| /* |
| * Copyright (C) 2008 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/bio.h> |
| #include <linux/buffer_head.h> |
| #include <linux/file.h> |
| #include <linux/fs.h> |
| #include <linux/pagemap.h> |
| #include <linux/highmem.h> |
| #include <linux/time.h> |
| #include <linux/init.h> |
| #include <linux/string.h> |
| #include <linux/backing-dev.h> |
| #include <linux/mpage.h> |
| #include <linux/swap.h> |
| #include <linux/writeback.h> |
| #include <linux/bit_spinlock.h> |
| #include <linux/slab.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "btrfs_inode.h" |
| #include "volumes.h" |
| #include "ordered-data.h" |
| #include "compression.h" |
| #include "extent_io.h" |
| #include "extent_map.h" |
| |
| struct compressed_bio { |
| /* number of bios pending for this compressed extent */ |
| atomic_t pending_bios; |
| |
| /* the pages with the compressed data on them */ |
| struct page **compressed_pages; |
| |
| /* inode that owns this data */ |
| struct inode *inode; |
| |
| /* starting offset in the inode for our pages */ |
| u64 start; |
| |
| /* number of bytes in the inode we're working on */ |
| unsigned long len; |
| |
| /* number of bytes on disk */ |
| unsigned long compressed_len; |
| |
| /* the compression algorithm for this bio */ |
| int compress_type; |
| |
| /* number of compressed pages in the array */ |
| unsigned long nr_pages; |
| |
| /* IO errors */ |
| int errors; |
| int mirror_num; |
| |
| /* for reads, this is the bio we are copying the data into */ |
| struct bio *orig_bio; |
| |
| /* |
| * the start of a variable length array of checksums only |
| * used by reads |
| */ |
| u32 sums; |
| }; |
| |
| static int btrfs_decompress_biovec(int type, struct page **pages_in, |
| u64 disk_start, struct bio_vec *bvec, |
| int vcnt, size_t srclen); |
| |
| static inline int compressed_bio_size(struct btrfs_root *root, |
| unsigned long disk_size) |
| { |
| u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); |
| |
| return sizeof(struct compressed_bio) + |
| (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size; |
| } |
| |
| static struct bio *compressed_bio_alloc(struct block_device *bdev, |
| u64 first_byte, gfp_t gfp_flags) |
| { |
| return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags); |
| } |
| |
| static int check_compressed_csum(struct inode *inode, |
| struct compressed_bio *cb, |
| u64 disk_start) |
| { |
| int ret; |
| struct page *page; |
| unsigned long i; |
| char *kaddr; |
| u32 csum; |
| u32 *cb_sum = &cb->sums; |
| |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) |
| return 0; |
| |
| for (i = 0; i < cb->nr_pages; i++) { |
| page = cb->compressed_pages[i]; |
| csum = ~(u32)0; |
| |
| kaddr = kmap_atomic(page); |
| csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE); |
| btrfs_csum_final(csum, (char *)&csum); |
| kunmap_atomic(kaddr); |
| |
| if (csum != *cb_sum) { |
| btrfs_info(BTRFS_I(inode)->root->fs_info, |
| "csum failed ino %llu extent %llu csum %u wanted %u mirror %d", |
| btrfs_ino(inode), disk_start, csum, *cb_sum, |
| cb->mirror_num); |
| ret = -EIO; |
| goto fail; |
| } |
| cb_sum++; |
| |
| } |
| ret = 0; |
| fail: |
| return ret; |
| } |
| |
| /* when we finish reading compressed pages from the disk, we |
| * decompress them and then run the bio end_io routines on the |
| * decompressed pages (in the inode address space). |
| * |
| * This allows the checksumming and other IO error handling routines |
| * to work normally |
| * |
| * The compressed pages are freed here, and it must be run |
| * in process context |
| */ |
| static void end_compressed_bio_read(struct bio *bio) |
| { |
| struct compressed_bio *cb = bio->bi_private; |
| struct inode *inode; |
| struct page *page; |
| unsigned long index; |
| int ret; |
| |
| if (bio->bi_error) |
| cb->errors = 1; |
| |
| /* if there are more bios still pending for this compressed |
| * extent, just exit |
| */ |
| if (!atomic_dec_and_test(&cb->pending_bios)) |
| goto out; |
| |
| inode = cb->inode; |
| ret = check_compressed_csum(inode, cb, |
| (u64)bio->bi_iter.bi_sector << 9); |
| if (ret) |
| goto csum_failed; |
| |
| /* ok, we're the last bio for this extent, lets start |
| * the decompression. |
| */ |
| ret = btrfs_decompress_biovec(cb->compress_type, |
| cb->compressed_pages, |
| cb->start, |
| cb->orig_bio->bi_io_vec, |
| cb->orig_bio->bi_vcnt, |
| cb->compressed_len); |
| csum_failed: |
| if (ret) |
| cb->errors = 1; |
| |
| /* release the compressed pages */ |
| index = 0; |
| for (index = 0; index < cb->nr_pages; index++) { |
| page = cb->compressed_pages[index]; |
| page->mapping = NULL; |
| put_page(page); |
| } |
| |
| /* do io completion on the original bio */ |
| if (cb->errors) { |
| bio_io_error(cb->orig_bio); |
| } else { |
| int i; |
| struct bio_vec *bvec; |
| |
| /* |
| * we have verified the checksum already, set page |
| * checked so the end_io handlers know about it |
| */ |
| bio_for_each_segment_all(bvec, cb->orig_bio, i) |
| SetPageChecked(bvec->bv_page); |
| |
| bio_endio(cb->orig_bio); |
| } |
| |
| /* finally free the cb struct */ |
| kfree(cb->compressed_pages); |
| kfree(cb); |
| out: |
| bio_put(bio); |
| } |
| |
| /* |
| * Clear the writeback bits on all of the file |
| * pages for a compressed write |
| */ |
| static noinline void end_compressed_writeback(struct inode *inode, |
| const struct compressed_bio *cb) |
| { |
| unsigned long index = cb->start >> PAGE_SHIFT; |
| unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; |
| struct page *pages[16]; |
| unsigned long nr_pages = end_index - index + 1; |
| int i; |
| int ret; |
| |
| if (cb->errors) |
| mapping_set_error(inode->i_mapping, -EIO); |
| |
| while (nr_pages > 0) { |
| ret = find_get_pages_contig(inode->i_mapping, index, |
| min_t(unsigned long, |
| nr_pages, ARRAY_SIZE(pages)), pages); |
| if (ret == 0) { |
| nr_pages -= 1; |
| index += 1; |
| continue; |
| } |
| for (i = 0; i < ret; i++) { |
| if (cb->errors) |
| SetPageError(pages[i]); |
| end_page_writeback(pages[i]); |
| put_page(pages[i]); |
| } |
| nr_pages -= ret; |
| index += ret; |
| } |
| /* the inode may be gone now */ |
| } |
| |
| /* |
| * do the cleanup once all the compressed pages hit the disk. |
| * This will clear writeback on the file pages and free the compressed |
| * pages. |
| * |
| * This also calls the writeback end hooks for the file pages so that |
| * metadata and checksums can be updated in the file. |
| */ |
| static void end_compressed_bio_write(struct bio *bio) |
| { |
| struct extent_io_tree *tree; |
| struct compressed_bio *cb = bio->bi_private; |
| struct inode *inode; |
| struct page *page; |
| unsigned long index; |
| |
| if (bio->bi_error) |
| cb->errors = 1; |
| |
| /* if there are more bios still pending for this compressed |
| * extent, just exit |
| */ |
| if (!atomic_dec_and_test(&cb->pending_bios)) |
| goto out; |
| |
| /* ok, we're the last bio for this extent, step one is to |
| * call back into the FS and do all the end_io operations |
| */ |
| inode = cb->inode; |
| tree = &BTRFS_I(inode)->io_tree; |
| cb->compressed_pages[0]->mapping = cb->inode->i_mapping; |
| tree->ops->writepage_end_io_hook(cb->compressed_pages[0], |
| cb->start, |
| cb->start + cb->len - 1, |
| NULL, |
| bio->bi_error ? 0 : 1); |
| cb->compressed_pages[0]->mapping = NULL; |
| |
| end_compressed_writeback(inode, cb); |
| /* note, our inode could be gone now */ |
| |
| /* |
| * release the compressed pages, these came from alloc_page and |
| * are not attached to the inode at all |
| */ |
| index = 0; |
| for (index = 0; index < cb->nr_pages; index++) { |
| page = cb->compressed_pages[index]; |
| page->mapping = NULL; |
| put_page(page); |
| } |
| |
| /* finally free the cb struct */ |
| kfree(cb->compressed_pages); |
| kfree(cb); |
| out: |
| bio_put(bio); |
| } |
| |
| /* |
| * worker function to build and submit bios for previously compressed pages. |
| * The corresponding pages in the inode should be marked for writeback |
| * and the compressed pages should have a reference on them for dropping |
| * when the IO is complete. |
| * |
| * This also checksums the file bytes and gets things ready for |
| * the end io hooks. |
| */ |
| int btrfs_submit_compressed_write(struct inode *inode, u64 start, |
| unsigned long len, u64 disk_start, |
| unsigned long compressed_len, |
| struct page **compressed_pages, |
| unsigned long nr_pages) |
| { |
| struct bio *bio = NULL; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct compressed_bio *cb; |
| unsigned long bytes_left; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| int pg_index = 0; |
| struct page *page; |
| u64 first_byte = disk_start; |
| struct block_device *bdev; |
| int ret; |
| int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; |
| |
| WARN_ON(start & ((u64)PAGE_SIZE - 1)); |
| cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); |
| if (!cb) |
| return -ENOMEM; |
| atomic_set(&cb->pending_bios, 0); |
| cb->errors = 0; |
| cb->inode = inode; |
| cb->start = start; |
| cb->len = len; |
| cb->mirror_num = 0; |
| cb->compressed_pages = compressed_pages; |
| cb->compressed_len = compressed_len; |
| cb->orig_bio = NULL; |
| cb->nr_pages = nr_pages; |
| |
| bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; |
| |
| bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); |
| if (!bio) { |
| kfree(cb); |
| return -ENOMEM; |
| } |
| bio_set_op_attrs(bio, REQ_OP_WRITE, 0); |
| bio->bi_private = cb; |
| bio->bi_end_io = end_compressed_bio_write; |
| atomic_inc(&cb->pending_bios); |
| |
| /* create and submit bios for the compressed pages */ |
| bytes_left = compressed_len; |
| for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { |
| page = compressed_pages[pg_index]; |
| page->mapping = inode->i_mapping; |
| if (bio->bi_iter.bi_size) |
| ret = io_tree->ops->merge_bio_hook(page, 0, |
| PAGE_SIZE, |
| bio, 0); |
| else |
| ret = 0; |
| |
| page->mapping = NULL; |
| if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) < |
| PAGE_SIZE) { |
| bio_get(bio); |
| |
| /* |
| * inc the count before we submit the bio so |
| * we know the end IO handler won't happen before |
| * we inc the count. Otherwise, the cb might get |
| * freed before we're done setting it up |
| */ |
| atomic_inc(&cb->pending_bios); |
| ret = btrfs_bio_wq_end_io(root->fs_info, bio, |
| BTRFS_WQ_ENDIO_DATA); |
| BUG_ON(ret); /* -ENOMEM */ |
| |
| if (!skip_sum) { |
| ret = btrfs_csum_one_bio(root, inode, bio, |
| start, 1); |
| BUG_ON(ret); /* -ENOMEM */ |
| } |
| |
| ret = btrfs_map_bio(root, bio, 0, 1); |
| if (ret) { |
| bio->bi_error = ret; |
| bio_endio(bio); |
| } |
| |
| bio_put(bio); |
| |
| bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); |
| BUG_ON(!bio); |
| bio_set_op_attrs(bio, REQ_OP_WRITE, 0); |
| bio->bi_private = cb; |
| bio->bi_end_io = end_compressed_bio_write; |
| bio_add_page(bio, page, PAGE_SIZE, 0); |
| } |
| if (bytes_left < PAGE_SIZE) { |
| btrfs_info(BTRFS_I(inode)->root->fs_info, |
| "bytes left %lu compress len %lu nr %lu", |
| bytes_left, cb->compressed_len, cb->nr_pages); |
| } |
| bytes_left -= PAGE_SIZE; |
| first_byte += PAGE_SIZE; |
| cond_resched(); |
| } |
| bio_get(bio); |
| |
| ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA); |
| BUG_ON(ret); /* -ENOMEM */ |
| |
| if (!skip_sum) { |
| ret = btrfs_csum_one_bio(root, inode, bio, start, 1); |
| BUG_ON(ret); /* -ENOMEM */ |
| } |
| |
| ret = btrfs_map_bio(root, bio, 0, 1); |
| if (ret) { |
| bio->bi_error = ret; |
| bio_endio(bio); |
| } |
| |
| bio_put(bio); |
| return 0; |
| } |
| |
| static noinline int add_ra_bio_pages(struct inode *inode, |
| u64 compressed_end, |
| struct compressed_bio *cb) |
| { |
| unsigned long end_index; |
| unsigned long pg_index; |
| u64 last_offset; |
| u64 isize = i_size_read(inode); |
| int ret; |
| struct page *page; |
| unsigned long nr_pages = 0; |
| struct extent_map *em; |
| struct address_space *mapping = inode->i_mapping; |
| struct extent_map_tree *em_tree; |
| struct extent_io_tree *tree; |
| u64 end; |
| int misses = 0; |
| |
| page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page; |
| last_offset = (page_offset(page) + PAGE_SIZE); |
| em_tree = &BTRFS_I(inode)->extent_tree; |
| tree = &BTRFS_I(inode)->io_tree; |
| |
| if (isize == 0) |
| return 0; |
| |
| end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; |
| |
| while (last_offset < compressed_end) { |
| pg_index = last_offset >> PAGE_SHIFT; |
| |
| if (pg_index > end_index) |
| break; |
| |
| rcu_read_lock(); |
| page = radix_tree_lookup(&mapping->page_tree, pg_index); |
| rcu_read_unlock(); |
| if (page && !radix_tree_exceptional_entry(page)) { |
| misses++; |
| if (misses > 4) |
| break; |
| goto next; |
| } |
| |
| page = __page_cache_alloc(mapping_gfp_constraint(mapping, |
| ~__GFP_FS)); |
| if (!page) |
| break; |
| |
| if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { |
| put_page(page); |
| goto next; |
| } |
| |
| end = last_offset + PAGE_SIZE - 1; |
| /* |
| * at this point, we have a locked page in the page cache |
| * for these bytes in the file. But, we have to make |
| * sure they map to this compressed extent on disk. |
| */ |
| set_page_extent_mapped(page); |
| lock_extent(tree, last_offset, end); |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, last_offset, |
| PAGE_SIZE); |
| read_unlock(&em_tree->lock); |
| |
| if (!em || last_offset < em->start || |
| (last_offset + PAGE_SIZE > extent_map_end(em)) || |
| (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { |
| free_extent_map(em); |
| unlock_extent(tree, last_offset, end); |
| unlock_page(page); |
| put_page(page); |
| break; |
| } |
| free_extent_map(em); |
| |
| if (page->index == end_index) { |
| char *userpage; |
| size_t zero_offset = isize & (PAGE_SIZE - 1); |
| |
| if (zero_offset) { |
| int zeros; |
| zeros = PAGE_SIZE - zero_offset; |
| userpage = kmap_atomic(page); |
| memset(userpage + zero_offset, 0, zeros); |
| flush_dcache_page(page); |
| kunmap_atomic(userpage); |
| } |
| } |
| |
| ret = bio_add_page(cb->orig_bio, page, |
| PAGE_SIZE, 0); |
| |
| if (ret == PAGE_SIZE) { |
| nr_pages++; |
| put_page(page); |
| } else { |
| unlock_extent(tree, last_offset, end); |
| unlock_page(page); |
| put_page(page); |
| break; |
| } |
| next: |
| last_offset += PAGE_SIZE; |
| } |
| return 0; |
| } |
| |
| /* |
| * for a compressed read, the bio we get passed has all the inode pages |
| * in it. We don't actually do IO on those pages but allocate new ones |
| * to hold the compressed pages on disk. |
| * |
| * bio->bi_iter.bi_sector points to the compressed extent on disk |
| * bio->bi_io_vec points to all of the inode pages |
| * bio->bi_vcnt is a count of pages |
| * |
| * After the compressed pages are read, we copy the bytes into the |
| * bio we were passed and then call the bio end_io calls |
| */ |
| int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, |
| int mirror_num, unsigned long bio_flags) |
| { |
| struct extent_io_tree *tree; |
| struct extent_map_tree *em_tree; |
| struct compressed_bio *cb; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| unsigned long uncompressed_len = bio->bi_vcnt * PAGE_SIZE; |
| unsigned long compressed_len; |
| unsigned long nr_pages; |
| unsigned long pg_index; |
| struct page *page; |
| struct block_device *bdev; |
| struct bio *comp_bio; |
| u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; |
| u64 em_len; |
| u64 em_start; |
| struct extent_map *em; |
| int ret = -ENOMEM; |
| int faili = 0; |
| u32 *sums; |
| |
| tree = &BTRFS_I(inode)->io_tree; |
| em_tree = &BTRFS_I(inode)->extent_tree; |
| |
| /* we need the actual starting offset of this extent in the file */ |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, |
| page_offset(bio->bi_io_vec->bv_page), |
| PAGE_SIZE); |
| read_unlock(&em_tree->lock); |
| if (!em) |
| return -EIO; |
| |
| compressed_len = em->block_len; |
| cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); |
| if (!cb) |
| goto out; |
| |
| atomic_set(&cb->pending_bios, 0); |
| cb->errors = 0; |
| cb->inode = inode; |
| cb->mirror_num = mirror_num; |
| sums = &cb->sums; |
| |
| cb->start = em->orig_start; |
| em_len = em->len; |
| em_start = em->start; |
| |
| free_extent_map(em); |
| em = NULL; |
| |
| cb->len = uncompressed_len; |
| cb->compressed_len = compressed_len; |
| cb->compress_type = extent_compress_type(bio_flags); |
| cb->orig_bio = bio; |
| |
| nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); |
| cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), |
| GFP_NOFS); |
| if (!cb->compressed_pages) |
| goto fail1; |
| |
| bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; |
| |
| for (pg_index = 0; pg_index < nr_pages; pg_index++) { |
| cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | |
| __GFP_HIGHMEM); |
| if (!cb->compressed_pages[pg_index]) { |
| faili = pg_index - 1; |
| ret = -ENOMEM; |
| goto fail2; |
| } |
| } |
| faili = nr_pages - 1; |
| cb->nr_pages = nr_pages; |
| |
| add_ra_bio_pages(inode, em_start + em_len, cb); |
| |
| /* include any pages we added in add_ra-bio_pages */ |
| uncompressed_len = bio->bi_vcnt * PAGE_SIZE; |
| cb->len = uncompressed_len; |
| |
| comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); |
| if (!comp_bio) |
| goto fail2; |
| bio_set_op_attrs (comp_bio, REQ_OP_READ, 0); |
| comp_bio->bi_private = cb; |
| comp_bio->bi_end_io = end_compressed_bio_read; |
| atomic_inc(&cb->pending_bios); |
| |
| for (pg_index = 0; pg_index < nr_pages; pg_index++) { |
| page = cb->compressed_pages[pg_index]; |
| page->mapping = inode->i_mapping; |
| page->index = em_start >> PAGE_SHIFT; |
| |
| if (comp_bio->bi_iter.bi_size) |
| ret = tree->ops->merge_bio_hook(page, 0, |
| PAGE_SIZE, |
| comp_bio, 0); |
| else |
| ret = 0; |
| |
| page->mapping = NULL; |
| if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < |
| PAGE_SIZE) { |
| bio_get(comp_bio); |
| |
| ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, |
| BTRFS_WQ_ENDIO_DATA); |
| BUG_ON(ret); /* -ENOMEM */ |
| |
| /* |
| * inc the count before we submit the bio so |
| * we know the end IO handler won't happen before |
| * we inc the count. Otherwise, the cb might get |
| * freed before we're done setting it up |
| */ |
| atomic_inc(&cb->pending_bios); |
| |
| if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { |
| ret = btrfs_lookup_bio_sums(root, inode, |
| comp_bio, sums); |
| BUG_ON(ret); /* -ENOMEM */ |
| } |
| sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, |
| root->sectorsize); |
| |
| ret = btrfs_map_bio(root, comp_bio, mirror_num, 0); |
| if (ret) { |
| bio->bi_error = ret; |
| bio_endio(comp_bio); |
| } |
| |
| bio_put(comp_bio); |
| |
| comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, |
| GFP_NOFS); |
| BUG_ON(!comp_bio); |
| bio_set_op_attrs(comp_bio, REQ_OP_READ, 0); |
| comp_bio->bi_private = cb; |
| comp_bio->bi_end_io = end_compressed_bio_read; |
| |
| bio_add_page(comp_bio, page, PAGE_SIZE, 0); |
| } |
| cur_disk_byte += PAGE_SIZE; |
| } |
| bio_get(comp_bio); |
| |
| ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, |
| BTRFS_WQ_ENDIO_DATA); |
| BUG_ON(ret); /* -ENOMEM */ |
| |
| if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { |
| ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums); |
| BUG_ON(ret); /* -ENOMEM */ |
| } |
| |
| ret = btrfs_map_bio(root, comp_bio, mirror_num, 0); |
| if (ret) { |
| bio->bi_error = ret; |
| bio_endio(comp_bio); |
| } |
| |
| bio_put(comp_bio); |
| return 0; |
| |
| fail2: |
| while (faili >= 0) { |
| __free_page(cb->compressed_pages[faili]); |
| faili--; |
| } |
| |
| kfree(cb->compressed_pages); |
| fail1: |
| kfree(cb); |
| out: |
| free_extent_map(em); |
| return ret; |
| } |
| |
| static struct { |
| struct list_head idle_ws; |
| spinlock_t ws_lock; |
| /* Number of free workspaces */ |
| int free_ws; |
| /* Total number of allocated workspaces */ |
| atomic_t total_ws; |
| /* Waiters for a free workspace */ |
| wait_queue_head_t ws_wait; |
| } btrfs_comp_ws[BTRFS_COMPRESS_TYPES]; |
| |
| static const struct btrfs_compress_op * const btrfs_compress_op[] = { |
| &btrfs_zlib_compress, |
| &btrfs_lzo_compress, |
| }; |
| |
| void __init btrfs_init_compress(void) |
| { |
| int i; |
| |
| for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { |
| struct list_head *workspace; |
| |
| INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws); |
| spin_lock_init(&btrfs_comp_ws[i].ws_lock); |
| atomic_set(&btrfs_comp_ws[i].total_ws, 0); |
| init_waitqueue_head(&btrfs_comp_ws[i].ws_wait); |
| |
| /* |
| * Preallocate one workspace for each compression type so |
| * we can guarantee forward progress in the worst case |
| */ |
| workspace = btrfs_compress_op[i]->alloc_workspace(); |
| if (IS_ERR(workspace)) { |
| pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n"); |
| } else { |
| atomic_set(&btrfs_comp_ws[i].total_ws, 1); |
| btrfs_comp_ws[i].free_ws = 1; |
| list_add(workspace, &btrfs_comp_ws[i].idle_ws); |
| } |
| } |
| } |
| |
| /* |
| * This finds an available workspace or allocates a new one. |
| * If it's not possible to allocate a new one, waits until there's one. |
| * Preallocation makes a forward progress guarantees and we do not return |
| * errors. |
| */ |
| static struct list_head *find_workspace(int type) |
| { |
| struct list_head *workspace; |
| int cpus = num_online_cpus(); |
| int idx = type - 1; |
| |
| struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws; |
| spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock; |
| atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws; |
| wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait; |
| int *free_ws = &btrfs_comp_ws[idx].free_ws; |
| again: |
| spin_lock(ws_lock); |
| if (!list_empty(idle_ws)) { |
| workspace = idle_ws->next; |
| list_del(workspace); |
| (*free_ws)--; |
| spin_unlock(ws_lock); |
| return workspace; |
| |
| } |
| if (atomic_read(total_ws) > cpus) { |
| DEFINE_WAIT(wait); |
| |
| spin_unlock(ws_lock); |
| prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); |
| if (atomic_read(total_ws) > cpus && !*free_ws) |
| schedule(); |
| finish_wait(ws_wait, &wait); |
| goto again; |
| } |
| atomic_inc(total_ws); |
| spin_unlock(ws_lock); |
| |
| workspace = btrfs_compress_op[idx]->alloc_workspace(); |
| if (IS_ERR(workspace)) { |
| atomic_dec(total_ws); |
| wake_up(ws_wait); |
| |
| /* |
| * Do not return the error but go back to waiting. There's a |
| * workspace preallocated for each type and the compression |
| * time is bounded so we get to a workspace eventually. This |
| * makes our caller's life easier. |
| * |
| * To prevent silent and low-probability deadlocks (when the |
| * initial preallocation fails), check if there are any |
| * workspaces at all. |
| */ |
| if (atomic_read(total_ws) == 0) { |
| static DEFINE_RATELIMIT_STATE(_rs, |
| /* once per minute */ 60 * HZ, |
| /* no burst */ 1); |
| |
| if (__ratelimit(&_rs)) { |
| pr_warn("no compression workspaces, low memory, retrying\n"); |
| } |
| } |
| goto again; |
| } |
| return workspace; |
| } |
| |
| /* |
| * put a workspace struct back on the list or free it if we have enough |
| * idle ones sitting around |
| */ |
| static void free_workspace(int type, struct list_head *workspace) |
| { |
| int idx = type - 1; |
| struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws; |
| spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock; |
| atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws; |
| wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait; |
| int *free_ws = &btrfs_comp_ws[idx].free_ws; |
| |
| spin_lock(ws_lock); |
| if (*free_ws < num_online_cpus()) { |
| list_add(workspace, idle_ws); |
| (*free_ws)++; |
| spin_unlock(ws_lock); |
| goto wake; |
| } |
| spin_unlock(ws_lock); |
| |
| btrfs_compress_op[idx]->free_workspace(workspace); |
| atomic_dec(total_ws); |
| wake: |
| /* |
| * Make sure counter is updated before we wake up waiters. |
| */ |
| smp_mb(); |
| if (waitqueue_active(ws_wait)) |
| wake_up(ws_wait); |
| } |
| |
| /* |
| * cleanup function for module exit |
| */ |
| static void free_workspaces(void) |
| { |
| struct list_head *workspace; |
| int i; |
| |
| for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { |
| while (!list_empty(&btrfs_comp_ws[i].idle_ws)) { |
| workspace = btrfs_comp_ws[i].idle_ws.next; |
| list_del(workspace); |
| btrfs_compress_op[i]->free_workspace(workspace); |
| atomic_dec(&btrfs_comp_ws[i].total_ws); |
| } |
| } |
| } |
| |
| /* |
| * given an address space and start/len, compress the bytes. |
| * |
| * pages are allocated to hold the compressed result and stored |
| * in 'pages' |
| * |
| * out_pages is used to return the number of pages allocated. There |
| * may be pages allocated even if we return an error |
| * |
| * total_in is used to return the number of bytes actually read. It |
| * may be smaller then len if we had to exit early because we |
| * ran out of room in the pages array or because we cross the |
| * max_out threshold. |
| * |
| * total_out is used to return the total number of compressed bytes |
| * |
| * max_out tells us the max number of bytes that we're allowed to |
| * stuff into pages |
| */ |
| int btrfs_compress_pages(int type, struct address_space *mapping, |
| u64 start, unsigned long len, |
| struct page **pages, |
| unsigned long nr_dest_pages, |
| unsigned long *out_pages, |
| unsigned long *total_in, |
| unsigned long *total_out, |
| unsigned long max_out) |
| { |
| struct list_head *workspace; |
| int ret; |
| |
| workspace = find_workspace(type); |
| |
| ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, |
| start, len, pages, |
| nr_dest_pages, out_pages, |
| total_in, total_out, |
| max_out); |
| free_workspace(type, workspace); |
| return ret; |
| } |
| |
| /* |
| * pages_in is an array of pages with compressed data. |
| * |
| * disk_start is the starting logical offset of this array in the file |
| * |
| * bvec is a bio_vec of pages from the file that we want to decompress into |
| * |
| * vcnt is the count of pages in the biovec |
| * |
| * srclen is the number of bytes in pages_in |
| * |
| * The basic idea is that we have a bio that was created by readpages. |
| * The pages in the bio are for the uncompressed data, and they may not |
| * be contiguous. They all correspond to the range of bytes covered by |
| * the compressed extent. |
| */ |
| static int btrfs_decompress_biovec(int type, struct page **pages_in, |
| u64 disk_start, struct bio_vec *bvec, |
| int vcnt, size_t srclen) |
| { |
| struct list_head *workspace; |
| int ret; |
| |
| workspace = find_workspace(type); |
| |
| ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in, |
| disk_start, |
| bvec, vcnt, srclen); |
| free_workspace(type, workspace); |
| return ret; |
| } |
| |
| /* |
| * a less complex decompression routine. Our compressed data fits in a |
| * single page, and we want to read a single page out of it. |
| * start_byte tells us the offset into the compressed data we're interested in |
| */ |
| int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, |
| unsigned long start_byte, size_t srclen, size_t destlen) |
| { |
| struct list_head *workspace; |
| int ret; |
| |
| workspace = find_workspace(type); |
| |
| ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, |
| dest_page, start_byte, |
| srclen, destlen); |
| |
| free_workspace(type, workspace); |
| return ret; |
| } |
| |
| void btrfs_exit_compress(void) |
| { |
| free_workspaces(); |
| } |
| |
| /* |
| * Copy uncompressed data from working buffer to pages. |
| * |
| * buf_start is the byte offset we're of the start of our workspace buffer. |
| * |
| * total_out is the last byte of the buffer |
| */ |
| int btrfs_decompress_buf2page(char *buf, unsigned long buf_start, |
| unsigned long total_out, u64 disk_start, |
| struct bio_vec *bvec, int vcnt, |
| unsigned long *pg_index, |
| unsigned long *pg_offset) |
| { |
| unsigned long buf_offset; |
| unsigned long current_buf_start; |
| unsigned long start_byte; |
| unsigned long working_bytes = total_out - buf_start; |
| unsigned long bytes; |
| char *kaddr; |
| struct page *page_out = bvec[*pg_index].bv_page; |
| |
| /* |
| * start byte is the first byte of the page we're currently |
| * copying into relative to the start of the compressed data. |
| */ |
| start_byte = page_offset(page_out) - disk_start; |
| |
| /* we haven't yet hit data corresponding to this page */ |
| if (total_out <= start_byte) |
| return 1; |
| |
| /* |
| * the start of the data we care about is offset into |
| * the middle of our working buffer |
| */ |
| if (total_out > start_byte && buf_start < start_byte) { |
| buf_offset = start_byte - buf_start; |
| working_bytes -= buf_offset; |
| } else { |
| buf_offset = 0; |
| } |
| current_buf_start = buf_start; |
| |
| /* copy bytes from the working buffer into the pages */ |
| while (working_bytes > 0) { |
| bytes = min(PAGE_SIZE - *pg_offset, |
| PAGE_SIZE - buf_offset); |
| bytes = min(bytes, working_bytes); |
| kaddr = kmap_atomic(page_out); |
| memcpy(kaddr + *pg_offset, buf + buf_offset, bytes); |
| kunmap_atomic(kaddr); |
| flush_dcache_page(page_out); |
| |
| *pg_offset += bytes; |
| buf_offset += bytes; |
| working_bytes -= bytes; |
| current_buf_start += bytes; |
| |
| /* check if we need to pick another page */ |
| if (*pg_offset == PAGE_SIZE) { |
| (*pg_index)++; |
| if (*pg_index >= vcnt) |
| return 0; |
| |
| page_out = bvec[*pg_index].bv_page; |
| *pg_offset = 0; |
| start_byte = page_offset(page_out) - disk_start; |
| |
| /* |
| * make sure our new page is covered by this |
| * working buffer |
| */ |
| if (total_out <= start_byte) |
| return 1; |
| |
| /* |
| * the next page in the biovec might not be adjacent |
| * to the last page, but it might still be found |
| * inside this working buffer. bump our offset pointer |
| */ |
| if (total_out > start_byte && |
| current_buf_start < start_byte) { |
| buf_offset = start_byte - buf_start; |
| working_bytes = total_out - start_byte; |
| current_buf_start = buf_start + buf_offset; |
| } |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * When uncompressing data, we need to make sure and zero any parts of |
| * the biovec that were not filled in by the decompression code. pg_index |
| * and pg_offset indicate the last page and the last offset of that page |
| * that have been filled in. This will zero everything remaining in the |
| * biovec. |
| */ |
| void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt, |
| unsigned long pg_index, |
| unsigned long pg_offset) |
| { |
| while (pg_index < vcnt) { |
| struct page *page = bvec[pg_index].bv_page; |
| unsigned long off = bvec[pg_index].bv_offset; |
| unsigned long len = bvec[pg_index].bv_len; |
| |
| if (pg_offset < off) |
| pg_offset = off; |
| if (pg_offset < off + len) { |
| unsigned long bytes = off + len - pg_offset; |
| char *kaddr; |
| |
| kaddr = kmap_atomic(page); |
| memset(kaddr + pg_offset, 0, bytes); |
| kunmap_atomic(kaddr); |
| } |
| pg_index++; |
| pg_offset = 0; |
| } |
| } |