| #include <linux/mm.h> |
| #include <linux/hugetlb.h> |
| #include <linux/mount.h> |
| #include <linux/seq_file.h> |
| #include <linux/highmem.h> |
| #include <linux/ptrace.h> |
| #include <linux/pagemap.h> |
| #include <linux/mempolicy.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| |
| #include <asm/elf.h> |
| #include <asm/uaccess.h> |
| #include <asm/tlbflush.h> |
| #include "internal.h" |
| |
| void task_mem(struct seq_file *m, struct mm_struct *mm) |
| { |
| unsigned long data, text, lib; |
| unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; |
| |
| /* |
| * Note: to minimize their overhead, mm maintains hiwater_vm and |
| * hiwater_rss only when about to *lower* total_vm or rss. Any |
| * collector of these hiwater stats must therefore get total_vm |
| * and rss too, which will usually be the higher. Barriers? not |
| * worth the effort, such snapshots can always be inconsistent. |
| */ |
| hiwater_vm = total_vm = mm->total_vm; |
| if (hiwater_vm < mm->hiwater_vm) |
| hiwater_vm = mm->hiwater_vm; |
| hiwater_rss = total_rss = get_mm_rss(mm); |
| if (hiwater_rss < mm->hiwater_rss) |
| hiwater_rss = mm->hiwater_rss; |
| |
| data = mm->total_vm - mm->shared_vm - mm->stack_vm; |
| text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; |
| lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; |
| seq_printf(m, |
| "VmPeak:\t%8lu kB\n" |
| "VmSize:\t%8lu kB\n" |
| "VmLck:\t%8lu kB\n" |
| "VmHWM:\t%8lu kB\n" |
| "VmRSS:\t%8lu kB\n" |
| "VmData:\t%8lu kB\n" |
| "VmStk:\t%8lu kB\n" |
| "VmExe:\t%8lu kB\n" |
| "VmLib:\t%8lu kB\n" |
| "VmPTE:\t%8lu kB\n", |
| hiwater_vm << (PAGE_SHIFT-10), |
| (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10), |
| mm->locked_vm << (PAGE_SHIFT-10), |
| hiwater_rss << (PAGE_SHIFT-10), |
| total_rss << (PAGE_SHIFT-10), |
| data << (PAGE_SHIFT-10), |
| mm->stack_vm << (PAGE_SHIFT-10), text, lib, |
| (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10); |
| } |
| |
| unsigned long task_vsize(struct mm_struct *mm) |
| { |
| return PAGE_SIZE * mm->total_vm; |
| } |
| |
| int task_statm(struct mm_struct *mm, int *shared, int *text, |
| int *data, int *resident) |
| { |
| *shared = get_mm_counter(mm, file_rss); |
| *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) |
| >> PAGE_SHIFT; |
| *data = mm->total_vm - mm->shared_vm; |
| *resident = *shared + get_mm_counter(mm, anon_rss); |
| return mm->total_vm; |
| } |
| |
| static void pad_len_spaces(struct seq_file *m, int len) |
| { |
| len = 25 + sizeof(void*) * 6 - len; |
| if (len < 1) |
| len = 1; |
| seq_printf(m, "%*c", len, ' '); |
| } |
| |
| static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma) |
| { |
| if (vma && vma != priv->tail_vma) { |
| struct mm_struct *mm = vma->vm_mm; |
| up_read(&mm->mmap_sem); |
| mmput(mm); |
| } |
| } |
| |
| static void *m_start(struct seq_file *m, loff_t *pos) |
| { |
| struct proc_maps_private *priv = m->private; |
| unsigned long last_addr = m->version; |
| struct mm_struct *mm; |
| struct vm_area_struct *vma, *tail_vma = NULL; |
| loff_t l = *pos; |
| |
| /* Clear the per syscall fields in priv */ |
| priv->task = NULL; |
| priv->tail_vma = NULL; |
| |
| /* |
| * We remember last_addr rather than next_addr to hit with |
| * mmap_cache most of the time. We have zero last_addr at |
| * the beginning and also after lseek. We will have -1 last_addr |
| * after the end of the vmas. |
| */ |
| |
| if (last_addr == -1UL) |
| return NULL; |
| |
| priv->task = get_pid_task(priv->pid, PIDTYPE_PID); |
| if (!priv->task) |
| return NULL; |
| |
| mm = mm_for_maps(priv->task); |
| if (!mm) |
| return NULL; |
| down_read(&mm->mmap_sem); |
| |
| tail_vma = get_gate_vma(priv->task); |
| priv->tail_vma = tail_vma; |
| |
| /* Start with last addr hint */ |
| vma = find_vma(mm, last_addr); |
| if (last_addr && vma) { |
| vma = vma->vm_next; |
| goto out; |
| } |
| |
| /* |
| * Check the vma index is within the range and do |
| * sequential scan until m_index. |
| */ |
| vma = NULL; |
| if ((unsigned long)l < mm->map_count) { |
| vma = mm->mmap; |
| while (l-- && vma) |
| vma = vma->vm_next; |
| goto out; |
| } |
| |
| if (l != mm->map_count) |
| tail_vma = NULL; /* After gate vma */ |
| |
| out: |
| if (vma) |
| return vma; |
| |
| /* End of vmas has been reached */ |
| m->version = (tail_vma != NULL)? 0: -1UL; |
| up_read(&mm->mmap_sem); |
| mmput(mm); |
| return tail_vma; |
| } |
| |
| static void *m_next(struct seq_file *m, void *v, loff_t *pos) |
| { |
| struct proc_maps_private *priv = m->private; |
| struct vm_area_struct *vma = v; |
| struct vm_area_struct *tail_vma = priv->tail_vma; |
| |
| (*pos)++; |
| if (vma && (vma != tail_vma) && vma->vm_next) |
| return vma->vm_next; |
| vma_stop(priv, vma); |
| return (vma != tail_vma)? tail_vma: NULL; |
| } |
| |
| static void m_stop(struct seq_file *m, void *v) |
| { |
| struct proc_maps_private *priv = m->private; |
| struct vm_area_struct *vma = v; |
| |
| vma_stop(priv, vma); |
| if (priv->task) |
| put_task_struct(priv->task); |
| } |
| |
| static int do_maps_open(struct inode *inode, struct file *file, |
| const struct seq_operations *ops) |
| { |
| struct proc_maps_private *priv; |
| int ret = -ENOMEM; |
| priv = kzalloc(sizeof(*priv), GFP_KERNEL); |
| if (priv) { |
| priv->pid = proc_pid(inode); |
| ret = seq_open(file, ops); |
| if (!ret) { |
| struct seq_file *m = file->private_data; |
| m->private = priv; |
| } else { |
| kfree(priv); |
| } |
| } |
| return ret; |
| } |
| |
| static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| struct file *file = vma->vm_file; |
| int flags = vma->vm_flags; |
| unsigned long ino = 0; |
| unsigned long long pgoff = 0; |
| dev_t dev = 0; |
| int len; |
| |
| if (file) { |
| struct inode *inode = vma->vm_file->f_path.dentry->d_inode; |
| dev = inode->i_sb->s_dev; |
| ino = inode->i_ino; |
| pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; |
| } |
| |
| seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n", |
| vma->vm_start, |
| vma->vm_end, |
| flags & VM_READ ? 'r' : '-', |
| flags & VM_WRITE ? 'w' : '-', |
| flags & VM_EXEC ? 'x' : '-', |
| flags & VM_MAYSHARE ? 's' : 'p', |
| pgoff, |
| MAJOR(dev), MINOR(dev), ino, &len); |
| |
| /* |
| * Print the dentry name for named mappings, and a |
| * special [heap] marker for the heap: |
| */ |
| if (file) { |
| pad_len_spaces(m, len); |
| seq_path(m, &file->f_path, "\n"); |
| } else { |
| const char *name = arch_vma_name(vma); |
| if (!name) { |
| if (mm) { |
| if (vma->vm_start <= mm->start_brk && |
| vma->vm_end >= mm->brk) { |
| name = "[heap]"; |
| } else if (vma->vm_start <= mm->start_stack && |
| vma->vm_end >= mm->start_stack) { |
| name = "[stack]"; |
| } |
| } else { |
| name = "[vdso]"; |
| } |
| } |
| if (name) { |
| pad_len_spaces(m, len); |
| seq_puts(m, name); |
| } |
| } |
| seq_putc(m, '\n'); |
| } |
| |
| static int show_map(struct seq_file *m, void *v) |
| { |
| struct vm_area_struct *vma = v; |
| struct proc_maps_private *priv = m->private; |
| struct task_struct *task = priv->task; |
| |
| show_map_vma(m, vma); |
| |
| if (m->count < m->size) /* vma is copied successfully */ |
| m->version = (vma != get_gate_vma(task))? vma->vm_start: 0; |
| return 0; |
| } |
| |
| static const struct seq_operations proc_pid_maps_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_map |
| }; |
| |
| static int maps_open(struct inode *inode, struct file *file) |
| { |
| return do_maps_open(inode, file, &proc_pid_maps_op); |
| } |
| |
| const struct file_operations proc_maps_operations = { |
| .open = maps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release_private, |
| }; |
| |
| /* |
| * Proportional Set Size(PSS): my share of RSS. |
| * |
| * PSS of a process is the count of pages it has in memory, where each |
| * page is divided by the number of processes sharing it. So if a |
| * process has 1000 pages all to itself, and 1000 shared with one other |
| * process, its PSS will be 1500. |
| * |
| * To keep (accumulated) division errors low, we adopt a 64bit |
| * fixed-point pss counter to minimize division errors. So (pss >> |
| * PSS_SHIFT) would be the real byte count. |
| * |
| * A shift of 12 before division means (assuming 4K page size): |
| * - 1M 3-user-pages add up to 8KB errors; |
| * - supports mapcount up to 2^24, or 16M; |
| * - supports PSS up to 2^52 bytes, or 4PB. |
| */ |
| #define PSS_SHIFT 12 |
| |
| #ifdef CONFIG_PROC_PAGE_MONITOR |
| struct mem_size_stats { |
| struct vm_area_struct *vma; |
| unsigned long resident; |
| unsigned long shared_clean; |
| unsigned long shared_dirty; |
| unsigned long private_clean; |
| unsigned long private_dirty; |
| unsigned long referenced; |
| unsigned long swap; |
| u64 pss; |
| }; |
| |
| static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct mem_size_stats *mss = walk->private; |
| struct vm_area_struct *vma = mss->vma; |
| pte_t *pte, ptent; |
| spinlock_t *ptl; |
| struct page *page; |
| int mapcount; |
| |
| pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| for (; addr != end; pte++, addr += PAGE_SIZE) { |
| ptent = *pte; |
| |
| if (is_swap_pte(ptent)) { |
| mss->swap += PAGE_SIZE; |
| continue; |
| } |
| |
| if (!pte_present(ptent)) |
| continue; |
| |
| mss->resident += PAGE_SIZE; |
| |
| page = vm_normal_page(vma, addr, ptent); |
| if (!page) |
| continue; |
| |
| /* Accumulate the size in pages that have been accessed. */ |
| if (pte_young(ptent) || PageReferenced(page)) |
| mss->referenced += PAGE_SIZE; |
| mapcount = page_mapcount(page); |
| if (mapcount >= 2) { |
| if (pte_dirty(ptent)) |
| mss->shared_dirty += PAGE_SIZE; |
| else |
| mss->shared_clean += PAGE_SIZE; |
| mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; |
| } else { |
| if (pte_dirty(ptent)) |
| mss->private_dirty += PAGE_SIZE; |
| else |
| mss->private_clean += PAGE_SIZE; |
| mss->pss += (PAGE_SIZE << PSS_SHIFT); |
| } |
| } |
| pte_unmap_unlock(pte - 1, ptl); |
| cond_resched(); |
| return 0; |
| } |
| |
| static int show_smap(struct seq_file *m, void *v) |
| { |
| struct proc_maps_private *priv = m->private; |
| struct task_struct *task = priv->task; |
| struct vm_area_struct *vma = v; |
| struct mem_size_stats mss; |
| struct mm_walk smaps_walk = { |
| .pmd_entry = smaps_pte_range, |
| .mm = vma->vm_mm, |
| .private = &mss, |
| }; |
| |
| memset(&mss, 0, sizeof mss); |
| mss.vma = vma; |
| if (vma->vm_mm && !is_vm_hugetlb_page(vma)) |
| walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk); |
| |
| show_map_vma(m, vma); |
| |
| seq_printf(m, |
| "Size: %8lu kB\n" |
| "Rss: %8lu kB\n" |
| "Pss: %8lu kB\n" |
| "Shared_Clean: %8lu kB\n" |
| "Shared_Dirty: %8lu kB\n" |
| "Private_Clean: %8lu kB\n" |
| "Private_Dirty: %8lu kB\n" |
| "Referenced: %8lu kB\n" |
| "Swap: %8lu kB\n" |
| "KernelPageSize: %8lu kB\n" |
| "MMUPageSize: %8lu kB\n", |
| (vma->vm_end - vma->vm_start) >> 10, |
| mss.resident >> 10, |
| (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), |
| mss.shared_clean >> 10, |
| mss.shared_dirty >> 10, |
| mss.private_clean >> 10, |
| mss.private_dirty >> 10, |
| mss.referenced >> 10, |
| mss.swap >> 10, |
| vma_kernel_pagesize(vma) >> 10, |
| vma_mmu_pagesize(vma) >> 10); |
| |
| if (m->count < m->size) /* vma is copied successfully */ |
| m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0; |
| return 0; |
| } |
| |
| static const struct seq_operations proc_pid_smaps_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_smap |
| }; |
| |
| static int smaps_open(struct inode *inode, struct file *file) |
| { |
| return do_maps_open(inode, file, &proc_pid_smaps_op); |
| } |
| |
| const struct file_operations proc_smaps_operations = { |
| .open = smaps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release_private, |
| }; |
| |
| static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, |
| unsigned long end, struct mm_walk *walk) |
| { |
| struct vm_area_struct *vma = walk->private; |
| pte_t *pte, ptent; |
| spinlock_t *ptl; |
| struct page *page; |
| |
| pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| for (; addr != end; pte++, addr += PAGE_SIZE) { |
| ptent = *pte; |
| if (!pte_present(ptent)) |
| continue; |
| |
| page = vm_normal_page(vma, addr, ptent); |
| if (!page) |
| continue; |
| |
| /* Clear accessed and referenced bits. */ |
| ptep_test_and_clear_young(vma, addr, pte); |
| ClearPageReferenced(page); |
| } |
| pte_unmap_unlock(pte - 1, ptl); |
| cond_resched(); |
| return 0; |
| } |
| |
| static ssize_t clear_refs_write(struct file *file, const char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct task_struct *task; |
| char buffer[PROC_NUMBUF], *end; |
| struct mm_struct *mm; |
| struct vm_area_struct *vma; |
| |
| memset(buffer, 0, sizeof(buffer)); |
| if (count > sizeof(buffer) - 1) |
| count = sizeof(buffer) - 1; |
| if (copy_from_user(buffer, buf, count)) |
| return -EFAULT; |
| if (!simple_strtol(buffer, &end, 0)) |
| return -EINVAL; |
| if (*end == '\n') |
| end++; |
| task = get_proc_task(file->f_path.dentry->d_inode); |
| if (!task) |
| return -ESRCH; |
| mm = get_task_mm(task); |
| if (mm) { |
| struct mm_walk clear_refs_walk = { |
| .pmd_entry = clear_refs_pte_range, |
| .mm = mm, |
| }; |
| down_read(&mm->mmap_sem); |
| for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| clear_refs_walk.private = vma; |
| if (!is_vm_hugetlb_page(vma)) |
| walk_page_range(vma->vm_start, vma->vm_end, |
| &clear_refs_walk); |
| } |
| flush_tlb_mm(mm); |
| up_read(&mm->mmap_sem); |
| mmput(mm); |
| } |
| put_task_struct(task); |
| if (end - buffer == 0) |
| return -EIO; |
| return end - buffer; |
| } |
| |
| const struct file_operations proc_clear_refs_operations = { |
| .write = clear_refs_write, |
| }; |
| |
| struct pagemapread { |
| u64 __user *out, *end; |
| }; |
| |
| #define PM_ENTRY_BYTES sizeof(u64) |
| #define PM_STATUS_BITS 3 |
| #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS) |
| #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET) |
| #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK) |
| #define PM_PSHIFT_BITS 6 |
| #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS) |
| #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET) |
| #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK) |
| #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1) |
| #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK) |
| |
| #define PM_PRESENT PM_STATUS(4LL) |
| #define PM_SWAP PM_STATUS(2LL) |
| #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT) |
| #define PM_END_OF_BUFFER 1 |
| |
| static int add_to_pagemap(unsigned long addr, u64 pfn, |
| struct pagemapread *pm) |
| { |
| if (put_user(pfn, pm->out)) |
| return -EFAULT; |
| pm->out++; |
| if (pm->out >= pm->end) |
| return PM_END_OF_BUFFER; |
| return 0; |
| } |
| |
| static int pagemap_pte_hole(unsigned long start, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct pagemapread *pm = walk->private; |
| unsigned long addr; |
| int err = 0; |
| for (addr = start; addr < end; addr += PAGE_SIZE) { |
| err = add_to_pagemap(addr, PM_NOT_PRESENT, pm); |
| if (err) |
| break; |
| } |
| return err; |
| } |
| |
| static u64 swap_pte_to_pagemap_entry(pte_t pte) |
| { |
| swp_entry_t e = pte_to_swp_entry(pte); |
| return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT); |
| } |
| |
| static u64 pte_to_pagemap_entry(pte_t pte) |
| { |
| u64 pme = 0; |
| if (is_swap_pte(pte)) |
| pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte)) |
| | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP; |
| else if (pte_present(pte)) |
| pme = PM_PFRAME(pte_pfn(pte)) |
| | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT; |
| return pme; |
| } |
| |
| static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct vm_area_struct *vma; |
| struct pagemapread *pm = walk->private; |
| pte_t *pte; |
| int err = 0; |
| |
| /* find the first VMA at or above 'addr' */ |
| vma = find_vma(walk->mm, addr); |
| for (; addr != end; addr += PAGE_SIZE) { |
| u64 pfn = PM_NOT_PRESENT; |
| |
| /* check to see if we've left 'vma' behind |
| * and need a new, higher one */ |
| if (vma && (addr >= vma->vm_end)) |
| vma = find_vma(walk->mm, addr); |
| |
| /* check that 'vma' actually covers this address, |
| * and that it isn't a huge page vma */ |
| if (vma && (vma->vm_start <= addr) && |
| !is_vm_hugetlb_page(vma)) { |
| pte = pte_offset_map(pmd, addr); |
| pfn = pte_to_pagemap_entry(*pte); |
| /* unmap before userspace copy */ |
| pte_unmap(pte); |
| } |
| err = add_to_pagemap(addr, pfn, pm); |
| if (err) |
| return err; |
| } |
| |
| cond_resched(); |
| |
| return err; |
| } |
| |
| /* |
| * /proc/pid/pagemap - an array mapping virtual pages to pfns |
| * |
| * For each page in the address space, this file contains one 64-bit entry |
| * consisting of the following: |
| * |
| * Bits 0-55 page frame number (PFN) if present |
| * Bits 0-4 swap type if swapped |
| * Bits 5-55 swap offset if swapped |
| * Bits 55-60 page shift (page size = 1<<page shift) |
| * Bit 61 reserved for future use |
| * Bit 62 page swapped |
| * Bit 63 page present |
| * |
| * If the page is not present but in swap, then the PFN contains an |
| * encoding of the swap file number and the page's offset into the |
| * swap. Unmapped pages return a null PFN. This allows determining |
| * precisely which pages are mapped (or in swap) and comparing mapped |
| * pages between processes. |
| * |
| * Efficient users of this interface will use /proc/pid/maps to |
| * determine which areas of memory are actually mapped and llseek to |
| * skip over unmapped regions. |
| */ |
| static ssize_t pagemap_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); |
| struct page **pages, *page; |
| unsigned long uaddr, uend; |
| struct mm_struct *mm; |
| struct pagemapread pm; |
| int pagecount; |
| int ret = -ESRCH; |
| struct mm_walk pagemap_walk = {}; |
| unsigned long src; |
| unsigned long svpfn; |
| unsigned long start_vaddr; |
| unsigned long end_vaddr; |
| |
| if (!task) |
| goto out; |
| |
| ret = -EACCES; |
| if (!ptrace_may_access(task, PTRACE_MODE_READ)) |
| goto out_task; |
| |
| ret = -EINVAL; |
| /* file position must be aligned */ |
| if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) |
| goto out_task; |
| |
| ret = 0; |
| |
| if (!count) |
| goto out_task; |
| |
| mm = get_task_mm(task); |
| if (!mm) |
| goto out_task; |
| |
| |
| uaddr = (unsigned long)buf & PAGE_MASK; |
| uend = (unsigned long)(buf + count); |
| pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE; |
| ret = 0; |
| if (pagecount == 0) |
| goto out_mm; |
| pages = kcalloc(pagecount, sizeof(struct page *), GFP_KERNEL); |
| ret = -ENOMEM; |
| if (!pages) |
| goto out_mm; |
| |
| down_read(¤t->mm->mmap_sem); |
| ret = get_user_pages(current, current->mm, uaddr, pagecount, |
| 1, 0, pages, NULL); |
| up_read(¤t->mm->mmap_sem); |
| |
| if (ret < 0) |
| goto out_free; |
| |
| if (ret != pagecount) { |
| pagecount = ret; |
| ret = -EFAULT; |
| goto out_pages; |
| } |
| |
| pm.out = (u64 __user *)buf; |
| pm.end = (u64 __user *)(buf + count); |
| |
| pagemap_walk.pmd_entry = pagemap_pte_range; |
| pagemap_walk.pte_hole = pagemap_pte_hole; |
| pagemap_walk.mm = mm; |
| pagemap_walk.private = ± |
| |
| src = *ppos; |
| svpfn = src / PM_ENTRY_BYTES; |
| start_vaddr = svpfn << PAGE_SHIFT; |
| end_vaddr = TASK_SIZE_OF(task); |
| |
| /* watch out for wraparound */ |
| if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT) |
| start_vaddr = end_vaddr; |
| |
| /* |
| * The odds are that this will stop walking way |
| * before end_vaddr, because the length of the |
| * user buffer is tracked in "pm", and the walk |
| * will stop when we hit the end of the buffer. |
| */ |
| ret = walk_page_range(start_vaddr, end_vaddr, &pagemap_walk); |
| if (ret == PM_END_OF_BUFFER) |
| ret = 0; |
| /* don't need mmap_sem for these, but this looks cleaner */ |
| *ppos += (char __user *)pm.out - buf; |
| if (!ret) |
| ret = (char __user *)pm.out - buf; |
| |
| out_pages: |
| for (; pagecount; pagecount--) { |
| page = pages[pagecount-1]; |
| if (!PageReserved(page)) |
| SetPageDirty(page); |
| page_cache_release(page); |
| } |
| out_free: |
| kfree(pages); |
| out_mm: |
| mmput(mm); |
| out_task: |
| put_task_struct(task); |
| out: |
| return ret; |
| } |
| |
| const struct file_operations proc_pagemap_operations = { |
| .llseek = mem_lseek, /* borrow this */ |
| .read = pagemap_read, |
| }; |
| #endif /* CONFIG_PROC_PAGE_MONITOR */ |
| |
| #ifdef CONFIG_NUMA |
| extern int show_numa_map(struct seq_file *m, void *v); |
| |
| static const struct seq_operations proc_pid_numa_maps_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_numa_map, |
| }; |
| |
| static int numa_maps_open(struct inode *inode, struct file *file) |
| { |
| return do_maps_open(inode, file, &proc_pid_numa_maps_op); |
| } |
| |
| const struct file_operations proc_numa_maps_operations = { |
| .open = numa_maps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release_private, |
| }; |
| #endif |