan speed to 20% PWM |
| * |
| * July. 06, 2006 : 1.3 |
| * - Fix setting of RPM fans on Xserve G5 (they were going too fast) |
| * - Add missing slots fan control loop for Xserve G5 |
| * - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We |
| * still can't properly implement the control loop for these, so let's |
| * reduce the noise a little bit, it appears that 40% still gives us |
| * a pretty good air flow |
| * - Add code to "tickle" the FCU regulary so it doesn't think that |
| * we are gone while in fact, the machine just didn't need any fan |
| * speed change lately |
| * |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/module.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/wait.h> |
| #include <linux/reboot.h> |
| #include <linux/kmod.h> |
| #include <linux/i2c.h> |
| #include <linux/kthread.h> |
| #include <linux/mutex.h> |
| #include <linux/of_device.h> |
| #include <linux/of_platform.h> |
| #include <asm/prom.h> |
| #include <asm/machdep.h> |
| #include <asm/io.h> |
| #include <asm/system.h> |
| #include <asm/sections.h> |
| #include <asm/macio.h> |
| |
| #include "therm_pm72.h" |
| |
| #define VERSION "1.3" |
| |
| #undef DEBUG |
| |
| #ifdef DEBUG |
| #define DBG(args...) printk(args) |
| #else |
| #define DBG(args...) do { } while(0) |
| #endif |
| |
| |
| /* |
| * Driver statics |
| */ |
| |
| static struct platform_device * of_dev; |
| static struct i2c_adapter * u3_0; |
| static struct i2c_adapter * u3_1; |
| static struct i2c_adapter * k2; |
| static struct i2c_client * fcu; |
| static struct cpu_pid_state cpu_state[2]; |
| static struct basckside_pid_params backside_params; |
| static struct backside_pid_state backside_state; |
| static struct drives_pid_state drives_state; |
| static struct dimm_pid_state dimms_state; |
| static struct slots_pid_state slots_state; |
| static int state; |
| static int cpu_count; |
| static int cpu_pid_type; |
| static struct task_struct *ctrl_task; |
| static struct completion ctrl_complete; |
| static int critical_state; |
| static int rackmac; |
| static s32 dimm_output_clamp; |
| static int fcu_rpm_shift; |
| static int fcu_tickle_ticks; |
| static DEFINE_MUTEX(driver_lock); |
| |
| /* |
| * We have 3 types of CPU PID control. One is "split" old style control |
| * for intake & exhaust fans, the other is "combined" control for both |
| * CPUs that also deals with the pumps when present. To be "compatible" |
| * with OS X at this point, we only use "COMBINED" on the machines that |
| * are identified as having the pumps (though that identification is at |
| * least dodgy). Ultimately, we could probably switch completely to this |
| * algorithm provided we hack it to deal with the UP case |
| */ |
| #define CPU_PID_TYPE_SPLIT 0 |
| #define CPU_PID_TYPE_COMBINED 1 |
| #define CPU_PID_TYPE_RACKMAC 2 |
| |
| /* |
| * This table describes all fans in the FCU. The "id" and "type" values |
| * are defaults valid for all earlier machines. Newer machines will |
| * eventually override the table content based on the device-tree |
| */ |
| struct fcu_fan_table |
| { |
| char* loc; /* location code */ |
| int type; /* 0 = rpm, 1 = pwm, 2 = pump */ |
| int id; /* id or -1 */ |
| }; |
| |
| #define FCU_FAN_RPM 0 |
| #define FCU_FAN_PWM 1 |
| |
| #define FCU_FAN_ABSENT_ID -1 |
| |
| #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans) |
| |
| struct fcu_fan_table fcu_fans[] = { |
| [BACKSIDE_FAN_PWM_INDEX] = { |
| .loc = "BACKSIDE,SYS CTRLR FAN", |
| .type = FCU_FAN_PWM, |
| .id = BACKSIDE_FAN_PWM_DEFAULT_ID, |
| }, |
| [DRIVES_FAN_RPM_INDEX] = { |
| .loc = "DRIVE BAY", |
| .type = FCU_FAN_RPM, |
| .id = DRIVES_FAN_RPM_DEFAULT_ID, |
| }, |
| [SLOTS_FAN_PWM_INDEX] = { |
| .loc = "SLOT,PCI FAN", |
| .type = FCU_FAN_PWM, |
| .id = SLOTS_FAN_PWM_DEFAULT_ID, |
| }, |
| [CPUA_INTAKE_FAN_RPM_INDEX] = { |
| .loc = "CPU A INTAKE", |
| .type = FCU_FAN_RPM, |
| .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID, |
| }, |
| [CPUA_EXHAUST_FAN_RPM_INDEX] = { |
| .loc = "CPU A EXHAUST", |
| .type = FCU_FAN_RPM, |
| .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID, |
| }, |
| [CPUB_INTAKE_FAN_RPM_INDEX] = { |
| .loc = "CPU B INTAKE", |
| .type = FCU_FAN_RPM, |
| .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID, |
| }, |
| [CPUB_EXHAUST_FAN_RPM_INDEX] = { |
| .loc = "CPU B EXHAUST", |
| .type = FCU_FAN_RPM, |
| .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID, |
| }, |
| /* pumps aren't present by default, have to be looked up in the |
| * device-tree |
| */ |
| [CPUA_PUMP_RPM_INDEX] = { |
| .loc = "CPU A PUMP", |
| .type = FCU_FAN_RPM, |
| .id = FCU_FAN_ABSENT_ID, |
| }, |
| [CPUB_PUMP_RPM_INDEX] = { |
| .loc = "CPU B PUMP", |
| .type = FCU_FAN_RPM, |
| .id = FCU_FAN_ABSENT_ID, |
| }, |
| /* Xserve fans */ |
| [CPU_A1_FAN_RPM_INDEX] = { |
| .loc = "CPU A 1", |
| .type = FCU_FAN_RPM, |
| .id = FCU_FAN_ABSENT_ID, |
| }, |
| [CPU_A2_FAN_RPM_INDEX] = { |
| .loc = "CPU A 2", |
| .type = FCU_FAN_RPM, |
| .id = FCU_FAN_ABSENT_ID, |
| }, |
| [CPU_A3_FAN_RPM_INDEX] = { |
| .loc = "CPU A 3", |
| .type = FCU_FAN_RPM, |
| .id = FCU_FAN_ABSENT_ID, |
| }, |
| [CPU_B1_FAN_RPM_INDEX] = { |
| .loc = "CPU B 1", |
| .type = FCU_FAN_RPM, |
| .id = FCU_FAN_ABSENT_ID, |
| }, |
| [CPU_B2_FAN_RPM_INDEX] = { |
| .loc = "CPU B 2", |
| .type = FCU_FAN_RPM, |
| .id = FCU_FAN_ABSENT_ID, |
| }, |
| [CPU_B3_FAN_RPM_INDEX] = { |
| .loc = "CPU B 3", |
| .type = FCU_FAN_RPM, |
| .id = FCU_FAN_ABSENT_ID, |
| }, |
| }; |
| |
| static struct i2c_driver therm_pm72_driver; |
| |
| /* |
| * Utility function to create an i2c_client structure and |
| * attach it to one of u3 adapters |
| */ |
| static struct i2c_client *attach_i2c_chip(int id, const char *name) |
| { |
| struct i2c_client *clt; |
| struct i2c_adapter *adap; |
| struct i2c_board_info info; |
| |
| if (id & 0x200) |
| adap = k2; |
| else if (id & 0x100) |
| adap = u3_1; |
| else |
| adap = u3_0; |
| if (adap == NULL) |
| return NULL; |
| |
| memset(&info, 0, sizeof(struct i2c_board_info)); |
| info.addr = (id >> 1) & 0x7f; |
| strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE); |
| clt = i2c_new_device(adap, &info); |
| if (!clt) { |
| printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id); |
| return NULL; |
| } |
| |
| /* |
| * Let i2c-core delete that device on driver removal. |
| * This is safe because i2c-core holds the core_lock mutex for us. |
| */ |
| list_add_tail(&clt->detected, &therm_pm72_driver.clients); |
| return clt; |
| } |
| |
| /* |
| * Here are the i2c chip access wrappers |
| */ |
| |
| static void initialize_adc(struct cpu_pid_state *state) |
| { |
| int rc; |
| u8 buf[2]; |
| |
| /* Read ADC the configuration register and cache it. We |
| * also make sure Config2 contains proper values, I've seen |
| * cases where we got stale grabage in there, thus preventing |
| * proper reading of conv. values |
| */ |
| |
| /* Clear Config2 */ |
| buf[0] = 5; |
| buf[1] = 0; |
| i2c_master_send(state->monitor, buf, 2); |
| |
| /* Read & cache Config1 */ |
| buf[0] = 1; |
| rc = i2c_master_send(state->monitor, buf, 1); |
| if (rc > 0) { |
| rc = i2c_master_recv(state->monitor, buf, 1); |
| if (rc > 0) { |
| state->adc_config = buf[0]; |
| DBG("ADC config reg: %02x\n", state->adc_config); |
| /* Disable shutdown mode */ |
| state->adc_config &= 0xfe; |
| buf[0] = 1; |
| buf[1] = state->adc_config; |
| rc = i2c_master_send(state->monitor, buf, 2); |
| } |
| } |
| if (rc <= 0) |
| printk(KERN_ERR "therm_pm72: Error reading ADC config" |
| " register !\n"); |
| } |
| |
| static int read_smon_adc(struct cpu_pid_state *state, int chan) |
| { |
| int rc, data, tries = 0; |
| u8 buf[2]; |
| |
| for (;;) { |
| /* Set channel */ |
| buf[0] = 1; |
| buf[1] = (state->adc_config & 0x1f) | (chan << 5); |
| rc = i2c_master_send(state->monitor, buf, 2); |
| if (rc <= 0) |
| goto error; |
| /* Wait for convertion */ |
| msleep(1); |
| /* Switch to data register */ |
| buf[0] = 4; |
| rc = i2c_master_send(state->monitor, buf, 1); |
| if (rc <= 0) |
| goto error; |
| /* Read result */ |
| rc = i2c_master_recv(state->monitor, buf, 2); |
| if (rc < 0) |
| goto error; |
| data = ((u16)buf[0]) << 8 | (u16)buf[1]; |
| return data >> 6; |
| error: |
| DBG("Error reading ADC, retrying...\n"); |
| if (++tries > 10) { |
| printk(KERN_ERR "therm_pm72: Error reading ADC !\n"); |
| return -1; |
| } |
| msleep(10); |
| } |
| } |
| |
| static int read_lm87_reg(struct i2c_client * chip, int reg) |
| { |
| int rc, tries = 0; |
| u8 buf; |
| |
| for (;;) { |
| /* Set address */ |
| buf = (u8)reg; |
| rc = i2c_master_send(chip, &buf, 1); |
| if (rc <= 0) |
| goto error; |
| rc = i2c_master_recv(chip, &buf, 1); |
| if (rc <= 0) |
| goto error; |
| return (int)buf; |
| error: |
| DBG("Error reading LM87, retrying...\n"); |
| if (++tries > 10) { |
| printk(KERN_ERR "therm_pm72: Error reading LM87 !\n"); |
| return -1; |
| } |
| msleep(10); |
| } |
| } |
| |
| static int fan_read_reg(int reg, unsigned char *buf, int nb) |
| { |
| int tries, nr, nw; |
| |
| buf[0] = reg; |
| tries = 0; |
| for (;;) { |
| nw = i2c_master_send(fcu, buf, 1); |
| if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100) |
| break; |
| msleep(10); |
| ++tries; |
| } |
| if (nw <= 0) { |
| printk(KERN_ERR "Failure writing address to FCU: %d", nw); |
| return -EIO; |
| } |
| tries = 0; |
| for (;;) { |
| nr = i2c_master_recv(fcu, buf, nb); |
| if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100) |
| break; |
| msleep(10); |
| ++tries; |
| } |
| if (nr <= 0) |
| printk(KERN_ERR "Failure reading data from FCU: %d", nw); |
| return nr; |
| } |
| |
| static int fan_write_reg(int reg, const unsigned char *ptr, int nb) |
| { |
| int tries, nw; |
| unsigned char buf[16]; |
| |
| buf[0] = reg; |
| memcpy(buf+1, ptr, nb); |
| ++nb; |
| tries = 0; |
| for (;;) { |
| nw = i2c_master_send(fcu, buf, nb); |
| if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100) |
| break; |
| msleep(10); |
| ++tries; |
| } |
| if (nw < 0) |
| printk(KERN_ERR "Failure writing to FCU: %d", nw); |
| return nw; |
| } |
| |
| static int start_fcu(void) |
| { |
| unsigned char buf = 0xff; |
| int rc; |
| |
| rc = fan_write_reg(0xe, &buf, 1); |
| if (rc < 0) |
| return -EIO; |
| rc = fan_write_reg(0x2e, &buf, 1); |
| if (rc < 0) |
| return -EIO; |
| rc = fan_read_reg(0, &buf, 1); |
| if (rc < 0) |
| return -EIO; |
| fcu_rpm_shift = (buf == 1) ? 2 : 3; |
| printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n", |
| fcu_rpm_shift); |
| |
| return 0; |
| } |
| |
| static int set_rpm_fan(int fan_index, int rpm) |
| { |
| unsigned char buf[2]; |
| int rc, id, min, max; |
| |
| if (fcu_fans[fan_index].type != FCU_FAN_RPM) |
| return -EINVAL; |
| id = fcu_fans[fan_index].id; |
| if (id == FCU_FAN_ABSENT_ID) |
| return -EINVAL; |
| |
| min = 2400 >> fcu_rpm_shift; |
| max = 56000 >> fcu_rpm_shift; |
| |
| if (rpm < min) |
| rpm = min; |
| else if (rpm > max) |
| rpm = max; |
| buf[0] = rpm >> (8 - fcu_rpm_shift); |
| buf[1] = rpm << fcu_rpm_shift; |
| rc = fan_write_reg(0x10 + (id * 2), buf, 2); |
| if (rc < 0) |
| return -EIO; |
| return 0; |
| } |
| |
| static int get_rpm_fan(int fan_index, int programmed) |
| { |
| unsigned char failure; |
| unsigned char active; |
| unsigned char buf[2]; |
| int rc, id, reg_base; |
| |
| if (fcu_fans[fan_index].type != FCU_FAN_RPM) |
| return -EINVAL; |
| id = fcu_fans[fan_index].id; |
| if (id == FCU_FAN_ABSENT_ID) |
| return -EINVAL; |
| |
| rc = fan_read_reg(0xb, &failure, 1); |
| if (rc != 1) |
| return -EIO; |
| if ((failure & (1 << id)) != 0) |
| return -EFAULT; |
| rc = fan_read_reg(0xd, &active, 1); |
| if (rc != 1) |
| return -EIO; |
| if ((active & (1 << id)) == 0) |
| return -ENXIO; |
| |
| /* Programmed value or real current speed */ |
| reg_base = programmed ? 0x10 : 0x11; |
| rc = fan_read_reg(reg_base + (id * 2), buf, 2); |
| if (rc != 2) |
| return -EIO; |
| |
| return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift; |
| } |
| |
| static int set_pwm_fan(int fan_index, int pwm) |
| { |
| unsigned char buf[2]; |
| int rc, id; |
| |
| if (fcu_fans[fan_index].type != FCU_FAN_PWM) |
| return -EINVAL; |
| id = fcu_fans[fan_index].id; |
| if (id == FCU_FAN_ABSENT_ID) |
| return -EINVAL; |
| |
| if (pwm < 10) |
| pwm = 10; |
| else if (pwm > 100) |
| pwm = 100; |
| pwm = (pwm * 2559) / 1000; |
| buf[0] = pwm; |
| rc = fan_write_reg(0x30 + (id * 2), buf, 1); |
| if (rc < 0) |
| return rc; |
| return 0; |
| } |
| |
| static int get_pwm_fan(int fan_index) |
| { |
| unsigned char failure; |
| unsigned char active; |
| unsigned char buf[2]; |
| int rc, id; |
| |
| if (fcu_fans[fan_index].type != FCU_FAN_PWM) |
| return -EINVAL; |
| id = fcu_fans[fan_index].id; |
| if (id == FCU_FAN_ABSENT_ID) |
| return -EINVAL; |
| |
| rc = fan_read_reg(0x2b, &failure, 1); |
| if (rc != 1) |
| return -EIO; |
| if ((failure & (1 << id)) != 0) |
| return -EFAULT; |
| rc = fan_read_reg(0x2d, &active, 1); |
| if (rc != 1) |
| return -EIO; |
| if ((active & (1 << id)) == 0) |
| return -ENXIO; |
| |
| /* Programmed value or real current speed */ |
| rc = fan_read_reg(0x30 + (id * 2), buf, 1); |
| if (rc != 1) |
| return -EIO; |
| |
| return (buf[0] * 1000) / 2559; |
| } |
| |
| static void tickle_fcu(void) |
| { |
| int pwm; |
| |
| pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX); |
| |
| DBG("FCU Tickle, slots fan is: %d\n", pwm); |
| if (pwm < 0) |
| pwm = 100; |
| |
| if (!rackmac) { |
| pwm = SLOTS_FAN_DEFAULT_PWM; |
| } else if (pwm < SLOTS_PID_OUTPUT_MIN) |
| pwm = SLOTS_PID_OUTPUT_MIN; |
| |
| /* That is hopefully enough to make the FCU happy */ |
| set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm); |
| } |
| |
| |
| /* |
| * Utility routine to read the CPU calibration EEPROM data |
| * from the device-tree |
| */ |
| static int read_eeprom(int cpu, struct mpu_data *out) |
| { |
| struct device_node *np; |
| char nodename[64]; |
| const u8 *data; |
| int len; |
| |
| /* prom.c routine for finding a node by path is a bit brain dead |
| * and requires exact @xxx unit numbers. This is a bit ugly but |
| * will work for these machines |
| */ |
| sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0); |
| np = of_find_node_by_path(nodename); |
| if (np == NULL) { |
| printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n"); |
| return -ENODEV; |
| } |
| data = of_get_property(np, "cpuid", &len); |
| if (data == NULL) { |
| printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n"); |
| of_node_put(np); |
| return -ENODEV; |
| } |
| memcpy(out, data, sizeof(struct mpu_data)); |
| of_node_put(np); |
| |
| return 0; |
| } |
| |
| static void fetch_cpu_pumps_minmax(void) |
| { |
| struct cpu_pid_state *state0 = &cpu_state[0]; |
| struct cpu_pid_state *state1 = &cpu_state[1]; |
| u16 pump_min = 0, pump_max = 0xffff; |
| u16 tmp[4]; |
| |
| /* Try to fetch pumps min/max infos from eeprom */ |
| |
| memcpy(&tmp, &state0->mpu.processor_part_num, 8); |
| if (tmp[0] != 0xffff && tmp[1] != 0xffff) { |
| pump_min = max(pump_min, tmp[0]); |
| pump_max = min(pump_max, tmp[1]); |
| } |
| if (tmp[2] != 0xffff && tmp[3] != 0xffff) { |
| pump_min = max(pump_min, tmp[2]); |
| pump_max = min(pump_max, tmp[3]); |
| } |
| |
| /* Double check the values, this _IS_ needed as the EEPROM on |
| * some dual 2.5Ghz G5s seem, at least, to have both min & max |
| * same to the same value ... (grrrr) |
| */ |
| if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) { |
| pump_min = CPU_PUMP_OUTPUT_MIN; |
| pump_max = CPU_PUMP_OUTPUT_MAX; |
| } |
| |
| state0->pump_min = state1->pump_min = pump_min; |
| state0->pump_max = state1->pump_max = pump_max; |
| } |
| |
| /* |
| * Now, unfortunately, sysfs doesn't give us a nice void * we could |
| * pass around to the attribute functions, so we don't really have |
| * choice but implement a bunch of them... |
| * |
| * That sucks a bit, we take the lock because FIX32TOPRINT evaluates |
| * the input twice... I accept patches :) |
| */ |
| #define BUILD_SHOW_FUNC_FIX(name, data) \ |
| static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \ |
| { \ |
| ssize_t r; \ |
| mutex_lock(&driver_lock); \ |
| r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \ |
| mutex_unlock(&driver_lock); \ |
| return r; \ |
| } |
| #define BUILD_SHOW_FUNC_INT(name, data) \ |
| static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \ |
| { \ |
| return sprintf(buf, "%d", data); \ |
| } |
| |
| BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp) |
| BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage) |
| BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a) |
| BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm) |
| BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm) |
| |
| BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp) |
| BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage) |
| BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a) |
| BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm) |
| BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm) |
| |
| BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp) |
| BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm) |
| |
| BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp) |
| BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm) |
| |
| BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp) |
| BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm) |
| |
| BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp) |
| |
| static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL); |
| static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL); |
| static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL); |
| static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL); |
| static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL); |
| |
| static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL); |
| static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL); |
| static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL); |
| static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL); |
| static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL); |
| |
| static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL); |
| static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL); |
| |
| static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL); |
| static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL); |
| |
| static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL); |
| static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL); |
| |
| static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL); |
| |
| /* |
| * CPUs fans control loop |
| */ |
| |
| static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power) |
| { |
| s32 ltemp, volts, amps; |
| int index, rc = 0; |
| |
| /* Default (in case of error) */ |
| *temp = state->cur_temp; |
| *power = state->cur_power; |
| |
| if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) |
| index = (state->index == 0) ? |
| CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX; |
| else |
| index = (state->index == 0) ? |
| CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX; |
| |
| /* Read current fan status */ |
| rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED); |
| if (rc < 0) { |
| /* XXX What do we do now ? Nothing for now, keep old value, but |
| * return error upstream |
| */ |
| DBG(" cpu %d, fan reading error !\n", state->index); |
| } else { |
| state->rpm = rc; |
| DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm); |
| } |
| |
| /* Get some sensor readings and scale it */ |
| ltemp = read_smon_adc(state, 1); |
| if (ltemp == -1) { |
| /* XXX What do we do now ? */ |
| state->overtemp++; |
| if (rc == 0) |
| rc = -EIO; |
| DBG(" cpu %d, temp reading error !\n", state->index); |
| } else { |
| /* Fixup temperature according to diode calibration |
| */ |
| DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n", |
| state->index, |
| ltemp, state->mpu.mdiode, state->mpu.bdiode); |
| *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2; |
| state->last_temp = *temp; |
| DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp))); |
| } |
| |
| /* |
| * Read voltage & current and calculate power |
| */ |
| volts = read_smon_adc(state, 3); |
| amps = read_smon_adc(state, 4); |
| |
| /* Scale voltage and current raw sensor values according to fixed scales |
| * obtained in Darwin and calculate power from I and V |
| */ |
| volts *= ADC_CPU_VOLTAGE_SCALE; |
| amps *= ADC_CPU_CURRENT_SCALE; |
| *power = (((u64)volts) * ((u64)amps)) >> 16; |
| state->voltage = volts; |
| state->current_a = amps; |
| state->last_power = *power; |
| |
| DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n", |
| state->index, FIX32TOPRINT(state->current_a), |
| FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power)); |
| |
| return 0; |
| } |
| |
| static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power) |
| { |
| s32 power_target, integral, derivative, proportional, adj_in_target, sval; |
| s64 integ_p, deriv_p, prop_p, sum; |
| int i; |
| |
| /* Calculate power target value (could be done once for all) |
| * and convert to a 16.16 fp number |
| */ |
| power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16; |
| DBG(" power target: %d.%03d, error: %d.%03d\n", |
| FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power)); |
| |
| /* Store temperature and power in history array */ |
| state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE; |
| state->temp_history[state->cur_temp] = temp; |
| state->cur_power = (state->cur_power + 1) % state->count_power; |
| state->power_history[state->cur_power] = power; |
| state->error_history[state->cur_power] = power_target - power; |
| |
| /* If first loop, fill the history table */ |
| if (state->first) { |
| for (i = 0; i < (state->count_power - 1); i++) { |
| state->cur_power = (state->cur_power + 1) % state->count_power; |
| state->power_history[state->cur_power] = power; |
| state->error_history[state->cur_power] = power_target - power; |
| } |
| for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) { |
| state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE; |
| state->temp_history[state->cur_temp] = temp; |
| } |
| state->first = 0; |
| } |
| |
| /* Calculate the integral term normally based on the "power" values */ |
| sum = 0; |
| integral = 0; |
| for (i = 0; i < state->count_power; i++) |
| integral += state->error_history[i]; |
| integral *= CPU_PID_INTERVAL; |
| DBG(" integral: %08x\n", integral); |
| |
| /* Calculate the adjusted input (sense value). |
| * G_r is 12.20 |
| * integ is 16.16 |
| * so the result is 28.36 |
| * |
| * input target is mpu.ttarget, input max is mpu.tmax |
| */ |
| integ_p = ((s64)state->mpu.pid_gr) * (s64)integral; |
| DBG(" integ_p: %d\n", (int)(integ_p >> 36)); |
| sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff); |
| adj_in_target = (state->mpu.ttarget << 16); |
| if (adj_in_target > sval) |
| adj_in_target = sval; |
| DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target), |
| state->mpu.ttarget); |
| |
| /* Calculate the derivative term */ |
| derivative = state->temp_history[state->cur_temp] - |
| state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1) |
| % CPU_TEMP_HISTORY_SIZE]; |
| derivative /= CPU_PID_INTERVAL; |
| deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative; |
| DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); |
| sum += deriv_p; |
| |
| /* Calculate the proportional term */ |
| proportional = temp - adj_in_target; |
| prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional; |
| DBG(" prop_p: %d\n", (int)(prop_p >> 36)); |
| sum += prop_p; |
| |
| /* Scale sum */ |
| sum >>= 36; |
| |
| DBG(" sum: %d\n", (int)sum); |
| state->rpm += (s32)sum; |
| } |
| |
| static void do_monitor_cpu_combined(void) |
| { |
| struct cpu_pid_state *state0 = &cpu_state[0]; |
| struct cpu_pid_state *state1 = &cpu_state[1]; |
| s32 temp0, power0, temp1, power1; |
| s32 temp_combi, power_combi; |
| int rc, intake, pump; |
| |
| rc = do_read_one_cpu_values(state0, &temp0, &power0); |
| if (rc < 0) { |
| /* XXX What do we do now ? */ |
| } |
| state1->overtemp = 0; |
| rc = do_read_one_cpu_values(state1, &temp1, &power1); |
| if (rc < 0) { |
| /* XXX What do we do now ? */ |
| } |
| if (state1->overtemp) |
| state0->overtemp++; |
| |
| temp_combi = max(temp0, temp1); |
| power_combi = max(power0, power1); |
| |
| /* Check tmax, increment overtemp if we are there. At tmax+8, we go |
| * full blown immediately and try to trigger a shutdown |
| */ |
| if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) { |
| printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n", |
| temp_combi >> 16); |
| state0->overtemp += CPU_MAX_OVERTEMP / 4; |
| } else if (temp_combi > (state0->mpu.tmax << 16)) { |
| state0->overtemp++; |
| printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n", |
| temp_combi >> 16, state0->mpu.tmax, state0->overtemp); |
| } else { |
| if (state0->overtemp) |
| printk(KERN_WARNING "Temperature back down to %d\n", |
| temp_combi >> 16); |
| state0->overtemp = 0; |
| } |
| if (state0->overtemp >= CPU_MAX_OVERTEMP) |
| critical_state = 1; |
| if (state0->overtemp > 0) { |
| state0->rpm = state0->mpu.rmaxn_exhaust_fan; |
| state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan; |
| pump = state0->pump_max; |
| goto do_set_fans; |
| } |
| |
| /* Do the PID */ |
| do_cpu_pid(state0, temp_combi, power_combi); |
| |
| /* Range check */ |
| state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan); |
| state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan); |
| |
| /* Calculate intake fan speed */ |
| intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16; |
| intake = max(intake, (int)state0->mpu.rminn_intake_fan); |
| intake = min(intake, (int)state0->mpu.rmaxn_intake_fan); |
| state0->intake_rpm = intake; |
| |
| /* Calculate pump speed */ |
| pump = (state0->rpm * state0->pump_max) / |
| state0->mpu.rmaxn_exhaust_fan; |
| pump = min(pump, state0->pump_max); |
| pump = max(pump, state0->pump_min); |
| |
| do_set_fans: |
| /* We copy values from state 0 to state 1 for /sysfs */ |
| state1->rpm = state0->rpm; |
| state1->intake_rpm = state0->intake_rpm; |
| |
| DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n", |
| state1->index, (int)state1->rpm, intake, pump, state1->overtemp); |
| |
| /* We should check for errors, shouldn't we ? But then, what |
| * do we do once the error occurs ? For FCU notified fan |
| * failures (-EFAULT) we probably want to notify userland |
| * some way... |
| */ |
| set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake); |
| set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm); |
| set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake); |
| set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm); |
| |
| if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) |
| set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump); |
| if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) |
| set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump); |
| } |
| |
| static void do_monitor_cpu_split(struct cpu_pid_state *state) |
| { |
| s32 temp, power; |
| int rc, intake; |
| |
| /* Read current fan status */ |
| rc = do_read_one_cpu_values(state, &temp, &power); |
| if (rc < 0) { |
| /* XXX What do we do now ? */ |
| } |
| |
| /* Check tmax, increment overtemp if we are there. At tmax+8, we go |
| * full blown immediately and try to trigger a shutdown |
| */ |
| if (temp >= ((state->mpu.tmax + 8) << 16)) { |
| printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum" |
| " (%d) !\n", |
| state->index, temp >> 16); |
| state->overtemp += CPU_MAX_OVERTEMP / 4; |
| } else if (temp > (state->mpu.tmax << 16)) { |
| state->overtemp++; |
| printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n", |
| state->index, temp >> 16, state->mpu.tmax, state->overtemp); |
| } else { |
| if (state->overtemp) |
| printk(KERN_WARNING "CPU %d temperature back down to %d\n", |
| state->index, temp >> 16); |
| state->overtemp = 0; |
| } |
| if (state->overtemp >= CPU_MAX_OVERTEMP) |
| critical_state = 1; |
| if (state->overtemp > 0) { |
| state->rpm = state->mpu.rmaxn_exhaust_fan; |
| state->intake_rpm = intake = state->mpu.rmaxn_intake_fan; |
| goto do_set_fans; |
| } |
| |
| /* Do the PID */ |
| do_cpu_pid(state, temp, power); |
| |
| /* Range check */ |
| state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan); |
| state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan); |
| |
| /* Calculate intake fan */ |
| intake = (state->rpm * CPU_INTAKE_SCALE) >> 16; |
| intake = max(intake, (int)state->mpu.rminn_intake_fan); |
| intake = min(intake, (int)state->mpu.rmaxn_intake_fan); |
| state->intake_rpm = intake; |
| |
| do_set_fans: |
| DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n", |
| state->index, (int)state->rpm, intake, state->overtemp); |
| |
| /* We should check for errors, shouldn't we ? But then, what |
| * do we do once the error occurs ? For FCU notified fan |
| * failures (-EFAULT) we probably want to notify userland |
| * some way... |
| */ |
| if (state->index == 0) { |
| set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake); |
| set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm); |
| } else { |
| set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake); |
| set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm); |
| } |
| } |
| |
| static void do_monitor_cpu_rack(struct cpu_pid_state *state) |
| { |
| s32 temp, power, fan_min; |
| int rc; |
| |
| /* Read current fan status */ |
| rc = do_read_one_cpu_values(state, &temp, &power); |
| if (rc < 0) { |
| /* XXX What do we do now ? */ |
| } |
| |
| /* Check tmax, increment overtemp if we are there. At tmax+8, we go |
| * full blown immediately and try to trigger a shutdown |
| */ |
| if (temp >= ((state->mpu.tmax + 8) << 16)) { |
| printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum" |
| " (%d) !\n", |
| state->index, temp >> 16); |
| state->overtemp = CPU_MAX_OVERTEMP / 4; |
| } else if (temp > (state->mpu.tmax << 16)) { |
| state->overtemp++; |
| printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n", |
| state->index, temp >> 16, state->mpu.tmax, state->overtemp); |
| } else { |
| if (state->overtemp) |
| printk(KERN_WARNING "CPU %d temperature back down to %d\n", |
| state->index, temp >> 16); |
| state->overtemp = 0; |
| } |
| if (state->overtemp >= CPU_MAX_OVERTEMP) |
| critical_state = 1; |
| if (state->overtemp > 0) { |
| state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan; |
| goto do_set_fans; |
| } |
| |
| /* Do the PID */ |
| do_cpu_pid(state, temp, power); |
| |
| /* Check clamp from dimms */ |
| fan_min = dimm_output_clamp; |
| fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan); |
| |
| DBG(" CPU min mpu = %d, min dimm = %d\n", |
| state->mpu.rminn_intake_fan, dimm_output_clamp); |
| |
| state->rpm = max(state->rpm, (int)fan_min); |
| state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan); |
| state->intake_rpm = state->rpm; |
| |
| do_set_fans: |
| DBG("** CPU %d RPM: %d overtemp: %d\n", |
| state->index, (int)state->rpm, state->overtemp); |
| |
| /* We should check for errors, shouldn't we ? But then, what |
| * do we do once the error occurs ? For FCU notified fan |
| * failures (-EFAULT) we probably want to notify userland |
| * some way... |
| */ |
| if (state->index == 0) { |
| set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm); |
| set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm); |
| set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm); |
| } else { |
| set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm); |
| set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm); |
| set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm); |
| } |
| } |
| |
| /* |
| * Initialize the state structure for one CPU control loop |
| */ |
| static int init_cpu_state(struct cpu_pid_state *state, int index) |
| { |
| int err; |
| |
| state->index = index; |
| state->first = 1; |
| state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000; |
| state->overtemp = 0; |
| state->adc_config = 0x00; |
| |
| |
| if (index == 0) |
| state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor"); |
| else if (index == 1) |
| state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor"); |
| if (state->monitor == NULL) |
| goto fail; |
| |
| if (read_eeprom(index, &state->mpu)) |
| goto fail; |
| |
| state->count_power = state->mpu.tguardband; |
| if (state->count_power > CPU_POWER_HISTORY_SIZE) { |
| printk(KERN_WARNING "Warning ! too many power history slots\n"); |
| state->count_power = CPU_POWER_HISTORY_SIZE; |
| } |
| DBG("CPU %d Using %d power history entries\n", index, state->count_power); |
| |
| if (index == 0) { |
| err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature); |
| err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage); |
| err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current); |
| err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm); |
| err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm); |
| } else { |
| err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature); |
| err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage); |
| err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current); |
| err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm); |
| err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm); |
| } |
| if (err) |
| printk(KERN_WARNING "Failed to create some of the atribute" |
| "files for CPU %d\n", index); |
| |
| return 0; |
| fail: |
| state->monitor = NULL; |
| |
| return -ENODEV; |
| } |
| |
| /* |
| * Dispose of the state data for one CPU control loop |
| */ |
| static void dispose_cpu_state(struct cpu_pid_state *state) |
| { |
| if (state->monitor == NULL) |
| return; |
| |
| if (state->index == 0) { |
| device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature); |
| device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage); |
| device_remove_file(&of_dev->dev, &dev_attr_cpu0_current); |
| device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm); |
| device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm); |
| } else { |
| device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature); |
| device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage); |
| device_remove_file(&of_dev->dev, &dev_attr_cpu1_current); |
| device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm); |
| device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm); |
| } |
| |
| state->monitor = NULL; |
| } |
| |
| /* |
| * Motherboard backside & U3 heatsink fan control loop |
| */ |
| static void do_monitor_backside(struct backside_pid_state *state) |
| { |
| s32 temp, integral, derivative, fan_min; |
| s64 integ_p, deriv_p, prop_p, sum; |
| int i, rc; |
| |
| if (--state->ticks != 0) |
| return; |
| state->ticks = backside_params.interval; |
| |
| DBG("backside:\n"); |
| |
| /* Check fan status */ |
| rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX); |
| if (rc < 0) { |
| printk(KERN_WARNING "Error %d reading backside fan !\n", rc); |
| /* XXX What do we do now ? */ |
| } else |
| state->pwm = rc; |
| DBG(" current pwm: %d\n", state->pwm); |
| |
| /* Get some sensor readings */ |
| temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16; |
| state->last_temp = temp; |
| DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), |
| FIX32TOPRINT(backside_params.input_target)); |
| |
| /* Store temperature and error in history array */ |
| state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE; |
| state->sample_history[state->cur_sample] = temp; |
| state->error_history[state->cur_sample] = temp - backside_params.input_target; |
| |
| /* If first loop, fill the history table */ |
| if (state->first) { |
| for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) { |
| state->cur_sample = (state->cur_sample + 1) % |
| BACKSIDE_PID_HISTORY_SIZE; |
| state->sample_history[state->cur_sample] = temp; |
| state->error_history[state->cur_sample] = |
| temp - backside_params.input_target; |
| } |
| state->first = 0; |
| } |
| |
| /* Calculate the integral term */ |
| sum = 0; |
| integral = 0; |
| for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++) |
| integral += state->error_history[i]; |
| integral *= backside_params.interval; |
| DBG(" integral: %08x\n", integral); |
| integ_p = ((s64)backside_params.G_r) * (s64)integral; |
| DBG(" integ_p: %d\n", (int)(integ_p >> 36)); |
| sum += integ_p; |
| |
| /* Calculate the derivative term */ |
| derivative = state->error_history[state->cur_sample] - |
| state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1) |
| % BACKSIDE_PID_HISTORY_SIZE]; |
| derivative /= backside_params.interval; |
| deriv_p = ((s64)backside_params.G_d) * (s64)derivative; |
| DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); |
| sum += deriv_p; |
| |
| /* Calculate the proportional term */ |
| prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]); |
| DBG(" prop_p: %d\n", (int)(prop_p >> 36)); |
| sum += prop_p; |
| |
| /* Scale sum */ |
| sum >>= 36; |
| |
| DBG(" sum: %d\n", (int)sum); |
| if (backside_params.additive) |
| state->pwm += (s32)sum; |
| else |
| state->pwm = sum; |
| |
| /* Check for clamp */ |
| fan_min = (dimm_output_clamp * 100) / 14000; |
| fan_min = max(fan_min, backside_params.output_min); |
| |
| state->pwm = max(state->pwm, fan_min); |
| state->pwm = min(state->pwm, backside_params.output_max); |
| |
| DBG("** BACKSIDE PWM: %d\n", (int)state->pwm); |
| set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm); |
| } |
| |
| /* |
| * Initialize the state structure for the backside fan control loop |
| */ |
| static int init_backside_state(struct backside_pid_state *state) |
| { |
| struct device_node *u3; |
| int u3h = 1; /* conservative by default */ |
| int err; |
| |
| /* |
| * There are different PID params for machines with U3 and machines |
| * with U3H, pick the right ones now |
| */ |
| u3 = of_find_node_by_path("/u3@0,f8000000"); |
| if (u3 != NULL) { |
| const u32 *vers = of_get_property(u3, "device-rev", NULL); |
| if (vers) |
| if (((*vers) & 0x3f) < 0x34) |
| u3h = 0; |
| of_node_put(u3); |
| } |
| |
| if (rackmac) { |
| backside_params.G_d = BACKSIDE_PID_RACK_G_d; |
| backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET; |
| backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN; |
| backside_params.interval = BACKSIDE_PID_RACK_INTERVAL; |
| backside_params.G_p = BACKSIDE_PID_RACK_G_p; |
| backside_params.G_r = BACKSIDE_PID_G_r; |
| backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; |
| backside_params.additive = 0; |
| } else if (u3h) { |
| backside_params.G_d = BACKSIDE_PID_U3H_G_d; |
| backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET; |
| backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN; |
| backside_params.interval = BACKSIDE_PID_INTERVAL; |
| backside_params.G_p = BACKSIDE_PID_G_p; |
| backside_params.G_r = BACKSIDE_PID_G_r; |
| backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; |
| backside_params.additive = 1; |
| } else { |
| backside_params.G_d = BACKSIDE_PID_U3_G_d; |
| backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET; |
| backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN; |
| backside_params.interval = BACKSIDE_PID_INTERVAL; |
| backside_params.G_p = BACKSIDE_PID_G_p; |
| backside_params.G_r = BACKSIDE_PID_G_r; |
| backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; |
| backside_params.additive = 1; |
| } |
| |
| state->ticks = 1; |
| state->first = 1; |
| state->pwm = 50; |
| |
| state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp"); |
| if (state->monitor == NULL) |
| return -ENODEV; |
| |
| err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature); |
| err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm); |
| if (err) |
| printk(KERN_WARNING "Failed to create attribute file(s)" |
| " for backside fan\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * Dispose of the state data for the backside control loop |
| */ |
| static void dispose_backside_state(struct backside_pid_state *state) |
| { |
| if (state->monitor == NULL) |
| return; |
| |
| device_remove_file(&of_dev->dev, &dev_attr_backside_temperature); |
| device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm); |
| |
| state->monitor = NULL; |
| } |
| |
| /* |
| * Drives bay fan control loop |
| */ |
| static void do_monitor_drives(struct drives_pid_state *state) |
| { |
| s32 temp, integral, derivative; |
| s64 integ_p, deriv_p, prop_p, sum; |
| int i, rc; |
| |
| if (--state->ticks != 0) |
| return; |
| state->ticks = DRIVES_PID_INTERVAL; |
| |
| DBG("drives:\n"); |
| |
| /* Check fan status */ |
| rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED); |
| if (rc < 0) { |
| printk(KERN_WARNING "Error %d reading drives fan !\n", rc); |
| /* XXX What do we do now ? */ |
| } else |
| state->rpm = rc; |
| DBG(" current rpm: %d\n", state->rpm); |
| |
| /* Get some sensor readings */ |
| temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, |
| DS1775_TEMP)) << 8; |
| state->last_temp = temp; |
| DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), |
| FIX32TOPRINT(DRIVES_PID_INPUT_TARGET)); |
| |
| /* Store temperature and error in history array */ |
| state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE; |
| state->sample_history[state->cur_sample] = temp; |
| state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET; |
| |
| /* If first loop, fill the history table */ |
| if (state->first) { |
| for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) { |
| state->cur_sample = (state->cur_sample + 1) % |
| DRIVES_PID_HISTORY_SIZE; |
| state->sample_history[state->cur_sample] = temp; |
| state->error_history[state->cur_sample] = |
| temp - DRIVES_PID_INPUT_TARGET; |
| } |
| state->first = 0; |
| } |
| |
| /* Calculate the integral term */ |
| sum = 0; |
| integral = 0; |
| for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++) |
| integral += state->error_history[i]; |
| integral *= DRIVES_PID_INTERVAL; |
| DBG(" integral: %08x\n", integral); |
| integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral; |
| DBG(" integ_p: %d\n", (int)(integ_p >> 36)); |
| sum += integ_p; |
| |
| /* Calculate the derivative term */ |
| derivative = state->error_history[state->cur_sample] - |
| state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1) |
| % DRIVES_PID_HISTORY_SIZE]; |
| derivative /= DRIVES_PID_INTERVAL; |
| deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative; |
| DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); |
| sum += deriv_p; |
| |
| /* Calculate the proportional term */ |
| prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]); |
| DBG(" prop_p: %d\n", (int)(prop_p >> 36)); |
| sum += prop_p; |
| |
| /* Scale sum */ |
| sum >>= 36; |
| |
| DBG(" sum: %d\n", (int)sum); |
| state->rpm += (s32)sum; |
| |
| state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN); |
| state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX); |
| |
| DBG("** DRIVES RPM: %d\n", (int)state->rpm); |
| set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm); |
| } |
| |
| /* |
| * Initialize the state structure for the drives bay fan control loop |
| */ |
| static int init_drives_state(struct drives_pid_state *state) |
| { |
| int err; |
| |
| state->ticks = 1; |
| state->first = 1; |
| state->rpm = 1000; |
| |
| state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp"); |
| if (state->monitor == NULL) |
| return -ENODEV; |
| |
| err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature); |
| err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm); |
| if (err) |
| printk(KERN_WARNING "Failed to create attribute file(s)" |
| " for drives bay fan\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * Dispose of the state data for the drives control loop |
| */ |
| static void dispose_drives_state(struct drives_pid_state *state) |
| { |
| if (state->monitor == NULL) |
| return; |
| |
| device_remove_file(&of_dev->dev, &dev_attr_drives_temperature); |
| device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm); |
| |
| state->monitor = NULL; |
| } |
| |
| /* |
| * DIMMs temp control loop |
| */ |
| static void do_monitor_dimms(struct dimm_pid_state *state) |
| { |
| s32 temp, integral, derivative, fan_min; |
| s64 integ_p, deriv_p, prop_p, sum; |
| int i; |
| |
| if (--state->ticks != 0) |
| return; |
| state->ticks = DIMM_PID_INTERVAL; |
| |
| DBG("DIMM:\n"); |
| |
| DBG(" current value: %d\n", state->output); |
| |
| temp = read_lm87_reg(state->monitor, LM87_INT_TEMP); |
| if (temp < 0) |
| return; |
| temp <<= 16; |
| state->last_temp = temp; |
| DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), |
| FIX32TOPRINT(DIMM_PID_INPUT_TARGET)); |
| |
| /* Store temperature and error in history array */ |
| state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE; |
| state->sample_history[state->cur_sample] = temp; |
| state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET; |
| |
| /* If first loop, fill the history table */ |
| if (state->first) { |
| for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) { |
| state->cur_sample = (state->cur_sample + 1) % |
| DIMM_PID_HISTORY_SIZE; |
| state->sample_history[state->cur_sample] = temp; |
| state->error_history[state->cur_sample] = |
| temp - DIMM_PID_INPUT_TARGET; |
| } |
| state->first = 0; |
| } |
| |
| /* Calculate the integral term */ |
| sum = 0; |
| integral = 0; |
| for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++) |
| integral += state->error_history[i]; |
| integral *= DIMM_PID_INTERVAL; |
| DBG(" integral: %08x\n", integral); |
| integ_p = ((s64)DIMM_PID_G_r) * (s64)integral; |
| DBG(" integ_p: %d\n", (int)(integ_p >> 36)); |
| sum += integ_p; |
| |
| /* Calculate the derivative term */ |
| derivative = state->error_history[state->cur_sample] - |
| state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1) |
| % DIMM_PID_HISTORY_SIZE]; |
| derivative /= DIMM_PID_INTERVAL; |
| deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative; |
| DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); |
| sum += deriv_p; |
| |
| /* Calculate the proportional term */ |
| prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]); |
| DBG(" prop_p: %d\n", (int)(prop_p >> 36)); |
| sum += prop_p; |
| |
| /* Scale sum */ |
| sum >>= 36; |
| |
| DBG(" sum: %d\n", (int)sum); |
| state->output = (s32)sum; |
| state->output = max(state->output, DIMM_PID_OUTPUT_MIN); |
| state->output = min(state->output, DIMM_PID_OUTPUT_MAX); |
| dimm_output_clamp = state->output; |
| |
| DBG("** DIMM clamp value: %d\n", (int)state->output); |
| |
| /* Backside PID is only every 5 seconds, force backside fan clamping now */ |
| fan_min = (dimm_output_clamp * 100) / 14000; |
| fan_min = max(fan_min, backside_params.output_min); |
| if (backside_state.pwm < fan_min) { |
| backside_state.pwm = fan_min; |
| DBG(" -> applying clamp to backside fan now: %d !\n", fan_min); |
| set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min); |
| } |
| } |
| |
| /* |
| * Initialize the state structure for the DIMM temp control loop |
| */ |
| static int init_dimms_state(struct dimm_pid_state *state) |
| { |
| state->ticks = 1; |
| state->first = 1; |
| state->output = 4000; |
| |
| state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp"); |
| if (state->monitor == NULL) |
| return -ENODEV; |
| |
| if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature)) |
| printk(KERN_WARNING "Failed to create attribute file" |
| " for DIMM temperature\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * Dispose of the state data for the DIMM control loop |
| */ |
| static void dispose_dimms_state(struct dimm_pid_state *state) |
| { |
| if (state->monitor == NULL) |
| return; |
| |
| device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature); |
| |
| state->monitor = NULL; |
| } |
| |
| /* |
| * Slots fan control loop |
| */ |
| static void do_monitor_slots(struct slots_pid_state *state) |
| { |
| s32 temp, integral, derivative; |
| s64 integ_p, deriv_p, prop_p, sum; |
| int i, rc; |
| |
| if (--state->ticks != 0) |
| return; |
| state->ticks = SLOTS_PID_INTERVAL; |
| |
| DBG("slots:\n"); |
| |
| /* Check fan status */ |
| rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX); |
| if (rc < 0) { |
| printk(KERN_WARNING "Error %d reading slots fan !\n", rc); |
| /* XXX What do we do now ? */ |
| } else |
| state->pwm = rc; |
| DBG(" current pwm: %d\n", state->pwm); |
| |
| /* Get some sensor readings */ |
| temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, |
| DS1775_TEMP)) << 8; |
| state->last_temp = temp; |
| DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), |
| FIX32TOPRINT(SLOTS_PID_INPUT_TARGET)); |
| |
| /* Store temperature and error in history array */ |
| state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE; |
| state->sample_history[state->cur_sample] = temp; |
| state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET; |
| |
| /* If first loop, fill the history table */ |
| if (state->first) { |
| for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) { |
| state->cur_sample = (state->cur_sample + 1) % |
| SLOTS_PID_HISTORY_SIZE; |
| state->sample_history[state->cur_sample] = temp; |
| state->error_history[state->cur_sample] = |
| temp - SLOTS_PID_INPUT_TARGET; |
| } |
| state->first = 0; |
| } |
| |
| /* Calculate the integral term */ |
| sum = 0; |
| integral = 0; |
| for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++) |
| integral += state->error_history[i]; |
| integral *= SLOTS_PID_INTERVAL; |
| DBG(" integral: %08x\n", integral); |
| integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral; |
| DBG(" integ_p: %d\n", (int)(integ_p >> 36)); |
| sum += integ_p; |
| |
| /* Calculate the derivative term */ |
| derivative = state->error_history[state->cur_sample] - |
| state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1) |
| % SLOTS_PID_HISTORY_SIZE]; |
| derivative /= SLOTS_PID_INTERVAL; |
| deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative; |
| DBG(" deriv_p: %d\n", (int)(deriv_p >> 36)); |
| sum += deriv_p; |
| |
| /* Calculate the proportional term */ |
| prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]); |
| DBG(" prop_p: %d\n", (int)(prop_p >> 36)); |
| sum += prop_p; |
| |
| /* Scale sum */ |
| sum >>= 36; |
| |
| DBG(" sum: %d\n", (int)sum); |
| state->pwm = (s32)sum; |
| |
| state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN); |
| state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX); |
| |
| DBG("** DRIVES PWM: %d\n", (int)state->pwm); |
| set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm); |
| } |
| |
| /* |
| * Initialize the state structure for the slots bay fan control loop |
| */ |
| static int init_slots_state(struct slots_pid_state *state) |
| { |
| int err; |
| |
| state->ticks = 1; |
| state->first = 1; |
| state->pwm = 50; |
| |
| state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp"); |
| if (state->monitor == NULL) |
| return -ENODEV; |
| |
| err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature); |
| err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm); |
| if (err) |
| printk(KERN_WARNING "Failed to create attribute file(s)" |
| " for slots bay fan\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * Dispose of the state data for the slots control loop |
| */ |
| static void dispose_slots_state(struct slots_pid_state *state) |
| { |
| if (state->monitor == NULL) |
| return; |
| |
| device_remove_file(&of_dev->dev, &dev_attr_slots_temperature); |
| device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm); |
| |
| state->monitor = NULL; |
| } |
| |
| |
| static int call_critical_overtemp(void) |
| { |
| char *argv[] = { critical_overtemp_path, NULL }; |
| static char *envp[] = { "HOME=/", |
| "TERM=linux", |
| "PATH=/sbin:/usr/sbin:/bin:/usr/bin", |
| NULL }; |
| |
| return call_usermodehelper(critical_overtemp_path, |
| argv, envp, UMH_WAIT_EXEC); |
| } |
| |
| |
| /* |
| * Here's the kernel thread that calls the various control loops |
| */ |
| static int main_control_loop(void *x) |
| { |
| DBG("main_control_loop started\n"); |
| |
| mutex_lock(&driver_lock); |
| |
| if (start_fcu() < 0) { |
| printk(KERN_ERR "kfand: failed to start FCU\n"); |
| mutex_unlock(&driver_lock); |
| goto out; |
| } |
| |
| /* Set the PCI fan once for now on non-RackMac */ |
| if (!rackmac) |
| set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM); |
| |
| /* Initialize ADCs */ |
| initialize_adc(&cpu_state[0]); |
| if (cpu_state[1].monitor != NULL) |
| initialize_adc(&cpu_state[1]); |
| |
| fcu_tickle_ticks = FCU_TICKLE_TICKS; |
| |
| mutex_unlock(&driver_lock); |
| |
| while (state == state_attached) { |
| unsigned long elapsed, start; |
| |
| start = jiffies; |
| |
| mutex_lock(&driver_lock); |
| |
| /* Tickle the FCU just in case */ |
| if (--fcu_tickle_ticks < 0) { |
| fcu_tickle_ticks = FCU_TICKLE_TICKS; |
| tickle_fcu(); |
| } |
| |
| /* First, we always calculate the new DIMMs state on an Xserve */ |
| if (rackmac) |
| do_monitor_dimms(&dimms_state); |
| |
| /* Then, the CPUs */ |
| if (cpu_pid_type == CPU_PID_TYPE_COMBINED) |
| do_monitor_cpu_combined(); |
| else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) { |
| do_monitor_cpu_rack(&cpu_state[0]); |
| if (cpu_state[1].monitor != NULL) |
| do_monitor_cpu_rack(&cpu_state[1]); |
| // better deal with UP |
| } else { |
| do_monitor_cpu_split(&cpu_state[0]); |
| if (cpu_state[1].monitor != NULL) |
| do_monitor_cpu_split(&cpu_state[1]); |
| // better deal with UP |
| } |
| /* Then, the rest */ |
| do_monitor_backside(&backside_state); |
| if (rackmac) |
| do_monitor_slots(&slots_state); |
| else |
| do_monitor_drives(&drives_state); |
| mutex_unlock(&driver_lock); |
| |
| if (critical_state == 1) { |
| printk(KERN_WARNING "Temperature control detected a critical condition\n"); |
| printk(KERN_WARNING "Attempting to shut down...\n"); |
| if (call_critical_overtemp()) { |
| printk(KERN_WARNING "Can't call %s, power off now!\n", |
| critical_overtemp_path); |
| machine_power_off(); |
| } |
| } |
| if (critical_state > 0) |
| critical_state++; |
| if (critical_state > MAX_CRITICAL_STATE) { |
| printk(KERN_WARNING "Shutdown timed out, power off now !\n"); |
| machine_power_off(); |
| } |
| |
| // FIXME: Deal with signals |
| elapsed = jiffies - start; |
| if (elapsed < HZ) |
| schedule_timeout_interruptible(HZ - elapsed); |
| } |
| |
| out: |
| DBG("main_control_loop ended\n"); |
| |
| ctrl_task = 0; |
| complete_and_exit(&ctrl_complete, 0); |
| } |
| |
| /* |
| * Dispose the control loops when tearing down |
| */ |
| static void dispose_control_loops(void) |
| { |
| dispose_cpu_state(&cpu_state[0]); |
| dispose_cpu_state(&cpu_state[1]); |
| dispose_backside_state(&backside_state); |
| dispose_drives_state(&drives_state); |
| dispose_slots_state(&slots_state); |
| dispose_dimms_state(&dimms_state); |
| } |
| |
| /* |
| * Create the control loops. U3-0 i2c bus is up, so we can now |
| * get to the various sensors |
| */ |
| static int create_control_loops(void) |
| { |
| struct device_node *np; |
| |
| /* Count CPUs from the device-tree, we don't care how many are |
| * actually used by Linux |
| */ |
| cpu_count = 0; |
| for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));) |
| cpu_count++; |
| |
| DBG("counted %d CPUs in the device-tree\n", cpu_count); |
| |
| /* Decide the type of PID algorithm to use based on the presence of |
| * the pumps, though that may not be the best way, that is good enough |
| * for now |
| */ |
| if (rackmac) |
| cpu_pid_type = CPU_PID_TYPE_RACKMAC; |
| else if (of_machine_is_compatible("PowerMac7,3") |
| && (cpu_count > 1) |
| && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID |
| && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) { |
| printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n"); |
| cpu_pid_type = CPU_PID_TYPE_COMBINED; |
| } else |
| cpu_pid_type = CPU_PID_TYPE_SPLIT; |
| |
| /* Create control loops for everything. If any fail, everything |
| * fails |
| */ |
| if (init_cpu_state(&cpu_state[0], 0)) |
| goto fail; |
| if (cpu_pid_type == CPU_PID_TYPE_COMBINED) |
| fetch_cpu_pumps_minmax(); |
| |
| if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1)) |
| goto fail; |
| if (init_backside_state(&backside_state)) |
| goto fail; |
| if (rackmac && init_dimms_state(&dimms_state)) |
| goto fail; |
| if (rackmac && init_slots_state(&slots_state)) |
| goto fail; |
| if (!rackmac && init_drives_state(&drives_state)) |
| goto fail; |
| |
| DBG("all control loops up !\n"); |
| |
| return 0; |
| |
| fail: |
| DBG("failure creating control loops, disposing\n"); |
| |
| dispose_control_loops(); |
| |
| return -ENODEV; |
| } |
| |
| /* |
| * Start the control loops after everything is up, that is create |
| * the thread that will make them run |
| */ |
| static void start_control_loops(void) |
| { |
| init_completion(&ctrl_complete); |
| |
| ctrl_task = kthread_run(main_control_loop, NULL, "kfand"); |
| } |
| |
| /* |
| * Stop the control loops when tearing down |
| */ |
| static void stop_control_loops(void) |
| { |
| if (ctrl_task) |
| wait_for_completion(&ctrl_complete); |
| } |
| |
| /* |
| * Attach to the i2c FCU after detecting U3-1 bus |
| */ |
| static int attach_fcu(void) |
| { |
| fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu"); |
| if (fcu == NULL) |
| return -ENODEV; |
| |
| DBG("FCU attached\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * Detach from the i2c FCU when tearing down |
| */ |
| static void detach_fcu(void) |
| { |
| fcu = NULL; |
| } |
| |
| /* |
| * Attach to the i2c controller. We probe the various chips based |
| * on the device-tree nodes and build everything for the driver to |
| * run, we then kick the driver monitoring thread |
| */ |
| static int therm_pm72_attach(struct i2c_adapter *adapter) |
| { |
| mutex_lock(&driver_lock); |
| |
| /* Check state */ |
| if (state == state_detached) |
| state = state_attaching; |
| if (state != state_attaching) { |
| mutex_unlock(&driver_lock); |
| return 0; |
| } |
| |
| /* Check if we are looking for one of these */ |
| if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) { |
| u3_0 = adapter; |
| DBG("found U3-0\n"); |
| if (k2 || !rackmac) |
| if (create_control_loops()) |
| u3_0 = NULL; |
| } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) { |
| u3_1 = adapter; |
| DBG("found U3-1, attaching FCU\n"); |
| if (attach_fcu()) |
| u3_1 = NULL; |
| } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) { |
| k2 = adapter; |
| DBG("Found K2\n"); |
| if (u3_0 && rackmac) |
| if (create_control_loops()) |
| k2 = NULL; |
| } |
| /* We got all we need, start control loops */ |
| if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) { |
| DBG("everything up, starting control loops\n"); |
| state = state_attached; |
| start_control_loops(); |
| } |
| mutex_unlock(&driver_lock); |
| |
| return 0; |
| } |
| |
| static int therm_pm72_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| /* Always succeed, the real work was done in therm_pm72_attach() */ |
| return 0; |
| } |
| |
| /* |
| * Called when any of the devices which participates into thermal management |
| * is going away. |
| */ |
| static int therm_pm72_remove(struct i2c_client *client) |
| { |
| struct i2c_adapter *adapter = client->adapter; |
| |
| mutex_lock(&driver_lock); |
| |
| if (state != state_detached) |
| state = state_detaching; |
| |
| /* Stop control loops if any */ |
| DBG("stopping control loops\n"); |
| mutex_unlock(&driver_lock); |
| stop_control_loops(); |
| mutex_lock(&driver_lock); |
| |
| if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) { |
| DBG("lost U3-0, disposing control loops\n"); |
| dispose_control_loops(); |
| u3_0 = NULL; |
| } |
| |
| if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) { |
| DBG("lost U3-1, detaching FCU\n"); |
| detach_fcu(); |
| u3_1 = NULL; |
| } |
| if (u3_0 == NULL && u3_1 == NULL) |
| state = state_detached; |
| |
| mutex_unlock(&driver_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * i2c_driver structure to attach to the host i2c controller |
| */ |
| |
| static const struct i2c_device_id therm_pm72_id[] = { |
| /* |
| * Fake device name, thermal management is done by several |
| * chips but we don't need to differentiate between them at |
| * this point. |
| */ |
| { "therm_pm72", 0 }, |
| { } |
| }; |
| |
| static struct i2c_driver therm_pm72_driver = { |
| .driver = { |
| .name = "therm_pm72", |
| }, |
| .attach_adapter = therm_pm72_attach, |
| .probe = therm_pm72_probe, |
| .remove = therm_pm72_remove, |
| .id_table = therm_pm72_id, |
| }; |
| |
| static int fan_check_loc_match(const char *loc, int fan) |
| { |
| char tmp[64]; |
| char *c, *e; |
| |
| strlcpy(tmp, fcu_fans[fan].loc, 64); |
| |
| c = tmp; |
| for (;;) { |
| e = strchr(c, ','); |
| if (e) |
| *e = 0; |
| if (strcmp(loc, c) == 0) |
| return 1; |
| if (e == NULL) |
| break; |
| c = e + 1; |
| } |
| return 0; |
| } |
| |
| static void fcu_lookup_fans(struct device_node *fcu_node) |
| { |
| struct device_node *np = NULL; |
| int i; |
| |
| /* The table is filled by default with values that are suitable |
| * for the old machines without device-tree informations. We scan |
| * the device-tree and override those values with whatever is |
| * there |
| */ |
| |
| DBG("Looking up FCU controls in device-tree...\n"); |
| |
| while ((np = of_get_next_child(fcu_node, np)) != NULL) { |
| int type = -1; |
| const char *loc; |
| const u32 *reg; |
| |
| DBG(" control: %s, type: %s\n", np->name, np->type); |
| |
| /* Detect control type */ |
| if (!strcmp(np->type, "fan-rpm-control") || |
| !strcmp(np->type, "fan-rpm")) |
| type = FCU_FAN_RPM; |
| if (!strcmp(np->type, "fan-pwm-control") || |
| !strcmp(np->type, "fan-pwm")) |
| type = FCU_FAN_PWM; |
| /* Only care about fans for now */ |
| if (type == -1) |
| continue; |
| |
| /* Lookup for a matching location */ |
| loc = of_get_property(np, "location", NULL); |
| reg = of_get_property(np, "reg", NULL); |
| if (loc == NULL || reg == NULL) |
| continue; |
| DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg); |
| |
| for (i = 0; i < FCU_FAN_COUNT; i++) { |
| int fan_id; |
| |
| if (!fan_check_loc_match(loc, i)) |
| continue; |
| DBG(" location match, index: %d\n", i); |
| fcu_fans[i].id = FCU_FAN_ABSENT_ID; |
| if (type != fcu_fans[i].type) { |
| printk(KERN_WARNING "therm_pm72: Fan type mismatch " |
| "in device-tree for %s\n", np->full_name); |
| break; |
| } |
| if (type == FCU_FAN_RPM) |
| fan_id = ((*reg) - 0x10) / 2; |
| else |
| fan_id = ((*reg) - 0x30) / 2; |
| if (fan_id > 7) { |
| printk(KERN_WARNING "therm_pm72: Can't parse " |
| "fan ID in device-tree for %s\n", np->full_name); |
| break; |
| } |
| DBG(" fan id -> %d, type -> %d\n", fan_id, type); |
| fcu_fans[i].id = fan_id; |
| } |
| } |
| |
| /* Now dump the array */ |
| printk(KERN_INFO "Detected fan controls:\n"); |
| for (i = 0; i < FCU_FAN_COUNT; i++) { |
| if (fcu_fans[i].id == FCU_FAN_ABSENT_ID) |
| continue; |
| printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i, |
| fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM", |
| fcu_fans[i].id, fcu_fans[i].loc); |
| } |
| } |
| |
| static int fcu_of_probe(struct platform_device* dev, const struct of_device_id *match) |
| { |
| state = state_detached; |
| of_dev = dev; |
| |
| dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION); |
| |
| /* Lookup the fans in the device tree */ |
| fcu_lookup_fans(dev->dev.of_node); |
| |
| /* Add the driver */ |
| return i2c_add_driver(&therm_pm72_driver); |
| } |
| |
| static int fcu_of_remove(struct platform_device* dev) |
| { |
| i2c_del_driver(&therm_pm72_driver); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id fcu_match[] = |
| { |
| { |
| .type = "fcu", |
| }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, fcu_match); |
| |
| static struct of_platform_driver fcu_of_platform_driver = |
| { |
| .driver = { |
| .name = "temperature", |
| .owner = THIS_MODULE, |
| .of_match_table = fcu_match, |
| }, |
| .probe = fcu_of_probe, |
| .remove = fcu_of_remove |
| }; |
| |
| /* |
| * Check machine type, attach to i2c controller |
| */ |
| static int __init therm_pm72_init(void) |
| { |
| rackmac = of_machine_is_compatible("RackMac3,1"); |
| |
| if (!of_machine_is_compatible("PowerMac7,2") && |
| !of_machine_is_compatible("PowerMac7,3") && |
| !rackmac) |
| return -ENODEV; |
| |
| return of_register_platform_driver(&fcu_of_platform_driver); |
| } |
| |
| static void __exit therm_pm72_exit(void) |
| { |
| of_unregister_platform_driver(&fcu_of_platform_driver); |
| } |
| |
| module_init(therm_pm72_init); |
| module_exit(therm_pm72_exit); |
| |
| MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>"); |
| MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control"); |
| MODULE_LICENSE("GPL"); |
| |