| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter |
| * |
| * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved. |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/kmod.h> |
| #include <linux/ktime.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| |
| #include <drm/drm_edid.h> |
| |
| #include "cec-priv.h" |
| |
| static void cec_fill_msg_report_features(struct cec_adapter *adap, |
| struct cec_msg *msg, |
| unsigned int la_idx); |
| |
| /* |
| * 400 ms is the time it takes for one 16 byte message to be |
| * transferred and 5 is the maximum number of retries. Add |
| * another 100 ms as a margin. So if the transmit doesn't |
| * finish before that time something is really wrong and we |
| * have to time out. |
| * |
| * This is a sign that something it really wrong and a warning |
| * will be issued. |
| */ |
| #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100) |
| |
| #define call_op(adap, op, arg...) \ |
| (adap->ops->op ? adap->ops->op(adap, ## arg) : 0) |
| |
| #define call_void_op(adap, op, arg...) \ |
| do { \ |
| if (adap->ops->op) \ |
| adap->ops->op(adap, ## arg); \ |
| } while (0) |
| |
| static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr) |
| { |
| int i; |
| |
| for (i = 0; i < adap->log_addrs.num_log_addrs; i++) |
| if (adap->log_addrs.log_addr[i] == log_addr) |
| return i; |
| return -1; |
| } |
| |
| static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr) |
| { |
| int i = cec_log_addr2idx(adap, log_addr); |
| |
| return adap->log_addrs.primary_device_type[i < 0 ? 0 : i]; |
| } |
| |
| /* |
| * Queue a new event for this filehandle. If ts == 0, then set it |
| * to the current time. |
| * |
| * We keep a queue of at most max_event events where max_event differs |
| * per event. If the queue becomes full, then drop the oldest event and |
| * keep track of how many events we've dropped. |
| */ |
| void cec_queue_event_fh(struct cec_fh *fh, |
| const struct cec_event *new_ev, u64 ts) |
| { |
| static const u16 max_events[CEC_NUM_EVENTS] = { |
| 1, 1, 800, 800, 8, 8, 8, 8 |
| }; |
| struct cec_event_entry *entry; |
| unsigned int ev_idx = new_ev->event - 1; |
| |
| if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events))) |
| return; |
| |
| if (ts == 0) |
| ts = ktime_get_ns(); |
| |
| mutex_lock(&fh->lock); |
| if (ev_idx < CEC_NUM_CORE_EVENTS) |
| entry = &fh->core_events[ev_idx]; |
| else |
| entry = kmalloc(sizeof(*entry), GFP_KERNEL); |
| if (entry) { |
| if (new_ev->event == CEC_EVENT_LOST_MSGS && |
| fh->queued_events[ev_idx]) { |
| entry->ev.lost_msgs.lost_msgs += |
| new_ev->lost_msgs.lost_msgs; |
| goto unlock; |
| } |
| entry->ev = *new_ev; |
| entry->ev.ts = ts; |
| |
| if (fh->queued_events[ev_idx] < max_events[ev_idx]) { |
| /* Add new msg at the end of the queue */ |
| list_add_tail(&entry->list, &fh->events[ev_idx]); |
| fh->queued_events[ev_idx]++; |
| fh->total_queued_events++; |
| goto unlock; |
| } |
| |
| if (ev_idx >= CEC_NUM_CORE_EVENTS) { |
| list_add_tail(&entry->list, &fh->events[ev_idx]); |
| /* drop the oldest event */ |
| entry = list_first_entry(&fh->events[ev_idx], |
| struct cec_event_entry, list); |
| list_del(&entry->list); |
| kfree(entry); |
| } |
| } |
| /* Mark that events were lost */ |
| entry = list_first_entry_or_null(&fh->events[ev_idx], |
| struct cec_event_entry, list); |
| if (entry) |
| entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS; |
| |
| unlock: |
| mutex_unlock(&fh->lock); |
| wake_up_interruptible(&fh->wait); |
| } |
| |
| /* Queue a new event for all open filehandles. */ |
| static void cec_queue_event(struct cec_adapter *adap, |
| const struct cec_event *ev) |
| { |
| u64 ts = ktime_get_ns(); |
| struct cec_fh *fh; |
| |
| mutex_lock(&adap->devnode.lock); |
| list_for_each_entry(fh, &adap->devnode.fhs, list) |
| cec_queue_event_fh(fh, ev, ts); |
| mutex_unlock(&adap->devnode.lock); |
| } |
| |
| /* Notify userspace that the CEC pin changed state at the given time. */ |
| void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high, |
| bool dropped_events, ktime_t ts) |
| { |
| struct cec_event ev = { |
| .event = is_high ? CEC_EVENT_PIN_CEC_HIGH : |
| CEC_EVENT_PIN_CEC_LOW, |
| .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0, |
| }; |
| struct cec_fh *fh; |
| |
| mutex_lock(&adap->devnode.lock); |
| list_for_each_entry(fh, &adap->devnode.fhs, list) |
| if (fh->mode_follower == CEC_MODE_MONITOR_PIN) |
| cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); |
| mutex_unlock(&adap->devnode.lock); |
| } |
| EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event); |
| |
| /* Notify userspace that the HPD pin changed state at the given time. */ |
| void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts) |
| { |
| struct cec_event ev = { |
| .event = is_high ? CEC_EVENT_PIN_HPD_HIGH : |
| CEC_EVENT_PIN_HPD_LOW, |
| }; |
| struct cec_fh *fh; |
| |
| mutex_lock(&adap->devnode.lock); |
| list_for_each_entry(fh, &adap->devnode.fhs, list) |
| cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); |
| mutex_unlock(&adap->devnode.lock); |
| } |
| EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event); |
| |
| /* Notify userspace that the 5V pin changed state at the given time. */ |
| void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts) |
| { |
| struct cec_event ev = { |
| .event = is_high ? CEC_EVENT_PIN_5V_HIGH : |
| CEC_EVENT_PIN_5V_LOW, |
| }; |
| struct cec_fh *fh; |
| |
| mutex_lock(&adap->devnode.lock); |
| list_for_each_entry(fh, &adap->devnode.fhs, list) |
| cec_queue_event_fh(fh, &ev, ktime_to_ns(ts)); |
| mutex_unlock(&adap->devnode.lock); |
| } |
| EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event); |
| |
| /* |
| * Queue a new message for this filehandle. |
| * |
| * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the |
| * queue becomes full, then drop the oldest message and keep track |
| * of how many messages we've dropped. |
| */ |
| static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg) |
| { |
| static const struct cec_event ev_lost_msgs = { |
| .event = CEC_EVENT_LOST_MSGS, |
| .flags = 0, |
| { |
| .lost_msgs = { 1 }, |
| }, |
| }; |
| struct cec_msg_entry *entry; |
| |
| mutex_lock(&fh->lock); |
| entry = kmalloc(sizeof(*entry), GFP_KERNEL); |
| if (entry) { |
| entry->msg = *msg; |
| /* Add new msg at the end of the queue */ |
| list_add_tail(&entry->list, &fh->msgs); |
| |
| if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) { |
| /* All is fine if there is enough room */ |
| fh->queued_msgs++; |
| mutex_unlock(&fh->lock); |
| wake_up_interruptible(&fh->wait); |
| return; |
| } |
| |
| /* |
| * if the message queue is full, then drop the oldest one and |
| * send a lost message event. |
| */ |
| entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list); |
| list_del(&entry->list); |
| kfree(entry); |
| } |
| mutex_unlock(&fh->lock); |
| |
| /* |
| * We lost a message, either because kmalloc failed or the queue |
| * was full. |
| */ |
| cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns()); |
| } |
| |
| /* |
| * Queue the message for those filehandles that are in monitor mode. |
| * If valid_la is true (this message is for us or was sent by us), |
| * then pass it on to any monitoring filehandle. If this message |
| * isn't for us or from us, then only give it to filehandles that |
| * are in MONITOR_ALL mode. |
| * |
| * This can only happen if the CEC_CAP_MONITOR_ALL capability is |
| * set and the CEC adapter was placed in 'monitor all' mode. |
| */ |
| static void cec_queue_msg_monitor(struct cec_adapter *adap, |
| const struct cec_msg *msg, |
| bool valid_la) |
| { |
| struct cec_fh *fh; |
| u32 monitor_mode = valid_la ? CEC_MODE_MONITOR : |
| CEC_MODE_MONITOR_ALL; |
| |
| mutex_lock(&adap->devnode.lock); |
| list_for_each_entry(fh, &adap->devnode.fhs, list) { |
| if (fh->mode_follower >= monitor_mode) |
| cec_queue_msg_fh(fh, msg); |
| } |
| mutex_unlock(&adap->devnode.lock); |
| } |
| |
| /* |
| * Queue the message for follower filehandles. |
| */ |
| static void cec_queue_msg_followers(struct cec_adapter *adap, |
| const struct cec_msg *msg) |
| { |
| struct cec_fh *fh; |
| |
| mutex_lock(&adap->devnode.lock); |
| list_for_each_entry(fh, &adap->devnode.fhs, list) { |
| if (fh->mode_follower == CEC_MODE_FOLLOWER) |
| cec_queue_msg_fh(fh, msg); |
| } |
| mutex_unlock(&adap->devnode.lock); |
| } |
| |
| /* Notify userspace of an adapter state change. */ |
| static void cec_post_state_event(struct cec_adapter *adap) |
| { |
| struct cec_event ev = { |
| .event = CEC_EVENT_STATE_CHANGE, |
| }; |
| |
| ev.state_change.phys_addr = adap->phys_addr; |
| ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask; |
| cec_queue_event(adap, &ev); |
| } |
| |
| /* |
| * A CEC transmit (and a possible wait for reply) completed. |
| * If this was in blocking mode, then complete it, otherwise |
| * queue the message for userspace to dequeue later. |
| * |
| * This function is called with adap->lock held. |
| */ |
| static void cec_data_completed(struct cec_data *data) |
| { |
| /* |
| * Delete this transmit from the filehandle's xfer_list since |
| * we're done with it. |
| * |
| * Note that if the filehandle is closed before this transmit |
| * finished, then the release() function will set data->fh to NULL. |
| * Without that we would be referring to a closed filehandle. |
| */ |
| if (data->fh) |
| list_del(&data->xfer_list); |
| |
| if (data->blocking) { |
| /* |
| * Someone is blocking so mark the message as completed |
| * and call complete. |
| */ |
| data->completed = true; |
| complete(&data->c); |
| } else { |
| /* |
| * No blocking, so just queue the message if needed and |
| * free the memory. |
| */ |
| if (data->fh) |
| cec_queue_msg_fh(data->fh, &data->msg); |
| kfree(data); |
| } |
| } |
| |
| /* |
| * A pending CEC transmit needs to be cancelled, either because the CEC |
| * adapter is disabled or the transmit takes an impossibly long time to |
| * finish. |
| * |
| * This function is called with adap->lock held. |
| */ |
| static void cec_data_cancel(struct cec_data *data, u8 tx_status) |
| { |
| /* |
| * It's either the current transmit, or it is a pending |
| * transmit. Take the appropriate action to clear it. |
| */ |
| if (data->adap->transmitting == data) { |
| data->adap->transmitting = NULL; |
| } else { |
| list_del_init(&data->list); |
| if (!(data->msg.tx_status & CEC_TX_STATUS_OK)) |
| data->adap->transmit_queue_sz--; |
| } |
| |
| if (data->msg.tx_status & CEC_TX_STATUS_OK) { |
| data->msg.rx_ts = ktime_get_ns(); |
| data->msg.rx_status = CEC_RX_STATUS_ABORTED; |
| } else { |
| data->msg.tx_ts = ktime_get_ns(); |
| data->msg.tx_status |= tx_status | |
| CEC_TX_STATUS_MAX_RETRIES; |
| data->msg.tx_error_cnt++; |
| data->attempts = 0; |
| } |
| |
| /* Queue transmitted message for monitoring purposes */ |
| cec_queue_msg_monitor(data->adap, &data->msg, 1); |
| |
| cec_data_completed(data); |
| } |
| |
| /* |
| * Flush all pending transmits and cancel any pending timeout work. |
| * |
| * This function is called with adap->lock held. |
| */ |
| static void cec_flush(struct cec_adapter *adap) |
| { |
| struct cec_data *data, *n; |
| |
| /* |
| * If the adapter is disabled, or we're asked to stop, |
| * then cancel any pending transmits. |
| */ |
| while (!list_empty(&adap->transmit_queue)) { |
| data = list_first_entry(&adap->transmit_queue, |
| struct cec_data, list); |
| cec_data_cancel(data, CEC_TX_STATUS_ABORTED); |
| } |
| if (adap->transmitting) |
| cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED); |
| |
| /* Cancel the pending timeout work. */ |
| list_for_each_entry_safe(data, n, &adap->wait_queue, list) { |
| if (cancel_delayed_work(&data->work)) |
| cec_data_cancel(data, CEC_TX_STATUS_OK); |
| /* |
| * If cancel_delayed_work returned false, then |
| * the cec_wait_timeout function is running, |
| * which will call cec_data_completed. So no |
| * need to do anything special in that case. |
| */ |
| } |
| } |
| |
| /* |
| * Main CEC state machine |
| * |
| * Wait until the thread should be stopped, or we are not transmitting and |
| * a new transmit message is queued up, in which case we start transmitting |
| * that message. When the adapter finished transmitting the message it will |
| * call cec_transmit_done(). |
| * |
| * If the adapter is disabled, then remove all queued messages instead. |
| * |
| * If the current transmit times out, then cancel that transmit. |
| */ |
| int cec_thread_func(void *_adap) |
| { |
| struct cec_adapter *adap = _adap; |
| |
| for (;;) { |
| unsigned int signal_free_time; |
| struct cec_data *data; |
| bool timeout = false; |
| u8 attempts; |
| |
| if (adap->transmitting) { |
| int err; |
| |
| /* |
| * We are transmitting a message, so add a timeout |
| * to prevent the state machine to get stuck waiting |
| * for this message to finalize and add a check to |
| * see if the adapter is disabled in which case the |
| * transmit should be canceled. |
| */ |
| err = wait_event_interruptible_timeout(adap->kthread_waitq, |
| (adap->needs_hpd && |
| (!adap->is_configured && !adap->is_configuring)) || |
| kthread_should_stop() || |
| (!adap->transmitting && |
| !list_empty(&adap->transmit_queue)), |
| msecs_to_jiffies(CEC_XFER_TIMEOUT_MS)); |
| timeout = err == 0; |
| } else { |
| /* Otherwise we just wait for something to happen. */ |
| wait_event_interruptible(adap->kthread_waitq, |
| kthread_should_stop() || |
| (!adap->transmitting && |
| !list_empty(&adap->transmit_queue))); |
| } |
| |
| mutex_lock(&adap->lock); |
| |
| if ((adap->needs_hpd && |
| (!adap->is_configured && !adap->is_configuring)) || |
| kthread_should_stop()) { |
| cec_flush(adap); |
| goto unlock; |
| } |
| |
| if (adap->transmitting && timeout) { |
| /* |
| * If we timeout, then log that. Normally this does |
| * not happen and it is an indication of a faulty CEC |
| * adapter driver, or the CEC bus is in some weird |
| * state. On rare occasions it can happen if there is |
| * so much traffic on the bus that the adapter was |
| * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s). |
| */ |
| pr_warn("cec-%s: message %*ph timed out\n", adap->name, |
| adap->transmitting->msg.len, |
| adap->transmitting->msg.msg); |
| adap->tx_timeouts++; |
| /* Just give up on this. */ |
| cec_data_cancel(adap->transmitting, |
| CEC_TX_STATUS_TIMEOUT); |
| goto unlock; |
| } |
| |
| /* |
| * If we are still transmitting, or there is nothing new to |
| * transmit, then just continue waiting. |
| */ |
| if (adap->transmitting || list_empty(&adap->transmit_queue)) |
| goto unlock; |
| |
| /* Get a new message to transmit */ |
| data = list_first_entry(&adap->transmit_queue, |
| struct cec_data, list); |
| list_del_init(&data->list); |
| adap->transmit_queue_sz--; |
| |
| /* Make this the current transmitting message */ |
| adap->transmitting = data; |
| |
| /* |
| * Suggested number of attempts as per the CEC 2.0 spec: |
| * 4 attempts is the default, except for 'secondary poll |
| * messages', i.e. poll messages not sent during the adapter |
| * configuration phase when it allocates logical addresses. |
| */ |
| if (data->msg.len == 1 && adap->is_configured) |
| attempts = 2; |
| else |
| attempts = 4; |
| |
| /* Set the suggested signal free time */ |
| if (data->attempts) { |
| /* should be >= 3 data bit periods for a retry */ |
| signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY; |
| } else if (adap->last_initiator != |
| cec_msg_initiator(&data->msg)) { |
| /* should be >= 5 data bit periods for new initiator */ |
| signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR; |
| adap->last_initiator = cec_msg_initiator(&data->msg); |
| } else { |
| /* |
| * should be >= 7 data bit periods for sending another |
| * frame immediately after another. |
| */ |
| signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER; |
| } |
| if (data->attempts == 0) |
| data->attempts = attempts; |
| |
| /* Tell the adapter to transmit, cancel on error */ |
| if (adap->ops->adap_transmit(adap, data->attempts, |
| signal_free_time, &data->msg)) |
| cec_data_cancel(data, CEC_TX_STATUS_ABORTED); |
| |
| unlock: |
| mutex_unlock(&adap->lock); |
| |
| if (kthread_should_stop()) |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Called by the CEC adapter if a transmit finished. |
| */ |
| void cec_transmit_done_ts(struct cec_adapter *adap, u8 status, |
| u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt, |
| u8 error_cnt, ktime_t ts) |
| { |
| struct cec_data *data; |
| struct cec_msg *msg; |
| unsigned int attempts_made = arb_lost_cnt + nack_cnt + |
| low_drive_cnt + error_cnt; |
| |
| dprintk(2, "%s: status 0x%02x\n", __func__, status); |
| if (attempts_made < 1) |
| attempts_made = 1; |
| |
| mutex_lock(&adap->lock); |
| data = adap->transmitting; |
| if (!data) { |
| /* |
| * This can happen if a transmit was issued and the cable is |
| * unplugged while the transmit is ongoing. Ignore this |
| * transmit in that case. |
| */ |
| dprintk(1, "%s was called without an ongoing transmit!\n", |
| __func__); |
| goto unlock; |
| } |
| |
| msg = &data->msg; |
| |
| /* Drivers must fill in the status! */ |
| WARN_ON(status == 0); |
| msg->tx_ts = ktime_to_ns(ts); |
| msg->tx_status |= status; |
| msg->tx_arb_lost_cnt += arb_lost_cnt; |
| msg->tx_nack_cnt += nack_cnt; |
| msg->tx_low_drive_cnt += low_drive_cnt; |
| msg->tx_error_cnt += error_cnt; |
| |
| /* Mark that we're done with this transmit */ |
| adap->transmitting = NULL; |
| |
| /* |
| * If there are still retry attempts left and there was an error and |
| * the hardware didn't signal that it retried itself (by setting |
| * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves. |
| */ |
| if (data->attempts > attempts_made && |
| !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) { |
| /* Retry this message */ |
| data->attempts -= attempts_made; |
| if (msg->timeout) |
| dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n", |
| msg->len, msg->msg, data->attempts, msg->reply); |
| else |
| dprintk(2, "retransmit: %*ph (attempts: %d)\n", |
| msg->len, msg->msg, data->attempts); |
| /* Add the message in front of the transmit queue */ |
| list_add(&data->list, &adap->transmit_queue); |
| adap->transmit_queue_sz++; |
| goto wake_thread; |
| } |
| |
| data->attempts = 0; |
| |
| /* Always set CEC_TX_STATUS_MAX_RETRIES on error */ |
| if (!(status & CEC_TX_STATUS_OK)) |
| msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES; |
| |
| /* Queue transmitted message for monitoring purposes */ |
| cec_queue_msg_monitor(adap, msg, 1); |
| |
| if ((status & CEC_TX_STATUS_OK) && adap->is_configured && |
| msg->timeout) { |
| /* |
| * Queue the message into the wait queue if we want to wait |
| * for a reply. |
| */ |
| list_add_tail(&data->list, &adap->wait_queue); |
| schedule_delayed_work(&data->work, |
| msecs_to_jiffies(msg->timeout)); |
| } else { |
| /* Otherwise we're done */ |
| cec_data_completed(data); |
| } |
| |
| wake_thread: |
| /* |
| * Wake up the main thread to see if another message is ready |
| * for transmitting or to retry the current message. |
| */ |
| wake_up_interruptible(&adap->kthread_waitq); |
| unlock: |
| mutex_unlock(&adap->lock); |
| } |
| EXPORT_SYMBOL_GPL(cec_transmit_done_ts); |
| |
| void cec_transmit_attempt_done_ts(struct cec_adapter *adap, |
| u8 status, ktime_t ts) |
| { |
| switch (status & ~CEC_TX_STATUS_MAX_RETRIES) { |
| case CEC_TX_STATUS_OK: |
| cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts); |
| return; |
| case CEC_TX_STATUS_ARB_LOST: |
| cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts); |
| return; |
| case CEC_TX_STATUS_NACK: |
| cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts); |
| return; |
| case CEC_TX_STATUS_LOW_DRIVE: |
| cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts); |
| return; |
| case CEC_TX_STATUS_ERROR: |
| cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts); |
| return; |
| default: |
| /* Should never happen */ |
| WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status); |
| return; |
| } |
| } |
| EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts); |
| |
| /* |
| * Called when waiting for a reply times out. |
| */ |
| static void cec_wait_timeout(struct work_struct *work) |
| { |
| struct cec_data *data = container_of(work, struct cec_data, work.work); |
| struct cec_adapter *adap = data->adap; |
| |
| mutex_lock(&adap->lock); |
| /* |
| * Sanity check in case the timeout and the arrival of the message |
| * happened at the same time. |
| */ |
| if (list_empty(&data->list)) |
| goto unlock; |
| |
| /* Mark the message as timed out */ |
| list_del_init(&data->list); |
| data->msg.rx_ts = ktime_get_ns(); |
| data->msg.rx_status = CEC_RX_STATUS_TIMEOUT; |
| cec_data_completed(data); |
| unlock: |
| mutex_unlock(&adap->lock); |
| } |
| |
| /* |
| * Transmit a message. The fh argument may be NULL if the transmit is not |
| * associated with a specific filehandle. |
| * |
| * This function is called with adap->lock held. |
| */ |
| int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg, |
| struct cec_fh *fh, bool block) |
| { |
| struct cec_data *data; |
| |
| msg->rx_ts = 0; |
| msg->tx_ts = 0; |
| msg->rx_status = 0; |
| msg->tx_status = 0; |
| msg->tx_arb_lost_cnt = 0; |
| msg->tx_nack_cnt = 0; |
| msg->tx_low_drive_cnt = 0; |
| msg->tx_error_cnt = 0; |
| msg->sequence = 0; |
| |
| if (msg->reply && msg->timeout == 0) { |
| /* Make sure the timeout isn't 0. */ |
| msg->timeout = 1000; |
| } |
| if (msg->timeout) |
| msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS; |
| else |
| msg->flags = 0; |
| |
| if (msg->len > 1 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) { |
| msg->msg[2] = adap->phys_addr >> 8; |
| msg->msg[3] = adap->phys_addr & 0xff; |
| } |
| |
| /* Sanity checks */ |
| if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) { |
| dprintk(1, "%s: invalid length %d\n", __func__, msg->len); |
| return -EINVAL; |
| } |
| |
| memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); |
| |
| if (msg->timeout) |
| dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n", |
| __func__, msg->len, msg->msg, msg->reply, |
| !block ? ", nb" : ""); |
| else |
| dprintk(2, "%s: %*ph%s\n", |
| __func__, msg->len, msg->msg, !block ? " (nb)" : ""); |
| |
| if (msg->timeout && msg->len == 1) { |
| dprintk(1, "%s: can't reply to poll msg\n", __func__); |
| return -EINVAL; |
| } |
| if (msg->len == 1) { |
| if (cec_msg_destination(msg) == 0xf) { |
| dprintk(1, "%s: invalid poll message\n", __func__); |
| return -EINVAL; |
| } |
| if (cec_has_log_addr(adap, cec_msg_destination(msg))) { |
| /* |
| * If the destination is a logical address our adapter |
| * has already claimed, then just NACK this. |
| * It depends on the hardware what it will do with a |
| * POLL to itself (some OK this), so it is just as |
| * easy to handle it here so the behavior will be |
| * consistent. |
| */ |
| msg->tx_ts = ktime_get_ns(); |
| msg->tx_status = CEC_TX_STATUS_NACK | |
| CEC_TX_STATUS_MAX_RETRIES; |
| msg->tx_nack_cnt = 1; |
| msg->sequence = ++adap->sequence; |
| if (!msg->sequence) |
| msg->sequence = ++adap->sequence; |
| return 0; |
| } |
| } |
| if (msg->len > 1 && !cec_msg_is_broadcast(msg) && |
| cec_has_log_addr(adap, cec_msg_destination(msg))) { |
| dprintk(1, "%s: destination is the adapter itself\n", __func__); |
| return -EINVAL; |
| } |
| if (msg->len > 1 && adap->is_configured && |
| !cec_has_log_addr(adap, cec_msg_initiator(msg))) { |
| dprintk(1, "%s: initiator has unknown logical address %d\n", |
| __func__, cec_msg_initiator(msg)); |
| return -EINVAL; |
| } |
| if (!adap->is_configured && !adap->is_configuring) { |
| if (adap->needs_hpd || msg->msg[0] != 0xf0) { |
| dprintk(1, "%s: adapter is unconfigured\n", __func__); |
| return -ENONET; |
| } |
| if (msg->reply) { |
| dprintk(1, "%s: invalid msg->reply\n", __func__); |
| return -EINVAL; |
| } |
| } |
| |
| if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) { |
| dprintk(1, "%s: transmit queue full\n", __func__); |
| return -EBUSY; |
| } |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| msg->sequence = ++adap->sequence; |
| if (!msg->sequence) |
| msg->sequence = ++adap->sequence; |
| |
| data->msg = *msg; |
| data->fh = fh; |
| data->adap = adap; |
| data->blocking = block; |
| |
| init_completion(&data->c); |
| INIT_DELAYED_WORK(&data->work, cec_wait_timeout); |
| |
| if (fh) |
| list_add_tail(&data->xfer_list, &fh->xfer_list); |
| |
| list_add_tail(&data->list, &adap->transmit_queue); |
| adap->transmit_queue_sz++; |
| if (!adap->transmitting) |
| wake_up_interruptible(&adap->kthread_waitq); |
| |
| /* All done if we don't need to block waiting for completion */ |
| if (!block) |
| return 0; |
| |
| /* |
| * Release the lock and wait, retake the lock afterwards. |
| */ |
| mutex_unlock(&adap->lock); |
| wait_for_completion_killable(&data->c); |
| if (!data->completed) |
| cancel_delayed_work_sync(&data->work); |
| mutex_lock(&adap->lock); |
| |
| /* Cancel the transmit if it was interrupted */ |
| if (!data->completed) |
| cec_data_cancel(data, CEC_TX_STATUS_ABORTED); |
| |
| /* The transmit completed (possibly with an error) */ |
| *msg = data->msg; |
| kfree(data); |
| return 0; |
| } |
| |
| /* Helper function to be used by drivers and this framework. */ |
| int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg, |
| bool block) |
| { |
| int ret; |
| |
| mutex_lock(&adap->lock); |
| ret = cec_transmit_msg_fh(adap, msg, NULL, block); |
| mutex_unlock(&adap->lock); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(cec_transmit_msg); |
| |
| /* |
| * I don't like forward references but without this the low-level |
| * cec_received_msg() function would come after a bunch of high-level |
| * CEC protocol handling functions. That was very confusing. |
| */ |
| static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, |
| bool is_reply); |
| |
| #define DIRECTED 0x80 |
| #define BCAST1_4 0x40 |
| #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */ |
| #define BCAST (BCAST1_4 | BCAST2_0) |
| #define BOTH (BCAST | DIRECTED) |
| |
| /* |
| * Specify minimum length and whether the message is directed, broadcast |
| * or both. Messages that do not match the criteria are ignored as per |
| * the CEC specification. |
| */ |
| static const u8 cec_msg_size[256] = { |
| [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST, |
| [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED, |
| [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED, |
| [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED, |
| [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST, |
| [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST, |
| [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST, |
| [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST, |
| [CEC_MSG_STANDBY] = 2 | BOTH, |
| [CEC_MSG_RECORD_OFF] = 2 | DIRECTED, |
| [CEC_MSG_RECORD_ON] = 3 | DIRECTED, |
| [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED, |
| [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED, |
| [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED, |
| [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED, |
| [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED, |
| [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED, |
| [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED, |
| [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED, |
| [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED, |
| [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED, |
| [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED, |
| [CEC_MSG_CEC_VERSION] = 3 | DIRECTED, |
| [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED, |
| [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED, |
| [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED, |
| [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST, |
| [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST, |
| [CEC_MSG_REPORT_FEATURES] = 6 | BCAST, |
| [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED, |
| [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED, |
| [CEC_MSG_DECK_STATUS] = 3 | DIRECTED, |
| [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED, |
| [CEC_MSG_PLAY] = 3 | DIRECTED, |
| [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED, |
| [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED, |
| [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED, |
| [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED, |
| [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED, |
| [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED, |
| [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST, |
| [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED, |
| [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED, |
| [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH, |
| [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH, |
| [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH, |
| [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED, |
| [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED, |
| [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED, |
| [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED, |
| [CEC_MSG_MENU_STATUS] = 3 | DIRECTED, |
| [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED, |
| [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED, |
| [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED, |
| [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0, |
| [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED, |
| [CEC_MSG_ABORT] = 2 | DIRECTED, |
| [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED, |
| [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED, |
| [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED, |
| [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, |
| [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED, |
| [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH, |
| [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED, |
| [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED, |
| [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED, |
| [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED, |
| [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED, |
| [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED, |
| [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED, |
| [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED, |
| [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED, |
| [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST, |
| [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST, |
| [CEC_MSG_CDC_MESSAGE] = 2 | BCAST, |
| }; |
| |
| /* Called by the CEC adapter if a message is received */ |
| void cec_received_msg_ts(struct cec_adapter *adap, |
| struct cec_msg *msg, ktime_t ts) |
| { |
| struct cec_data *data; |
| u8 msg_init = cec_msg_initiator(msg); |
| u8 msg_dest = cec_msg_destination(msg); |
| u8 cmd = msg->msg[1]; |
| bool is_reply = false; |
| bool valid_la = true; |
| u8 min_len = 0; |
| |
| if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE)) |
| return; |
| |
| /* |
| * Some CEC adapters will receive the messages that they transmitted. |
| * This test filters out those messages by checking if we are the |
| * initiator, and just returning in that case. |
| * |
| * Note that this won't work if this is an Unregistered device. |
| * |
| * It is bad practice if the hardware receives the message that it |
| * transmitted and luckily most CEC adapters behave correctly in this |
| * respect. |
| */ |
| if (msg_init != CEC_LOG_ADDR_UNREGISTERED && |
| cec_has_log_addr(adap, msg_init)) |
| return; |
| |
| msg->rx_ts = ktime_to_ns(ts); |
| msg->rx_status = CEC_RX_STATUS_OK; |
| msg->sequence = msg->reply = msg->timeout = 0; |
| msg->tx_status = 0; |
| msg->tx_ts = 0; |
| msg->tx_arb_lost_cnt = 0; |
| msg->tx_nack_cnt = 0; |
| msg->tx_low_drive_cnt = 0; |
| msg->tx_error_cnt = 0; |
| msg->flags = 0; |
| memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len); |
| |
| mutex_lock(&adap->lock); |
| dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); |
| |
| adap->last_initiator = 0xff; |
| |
| /* Check if this message was for us (directed or broadcast). */ |
| if (!cec_msg_is_broadcast(msg)) |
| valid_la = cec_has_log_addr(adap, msg_dest); |
| |
| /* |
| * Check if the length is not too short or if the message is a |
| * broadcast message where a directed message was expected or |
| * vice versa. If so, then the message has to be ignored (according |
| * to section CEC 7.3 and CEC 12.2). |
| */ |
| if (valid_la && msg->len > 1 && cec_msg_size[cmd]) { |
| u8 dir_fl = cec_msg_size[cmd] & BOTH; |
| |
| min_len = cec_msg_size[cmd] & 0x1f; |
| if (msg->len < min_len) |
| valid_la = false; |
| else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED)) |
| valid_la = false; |
| else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST1_4)) |
| valid_la = false; |
| else if (cec_msg_is_broadcast(msg) && |
| adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0 && |
| !(dir_fl & BCAST2_0)) |
| valid_la = false; |
| } |
| if (valid_la && min_len) { |
| /* These messages have special length requirements */ |
| switch (cmd) { |
| case CEC_MSG_TIMER_STATUS: |
| if (msg->msg[2] & 0x10) { |
| switch (msg->msg[2] & 0xf) { |
| case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE: |
| case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE: |
| if (msg->len < 5) |
| valid_la = false; |
| break; |
| } |
| } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) { |
| if (msg->len < 5) |
| valid_la = false; |
| } |
| break; |
| case CEC_MSG_RECORD_ON: |
| switch (msg->msg[2]) { |
| case CEC_OP_RECORD_SRC_OWN: |
| break; |
| case CEC_OP_RECORD_SRC_DIGITAL: |
| if (msg->len < 10) |
| valid_la = false; |
| break; |
| case CEC_OP_RECORD_SRC_ANALOG: |
| if (msg->len < 7) |
| valid_la = false; |
| break; |
| case CEC_OP_RECORD_SRC_EXT_PLUG: |
| if (msg->len < 4) |
| valid_la = false; |
| break; |
| case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR: |
| if (msg->len < 5) |
| valid_la = false; |
| break; |
| } |
| break; |
| } |
| } |
| |
| /* It's a valid message and not a poll or CDC message */ |
| if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) { |
| bool abort = cmd == CEC_MSG_FEATURE_ABORT; |
| |
| /* The aborted command is in msg[2] */ |
| if (abort) |
| cmd = msg->msg[2]; |
| |
| /* |
| * Walk over all transmitted messages that are waiting for a |
| * reply. |
| */ |
| list_for_each_entry(data, &adap->wait_queue, list) { |
| struct cec_msg *dst = &data->msg; |
| |
| /* |
| * The *only* CEC message that has two possible replies |
| * is CEC_MSG_INITIATE_ARC. |
| * In this case allow either of the two replies. |
| */ |
| if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC && |
| (cmd == CEC_MSG_REPORT_ARC_INITIATED || |
| cmd == CEC_MSG_REPORT_ARC_TERMINATED) && |
| (dst->reply == CEC_MSG_REPORT_ARC_INITIATED || |
| dst->reply == CEC_MSG_REPORT_ARC_TERMINATED)) |
| dst->reply = cmd; |
| |
| /* Does the command match? */ |
| if ((abort && cmd != dst->msg[1]) || |
| (!abort && cmd != dst->reply)) |
| continue; |
| |
| /* Does the addressing match? */ |
| if (msg_init != cec_msg_destination(dst) && |
| !cec_msg_is_broadcast(dst)) |
| continue; |
| |
| /* We got a reply */ |
| memcpy(dst->msg, msg->msg, msg->len); |
| dst->len = msg->len; |
| dst->rx_ts = msg->rx_ts; |
| dst->rx_status = msg->rx_status; |
| if (abort) |
| dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT; |
| msg->flags = dst->flags; |
| /* Remove it from the wait_queue */ |
| list_del_init(&data->list); |
| |
| /* Cancel the pending timeout work */ |
| if (!cancel_delayed_work(&data->work)) { |
| mutex_unlock(&adap->lock); |
| flush_scheduled_work(); |
| mutex_lock(&adap->lock); |
| } |
| /* |
| * Mark this as a reply, provided someone is still |
| * waiting for the answer. |
| */ |
| if (data->fh) |
| is_reply = true; |
| cec_data_completed(data); |
| break; |
| } |
| } |
| mutex_unlock(&adap->lock); |
| |
| /* Pass the message on to any monitoring filehandles */ |
| cec_queue_msg_monitor(adap, msg, valid_la); |
| |
| /* We're done if it is not for us or a poll message */ |
| if (!valid_la || msg->len <= 1) |
| return; |
| |
| if (adap->log_addrs.log_addr_mask == 0) |
| return; |
| |
| /* |
| * Process the message on the protocol level. If is_reply is true, |
| * then cec_receive_notify() won't pass on the reply to the listener(s) |
| * since that was already done by cec_data_completed() above. |
| */ |
| cec_receive_notify(adap, msg, is_reply); |
| } |
| EXPORT_SYMBOL_GPL(cec_received_msg_ts); |
| |
| /* Logical Address Handling */ |
| |
| /* |
| * Attempt to claim a specific logical address. |
| * |
| * This function is called with adap->lock held. |
| */ |
| static int cec_config_log_addr(struct cec_adapter *adap, |
| unsigned int idx, |
| unsigned int log_addr) |
| { |
| struct cec_log_addrs *las = &adap->log_addrs; |
| struct cec_msg msg = { }; |
| const unsigned int max_retries = 2; |
| unsigned int i; |
| int err; |
| |
| if (cec_has_log_addr(adap, log_addr)) |
| return 0; |
| |
| /* Send poll message */ |
| msg.len = 1; |
| msg.msg[0] = (log_addr << 4) | log_addr; |
| |
| for (i = 0; i < max_retries; i++) { |
| err = cec_transmit_msg_fh(adap, &msg, NULL, true); |
| |
| /* |
| * While trying to poll the physical address was reset |
| * and the adapter was unconfigured, so bail out. |
| */ |
| if (!adap->is_configuring) |
| return -EINTR; |
| |
| if (err) |
| return err; |
| |
| /* |
| * The message was aborted due to a disconnect or |
| * unconfigure, just bail out. |
| */ |
| if (msg.tx_status & CEC_TX_STATUS_ABORTED) |
| return -EINTR; |
| if (msg.tx_status & CEC_TX_STATUS_OK) |
| return 0; |
| if (msg.tx_status & CEC_TX_STATUS_NACK) |
| break; |
| /* |
| * Retry up to max_retries times if the message was neither |
| * OKed or NACKed. This can happen due to e.g. a Lost |
| * Arbitration condition. |
| */ |
| } |
| |
| /* |
| * If we are unable to get an OK or a NACK after max_retries attempts |
| * (and note that each attempt already consists of four polls), then |
| * then we assume that something is really weird and that it is not a |
| * good idea to try and claim this logical address. |
| */ |
| if (i == max_retries) |
| return 0; |
| |
| /* |
| * Message not acknowledged, so this logical |
| * address is free to use. |
| */ |
| err = adap->ops->adap_log_addr(adap, log_addr); |
| if (err) |
| return err; |
| |
| las->log_addr[idx] = log_addr; |
| las->log_addr_mask |= 1 << log_addr; |
| adap->phys_addrs[log_addr] = adap->phys_addr; |
| return 1; |
| } |
| |
| /* |
| * Unconfigure the adapter: clear all logical addresses and send |
| * the state changed event. |
| * |
| * This function is called with adap->lock held. |
| */ |
| static void cec_adap_unconfigure(struct cec_adapter *adap) |
| { |
| if (!adap->needs_hpd || |
| adap->phys_addr != CEC_PHYS_ADDR_INVALID) |
| WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID)); |
| adap->log_addrs.log_addr_mask = 0; |
| adap->is_configuring = false; |
| adap->is_configured = false; |
| memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs)); |
| cec_flush(adap); |
| wake_up_interruptible(&adap->kthread_waitq); |
| cec_post_state_event(adap); |
| } |
| |
| /* |
| * Attempt to claim the required logical addresses. |
| */ |
| static int cec_config_thread_func(void *arg) |
| { |
| /* The various LAs for each type of device */ |
| static const u8 tv_log_addrs[] = { |
| CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC, |
| CEC_LOG_ADDR_INVALID |
| }; |
| static const u8 record_log_addrs[] = { |
| CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2, |
| CEC_LOG_ADDR_RECORD_3, |
| CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, |
| CEC_LOG_ADDR_INVALID |
| }; |
| static const u8 tuner_log_addrs[] = { |
| CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2, |
| CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4, |
| CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, |
| CEC_LOG_ADDR_INVALID |
| }; |
| static const u8 playback_log_addrs[] = { |
| CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2, |
| CEC_LOG_ADDR_PLAYBACK_3, |
| CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, |
| CEC_LOG_ADDR_INVALID |
| }; |
| static const u8 audiosystem_log_addrs[] = { |
| CEC_LOG_ADDR_AUDIOSYSTEM, |
| CEC_LOG_ADDR_INVALID |
| }; |
| static const u8 specific_use_log_addrs[] = { |
| CEC_LOG_ADDR_SPECIFIC, |
| CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2, |
| CEC_LOG_ADDR_INVALID |
| }; |
| static const u8 *type2addrs[6] = { |
| [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs, |
| [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs, |
| [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs, |
| [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs, |
| [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs, |
| [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs, |
| }; |
| static const u16 type2mask[] = { |
| [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV, |
| [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD, |
| [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER, |
| [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK, |
| [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM, |
| [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC, |
| }; |
| struct cec_adapter *adap = arg; |
| struct cec_log_addrs *las = &adap->log_addrs; |
| int err; |
| int i, j; |
| |
| mutex_lock(&adap->lock); |
| dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n", |
| cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs); |
| las->log_addr_mask = 0; |
| |
| if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED) |
| goto configured; |
| |
| for (i = 0; i < las->num_log_addrs; i++) { |
| unsigned int type = las->log_addr_type[i]; |
| const u8 *la_list; |
| u8 last_la; |
| |
| /* |
| * The TV functionality can only map to physical address 0. |
| * For any other address, try the Specific functionality |
| * instead as per the spec. |
| */ |
| if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV) |
| type = CEC_LOG_ADDR_TYPE_SPECIFIC; |
| |
| la_list = type2addrs[type]; |
| last_la = las->log_addr[i]; |
| las->log_addr[i] = CEC_LOG_ADDR_INVALID; |
| if (last_la == CEC_LOG_ADDR_INVALID || |
| last_la == CEC_LOG_ADDR_UNREGISTERED || |
| !((1 << last_la) & type2mask[type])) |
| last_la = la_list[0]; |
| |
| err = cec_config_log_addr(adap, i, last_la); |
| if (err > 0) /* Reused last LA */ |
| continue; |
| |
| if (err < 0) |
| goto unconfigure; |
| |
| for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) { |
| /* Tried this one already, skip it */ |
| if (la_list[j] == last_la) |
| continue; |
| /* The backup addresses are CEC 2.0 specific */ |
| if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 || |
| la_list[j] == CEC_LOG_ADDR_BACKUP_2) && |
| las->cec_version < CEC_OP_CEC_VERSION_2_0) |
| continue; |
| |
| err = cec_config_log_addr(adap, i, la_list[j]); |
| if (err == 0) /* LA is in use */ |
| continue; |
| if (err < 0) |
| goto unconfigure; |
| /* Done, claimed an LA */ |
| break; |
| } |
| |
| if (la_list[j] == CEC_LOG_ADDR_INVALID) |
| dprintk(1, "could not claim LA %d\n", i); |
| } |
| |
| if (adap->log_addrs.log_addr_mask == 0 && |
| !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK)) |
| goto unconfigure; |
| |
| configured: |
| if (adap->log_addrs.log_addr_mask == 0) { |
| /* Fall back to unregistered */ |
| las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED; |
| las->log_addr_mask = 1 << las->log_addr[0]; |
| for (i = 1; i < las->num_log_addrs; i++) |
| las->log_addr[i] = CEC_LOG_ADDR_INVALID; |
| } |
| for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) |
| las->log_addr[i] = CEC_LOG_ADDR_INVALID; |
| adap->is_configured = true; |
| adap->is_configuring = false; |
| cec_post_state_event(adap); |
| |
| /* |
| * Now post the Report Features and Report Physical Address broadcast |
| * messages. Note that these are non-blocking transmits, meaning that |
| * they are just queued up and once adap->lock is unlocked the main |
| * thread will kick in and start transmitting these. |
| * |
| * If after this function is done (but before one or more of these |
| * messages are actually transmitted) the CEC adapter is unconfigured, |
| * then any remaining messages will be dropped by the main thread. |
| */ |
| for (i = 0; i < las->num_log_addrs; i++) { |
| struct cec_msg msg = {}; |
| |
| if (las->log_addr[i] == CEC_LOG_ADDR_INVALID || |
| (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY)) |
| continue; |
| |
| msg.msg[0] = (las->log_addr[i] << 4) | 0x0f; |
| |
| /* Report Features must come first according to CEC 2.0 */ |
| if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED && |
| adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) { |
| cec_fill_msg_report_features(adap, &msg, i); |
| cec_transmit_msg_fh(adap, &msg, NULL, false); |
| } |
| |
| /* Report Physical Address */ |
| cec_msg_report_physical_addr(&msg, adap->phys_addr, |
| las->primary_device_type[i]); |
| dprintk(1, "config: la %d pa %x.%x.%x.%x\n", |
| las->log_addr[i], |
| cec_phys_addr_exp(adap->phys_addr)); |
| cec_transmit_msg_fh(adap, &msg, NULL, false); |
| } |
| adap->kthread_config = NULL; |
| complete(&adap->config_completion); |
| mutex_unlock(&adap->lock); |
| return 0; |
| |
| unconfigure: |
| for (i = 0; i < las->num_log_addrs; i++) |
| las->log_addr[i] = CEC_LOG_ADDR_INVALID; |
| cec_adap_unconfigure(adap); |
| adap->kthread_config = NULL; |
| mutex_unlock(&adap->lock); |
| complete(&adap->config_completion); |
| return 0; |
| } |
| |
| /* |
| * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the |
| * logical addresses. |
| * |
| * This function is called with adap->lock held. |
| */ |
| static void cec_claim_log_addrs(struct cec_adapter *adap, bool block) |
| { |
| if (WARN_ON(adap->is_configuring || adap->is_configured)) |
| return; |
| |
| init_completion(&adap->config_completion); |
| |
| /* Ready to kick off the thread */ |
| adap->is_configuring = true; |
| adap->kthread_config = kthread_run(cec_config_thread_func, adap, |
| "ceccfg-%s", adap->name); |
| if (IS_ERR(adap->kthread_config)) { |
| adap->kthread_config = NULL; |
| } else if (block) { |
| mutex_unlock(&adap->lock); |
| wait_for_completion(&adap->config_completion); |
| mutex_lock(&adap->lock); |
| } |
| } |
| |
| /* Set a new physical address and send an event notifying userspace of this. |
| * |
| * This function is called with adap->lock held. |
| */ |
| void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) |
| { |
| if (phys_addr == adap->phys_addr) |
| return; |
| if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered) |
| return; |
| |
| dprintk(1, "new physical address %x.%x.%x.%x\n", |
| cec_phys_addr_exp(phys_addr)); |
| if (phys_addr == CEC_PHYS_ADDR_INVALID || |
| adap->phys_addr != CEC_PHYS_ADDR_INVALID) { |
| adap->phys_addr = CEC_PHYS_ADDR_INVALID; |
| cec_post_state_event(adap); |
| cec_adap_unconfigure(adap); |
| /* Disabling monitor all mode should always succeed */ |
| if (adap->monitor_all_cnt) |
| WARN_ON(call_op(adap, adap_monitor_all_enable, false)); |
| mutex_lock(&adap->devnode.lock); |
| if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) |
| WARN_ON(adap->ops->adap_enable(adap, false)); |
| mutex_unlock(&adap->devnode.lock); |
| if (phys_addr == CEC_PHYS_ADDR_INVALID) |
| return; |
| } |
| |
| mutex_lock(&adap->devnode.lock); |
| adap->last_initiator = 0xff; |
| |
| if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) && |
| adap->ops->adap_enable(adap, true)) { |
| mutex_unlock(&adap->devnode.lock); |
| return; |
| } |
| |
| if (adap->monitor_all_cnt && |
| call_op(adap, adap_monitor_all_enable, true)) { |
| if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) |
| WARN_ON(adap->ops->adap_enable(adap, false)); |
| mutex_unlock(&adap->devnode.lock); |
| return; |
| } |
| mutex_unlock(&adap->devnode.lock); |
| |
| adap->phys_addr = phys_addr; |
| cec_post_state_event(adap); |
| if (adap->log_addrs.num_log_addrs) |
| cec_claim_log_addrs(adap, block); |
| } |
| |
| void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block) |
| { |
| if (IS_ERR_OR_NULL(adap)) |
| return; |
| |
| mutex_lock(&adap->lock); |
| __cec_s_phys_addr(adap, phys_addr, block); |
| mutex_unlock(&adap->lock); |
| } |
| EXPORT_SYMBOL_GPL(cec_s_phys_addr); |
| |
| void cec_s_phys_addr_from_edid(struct cec_adapter *adap, |
| const struct edid *edid) |
| { |
| u16 pa = CEC_PHYS_ADDR_INVALID; |
| |
| if (edid && edid->extensions) |
| pa = cec_get_edid_phys_addr((const u8 *)edid, |
| EDID_LENGTH * (edid->extensions + 1), NULL); |
| cec_s_phys_addr(adap, pa, false); |
| } |
| EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid); |
| |
| /* |
| * Called from either the ioctl or a driver to set the logical addresses. |
| * |
| * This function is called with adap->lock held. |
| */ |
| int __cec_s_log_addrs(struct cec_adapter *adap, |
| struct cec_log_addrs *log_addrs, bool block) |
| { |
| u16 type_mask = 0; |
| int i; |
| |
| if (adap->devnode.unregistered) |
| return -ENODEV; |
| |
| if (!log_addrs || log_addrs->num_log_addrs == 0) { |
| cec_adap_unconfigure(adap); |
| adap->log_addrs.num_log_addrs = 0; |
| for (i = 0; i < CEC_MAX_LOG_ADDRS; i++) |
| adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID; |
| adap->log_addrs.osd_name[0] = '\0'; |
| adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE; |
| adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0; |
| return 0; |
| } |
| |
| if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) { |
| /* |
| * Sanitize log_addrs fields if a CDC-Only device is |
| * requested. |
| */ |
| log_addrs->num_log_addrs = 1; |
| log_addrs->osd_name[0] = '\0'; |
| log_addrs->vendor_id = CEC_VENDOR_ID_NONE; |
| log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED; |
| /* |
| * This is just an internal convention since a CDC-Only device |
| * doesn't have to be a switch. But switches already use |
| * unregistered, so it makes some kind of sense to pick this |
| * as the primary device. Since a CDC-Only device never sends |
| * any 'normal' CEC messages this primary device type is never |
| * sent over the CEC bus. |
| */ |
| log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH; |
| log_addrs->all_device_types[0] = 0; |
| log_addrs->features[0][0] = 0; |
| log_addrs->features[0][1] = 0; |
| } |
| |
| /* Ensure the osd name is 0-terminated */ |
| log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0'; |
| |
| /* Sanity checks */ |
| if (log_addrs->num_log_addrs > adap->available_log_addrs) { |
| dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs); |
| return -EINVAL; |
| } |
| |
| /* |
| * Vendor ID is a 24 bit number, so check if the value is |
| * within the correct range. |
| */ |
| if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE && |
| (log_addrs->vendor_id & 0xff000000) != 0) { |
| dprintk(1, "invalid vendor ID\n"); |
| return -EINVAL; |
| } |
| |
| if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 && |
| log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) { |
| dprintk(1, "invalid CEC version\n"); |
| return -EINVAL; |
| } |
| |
| if (log_addrs->num_log_addrs > 1) |
| for (i = 0; i < log_addrs->num_log_addrs; i++) |
| if (log_addrs->log_addr_type[i] == |
| CEC_LOG_ADDR_TYPE_UNREGISTERED) { |
| dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n"); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < log_addrs->num_log_addrs; i++) { |
| const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]); |
| u8 *features = log_addrs->features[i]; |
| bool op_is_dev_features = false; |
| unsigned j; |
| |
| log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID; |
| if (type_mask & (1 << log_addrs->log_addr_type[i])) { |
| dprintk(1, "duplicate logical address type\n"); |
| return -EINVAL; |
| } |
| type_mask |= 1 << log_addrs->log_addr_type[i]; |
| if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) && |
| (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) { |
| /* Record already contains the playback functionality */ |
| dprintk(1, "invalid record + playback combination\n"); |
| return -EINVAL; |
| } |
| if (log_addrs->primary_device_type[i] > |
| CEC_OP_PRIM_DEVTYPE_PROCESSOR) { |
| dprintk(1, "unknown primary device type\n"); |
| return -EINVAL; |
| } |
| if (log_addrs->primary_device_type[i] == 2) { |
| dprintk(1, "invalid primary device type\n"); |
| return -EINVAL; |
| } |
| if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) { |
| dprintk(1, "unknown logical address type\n"); |
| return -EINVAL; |
| } |
| for (j = 0; j < feature_sz; j++) { |
| if ((features[j] & 0x80) == 0) { |
| if (op_is_dev_features) |
| break; |
| op_is_dev_features = true; |
| } |
| } |
| if (!op_is_dev_features || j == feature_sz) { |
| dprintk(1, "malformed features\n"); |
| return -EINVAL; |
| } |
| /* Zero unused part of the feature array */ |
| memset(features + j + 1, 0, feature_sz - j - 1); |
| } |
| |
| if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) { |
| if (log_addrs->num_log_addrs > 2) { |
| dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n"); |
| return -EINVAL; |
| } |
| if (log_addrs->num_log_addrs == 2) { |
| if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) | |
| (1 << CEC_LOG_ADDR_TYPE_TV)))) { |
| dprintk(1, "two LAs is only allowed for audiosystem and TV\n"); |
| return -EINVAL; |
| } |
| if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) | |
| (1 << CEC_LOG_ADDR_TYPE_RECORD)))) { |
| dprintk(1, "an audiosystem/TV can only be combined with record or playback\n"); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| /* Zero unused LAs */ |
| for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) { |
| log_addrs->primary_device_type[i] = 0; |
| log_addrs->log_addr_type[i] = 0; |
| log_addrs->all_device_types[i] = 0; |
| memset(log_addrs->features[i], 0, |
| sizeof(log_addrs->features[i])); |
| } |
| |
| log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask; |
| adap->log_addrs = *log_addrs; |
| if (adap->phys_addr != CEC_PHYS_ADDR_INVALID) |
| cec_claim_log_addrs(adap, block); |
| return 0; |
| } |
| |
| int cec_s_log_addrs(struct cec_adapter *adap, |
| struct cec_log_addrs *log_addrs, bool block) |
| { |
| int err; |
| |
| mutex_lock(&adap->lock); |
| err = __cec_s_log_addrs(adap, log_addrs, block); |
| mutex_unlock(&adap->lock); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(cec_s_log_addrs); |
| |
| /* High-level core CEC message handling */ |
| |
| /* Fill in the Report Features message */ |
| static void cec_fill_msg_report_features(struct cec_adapter *adap, |
| struct cec_msg *msg, |
| unsigned int la_idx) |
| { |
| const struct cec_log_addrs *las = &adap->log_addrs; |
| const u8 *features = las->features[la_idx]; |
| bool op_is_dev_features = false; |
| unsigned int idx; |
| |
| /* Report Features */ |
| msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f; |
| msg->len = 4; |
| msg->msg[1] = CEC_MSG_REPORT_FEATURES; |
| msg->msg[2] = adap->log_addrs.cec_version; |
| msg->msg[3] = las->all_device_types[la_idx]; |
| |
| /* Write RC Profiles first, then Device Features */ |
| for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) { |
| msg->msg[msg->len++] = features[idx]; |
| if ((features[idx] & CEC_OP_FEAT_EXT) == 0) { |
| if (op_is_dev_features) |
| break; |
| op_is_dev_features = true; |
| } |
| } |
| } |
| |
| /* Transmit the Feature Abort message */ |
| static int cec_feature_abort_reason(struct cec_adapter *adap, |
| struct cec_msg *msg, u8 reason) |
| { |
| struct cec_msg tx_msg = { }; |
| |
| /* |
| * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT |
| * message! |
| */ |
| if (msg->msg[1] == CEC_MSG_FEATURE_ABORT) |
| return 0; |
| /* Don't Feature Abort messages from 'Unregistered' */ |
| if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED) |
| return 0; |
| cec_msg_set_reply_to(&tx_msg, msg); |
| cec_msg_feature_abort(&tx_msg, msg->msg[1], reason); |
| return cec_transmit_msg(adap, &tx_msg, false); |
| } |
| |
| static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg) |
| { |
| return cec_feature_abort_reason(adap, msg, |
| CEC_OP_ABORT_UNRECOGNIZED_OP); |
| } |
| |
| static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg) |
| { |
| return cec_feature_abort_reason(adap, msg, |
| CEC_OP_ABORT_REFUSED); |
| } |
| |
| /* |
| * Called when a CEC message is received. This function will do any |
| * necessary core processing. The is_reply bool is true if this message |
| * is a reply to an earlier transmit. |
| * |
| * The message is either a broadcast message or a valid directed message. |
| */ |
| static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg, |
| bool is_reply) |
| { |
| bool is_broadcast = cec_msg_is_broadcast(msg); |
| u8 dest_laddr = cec_msg_destination(msg); |
| u8 init_laddr = cec_msg_initiator(msg); |
| u8 devtype = cec_log_addr2dev(adap, dest_laddr); |
| int la_idx = cec_log_addr2idx(adap, dest_laddr); |
| bool from_unregistered = init_laddr == 0xf; |
| struct cec_msg tx_cec_msg = { }; |
| |
| dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg); |
| |
| /* If this is a CDC-Only device, then ignore any non-CDC messages */ |
| if (cec_is_cdc_only(&adap->log_addrs) && |
| msg->msg[1] != CEC_MSG_CDC_MESSAGE) |
| return 0; |
| |
| if (adap->ops->received) { |
| /* Allow drivers to process the message first */ |
| if (adap->ops->received(adap, msg) != -ENOMSG) |
| return 0; |
| } |
| |
| /* |
| * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and |
| * CEC_MSG_USER_CONTROL_RELEASED messages always have to be |
| * handled by the CEC core, even if the passthrough mode is on. |
| * The others are just ignored if passthrough mode is on. |
| */ |
| switch (msg->msg[1]) { |
| case CEC_MSG_GET_CEC_VERSION: |
| case CEC_MSG_ABORT: |
| case CEC_MSG_GIVE_DEVICE_POWER_STATUS: |
| case CEC_MSG_GIVE_OSD_NAME: |
| /* |
| * These messages reply with a directed message, so ignore if |
| * the initiator is Unregistered. |
| */ |
| if (!adap->passthrough && from_unregistered) |
| return 0; |
| /* Fall through */ |
| case CEC_MSG_GIVE_DEVICE_VENDOR_ID: |
| case CEC_MSG_GIVE_FEATURES: |
| case CEC_MSG_GIVE_PHYSICAL_ADDR: |
| /* |
| * Skip processing these messages if the passthrough mode |
| * is on. |
| */ |
| if (adap->passthrough) |
| goto skip_processing; |
| /* Ignore if addressing is wrong */ |
| if (is_broadcast) |
| return 0; |
| break; |
| |
| case CEC_MSG_USER_CONTROL_PRESSED: |
| case CEC_MSG_USER_CONTROL_RELEASED: |
| /* Wrong addressing mode: don't process */ |
| if (is_broadcast || from_unregistered) |
| goto skip_processing; |
| break; |
| |
| case CEC_MSG_REPORT_PHYSICAL_ADDR: |
| /* |
| * This message is always processed, regardless of the |
| * passthrough setting. |
| * |
| * Exception: don't process if wrong addressing mode. |
| */ |
| if (!is_broadcast) |
| goto skip_processing; |
| break; |
| |
| default: |
| break; |
| } |
| |
| cec_msg_set_reply_to(&tx_cec_msg, msg); |
| |
| switch (msg->msg[1]) { |
| /* The following messages are processed but still passed through */ |
| case CEC_MSG_REPORT_PHYSICAL_ADDR: { |
| u16 pa = (msg->msg[2] << 8) | msg->msg[3]; |
| |
| if (!from_unregistered) |
| adap->phys_addrs[init_laddr] = pa; |
| dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n", |
| cec_phys_addr_exp(pa), init_laddr); |
| break; |
| } |
| |
| case CEC_MSG_USER_CONTROL_PRESSED: |
| if (!(adap->capabilities & CEC_CAP_RC) || |
| !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) |
| break; |
| |
| #ifdef CONFIG_MEDIA_CEC_RC |
| switch (msg->msg[2]) { |
| /* |
| * Play function, this message can have variable length |
| * depending on the specific play function that is used. |
| */ |
| case 0x60: |
| if (msg->len == 2) |
| rc_keydown(adap->rc, RC_PROTO_CEC, |
| msg->msg[2], 0); |
| else |
| rc_keydown(adap->rc, RC_PROTO_CEC, |
| msg->msg[2] << 8 | msg->msg[3], 0); |
| break; |
| /* |
| * Other function messages that are not handled. |
| * Currently the RC framework does not allow to supply an |
| * additional parameter to a keypress. These "keys" contain |
| * other information such as channel number, an input number |
| * etc. |
| * For the time being these messages are not processed by the |
| * framework and are simply forwarded to the user space. |
| */ |
| case 0x56: case 0x57: |
| case 0x67: case 0x68: case 0x69: case 0x6a: |
| break; |
| default: |
| rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0); |
| break; |
| } |
| #endif |
| break; |
| |
| case CEC_MSG_USER_CONTROL_RELEASED: |
| if (!(adap->capabilities & CEC_CAP_RC) || |
| !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU)) |
| break; |
| #ifdef CONFIG_MEDIA_CEC_RC |
| rc_keyup(adap->rc); |
| #endif |
| break; |
| |
| /* |
| * The remaining messages are only processed if the passthrough mode |
| * is off. |
| */ |
| case CEC_MSG_GET_CEC_VERSION: |
| cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version); |
| return cec_transmit_msg(adap, &tx_cec_msg, false); |
| |
| case CEC_MSG_GIVE_PHYSICAL_ADDR: |
| /* Do nothing for CEC switches using addr 15 */ |
| if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15) |
| return 0; |
| cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype); |
| return cec_transmit_msg(adap, &tx_cec_msg, false); |
| |
| case CEC_MSG_GIVE_DEVICE_VENDOR_ID: |
| if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE) |
| return cec_feature_abort(adap, msg); |
| cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id); |
| return cec_transmit_msg(adap, &tx_cec_msg, false); |
| |
| case CEC_MSG_ABORT: |
| /* Do nothing for CEC switches */ |
| if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH) |
| return 0; |
| return cec_feature_refused(adap, msg); |
| |
| case CEC_MSG_GIVE_OSD_NAME: { |
| if (adap->log_addrs.osd_name[0] == 0) |
| return cec_feature_abort(adap, msg); |
| cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name); |
| return cec_transmit_msg(adap, &tx_cec_msg, false); |
| } |
| |
| case CEC_MSG_GIVE_FEATURES: |
| if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0) |
| return cec_feature_abort(adap, msg); |
| cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx); |
| return cec_transmit_msg(adap, &tx_cec_msg, false); |
| |
| default: |
| /* |
| * Unprocessed messages are aborted if userspace isn't doing |
| * any processing either. |
| */ |
| if (!is_broadcast && !is_reply && !adap->follower_cnt && |
| !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT) |
| return cec_feature_abort(adap, msg); |
| break; |
| } |
| |
| skip_processing: |
| /* If this was a reply, then we're done, unless otherwise specified */ |
| if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS)) |
| return 0; |
| |
| /* |
| * Send to the exclusive follower if there is one, otherwise send |
| * to all followers. |
| */ |
| if (adap->cec_follower) |
| cec_queue_msg_fh(adap->cec_follower, msg); |
| else |
| cec_queue_msg_followers(adap, msg); |
| return 0; |
| } |
| |
| /* |
| * Helper functions to keep track of the 'monitor all' use count. |
| * |
| * These functions are called with adap->lock held. |
| */ |
| int cec_monitor_all_cnt_inc(struct cec_adapter *adap) |
| { |
| int ret = 0; |
| |
| if (adap->monitor_all_cnt == 0) |
| ret = call_op(adap, adap_monitor_all_enable, 1); |
| if (ret == 0) |
| adap->monitor_all_cnt++; |
| return ret; |
| } |
| |
| void cec_monitor_all_cnt_dec(struct cec_adapter *adap) |
| { |
| adap->monitor_all_cnt--; |
| if (adap->monitor_all_cnt == 0) |
| WARN_ON(call_op(adap, adap_monitor_all_enable, 0)); |
| } |
| |
| /* |
| * Helper functions to keep track of the 'monitor pin' use count. |
| * |
| * These functions are called with adap->lock held. |
| */ |
| int cec_monitor_pin_cnt_inc(struct cec_adapter *adap) |
| { |
| int ret = 0; |
| |
| if (adap->monitor_pin_cnt == 0) |
| ret = call_op(adap, adap_monitor_pin_enable, 1); |
| if (ret == 0) |
| adap->monitor_pin_cnt++; |
| return ret; |
| } |
| |
| void cec_monitor_pin_cnt_dec(struct cec_adapter *adap) |
| { |
| adap->monitor_pin_cnt--; |
| if (adap->monitor_pin_cnt == 0) |
| WARN_ON(call_op(adap, adap_monitor_pin_enable, 0)); |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| /* |
| * Log the current state of the CEC adapter. |
| * Very useful for debugging. |
| */ |
| int cec_adap_status(struct seq_file *file, void *priv) |
| { |
| struct cec_adapter *adap = dev_get_drvdata(file->private); |
| struct cec_data *data; |
| |
| mutex_lock(&adap->lock); |
| seq_printf(file, "configured: %d\n", adap->is_configured); |
| seq_printf(file, "configuring: %d\n", adap->is_configuring); |
| seq_printf(file, "phys_addr: %x.%x.%x.%x\n", |
| cec_phys_addr_exp(adap->phys_addr)); |
| seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs); |
| seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask); |
| if (adap->cec_follower) |
| seq_printf(file, "has CEC follower%s\n", |
| adap->passthrough ? " (in passthrough mode)" : ""); |
| if (adap->cec_initiator) |
| seq_puts(file, "has CEC initiator\n"); |
| if (adap->monitor_all_cnt) |
| seq_printf(file, "file handles in Monitor All mode: %u\n", |
| adap->monitor_all_cnt); |
| if (adap->tx_timeouts) { |
| seq_printf(file, "transmit timeouts: %u\n", |
| adap->tx_timeouts); |
| adap->tx_timeouts = 0; |
| } |
| data = adap->transmitting; |
| if (data) |
| seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n", |
| data->msg.len, data->msg.msg, data->msg.reply, |
| data->msg.timeout); |
| seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz); |
| list_for_each_entry(data, &adap->transmit_queue, list) { |
| seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n", |
| data->msg.len, data->msg.msg, data->msg.reply, |
| data->msg.timeout); |
| } |
| list_for_each_entry(data, &adap->wait_queue, list) { |
| seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n", |
| data->msg.len, data->msg.msg, data->msg.reply, |
| data->msg.timeout); |
| } |
| |
| call_void_op(adap, adap_status, file); |
| mutex_unlock(&adap->lock); |
| return 0; |
| } |
| #endif |