| /* |
| * Copyright © 2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /** |
| * DOC: Panel Self Refresh (PSR/SRD) |
| * |
| * Since Haswell Display controller supports Panel Self-Refresh on display |
| * panels witch have a remote frame buffer (RFB) implemented according to PSR |
| * spec in eDP1.3. PSR feature allows the display to go to lower standby states |
| * when system is idle but display is on as it eliminates display refresh |
| * request to DDR memory completely as long as the frame buffer for that |
| * display is unchanged. |
| * |
| * Panel Self Refresh must be supported by both Hardware (source) and |
| * Panel (sink). |
| * |
| * PSR saves power by caching the framebuffer in the panel RFB, which allows us |
| * to power down the link and memory controller. For DSI panels the same idea |
| * is called "manual mode". |
| * |
| * The implementation uses the hardware-based PSR support which automatically |
| * enters/exits self-refresh mode. The hardware takes care of sending the |
| * required DP aux message and could even retrain the link (that part isn't |
| * enabled yet though). The hardware also keeps track of any frontbuffer |
| * changes to know when to exit self-refresh mode again. Unfortunately that |
| * part doesn't work too well, hence why the i915 PSR support uses the |
| * software frontbuffer tracking to make sure it doesn't miss a screen |
| * update. For this integration intel_psr_invalidate() and intel_psr_flush() |
| * get called by the frontbuffer tracking code. Note that because of locking |
| * issues the self-refresh re-enable code is done from a work queue, which |
| * must be correctly synchronized/cancelled when shutting down the pipe." |
| */ |
| |
| #include <drm/drmP.h> |
| |
| #include "intel_drv.h" |
| #include "i915_drv.h" |
| |
| static bool is_edp_psr(struct intel_dp *intel_dp) |
| { |
| return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED; |
| } |
| |
| static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t val; |
| |
| val = I915_READ(VLV_PSRSTAT(pipe)) & |
| VLV_EDP_PSR_CURR_STATE_MASK; |
| return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) || |
| (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE); |
| } |
| |
| static void intel_psr_write_vsc(struct intel_dp *intel_dp, |
| const struct edp_vsc_psr *vsc_psr) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); |
| enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; |
| u32 ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder); |
| uint32_t *data = (uint32_t *) vsc_psr; |
| unsigned int i; |
| |
| /* As per BSPec (Pipe Video Data Island Packet), we need to disable |
| the video DIP being updated before program video DIP data buffer |
| registers for DIP being updated. */ |
| I915_WRITE(ctl_reg, 0); |
| POSTING_READ(ctl_reg); |
| |
| for (i = 0; i < sizeof(*vsc_psr); i += 4) { |
| I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, |
| i >> 2), *data); |
| data++; |
| } |
| for (; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) |
| I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, |
| i >> 2), 0); |
| |
| I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW); |
| POSTING_READ(ctl_reg); |
| } |
| |
| static void vlv_psr_setup_vsc(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = intel_dig_port->base.base.crtc; |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| uint32_t val; |
| |
| /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */ |
| val = I915_READ(VLV_VSCSDP(pipe)); |
| val &= ~VLV_EDP_PSR_SDP_FREQ_MASK; |
| val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME; |
| I915_WRITE(VLV_VSCSDP(pipe), val); |
| } |
| |
| static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp) |
| { |
| struct edp_vsc_psr psr_vsc; |
| |
| /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */ |
| memset(&psr_vsc, 0, sizeof(psr_vsc)); |
| psr_vsc.sdp_header.HB0 = 0; |
| psr_vsc.sdp_header.HB1 = 0x7; |
| psr_vsc.sdp_header.HB2 = 0x3; |
| psr_vsc.sdp_header.HB3 = 0xb; |
| intel_psr_write_vsc(intel_dp, &psr_vsc); |
| } |
| |
| static void hsw_psr_setup_vsc(struct intel_dp *intel_dp) |
| { |
| struct edp_vsc_psr psr_vsc; |
| |
| /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */ |
| memset(&psr_vsc, 0, sizeof(psr_vsc)); |
| psr_vsc.sdp_header.HB0 = 0; |
| psr_vsc.sdp_header.HB1 = 0x7; |
| psr_vsc.sdp_header.HB2 = 0x2; |
| psr_vsc.sdp_header.HB3 = 0x8; |
| intel_psr_write_vsc(intel_dp, &psr_vsc); |
| } |
| |
| static void vlv_psr_enable_sink(struct intel_dp *intel_dp) |
| { |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, |
| DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE); |
| } |
| |
| static void hsw_psr_enable_sink(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t aux_clock_divider; |
| uint32_t aux_data_reg, aux_ctl_reg; |
| int precharge = 0x3; |
| static const uint8_t aux_msg[] = { |
| [0] = DP_AUX_NATIVE_WRITE << 4, |
| [1] = DP_SET_POWER >> 8, |
| [2] = DP_SET_POWER & 0xff, |
| [3] = 1 - 1, |
| [4] = DP_SET_POWER_D0, |
| }; |
| int i; |
| |
| BUILD_BUG_ON(sizeof(aux_msg) > 20); |
| |
| aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); |
| |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, |
| DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE); |
| |
| /* Enable AUX frame sync at sink */ |
| if (dev_priv->psr.aux_frame_sync) |
| drm_dp_dpcd_writeb(&intel_dp->aux, |
| DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF, |
| DP_AUX_FRAME_SYNC_ENABLE); |
| |
| aux_data_reg = (INTEL_INFO(dev)->gen >= 9) ? |
| DPA_AUX_CH_DATA1 : EDP_PSR_AUX_DATA1(dev); |
| aux_ctl_reg = (INTEL_INFO(dev)->gen >= 9) ? |
| DPA_AUX_CH_CTL : EDP_PSR_AUX_CTL(dev); |
| |
| /* Setup AUX registers */ |
| for (i = 0; i < sizeof(aux_msg); i += 4) |
| I915_WRITE(aux_data_reg + i, |
| intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i)); |
| |
| if (INTEL_INFO(dev)->gen >= 9) { |
| uint32_t val; |
| |
| val = I915_READ(aux_ctl_reg); |
| val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK; |
| val |= DP_AUX_CH_CTL_TIME_OUT_1600us; |
| val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK; |
| val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); |
| /* Use hardcoded data values for PSR, frame sync and GTC */ |
| val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL; |
| val &= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL; |
| val &= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL; |
| I915_WRITE(aux_ctl_reg, val); |
| } else { |
| I915_WRITE(aux_ctl_reg, |
| DP_AUX_CH_CTL_TIME_OUT_400us | |
| (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | |
| (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | |
| (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT)); |
| } |
| |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE); |
| } |
| |
| static void vlv_psr_enable_source(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = dig_port->base.base.crtc; |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| |
| /* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */ |
| I915_WRITE(VLV_PSRCTL(pipe), |
| VLV_EDP_PSR_MODE_SW_TIMER | |
| VLV_EDP_PSR_SRC_TRANSMITTER_STATE | |
| VLV_EDP_PSR_ENABLE); |
| } |
| |
| static void vlv_psr_activate(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = dig_port->base.base.crtc; |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| |
| /* Let's do the transition from PSR_state 1 to PSR_state 2 |
| * that is PSR transition to active - static frame transmission. |
| * Then Hardware is responsible for the transition to PSR_state 3 |
| * that is PSR active - no Remote Frame Buffer (RFB) update. |
| */ |
| I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) | |
| VLV_EDP_PSR_ACTIVE_ENTRY); |
| } |
| |
| static void hsw_psr_enable_source(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| uint32_t max_sleep_time = 0x1f; |
| /* Lately it was identified that depending on panel idle frame count |
| * calculated at HW can be off by 1. So let's use what came |
| * from VBT + 1. |
| * There are also other cases where panel demands at least 4 |
| * but VBT is not being set. To cover these 2 cases lets use |
| * at least 5 when VBT isn't set to be on the safest side. |
| */ |
| uint32_t idle_frames = dev_priv->vbt.psr.idle_frames ? |
| dev_priv->vbt.psr.idle_frames + 1 : 5; |
| uint32_t val = 0x0; |
| const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; |
| |
| if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) { |
| /* It doesn't mean we shouldn't send TPS patters, so let's |
| send the minimal TP1 possible and skip TP2. */ |
| val |= EDP_PSR_TP1_TIME_100us; |
| val |= EDP_PSR_TP2_TP3_TIME_0us; |
| val |= EDP_PSR_SKIP_AUX_EXIT; |
| /* Sink should be able to train with the 5 or 6 idle patterns */ |
| idle_frames += 4; |
| } |
| |
| I915_WRITE(EDP_PSR_CTL(dev), val | |
| (IS_BROADWELL(dev) ? 0 : link_entry_time) | |
| max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT | |
| idle_frames << EDP_PSR_IDLE_FRAME_SHIFT | |
| EDP_PSR_ENABLE); |
| |
| if (dev_priv->psr.psr2_support) |
| I915_WRITE(EDP_PSR2_CTL, EDP_PSR2_ENABLE | |
| EDP_SU_TRACK_ENABLE | EDP_PSR2_TP2_TIME_100); |
| } |
| |
| static bool intel_psr_match_conditions(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = dig_port->base.base.crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| lockdep_assert_held(&dev_priv->psr.lock); |
| WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); |
| WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); |
| |
| dev_priv->psr.source_ok = false; |
| |
| if (IS_HASWELL(dev) && dig_port->port != PORT_A) { |
| DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n"); |
| return false; |
| } |
| |
| if (!i915.enable_psr) { |
| DRM_DEBUG_KMS("PSR disable by flag\n"); |
| return false; |
| } |
| |
| if (IS_HASWELL(dev) && |
| I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) & |
| S3D_ENABLE) { |
| DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n"); |
| return false; |
| } |
| |
| if (IS_HASWELL(dev) && |
| intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { |
| DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n"); |
| return false; |
| } |
| |
| if (!IS_VALLEYVIEW(dev) && ((dev_priv->vbt.psr.full_link) || |
| (dig_port->port != PORT_A))) { |
| DRM_DEBUG_KMS("PSR condition failed: Link Standby requested/needed but not supported on this platform\n"); |
| return false; |
| } |
| |
| dev_priv->psr.source_ok = true; |
| return true; |
| } |
| |
| static void intel_psr_activate(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE); |
| WARN_ON(dev_priv->psr.active); |
| lockdep_assert_held(&dev_priv->psr.lock); |
| |
| /* Enable/Re-enable PSR on the host */ |
| if (HAS_DDI(dev)) |
| /* On HSW+ after we enable PSR on source it will activate it |
| * as soon as it match configure idle_frame count. So |
| * we just actually enable it here on activation time. |
| */ |
| hsw_psr_enable_source(intel_dp); |
| else |
| vlv_psr_activate(intel_dp); |
| |
| dev_priv->psr.active = true; |
| } |
| |
| /** |
| * intel_psr_enable - Enable PSR |
| * @intel_dp: Intel DP |
| * |
| * This function can only be called after the pipe is fully trained and enabled. |
| */ |
| void intel_psr_enable(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); |
| |
| if (!HAS_PSR(dev)) { |
| DRM_DEBUG_KMS("PSR not supported on this platform\n"); |
| return; |
| } |
| |
| if (!is_edp_psr(intel_dp)) { |
| DRM_DEBUG_KMS("PSR not supported by this panel\n"); |
| return; |
| } |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (dev_priv->psr.enabled) { |
| DRM_DEBUG_KMS("PSR already in use\n"); |
| goto unlock; |
| } |
| |
| if (!intel_psr_match_conditions(intel_dp)) |
| goto unlock; |
| |
| dev_priv->psr.busy_frontbuffer_bits = 0; |
| |
| if (HAS_DDI(dev)) { |
| hsw_psr_setup_vsc(intel_dp); |
| |
| if (dev_priv->psr.psr2_support) { |
| /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */ |
| if (crtc->config->pipe_src_w > 3200 || |
| crtc->config->pipe_src_h > 2000) |
| dev_priv->psr.psr2_support = false; |
| else |
| skl_psr_setup_su_vsc(intel_dp); |
| } |
| |
| /* Avoid continuous PSR exit by masking memup and hpd */ |
| I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP | |
| EDP_PSR_DEBUG_MASK_HPD); |
| |
| /* Enable PSR on the panel */ |
| hsw_psr_enable_sink(intel_dp); |
| |
| if (INTEL_INFO(dev)->gen >= 9) |
| intel_psr_activate(intel_dp); |
| } else { |
| vlv_psr_setup_vsc(intel_dp); |
| |
| /* Enable PSR on the panel */ |
| vlv_psr_enable_sink(intel_dp); |
| |
| /* On HSW+ enable_source also means go to PSR entry/active |
| * state as soon as idle_frame achieved and here would be |
| * to soon. However on VLV enable_source just enable PSR |
| * but let it on inactive state. So we might do this prior |
| * to active transition, i.e. here. |
| */ |
| vlv_psr_enable_source(intel_dp); |
| } |
| |
| dev_priv->psr.enabled = intel_dp; |
| unlock: |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| static void vlv_psr_disable(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(intel_dig_port->base.base.crtc); |
| uint32_t val; |
| |
| if (dev_priv->psr.active) { |
| /* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */ |
| if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) & |
| VLV_EDP_PSR_IN_TRANS) == 0, 1)) |
| WARN(1, "PSR transition took longer than expected\n"); |
| |
| val = I915_READ(VLV_PSRCTL(intel_crtc->pipe)); |
| val &= ~VLV_EDP_PSR_ACTIVE_ENTRY; |
| val &= ~VLV_EDP_PSR_ENABLE; |
| val &= ~VLV_EDP_PSR_MODE_MASK; |
| I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val); |
| |
| dev_priv->psr.active = false; |
| } else { |
| WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe)); |
| } |
| } |
| |
| static void hsw_psr_disable(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (dev_priv->psr.active) { |
| I915_WRITE(EDP_PSR_CTL(dev), |
| I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE); |
| |
| /* Wait till PSR is idle */ |
| if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) & |
| EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10)) |
| DRM_ERROR("Timed out waiting for PSR Idle State\n"); |
| |
| dev_priv->psr.active = false; |
| } else { |
| WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE); |
| } |
| } |
| |
| /** |
| * intel_psr_disable - Disable PSR |
| * @intel_dp: Intel DP |
| * |
| * This function needs to be called before disabling pipe. |
| */ |
| void intel_psr_disable(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| if (HAS_DDI(dev)) |
| hsw_psr_disable(intel_dp); |
| else |
| vlv_psr_disable(intel_dp); |
| |
| dev_priv->psr.enabled = NULL; |
| mutex_unlock(&dev_priv->psr.lock); |
| |
| cancel_delayed_work_sync(&dev_priv->psr.work); |
| } |
| |
| static void intel_psr_work(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, typeof(*dev_priv), psr.work.work); |
| struct intel_dp *intel_dp = dev_priv->psr.enabled; |
| struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| |
| /* We have to make sure PSR is ready for re-enable |
| * otherwise it keeps disabled until next full enable/disable cycle. |
| * PSR might take some time to get fully disabled |
| * and be ready for re-enable. |
| */ |
| if (HAS_DDI(dev_priv->dev)) { |
| if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) & |
| EDP_PSR_STATUS_STATE_MASK) == 0, 50)) { |
| DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n"); |
| return; |
| } |
| } else { |
| if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) & |
| VLV_EDP_PSR_IN_TRANS) == 0, 1)) { |
| DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n"); |
| return; |
| } |
| } |
| mutex_lock(&dev_priv->psr.lock); |
| intel_dp = dev_priv->psr.enabled; |
| |
| if (!intel_dp) |
| goto unlock; |
| |
| /* |
| * The delayed work can race with an invalidate hence we need to |
| * recheck. Since psr_flush first clears this and then reschedules we |
| * won't ever miss a flush when bailing out here. |
| */ |
| if (dev_priv->psr.busy_frontbuffer_bits) |
| goto unlock; |
| |
| intel_psr_activate(intel_dp); |
| unlock: |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| static void intel_psr_exit(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_dp *intel_dp = dev_priv->psr.enabled; |
| struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| u32 val; |
| |
| if (!dev_priv->psr.active) |
| return; |
| |
| if (HAS_DDI(dev)) { |
| val = I915_READ(EDP_PSR_CTL(dev)); |
| |
| WARN_ON(!(val & EDP_PSR_ENABLE)); |
| |
| I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE); |
| } else { |
| val = I915_READ(VLV_PSRCTL(pipe)); |
| |
| /* Here we do the transition from PSR_state 3 to PSR_state 5 |
| * directly once PSR State 4 that is active with single frame |
| * update can be skipped. PSR_state 5 that is PSR exit then |
| * Hardware is responsible to transition back to PSR_state 1 |
| * that is PSR inactive. Same state after |
| * vlv_edp_psr_enable_source. |
| */ |
| val &= ~VLV_EDP_PSR_ACTIVE_ENTRY; |
| I915_WRITE(VLV_PSRCTL(pipe), val); |
| |
| /* Send AUX wake up - Spec says after transitioning to PSR |
| * active we have to send AUX wake up by writing 01h in DPCD |
| * 600h of sink device. |
| * XXX: This might slow down the transition, but without this |
| * HW doesn't complete the transition to PSR_state 1 and we |
| * never get the screen updated. |
| */ |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, |
| DP_SET_POWER_D0); |
| } |
| |
| dev_priv->psr.active = false; |
| } |
| |
| /** |
| * intel_psr_single_frame_update - Single Frame Update |
| * @dev: DRM device |
| * @frontbuffer_bits: frontbuffer plane tracking bits |
| * |
| * Some platforms support a single frame update feature that is used to |
| * send and update only one frame on Remote Frame Buffer. |
| * So far it is only implemented for Valleyview and Cherryview because |
| * hardware requires this to be done before a page flip. |
| */ |
| void intel_psr_single_frame_update(struct drm_device *dev, |
| unsigned frontbuffer_bits) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| enum pipe pipe; |
| u32 val; |
| |
| /* |
| * Single frame update is already supported on BDW+ but it requires |
| * many W/A and it isn't really needed. |
| */ |
| if (!IS_VALLEYVIEW(dev)) |
| return; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; |
| pipe = to_intel_crtc(crtc)->pipe; |
| |
| if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) { |
| val = I915_READ(VLV_PSRCTL(pipe)); |
| |
| /* |
| * We need to set this bit before writing registers for a flip. |
| * This bit will be self-clear when it gets to the PSR active state. |
| */ |
| I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE); |
| } |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| /** |
| * intel_psr_invalidate - Invalidade PSR |
| * @dev: DRM device |
| * @frontbuffer_bits: frontbuffer plane tracking bits |
| * |
| * Since the hardware frontbuffer tracking has gaps we need to integrate |
| * with the software frontbuffer tracking. This function gets called every |
| * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be |
| * disabled if the frontbuffer mask contains a buffer relevant to PSR. |
| * |
| * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits." |
| */ |
| void intel_psr_invalidate(struct drm_device *dev, |
| unsigned frontbuffer_bits) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| enum pipe pipe; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; |
| pipe = to_intel_crtc(crtc)->pipe; |
| |
| frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); |
| dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits; |
| |
| if (frontbuffer_bits) |
| intel_psr_exit(dev); |
| |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| /** |
| * intel_psr_flush - Flush PSR |
| * @dev: DRM device |
| * @frontbuffer_bits: frontbuffer plane tracking bits |
| * @origin: which operation caused the flush |
| * |
| * Since the hardware frontbuffer tracking has gaps we need to integrate |
| * with the software frontbuffer tracking. This function gets called every |
| * time frontbuffer rendering has completed and flushed out to memory. PSR |
| * can be enabled again if no other frontbuffer relevant to PSR is dirty. |
| * |
| * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits. |
| */ |
| void intel_psr_flush(struct drm_device *dev, |
| unsigned frontbuffer_bits, enum fb_op_origin origin) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| enum pipe pipe; |
| int delay_ms = HAS_DDI(dev) ? 100 : 500; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; |
| pipe = to_intel_crtc(crtc)->pipe; |
| |
| frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); |
| dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits; |
| |
| if (HAS_DDI(dev)) { |
| /* |
| * By definition every flush should mean invalidate + flush, |
| * however on core platforms let's minimize the |
| * disable/re-enable so we can avoid the invalidate when flip |
| * originated the flush. |
| */ |
| if (frontbuffer_bits && origin != ORIGIN_FLIP) |
| intel_psr_exit(dev); |
| } else { |
| /* |
| * On Valleyview and Cherryview we don't use hardware tracking |
| * so any plane updates or cursor moves don't result in a PSR |
| * invalidating. Which means we need to manually fake this in |
| * software for all flushes. |
| */ |
| if (frontbuffer_bits) |
| intel_psr_exit(dev); |
| } |
| |
| if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits) |
| schedule_delayed_work(&dev_priv->psr.work, |
| msecs_to_jiffies(delay_ms)); |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| /** |
| * intel_psr_init - Init basic PSR work and mutex. |
| * @dev: DRM device |
| * |
| * This function is called only once at driver load to initialize basic |
| * PSR stuff. |
| */ |
| void intel_psr_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work); |
| mutex_init(&dev_priv->psr.lock); |
| } |