| /****************************************************************************** |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2017 Intel Deutschland GmbH |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2017 Intel Deutschland GmbH |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| *****************************************************************************/ |
| #include <linux/pm_runtime.h> |
| |
| #include "iwl-debug.h" |
| #include "iwl-csr.h" |
| #include "iwl-io.h" |
| #include "internal.h" |
| #include "mvm/fw-api.h" |
| |
| /* |
| * iwl_pcie_gen2_tx_stop - Stop all Tx DMA channels |
| */ |
| void iwl_pcie_gen2_tx_stop(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int txq_id; |
| |
| /* |
| * This function can be called before the op_mode disabled the |
| * queues. This happens when we have an rfkill interrupt. |
| * Since we stop Tx altogether - mark the queues as stopped. |
| */ |
| memset(trans_pcie->queue_stopped, 0, sizeof(trans_pcie->queue_stopped)); |
| memset(trans_pcie->queue_used, 0, sizeof(trans_pcie->queue_used)); |
| |
| /* Unmap DMA from host system and free skb's */ |
| for (txq_id = 0; txq_id < ARRAY_SIZE(trans_pcie->txq); txq_id++) { |
| if (!trans_pcie->txq[txq_id]) |
| continue; |
| iwl_pcie_gen2_txq_unmap(trans, txq_id); |
| } |
| } |
| |
| /* |
| * iwl_pcie_txq_update_byte_tbl - Set up entry in Tx byte-count array |
| */ |
| static void iwl_pcie_gen2_update_byte_tbl(struct iwl_txq *txq, u16 byte_cnt, |
| int num_tbs) |
| { |
| struct iwlagn_scd_bc_tbl *scd_bc_tbl = txq->bc_tbl.addr; |
| int write_ptr = txq->write_ptr; |
| u8 filled_tfd_size, num_fetch_chunks; |
| u16 len = byte_cnt; |
| __le16 bc_ent; |
| |
| len = DIV_ROUND_UP(len, 4); |
| |
| if (WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX)) |
| return; |
| |
| filled_tfd_size = offsetof(struct iwl_tfh_tfd, tbs) + |
| num_tbs * sizeof(struct iwl_tfh_tb); |
| /* |
| * filled_tfd_size contains the number of filled bytes in the TFD. |
| * Dividing it by 64 will give the number of chunks to fetch |
| * to SRAM- 0 for one chunk, 1 for 2 and so on. |
| * If, for example, TFD contains only 3 TBs then 32 bytes |
| * of the TFD are used, and only one chunk of 64 bytes should |
| * be fetched |
| */ |
| num_fetch_chunks = DIV_ROUND_UP(filled_tfd_size, 64) - 1; |
| |
| bc_ent = cpu_to_le16(len | (num_fetch_chunks << 12)); |
| scd_bc_tbl->tfd_offset[write_ptr] = bc_ent; |
| } |
| |
| /* |
| * iwl_pcie_gen2_txq_inc_wr_ptr - Send new write index to hardware |
| */ |
| static void iwl_pcie_gen2_txq_inc_wr_ptr(struct iwl_trans *trans, |
| struct iwl_txq *txq) |
| { |
| lockdep_assert_held(&txq->lock); |
| |
| IWL_DEBUG_TX(trans, "Q:%d WR: 0x%x\n", txq->id, txq->write_ptr); |
| |
| /* |
| * if not in power-save mode, uCode will never sleep when we're |
| * trying to tx (during RFKILL, we're not trying to tx). |
| */ |
| iwl_write32(trans, HBUS_TARG_WRPTR, txq->write_ptr | (txq->id << 16)); |
| } |
| |
| static u8 iwl_pcie_gen2_get_num_tbs(struct iwl_trans *trans, |
| struct iwl_tfh_tfd *tfd) |
| { |
| return le16_to_cpu(tfd->num_tbs) & 0x1f; |
| } |
| |
| static void iwl_pcie_gen2_tfd_unmap(struct iwl_trans *trans, |
| struct iwl_cmd_meta *meta, |
| struct iwl_tfh_tfd *tfd) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int i, num_tbs; |
| |
| /* Sanity check on number of chunks */ |
| num_tbs = iwl_pcie_gen2_get_num_tbs(trans, tfd); |
| |
| if (num_tbs >= trans_pcie->max_tbs) { |
| IWL_ERR(trans, "Too many chunks: %i\n", num_tbs); |
| return; |
| } |
| |
| /* first TB is never freed - it's the bidirectional DMA data */ |
| for (i = 1; i < num_tbs; i++) { |
| if (meta->tbs & BIT(i)) |
| dma_unmap_page(trans->dev, |
| le64_to_cpu(tfd->tbs[i].addr), |
| le16_to_cpu(tfd->tbs[i].tb_len), |
| DMA_TO_DEVICE); |
| else |
| dma_unmap_single(trans->dev, |
| le64_to_cpu(tfd->tbs[i].addr), |
| le16_to_cpu(tfd->tbs[i].tb_len), |
| DMA_TO_DEVICE); |
| } |
| |
| tfd->num_tbs = 0; |
| } |
| |
| static void iwl_pcie_gen2_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| /* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and |
| * idx is bounded by n_window |
| */ |
| int rd_ptr = txq->read_ptr; |
| int idx = get_cmd_index(txq, rd_ptr); |
| |
| lockdep_assert_held(&txq->lock); |
| |
| /* We have only q->n_window txq->entries, but we use |
| * TFD_QUEUE_SIZE_MAX tfds |
| */ |
| iwl_pcie_gen2_tfd_unmap(trans, &txq->entries[idx].meta, |
| iwl_pcie_get_tfd(trans_pcie, txq, rd_ptr)); |
| |
| /* free SKB */ |
| if (txq->entries) { |
| struct sk_buff *skb; |
| |
| skb = txq->entries[idx].skb; |
| |
| /* Can be called from irqs-disabled context |
| * If skb is not NULL, it means that the whole queue is being |
| * freed and that the queue is not empty - free the skb |
| */ |
| if (skb) { |
| iwl_op_mode_free_skb(trans->op_mode, skb); |
| txq->entries[idx].skb = NULL; |
| } |
| } |
| } |
| |
| static int iwl_pcie_gen2_set_tb(struct iwl_trans *trans, |
| struct iwl_tfh_tfd *tfd, dma_addr_t addr, |
| u16 len) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int idx = iwl_pcie_gen2_get_num_tbs(trans, tfd); |
| struct iwl_tfh_tb *tb = &tfd->tbs[idx]; |
| |
| /* Each TFD can point to a maximum max_tbs Tx buffers */ |
| if (le16_to_cpu(tfd->num_tbs) >= trans_pcie->max_tbs) { |
| IWL_ERR(trans, "Error can not send more than %d chunks\n", |
| trans_pcie->max_tbs); |
| return -EINVAL; |
| } |
| |
| put_unaligned_le64(addr, &tb->addr); |
| tb->tb_len = cpu_to_le16(len); |
| |
| tfd->num_tbs = cpu_to_le16(idx + 1); |
| |
| return idx; |
| } |
| |
| static |
| struct iwl_tfh_tfd *iwl_pcie_gen2_build_tfd(struct iwl_trans *trans, |
| struct iwl_txq *txq, |
| struct iwl_device_cmd *dev_cmd, |
| struct sk_buff *skb, |
| struct iwl_cmd_meta *out_meta) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| struct iwl_tfh_tfd *tfd = |
| iwl_pcie_get_tfd(trans_pcie, txq, txq->write_ptr); |
| dma_addr_t tb_phys; |
| int i, len, tb1_len, tb2_len, hdr_len; |
| void *tb1_addr; |
| |
| memset(tfd, 0, sizeof(*tfd)); |
| |
| tb_phys = iwl_pcie_get_first_tb_dma(txq, txq->write_ptr); |
| /* The first TB points to bi-directional DMA data */ |
| memcpy(&txq->first_tb_bufs[txq->write_ptr], &dev_cmd->hdr, |
| IWL_FIRST_TB_SIZE); |
| |
| iwl_pcie_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE); |
| |
| /* there must be data left over for TB1 or this code must be changed */ |
| BUILD_BUG_ON(sizeof(struct iwl_tx_cmd_gen2) < IWL_FIRST_TB_SIZE); |
| |
| /* |
| * The second TB (tb1) points to the remainder of the TX command |
| * and the 802.11 header - dword aligned size |
| * (This calculation modifies the TX command, so do it before the |
| * setup of the first TB) |
| */ |
| len = sizeof(struct iwl_tx_cmd_gen2) + sizeof(struct iwl_cmd_header) + |
| ieee80211_hdrlen(hdr->frame_control) - IWL_FIRST_TB_SIZE; |
| |
| tb1_len = ALIGN(len, 4); |
| |
| /* map the data for TB1 */ |
| tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE; |
| tb_phys = dma_map_single(trans->dev, tb1_addr, tb1_len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(trans->dev, tb_phys))) |
| goto out_err; |
| iwl_pcie_gen2_set_tb(trans, tfd, tb_phys, tb1_len); |
| |
| /* set up TFD's third entry to point to remainder of skb's head */ |
| hdr_len = ieee80211_hdrlen(hdr->frame_control); |
| tb2_len = skb_headlen(skb) - hdr_len; |
| |
| if (tb2_len > 0) { |
| tb_phys = dma_map_single(trans->dev, skb->data + hdr_len, |
| tb2_len, DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(trans->dev, tb_phys))) |
| goto out_err; |
| iwl_pcie_gen2_set_tb(trans, tfd, tb_phys, tb2_len); |
| } |
| |
| /* set up the remaining entries to point to the data */ |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| int tb_idx; |
| |
| if (!skb_frag_size(frag)) |
| continue; |
| |
| tb_phys = skb_frag_dma_map(trans->dev, frag, 0, |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| |
| if (unlikely(dma_mapping_error(trans->dev, tb_phys))) |
| goto out_err; |
| tb_idx = iwl_pcie_gen2_set_tb(trans, tfd, tb_phys, |
| skb_frag_size(frag)); |
| |
| out_meta->tbs |= BIT(tb_idx); |
| } |
| |
| trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd), &dev_cmd->hdr, |
| IWL_FIRST_TB_SIZE + tb1_len, |
| skb->data + hdr_len, tb2_len); |
| trace_iwlwifi_dev_tx_data(trans->dev, skb, hdr_len, |
| skb->len - hdr_len); |
| |
| return tfd; |
| |
| out_err: |
| iwl_pcie_gen2_tfd_unmap(trans, out_meta, tfd); |
| return NULL; |
| } |
| |
| int iwl_trans_pcie_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb, |
| struct iwl_device_cmd *dev_cmd, int txq_id) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_tx_cmd_gen2 *tx_cmd = (void *)dev_cmd->payload; |
| struct iwl_cmd_meta *out_meta; |
| struct iwl_txq *txq = trans_pcie->txq[txq_id]; |
| void *tfd; |
| |
| if (WARN_ONCE(!test_bit(txq_id, trans_pcie->queue_used), |
| "TX on unused queue %d\n", txq_id)) |
| return -EINVAL; |
| |
| if (skb_is_nonlinear(skb) && |
| skb_shinfo(skb)->nr_frags > IWL_PCIE_MAX_FRAGS(trans_pcie) && |
| __skb_linearize(skb)) |
| return -ENOMEM; |
| |
| spin_lock(&txq->lock); |
| |
| /* Set up driver data for this TFD */ |
| txq->entries[txq->write_ptr].skb = skb; |
| txq->entries[txq->write_ptr].cmd = dev_cmd; |
| |
| dev_cmd->hdr.sequence = |
| cpu_to_le16((u16)(QUEUE_TO_SEQ(txq_id) | |
| INDEX_TO_SEQ(txq->write_ptr))); |
| |
| /* Set up first empty entry in queue's array of Tx/cmd buffers */ |
| out_meta = &txq->entries[txq->write_ptr].meta; |
| out_meta->flags = 0; |
| |
| tfd = iwl_pcie_gen2_build_tfd(trans, txq, dev_cmd, skb, out_meta); |
| if (!tfd) { |
| spin_unlock(&txq->lock); |
| return -1; |
| } |
| |
| /* Set up entry for this TFD in Tx byte-count array */ |
| iwl_pcie_gen2_update_byte_tbl(txq, le16_to_cpu(tx_cmd->len), |
| iwl_pcie_gen2_get_num_tbs(trans, tfd)); |
| |
| /* start timer if queue currently empty */ |
| if (txq->read_ptr == txq->write_ptr) { |
| if (txq->wd_timeout) |
| mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); |
| IWL_DEBUG_RPM(trans, "Q: %d first tx - take ref\n", txq->id); |
| iwl_trans_ref(trans); |
| } |
| |
| /* Tell device the write index *just past* this latest filled TFD */ |
| txq->write_ptr = iwl_queue_inc_wrap(txq->write_ptr); |
| iwl_pcie_gen2_txq_inc_wr_ptr(trans, txq); |
| if (iwl_queue_space(txq) < txq->high_mark) |
| iwl_stop_queue(trans, txq); |
| |
| /* |
| * At this point the frame is "transmitted" successfully |
| * and we will get a TX status notification eventually. |
| */ |
| spin_unlock(&txq->lock); |
| return 0; |
| } |
| |
| /*************** HOST COMMAND QUEUE FUNCTIONS *****/ |
| |
| /* |
| * iwl_pcie_gen2_enqueue_hcmd - enqueue a uCode command |
| * @priv: device private data point |
| * @cmd: a pointer to the ucode command structure |
| * |
| * The function returns < 0 values to indicate the operation |
| * failed. On success, it returns the index (>= 0) of command in the |
| * command queue. |
| */ |
| static int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans, |
| struct iwl_host_cmd *cmd) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue]; |
| struct iwl_device_cmd *out_cmd; |
| struct iwl_cmd_meta *out_meta; |
| unsigned long flags; |
| void *dup_buf = NULL; |
| dma_addr_t phys_addr; |
| int idx, i, cmd_pos; |
| u16 copy_size, cmd_size, tb0_size; |
| bool had_nocopy = false; |
| u8 group_id = iwl_cmd_groupid(cmd->id); |
| const u8 *cmddata[IWL_MAX_CMD_TBS_PER_TFD]; |
| u16 cmdlen[IWL_MAX_CMD_TBS_PER_TFD]; |
| struct iwl_tfh_tfd *tfd = |
| iwl_pcie_get_tfd(trans_pcie, txq, txq->write_ptr); |
| |
| memset(tfd, 0, sizeof(*tfd)); |
| |
| copy_size = sizeof(struct iwl_cmd_header_wide); |
| cmd_size = sizeof(struct iwl_cmd_header_wide); |
| |
| for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { |
| cmddata[i] = cmd->data[i]; |
| cmdlen[i] = cmd->len[i]; |
| |
| if (!cmd->len[i]) |
| continue; |
| |
| /* need at least IWL_FIRST_TB_SIZE copied */ |
| if (copy_size < IWL_FIRST_TB_SIZE) { |
| int copy = IWL_FIRST_TB_SIZE - copy_size; |
| |
| if (copy > cmdlen[i]) |
| copy = cmdlen[i]; |
| cmdlen[i] -= copy; |
| cmddata[i] += copy; |
| copy_size += copy; |
| } |
| |
| if (cmd->dataflags[i] & IWL_HCMD_DFL_NOCOPY) { |
| had_nocopy = true; |
| if (WARN_ON(cmd->dataflags[i] & IWL_HCMD_DFL_DUP)) { |
| idx = -EINVAL; |
| goto free_dup_buf; |
| } |
| } else if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP) { |
| /* |
| * This is also a chunk that isn't copied |
| * to the static buffer so set had_nocopy. |
| */ |
| had_nocopy = true; |
| |
| /* only allowed once */ |
| if (WARN_ON(dup_buf)) { |
| idx = -EINVAL; |
| goto free_dup_buf; |
| } |
| |
| dup_buf = kmemdup(cmddata[i], cmdlen[i], |
| GFP_ATOMIC); |
| if (!dup_buf) |
| return -ENOMEM; |
| } else { |
| /* NOCOPY must not be followed by normal! */ |
| if (WARN_ON(had_nocopy)) { |
| idx = -EINVAL; |
| goto free_dup_buf; |
| } |
| copy_size += cmdlen[i]; |
| } |
| cmd_size += cmd->len[i]; |
| } |
| |
| /* |
| * If any of the command structures end up being larger than the |
| * TFD_MAX_PAYLOAD_SIZE and they aren't dynamically allocated into |
| * separate TFDs, then we will need to increase the size of the buffers |
| */ |
| if (WARN(copy_size > TFD_MAX_PAYLOAD_SIZE, |
| "Command %s (%#x) is too large (%d bytes)\n", |
| iwl_get_cmd_string(trans, cmd->id), cmd->id, copy_size)) { |
| idx = -EINVAL; |
| goto free_dup_buf; |
| } |
| |
| spin_lock_bh(&txq->lock); |
| |
| if (iwl_queue_space(txq) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) { |
| spin_unlock_bh(&txq->lock); |
| |
| IWL_ERR(trans, "No space in command queue\n"); |
| iwl_op_mode_cmd_queue_full(trans->op_mode); |
| idx = -ENOSPC; |
| goto free_dup_buf; |
| } |
| |
| idx = get_cmd_index(txq, txq->write_ptr); |
| out_cmd = txq->entries[idx].cmd; |
| out_meta = &txq->entries[idx].meta; |
| |
| /* re-initialize to NULL */ |
| memset(out_meta, 0, sizeof(*out_meta)); |
| if (cmd->flags & CMD_WANT_SKB) |
| out_meta->source = cmd; |
| |
| /* set up the header */ |
| out_cmd->hdr_wide.cmd = iwl_cmd_opcode(cmd->id); |
| out_cmd->hdr_wide.group_id = group_id; |
| out_cmd->hdr_wide.version = iwl_cmd_version(cmd->id); |
| out_cmd->hdr_wide.length = |
| cpu_to_le16(cmd_size - sizeof(struct iwl_cmd_header_wide)); |
| out_cmd->hdr_wide.reserved = 0; |
| out_cmd->hdr_wide.sequence = |
| cpu_to_le16(QUEUE_TO_SEQ(trans_pcie->cmd_queue) | |
| INDEX_TO_SEQ(txq->write_ptr)); |
| |
| cmd_pos = sizeof(struct iwl_cmd_header_wide); |
| copy_size = sizeof(struct iwl_cmd_header_wide); |
| |
| /* and copy the data that needs to be copied */ |
| for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { |
| int copy; |
| |
| if (!cmd->len[i]) |
| continue; |
| |
| /* copy everything if not nocopy/dup */ |
| if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY | |
| IWL_HCMD_DFL_DUP))) { |
| copy = cmd->len[i]; |
| |
| memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy); |
| cmd_pos += copy; |
| copy_size += copy; |
| continue; |
| } |
| |
| /* |
| * Otherwise we need at least IWL_FIRST_TB_SIZE copied |
| * in total (for bi-directional DMA), but copy up to what |
| * we can fit into the payload for debug dump purposes. |
| */ |
| copy = min_t(int, TFD_MAX_PAYLOAD_SIZE - cmd_pos, cmd->len[i]); |
| |
| memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy); |
| cmd_pos += copy; |
| |
| /* However, treat copy_size the proper way, we need it below */ |
| if (copy_size < IWL_FIRST_TB_SIZE) { |
| copy = IWL_FIRST_TB_SIZE - copy_size; |
| |
| if (copy > cmd->len[i]) |
| copy = cmd->len[i]; |
| copy_size += copy; |
| } |
| } |
| |
| IWL_DEBUG_HC(trans, |
| "Sending command %s (%.2x.%.2x), seq: 0x%04X, %d bytes at %d[%d]:%d\n", |
| iwl_get_cmd_string(trans, cmd->id), group_id, |
| out_cmd->hdr.cmd, le16_to_cpu(out_cmd->hdr.sequence), |
| cmd_size, txq->write_ptr, idx, trans_pcie->cmd_queue); |
| |
| /* start the TFD with the minimum copy bytes */ |
| tb0_size = min_t(int, copy_size, IWL_FIRST_TB_SIZE); |
| memcpy(&txq->first_tb_bufs[idx], &out_cmd->hdr, tb0_size); |
| iwl_pcie_gen2_set_tb(trans, tfd, iwl_pcie_get_first_tb_dma(txq, idx), |
| tb0_size); |
| |
| /* map first command fragment, if any remains */ |
| if (copy_size > tb0_size) { |
| phys_addr = dma_map_single(trans->dev, |
| ((u8 *)&out_cmd->hdr) + tb0_size, |
| copy_size - tb0_size, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(trans->dev, phys_addr)) { |
| idx = -ENOMEM; |
| iwl_pcie_gen2_tfd_unmap(trans, out_meta, tfd); |
| goto out; |
| } |
| iwl_pcie_gen2_set_tb(trans, tfd, phys_addr, |
| copy_size - tb0_size); |
| } |
| |
| /* map the remaining (adjusted) nocopy/dup fragments */ |
| for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { |
| const void *data = cmddata[i]; |
| |
| if (!cmdlen[i]) |
| continue; |
| if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY | |
| IWL_HCMD_DFL_DUP))) |
| continue; |
| if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP) |
| data = dup_buf; |
| phys_addr = dma_map_single(trans->dev, (void *)data, |
| cmdlen[i], DMA_TO_DEVICE); |
| if (dma_mapping_error(trans->dev, phys_addr)) { |
| idx = -ENOMEM; |
| iwl_pcie_gen2_tfd_unmap(trans, out_meta, tfd); |
| goto out; |
| } |
| iwl_pcie_gen2_set_tb(trans, tfd, phys_addr, cmdlen[i]); |
| } |
| |
| BUILD_BUG_ON(IWL_TFH_NUM_TBS > sizeof(out_meta->tbs) * BITS_PER_BYTE); |
| out_meta->flags = cmd->flags; |
| if (WARN_ON_ONCE(txq->entries[idx].free_buf)) |
| kzfree(txq->entries[idx].free_buf); |
| txq->entries[idx].free_buf = dup_buf; |
| |
| trace_iwlwifi_dev_hcmd(trans->dev, cmd, cmd_size, &out_cmd->hdr_wide); |
| |
| /* start timer if queue currently empty */ |
| if (txq->read_ptr == txq->write_ptr && txq->wd_timeout) |
| mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); |
| |
| spin_lock_irqsave(&trans_pcie->reg_lock, flags); |
| if (!(cmd->flags & CMD_SEND_IN_IDLE) && |
| !trans_pcie->ref_cmd_in_flight) { |
| trans_pcie->ref_cmd_in_flight = true; |
| IWL_DEBUG_RPM(trans, "set ref_cmd_in_flight - ref\n"); |
| iwl_trans_ref(trans); |
| } |
| /* Increment and update queue's write index */ |
| txq->write_ptr = iwl_queue_inc_wrap(txq->write_ptr); |
| iwl_pcie_gen2_txq_inc_wr_ptr(trans, txq); |
| spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); |
| |
| out: |
| spin_unlock_bh(&txq->lock); |
| free_dup_buf: |
| if (idx < 0) |
| kfree(dup_buf); |
| return idx; |
| } |
| |
| #define HOST_COMPLETE_TIMEOUT (2 * HZ) |
| |
| static int iwl_pcie_gen2_send_hcmd_sync(struct iwl_trans *trans, |
| struct iwl_host_cmd *cmd) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| const char *cmd_str = iwl_get_cmd_string(trans, cmd->id); |
| struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue]; |
| int cmd_idx; |
| int ret; |
| |
| IWL_DEBUG_INFO(trans, "Attempting to send sync command %s\n", cmd_str); |
| |
| if (WARN(test_and_set_bit(STATUS_SYNC_HCMD_ACTIVE, |
| &trans->status), |
| "Command %s: a command is already active!\n", cmd_str)) |
| return -EIO; |
| |
| IWL_DEBUG_INFO(trans, "Setting HCMD_ACTIVE for command %s\n", cmd_str); |
| |
| if (pm_runtime_suspended(&trans_pcie->pci_dev->dev)) { |
| ret = wait_event_timeout(trans_pcie->d0i3_waitq, |
| pm_runtime_active(&trans_pcie->pci_dev->dev), |
| msecs_to_jiffies(IWL_TRANS_IDLE_TIMEOUT)); |
| if (!ret) { |
| IWL_ERR(trans, "Timeout exiting D0i3 before hcmd\n"); |
| return -ETIMEDOUT; |
| } |
| } |
| |
| cmd_idx = iwl_pcie_gen2_enqueue_hcmd(trans, cmd); |
| if (cmd_idx < 0) { |
| ret = cmd_idx; |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| IWL_ERR(trans, "Error sending %s: enqueue_hcmd failed: %d\n", |
| cmd_str, ret); |
| return ret; |
| } |
| |
| ret = wait_event_timeout(trans_pcie->wait_command_queue, |
| !test_bit(STATUS_SYNC_HCMD_ACTIVE, |
| &trans->status), |
| HOST_COMPLETE_TIMEOUT); |
| if (!ret) { |
| IWL_ERR(trans, "Error sending %s: time out after %dms.\n", |
| cmd_str, jiffies_to_msecs(HOST_COMPLETE_TIMEOUT)); |
| |
| IWL_ERR(trans, "Current CMD queue read_ptr %d write_ptr %d\n", |
| txq->read_ptr, txq->write_ptr); |
| |
| clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); |
| IWL_DEBUG_INFO(trans, "Clearing HCMD_ACTIVE for command %s\n", |
| cmd_str); |
| ret = -ETIMEDOUT; |
| |
| iwl_force_nmi(trans); |
| iwl_trans_fw_error(trans); |
| |
| goto cancel; |
| } |
| |
| if (test_bit(STATUS_FW_ERROR, &trans->status)) { |
| IWL_ERR(trans, "FW error in SYNC CMD %s\n", cmd_str); |
| dump_stack(); |
| ret = -EIO; |
| goto cancel; |
| } |
| |
| if (!(cmd->flags & CMD_SEND_IN_RFKILL) && |
| test_bit(STATUS_RFKILL, &trans->status)) { |
| IWL_DEBUG_RF_KILL(trans, "RFKILL in SYNC CMD... no rsp\n"); |
| ret = -ERFKILL; |
| goto cancel; |
| } |
| |
| if ((cmd->flags & CMD_WANT_SKB) && !cmd->resp_pkt) { |
| IWL_ERR(trans, "Error: Response NULL in '%s'\n", cmd_str); |
| ret = -EIO; |
| goto cancel; |
| } |
| |
| return 0; |
| |
| cancel: |
| if (cmd->flags & CMD_WANT_SKB) { |
| /* |
| * Cancel the CMD_WANT_SKB flag for the cmd in the |
| * TX cmd queue. Otherwise in case the cmd comes |
| * in later, it will possibly set an invalid |
| * address (cmd->meta.source). |
| */ |
| txq->entries[cmd_idx].meta.flags &= ~CMD_WANT_SKB; |
| } |
| |
| if (cmd->resp_pkt) { |
| iwl_free_resp(cmd); |
| cmd->resp_pkt = NULL; |
| } |
| |
| return ret; |
| } |
| |
| int iwl_trans_pcie_gen2_send_hcmd(struct iwl_trans *trans, |
| struct iwl_host_cmd *cmd) |
| { |
| if (!(cmd->flags & CMD_SEND_IN_RFKILL) && |
| test_bit(STATUS_RFKILL, &trans->status)) { |
| IWL_DEBUG_RF_KILL(trans, "Dropping CMD 0x%x: RF KILL\n", |
| cmd->id); |
| return -ERFKILL; |
| } |
| |
| if (cmd->flags & CMD_ASYNC) { |
| int ret; |
| |
| /* An asynchronous command can not expect an SKB to be set. */ |
| if (WARN_ON(cmd->flags & CMD_WANT_SKB)) |
| return -EINVAL; |
| |
| ret = iwl_pcie_gen2_enqueue_hcmd(trans, cmd); |
| if (ret < 0) { |
| IWL_ERR(trans, |
| "Error sending %s: enqueue_hcmd failed: %d\n", |
| iwl_get_cmd_string(trans, cmd->id), ret); |
| return ret; |
| } |
| return 0; |
| } |
| |
| return iwl_pcie_gen2_send_hcmd_sync(trans, cmd); |
| } |
| |
| /* |
| * iwl_pcie_gen2_txq_unmap - Unmap any remaining DMA mappings and free skb's |
| */ |
| void iwl_pcie_gen2_txq_unmap(struct iwl_trans *trans, int txq_id) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq = trans_pcie->txq[txq_id]; |
| |
| spin_lock_bh(&txq->lock); |
| while (txq->write_ptr != txq->read_ptr) { |
| IWL_DEBUG_TX_REPLY(trans, "Q %d Free %d\n", |
| txq_id, txq->read_ptr); |
| |
| iwl_pcie_gen2_free_tfd(trans, txq); |
| txq->read_ptr = iwl_queue_inc_wrap(txq->read_ptr); |
| |
| if (txq->read_ptr == txq->write_ptr) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&trans_pcie->reg_lock, flags); |
| if (txq_id != trans_pcie->cmd_queue) { |
| IWL_DEBUG_RPM(trans, "Q %d - last tx freed\n", |
| txq->id); |
| iwl_trans_unref(trans); |
| } else if (trans_pcie->ref_cmd_in_flight) { |
| trans_pcie->ref_cmd_in_flight = false; |
| IWL_DEBUG_RPM(trans, |
| "clear ref_cmd_in_flight\n"); |
| iwl_trans_unref(trans); |
| } |
| spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); |
| } |
| } |
| spin_unlock_bh(&txq->lock); |
| |
| /* just in case - this queue may have been stopped */ |
| iwl_wake_queue(trans, txq); |
| } |
| |
| static void iwl_pcie_gen2_txq_free_memory(struct iwl_trans *trans, |
| struct iwl_txq *txq) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct device *dev = trans->dev; |
| |
| /* De-alloc circular buffer of TFDs */ |
| if (txq->tfds) { |
| dma_free_coherent(dev, |
| trans_pcie->tfd_size * TFD_QUEUE_SIZE_MAX, |
| txq->tfds, txq->dma_addr); |
| dma_free_coherent(dev, |
| sizeof(*txq->first_tb_bufs) * txq->n_window, |
| txq->first_tb_bufs, txq->first_tb_dma); |
| } |
| |
| kfree(txq->entries); |
| iwl_pcie_free_dma_ptr(trans, &txq->bc_tbl); |
| kfree(txq); |
| } |
| |
| /* |
| * iwl_pcie_txq_free - Deallocate DMA queue. |
| * @txq: Transmit queue to deallocate. |
| * |
| * Empty queue by removing and destroying all BD's. |
| * Free all buffers. |
| * 0-fill, but do not free "txq" descriptor structure. |
| */ |
| static void iwl_pcie_gen2_txq_free(struct iwl_trans *trans, int txq_id) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *txq = trans_pcie->txq[txq_id]; |
| int i; |
| |
| if (WARN_ON(!txq)) |
| return; |
| |
| iwl_pcie_gen2_txq_unmap(trans, txq_id); |
| |
| /* De-alloc array of command/tx buffers */ |
| if (txq_id == trans_pcie->cmd_queue) |
| for (i = 0; i < txq->n_window; i++) { |
| kzfree(txq->entries[i].cmd); |
| kzfree(txq->entries[i].free_buf); |
| } |
| del_timer_sync(&txq->stuck_timer); |
| |
| iwl_pcie_gen2_txq_free_memory(trans, txq); |
| |
| trans_pcie->txq[txq_id] = NULL; |
| |
| clear_bit(txq_id, trans_pcie->queue_used); |
| } |
| |
| int iwl_trans_pcie_dyn_txq_alloc(struct iwl_trans *trans, |
| struct iwl_tx_queue_cfg_cmd *cmd, |
| int cmd_id, |
| unsigned int timeout) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_tx_queue_cfg_rsp *rsp; |
| struct iwl_txq *txq; |
| struct iwl_host_cmd hcmd = { |
| .id = cmd_id, |
| .len = { sizeof(*cmd) }, |
| .data = { cmd, }, |
| .flags = CMD_WANT_SKB, |
| }; |
| int ret, qid; |
| |
| txq = kzalloc(sizeof(*txq), GFP_KERNEL); |
| if (!txq) |
| return -ENOMEM; |
| ret = iwl_pcie_alloc_dma_ptr(trans, &txq->bc_tbl, |
| sizeof(struct iwlagn_scd_bc_tbl)); |
| if (ret) { |
| IWL_ERR(trans, "Scheduler BC Table allocation failed\n"); |
| kfree(txq); |
| return -ENOMEM; |
| } |
| |
| ret = iwl_pcie_txq_alloc(trans, txq, TFD_TX_CMD_SLOTS, false); |
| if (ret) { |
| IWL_ERR(trans, "Tx queue alloc failed\n"); |
| goto error; |
| } |
| ret = iwl_pcie_txq_init(trans, txq, TFD_TX_CMD_SLOTS, false); |
| if (ret) { |
| IWL_ERR(trans, "Tx queue init failed\n"); |
| goto error; |
| } |
| |
| txq->wd_timeout = msecs_to_jiffies(timeout); |
| |
| cmd->tfdq_addr = cpu_to_le64(txq->dma_addr); |
| cmd->byte_cnt_addr = cpu_to_le64(txq->bc_tbl.dma); |
| cmd->cb_size = cpu_to_le32(TFD_QUEUE_CB_SIZE(TFD_QUEUE_SIZE_MAX)); |
| |
| ret = iwl_trans_send_cmd(trans, &hcmd); |
| if (ret) |
| goto error; |
| |
| if (WARN_ON(iwl_rx_packet_payload_len(hcmd.resp_pkt) != sizeof(*rsp))) { |
| ret = -EINVAL; |
| goto error_free_resp; |
| } |
| |
| rsp = (void *)hcmd.resp_pkt->data; |
| qid = le16_to_cpu(rsp->queue_number); |
| |
| if (qid > ARRAY_SIZE(trans_pcie->txq)) { |
| WARN_ONCE(1, "queue index %d unsupported", qid); |
| ret = -EIO; |
| goto error_free_resp; |
| } |
| |
| if (test_and_set_bit(qid, trans_pcie->queue_used)) { |
| WARN_ONCE(1, "queue %d already used", qid); |
| ret = -EIO; |
| goto error_free_resp; |
| } |
| |
| txq->id = qid; |
| trans_pcie->txq[qid] = txq; |
| |
| /* Place first TFD at index corresponding to start sequence number */ |
| txq->read_ptr = le16_to_cpu(rsp->write_pointer); |
| txq->write_ptr = le16_to_cpu(rsp->write_pointer); |
| iwl_write_direct32(trans, HBUS_TARG_WRPTR, |
| (txq->write_ptr) | (qid << 16)); |
| IWL_DEBUG_TX_QUEUES(trans, "Activate queue %d\n", qid); |
| |
| iwl_free_resp(&hcmd); |
| return qid; |
| |
| error_free_resp: |
| iwl_free_resp(&hcmd); |
| error: |
| iwl_pcie_gen2_txq_free_memory(trans, txq); |
| return ret; |
| } |
| |
| void iwl_trans_pcie_dyn_txq_free(struct iwl_trans *trans, int queue) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| |
| /* |
| * Upon HW Rfkill - we stop the device, and then stop the queues |
| * in the op_mode. Just for the sake of the simplicity of the op_mode, |
| * allow the op_mode to call txq_disable after it already called |
| * stop_device. |
| */ |
| if (!test_and_clear_bit(queue, trans_pcie->queue_used)) { |
| WARN_ONCE(test_bit(STATUS_DEVICE_ENABLED, &trans->status), |
| "queue %d not used", queue); |
| return; |
| } |
| |
| iwl_pcie_gen2_txq_unmap(trans, queue); |
| |
| IWL_DEBUG_TX_QUEUES(trans, "Deactivate queue %d\n", queue); |
| } |
| |
| void iwl_pcie_gen2_tx_free(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| int i; |
| |
| memset(trans_pcie->queue_used, 0, sizeof(trans_pcie->queue_used)); |
| |
| /* Free all TX queues */ |
| for (i = 0; i < ARRAY_SIZE(trans_pcie->txq); i++) { |
| if (!trans_pcie->txq[i]) |
| continue; |
| |
| iwl_pcie_gen2_txq_free(trans, i); |
| } |
| } |
| |
| int iwl_pcie_gen2_tx_init(struct iwl_trans *trans) |
| { |
| struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); |
| struct iwl_txq *cmd_queue; |
| int txq_id = trans_pcie->cmd_queue, ret; |
| |
| /* alloc and init the command queue */ |
| if (!trans_pcie->txq[txq_id]) { |
| cmd_queue = kzalloc(sizeof(*cmd_queue), GFP_KERNEL); |
| if (!cmd_queue) { |
| IWL_ERR(trans, "Not enough memory for command queue\n"); |
| return -ENOMEM; |
| } |
| trans_pcie->txq[txq_id] = cmd_queue; |
| ret = iwl_pcie_txq_alloc(trans, cmd_queue, TFD_CMD_SLOTS, true); |
| if (ret) { |
| IWL_ERR(trans, "Tx %d queue init failed\n", txq_id); |
| goto error; |
| } |
| } else { |
| cmd_queue = trans_pcie->txq[txq_id]; |
| } |
| |
| ret = iwl_pcie_txq_init(trans, cmd_queue, TFD_CMD_SLOTS, true); |
| if (ret) { |
| IWL_ERR(trans, "Tx %d queue alloc failed\n", txq_id); |
| goto error; |
| } |
| trans_pcie->txq[txq_id]->id = txq_id; |
| set_bit(txq_id, trans_pcie->queue_used); |
| |
| return 0; |
| |
| error: |
| iwl_pcie_gen2_tx_free(trans); |
| return ret; |
| } |
| |