| /************************************************************************** |
| * |
| * Copyright (c) 2006-2009 Vmware, Inc., Palo Alto, CA., USA |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| **************************************************************************/ |
| /* |
| * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> |
| */ |
| #ifndef _TTM_BO_DRIVER_H_ |
| #define _TTM_BO_DRIVER_H_ |
| |
| #include <ttm/ttm_bo_api.h> |
| #include <ttm/ttm_memory.h> |
| #include <ttm/ttm_module.h> |
| #include <ttm/ttm_placement.h> |
| #include <drm/drm_mm.h> |
| #include <drm/drm_global.h> |
| #include <drm/drm_vma_manager.h> |
| #include <linux/workqueue.h> |
| #include <linux/fs.h> |
| #include <linux/spinlock.h> |
| #include <linux/reservation.h> |
| |
| struct ttm_backend_func { |
| /** |
| * struct ttm_backend_func member bind |
| * |
| * @ttm: Pointer to a struct ttm_tt. |
| * @bo_mem: Pointer to a struct ttm_mem_reg describing the |
| * memory type and location for binding. |
| * |
| * Bind the backend pages into the aperture in the location |
| * indicated by @bo_mem. This function should be able to handle |
| * differences between aperture and system page sizes. |
| */ |
| int (*bind) (struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem); |
| |
| /** |
| * struct ttm_backend_func member unbind |
| * |
| * @ttm: Pointer to a struct ttm_tt. |
| * |
| * Unbind previously bound backend pages. This function should be |
| * able to handle differences between aperture and system page sizes. |
| */ |
| int (*unbind) (struct ttm_tt *ttm); |
| |
| /** |
| * struct ttm_backend_func member destroy |
| * |
| * @ttm: Pointer to a struct ttm_tt. |
| * |
| * Destroy the backend. This will be call back from ttm_tt_destroy so |
| * don't call ttm_tt_destroy from the callback or infinite loop. |
| */ |
| void (*destroy) (struct ttm_tt *ttm); |
| }; |
| |
| #define TTM_PAGE_FLAG_WRITE (1 << 3) |
| #define TTM_PAGE_FLAG_SWAPPED (1 << 4) |
| #define TTM_PAGE_FLAG_PERSISTENT_SWAP (1 << 5) |
| #define TTM_PAGE_FLAG_ZERO_ALLOC (1 << 6) |
| #define TTM_PAGE_FLAG_DMA32 (1 << 7) |
| #define TTM_PAGE_FLAG_SG (1 << 8) |
| |
| enum ttm_caching_state { |
| tt_uncached, |
| tt_wc, |
| tt_cached |
| }; |
| |
| /** |
| * struct ttm_tt |
| * |
| * @bdev: Pointer to a struct ttm_bo_device. |
| * @func: Pointer to a struct ttm_backend_func that describes |
| * the backend methods. |
| * @dummy_read_page: Page to map where the ttm_tt page array contains a NULL |
| * pointer. |
| * @pages: Array of pages backing the data. |
| * @num_pages: Number of pages in the page array. |
| * @bdev: Pointer to the current struct ttm_bo_device. |
| * @be: Pointer to the ttm backend. |
| * @swap_storage: Pointer to shmem struct file for swap storage. |
| * @caching_state: The current caching state of the pages. |
| * @state: The current binding state of the pages. |
| * |
| * This is a structure holding the pages, caching- and aperture binding |
| * status for a buffer object that isn't backed by fixed (VRAM / AGP) |
| * memory. |
| */ |
| |
| struct ttm_tt { |
| struct ttm_bo_device *bdev; |
| struct ttm_backend_func *func; |
| struct page *dummy_read_page; |
| struct page **pages; |
| uint32_t page_flags; |
| unsigned long num_pages; |
| struct sg_table *sg; /* for SG objects via dma-buf */ |
| struct ttm_bo_global *glob; |
| struct file *swap_storage; |
| enum ttm_caching_state caching_state; |
| enum { |
| tt_bound, |
| tt_unbound, |
| tt_unpopulated, |
| } state; |
| }; |
| |
| /** |
| * struct ttm_dma_tt |
| * |
| * @ttm: Base ttm_tt struct. |
| * @cpu_address: The CPU address of the pages |
| * @dma_address: The DMA (bus) addresses of the pages |
| * @pages_list: used by some page allocation backend |
| * |
| * This is a structure holding the pages, caching- and aperture binding |
| * status for a buffer object that isn't backed by fixed (VRAM / AGP) |
| * memory. |
| */ |
| struct ttm_dma_tt { |
| struct ttm_tt ttm; |
| void **cpu_address; |
| dma_addr_t *dma_address; |
| struct list_head pages_list; |
| }; |
| |
| #define TTM_MEMTYPE_FLAG_FIXED (1 << 0) /* Fixed (on-card) PCI memory */ |
| #define TTM_MEMTYPE_FLAG_MAPPABLE (1 << 1) /* Memory mappable */ |
| #define TTM_MEMTYPE_FLAG_CMA (1 << 3) /* Can't map aperture */ |
| |
| struct ttm_mem_type_manager; |
| |
| struct ttm_mem_type_manager_func { |
| /** |
| * struct ttm_mem_type_manager member init |
| * |
| * @man: Pointer to a memory type manager. |
| * @p_size: Implementation dependent, but typically the size of the |
| * range to be managed in pages. |
| * |
| * Called to initialize a private range manager. The function is |
| * expected to initialize the man::priv member. |
| * Returns 0 on success, negative error code on failure. |
| */ |
| int (*init)(struct ttm_mem_type_manager *man, unsigned long p_size); |
| |
| /** |
| * struct ttm_mem_type_manager member takedown |
| * |
| * @man: Pointer to a memory type manager. |
| * |
| * Called to undo the setup done in init. All allocated resources |
| * should be freed. |
| */ |
| int (*takedown)(struct ttm_mem_type_manager *man); |
| |
| /** |
| * struct ttm_mem_type_manager member get_node |
| * |
| * @man: Pointer to a memory type manager. |
| * @bo: Pointer to the buffer object we're allocating space for. |
| * @placement: Placement details. |
| * @flags: Additional placement flags. |
| * @mem: Pointer to a struct ttm_mem_reg to be filled in. |
| * |
| * This function should allocate space in the memory type managed |
| * by @man. Placement details if |
| * applicable are given by @placement. If successful, |
| * @mem::mm_node should be set to a non-null value, and |
| * @mem::start should be set to a value identifying the beginning |
| * of the range allocated, and the function should return zero. |
| * If the memory region accommodate the buffer object, @mem::mm_node |
| * should be set to NULL, and the function should return 0. |
| * If a system error occurred, preventing the request to be fulfilled, |
| * the function should return a negative error code. |
| * |
| * Note that @mem::mm_node will only be dereferenced by |
| * struct ttm_mem_type_manager functions and optionally by the driver, |
| * which has knowledge of the underlying type. |
| * |
| * This function may not be called from within atomic context, so |
| * an implementation can and must use either a mutex or a spinlock to |
| * protect any data structures managing the space. |
| */ |
| int (*get_node)(struct ttm_mem_type_manager *man, |
| struct ttm_buffer_object *bo, |
| struct ttm_placement *placement, |
| uint32_t flags, |
| struct ttm_mem_reg *mem); |
| |
| /** |
| * struct ttm_mem_type_manager member put_node |
| * |
| * @man: Pointer to a memory type manager. |
| * @mem: Pointer to a struct ttm_mem_reg to be filled in. |
| * |
| * This function frees memory type resources previously allocated |
| * and that are identified by @mem::mm_node and @mem::start. May not |
| * be called from within atomic context. |
| */ |
| void (*put_node)(struct ttm_mem_type_manager *man, |
| struct ttm_mem_reg *mem); |
| |
| /** |
| * struct ttm_mem_type_manager member debug |
| * |
| * @man: Pointer to a memory type manager. |
| * @prefix: Prefix to be used in printout to identify the caller. |
| * |
| * This function is called to print out the state of the memory |
| * type manager to aid debugging of out-of-memory conditions. |
| * It may not be called from within atomic context. |
| */ |
| void (*debug)(struct ttm_mem_type_manager *man, const char *prefix); |
| }; |
| |
| /** |
| * struct ttm_mem_type_manager |
| * |
| * @has_type: The memory type has been initialized. |
| * @use_type: The memory type is enabled. |
| * @flags: TTM_MEMTYPE_XX flags identifying the traits of the memory |
| * managed by this memory type. |
| * @gpu_offset: If used, the GPU offset of the first managed page of |
| * fixed memory or the first managed location in an aperture. |
| * @size: Size of the managed region. |
| * @available_caching: A mask of available caching types, TTM_PL_FLAG_XX, |
| * as defined in ttm_placement_common.h |
| * @default_caching: The default caching policy used for a buffer object |
| * placed in this memory type if the user doesn't provide one. |
| * @func: structure pointer implementing the range manager. See above |
| * @priv: Driver private closure for @func. |
| * @io_reserve_mutex: Mutex optionally protecting shared io_reserve structures |
| * @use_io_reserve_lru: Use an lru list to try to unreserve io_mem_regions |
| * reserved by the TTM vm system. |
| * @io_reserve_lru: Optional lru list for unreserving io mem regions. |
| * @io_reserve_fastpath: Only use bdev::driver::io_mem_reserve to obtain |
| * static information. bdev::driver::io_mem_free is never used. |
| * @lru: The lru list for this memory type. |
| * |
| * This structure is used to identify and manage memory types for a device. |
| * It's set up by the ttm_bo_driver::init_mem_type method. |
| */ |
| |
| |
| |
| struct ttm_mem_type_manager { |
| struct ttm_bo_device *bdev; |
| |
| /* |
| * No protection. Constant from start. |
| */ |
| |
| bool has_type; |
| bool use_type; |
| uint32_t flags; |
| unsigned long gpu_offset; |
| uint64_t size; |
| uint32_t available_caching; |
| uint32_t default_caching; |
| const struct ttm_mem_type_manager_func *func; |
| void *priv; |
| struct mutex io_reserve_mutex; |
| bool use_io_reserve_lru; |
| bool io_reserve_fastpath; |
| |
| /* |
| * Protected by @io_reserve_mutex: |
| */ |
| |
| struct list_head io_reserve_lru; |
| |
| /* |
| * Protected by the global->lru_lock. |
| */ |
| |
| struct list_head lru; |
| }; |
| |
| /** |
| * struct ttm_bo_driver |
| * |
| * @create_ttm_backend_entry: Callback to create a struct ttm_backend. |
| * @invalidate_caches: Callback to invalidate read caches when a buffer object |
| * has been evicted. |
| * @init_mem_type: Callback to initialize a struct ttm_mem_type_manager |
| * structure. |
| * @evict_flags: Callback to obtain placement flags when a buffer is evicted. |
| * @move: Callback for a driver to hook in accelerated functions to |
| * move a buffer. |
| * If set to NULL, a potentially slow memcpy() move is used. |
| * @sync_obj_signaled: See ttm_fence_api.h |
| * @sync_obj_wait: See ttm_fence_api.h |
| * @sync_obj_flush: See ttm_fence_api.h |
| * @sync_obj_unref: See ttm_fence_api.h |
| * @sync_obj_ref: See ttm_fence_api.h |
| */ |
| |
| struct ttm_bo_driver { |
| /** |
| * ttm_tt_create |
| * |
| * @bdev: pointer to a struct ttm_bo_device: |
| * @size: Size of the data needed backing. |
| * @page_flags: Page flags as identified by TTM_PAGE_FLAG_XX flags. |
| * @dummy_read_page: See struct ttm_bo_device. |
| * |
| * Create a struct ttm_tt to back data with system memory pages. |
| * No pages are actually allocated. |
| * Returns: |
| * NULL: Out of memory. |
| */ |
| struct ttm_tt *(*ttm_tt_create)(struct ttm_bo_device *bdev, |
| unsigned long size, |
| uint32_t page_flags, |
| struct page *dummy_read_page); |
| |
| /** |
| * ttm_tt_populate |
| * |
| * @ttm: The struct ttm_tt to contain the backing pages. |
| * |
| * Allocate all backing pages |
| * Returns: |
| * -ENOMEM: Out of memory. |
| */ |
| int (*ttm_tt_populate)(struct ttm_tt *ttm); |
| |
| /** |
| * ttm_tt_unpopulate |
| * |
| * @ttm: The struct ttm_tt to contain the backing pages. |
| * |
| * Free all backing page |
| */ |
| void (*ttm_tt_unpopulate)(struct ttm_tt *ttm); |
| |
| /** |
| * struct ttm_bo_driver member invalidate_caches |
| * |
| * @bdev: the buffer object device. |
| * @flags: new placement of the rebound buffer object. |
| * |
| * A previosly evicted buffer has been rebound in a |
| * potentially new location. Tell the driver that it might |
| * consider invalidating read (texture) caches on the next command |
| * submission as a consequence. |
| */ |
| |
| int (*invalidate_caches) (struct ttm_bo_device *bdev, uint32_t flags); |
| int (*init_mem_type) (struct ttm_bo_device *bdev, uint32_t type, |
| struct ttm_mem_type_manager *man); |
| /** |
| * struct ttm_bo_driver member evict_flags: |
| * |
| * @bo: the buffer object to be evicted |
| * |
| * Return the bo flags for a buffer which is not mapped to the hardware. |
| * These will be placed in proposed_flags so that when the move is |
| * finished, they'll end up in bo->mem.flags |
| */ |
| |
| void(*evict_flags) (struct ttm_buffer_object *bo, |
| struct ttm_placement *placement); |
| /** |
| * struct ttm_bo_driver member move: |
| * |
| * @bo: the buffer to move |
| * @evict: whether this motion is evicting the buffer from |
| * the graphics address space |
| * @interruptible: Use interruptible sleeps if possible when sleeping. |
| * @no_wait: whether this should give up and return -EBUSY |
| * if this move would require sleeping |
| * @new_mem: the new memory region receiving the buffer |
| * |
| * Move a buffer between two memory regions. |
| */ |
| int (*move) (struct ttm_buffer_object *bo, |
| bool evict, bool interruptible, |
| bool no_wait_gpu, |
| struct ttm_mem_reg *new_mem); |
| |
| /** |
| * struct ttm_bo_driver_member verify_access |
| * |
| * @bo: Pointer to a buffer object. |
| * @filp: Pointer to a struct file trying to access the object. |
| * |
| * Called from the map / write / read methods to verify that the |
| * caller is permitted to access the buffer object. |
| * This member may be set to NULL, which will refuse this kind of |
| * access for all buffer objects. |
| * This function should return 0 if access is granted, -EPERM otherwise. |
| */ |
| int (*verify_access) (struct ttm_buffer_object *bo, |
| struct file *filp); |
| |
| /** |
| * In case a driver writer dislikes the TTM fence objects, |
| * the driver writer can replace those with sync objects of |
| * his / her own. If it turns out that no driver writer is |
| * using these. I suggest we remove these hooks and plug in |
| * fences directly. The bo driver needs the following functionality: |
| * See the corresponding functions in the fence object API |
| * documentation. |
| */ |
| |
| bool (*sync_obj_signaled) (void *sync_obj); |
| int (*sync_obj_wait) (void *sync_obj, |
| bool lazy, bool interruptible); |
| int (*sync_obj_flush) (void *sync_obj); |
| void (*sync_obj_unref) (void **sync_obj); |
| void *(*sync_obj_ref) (void *sync_obj); |
| |
| /* hook to notify driver about a driver move so it |
| * can do tiling things */ |
| void (*move_notify)(struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *new_mem); |
| /* notify the driver we are taking a fault on this BO |
| * and have reserved it */ |
| int (*fault_reserve_notify)(struct ttm_buffer_object *bo); |
| |
| /** |
| * notify the driver that we're about to swap out this bo |
| */ |
| void (*swap_notify) (struct ttm_buffer_object *bo); |
| |
| /** |
| * Driver callback on when mapping io memory (for bo_move_memcpy |
| * for instance). TTM will take care to call io_mem_free whenever |
| * the mapping is not use anymore. io_mem_reserve & io_mem_free |
| * are balanced. |
| */ |
| int (*io_mem_reserve)(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem); |
| void (*io_mem_free)(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem); |
| }; |
| |
| /** |
| * struct ttm_bo_global_ref - Argument to initialize a struct ttm_bo_global. |
| */ |
| |
| struct ttm_bo_global_ref { |
| struct drm_global_reference ref; |
| struct ttm_mem_global *mem_glob; |
| }; |
| |
| /** |
| * struct ttm_bo_global - Buffer object driver global data. |
| * |
| * @mem_glob: Pointer to a struct ttm_mem_global object for accounting. |
| * @dummy_read_page: Pointer to a dummy page used for mapping requests |
| * of unpopulated pages. |
| * @shrink: A shrink callback object used for buffer object swap. |
| * @device_list_mutex: Mutex protecting the device list. |
| * This mutex is held while traversing the device list for pm options. |
| * @lru_lock: Spinlock protecting the bo subsystem lru lists. |
| * @device_list: List of buffer object devices. |
| * @swap_lru: Lru list of buffer objects used for swapping. |
| */ |
| |
| struct ttm_bo_global { |
| |
| /** |
| * Constant after init. |
| */ |
| |
| struct kobject kobj; |
| struct ttm_mem_global *mem_glob; |
| struct page *dummy_read_page; |
| struct ttm_mem_shrink shrink; |
| struct mutex device_list_mutex; |
| spinlock_t lru_lock; |
| |
| /** |
| * Protected by device_list_mutex. |
| */ |
| struct list_head device_list; |
| |
| /** |
| * Protected by the lru_lock. |
| */ |
| struct list_head swap_lru; |
| |
| /** |
| * Internal protection. |
| */ |
| atomic_t bo_count; |
| }; |
| |
| |
| #define TTM_NUM_MEM_TYPES 8 |
| |
| #define TTM_BO_PRIV_FLAG_MOVING 0 /* Buffer object is moving and needs |
| idling before CPU mapping */ |
| #define TTM_BO_PRIV_FLAG_MAX 1 |
| /** |
| * struct ttm_bo_device - Buffer object driver device-specific data. |
| * |
| * @driver: Pointer to a struct ttm_bo_driver struct setup by the driver. |
| * @man: An array of mem_type_managers. |
| * @fence_lock: Protects the synchronizing members on *all* bos belonging |
| * to this device. |
| * @vma_manager: Address space manager |
| * lru_lock: Spinlock that protects the buffer+device lru lists and |
| * ddestroy lists. |
| * @val_seq: Current validation sequence. |
| * @dev_mapping: A pointer to the struct address_space representing the |
| * device address space. |
| * @wq: Work queue structure for the delayed delete workqueue. |
| * |
| */ |
| |
| struct ttm_bo_device { |
| |
| /* |
| * Constant after bo device init / atomic. |
| */ |
| struct list_head device_list; |
| struct ttm_bo_global *glob; |
| struct ttm_bo_driver *driver; |
| struct ttm_mem_type_manager man[TTM_NUM_MEM_TYPES]; |
| spinlock_t fence_lock; |
| |
| /* |
| * Protected by internal locks. |
| */ |
| struct drm_vma_offset_manager vma_manager; |
| |
| /* |
| * Protected by the global:lru lock. |
| */ |
| struct list_head ddestroy; |
| uint32_t val_seq; |
| |
| /* |
| * Protected by load / firstopen / lastclose /unload sync. |
| */ |
| |
| struct address_space *dev_mapping; |
| |
| /* |
| * Internal protection. |
| */ |
| |
| struct delayed_work wq; |
| |
| bool need_dma32; |
| }; |
| |
| /** |
| * ttm_flag_masked |
| * |
| * @old: Pointer to the result and original value. |
| * @new: New value of bits. |
| * @mask: Mask of bits to change. |
| * |
| * Convenience function to change a number of bits identified by a mask. |
| */ |
| |
| static inline uint32_t |
| ttm_flag_masked(uint32_t *old, uint32_t new, uint32_t mask) |
| { |
| *old ^= (*old ^ new) & mask; |
| return *old; |
| } |
| |
| /** |
| * ttm_tt_init |
| * |
| * @ttm: The struct ttm_tt. |
| * @bdev: pointer to a struct ttm_bo_device: |
| * @size: Size of the data needed backing. |
| * @page_flags: Page flags as identified by TTM_PAGE_FLAG_XX flags. |
| * @dummy_read_page: See struct ttm_bo_device. |
| * |
| * Create a struct ttm_tt to back data with system memory pages. |
| * No pages are actually allocated. |
| * Returns: |
| * NULL: Out of memory. |
| */ |
| extern int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev, |
| unsigned long size, uint32_t page_flags, |
| struct page *dummy_read_page); |
| extern int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev, |
| unsigned long size, uint32_t page_flags, |
| struct page *dummy_read_page); |
| |
| /** |
| * ttm_tt_fini |
| * |
| * @ttm: the ttm_tt structure. |
| * |
| * Free memory of ttm_tt structure |
| */ |
| extern void ttm_tt_fini(struct ttm_tt *ttm); |
| extern void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma); |
| |
| /** |
| * ttm_ttm_bind: |
| * |
| * @ttm: The struct ttm_tt containing backing pages. |
| * @bo_mem: The struct ttm_mem_reg identifying the binding location. |
| * |
| * Bind the pages of @ttm to an aperture location identified by @bo_mem |
| */ |
| extern int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem); |
| |
| /** |
| * ttm_ttm_destroy: |
| * |
| * @ttm: The struct ttm_tt. |
| * |
| * Unbind, unpopulate and destroy common struct ttm_tt. |
| */ |
| extern void ttm_tt_destroy(struct ttm_tt *ttm); |
| |
| /** |
| * ttm_ttm_unbind: |
| * |
| * @ttm: The struct ttm_tt. |
| * |
| * Unbind a struct ttm_tt. |
| */ |
| extern void ttm_tt_unbind(struct ttm_tt *ttm); |
| |
| /** |
| * ttm_tt_swapin: |
| * |
| * @ttm: The struct ttm_tt. |
| * |
| * Swap in a previously swap out ttm_tt. |
| */ |
| extern int ttm_tt_swapin(struct ttm_tt *ttm); |
| |
| /** |
| * ttm_tt_set_placement_caching: |
| * |
| * @ttm A struct ttm_tt the backing pages of which will change caching policy. |
| * @placement: Flag indicating the desired caching policy. |
| * |
| * This function will change caching policy of any default kernel mappings of |
| * the pages backing @ttm. If changing from cached to uncached or |
| * write-combined, |
| * all CPU caches will first be flushed to make sure the data of the pages |
| * hit RAM. This function may be very costly as it involves global TLB |
| * and cache flushes and potential page splitting / combining. |
| */ |
| extern int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement); |
| extern int ttm_tt_swapout(struct ttm_tt *ttm, |
| struct file *persistent_swap_storage); |
| |
| /** |
| * ttm_tt_unpopulate - free pages from a ttm |
| * |
| * @ttm: Pointer to the ttm_tt structure |
| * |
| * Calls the driver method to free all pages from a ttm |
| */ |
| extern void ttm_tt_unpopulate(struct ttm_tt *ttm); |
| |
| /* |
| * ttm_bo.c |
| */ |
| |
| /** |
| * ttm_mem_reg_is_pci |
| * |
| * @bdev: Pointer to a struct ttm_bo_device. |
| * @mem: A valid struct ttm_mem_reg. |
| * |
| * Returns true if the memory described by @mem is PCI memory, |
| * false otherwise. |
| */ |
| extern bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, |
| struct ttm_mem_reg *mem); |
| |
| /** |
| * ttm_bo_mem_space |
| * |
| * @bo: Pointer to a struct ttm_buffer_object. the data of which |
| * we want to allocate space for. |
| * @proposed_placement: Proposed new placement for the buffer object. |
| * @mem: A struct ttm_mem_reg. |
| * @interruptible: Sleep interruptible when sliping. |
| * @no_wait_gpu: Return immediately if the GPU is busy. |
| * |
| * Allocate memory space for the buffer object pointed to by @bo, using |
| * the placement flags in @mem, potentially evicting other idle buffer objects. |
| * This function may sleep while waiting for space to become available. |
| * Returns: |
| * -EBUSY: No space available (only if no_wait == 1). |
| * -ENOMEM: Could not allocate memory for the buffer object, either due to |
| * fragmentation or concurrent allocators. |
| * -ERESTARTSYS: An interruptible sleep was interrupted by a signal. |
| */ |
| extern int ttm_bo_mem_space(struct ttm_buffer_object *bo, |
| struct ttm_placement *placement, |
| struct ttm_mem_reg *mem, |
| bool interruptible, |
| bool no_wait_gpu); |
| |
| extern void ttm_bo_mem_put(struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *mem); |
| extern void ttm_bo_mem_put_locked(struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *mem); |
| |
| extern void ttm_bo_global_release(struct drm_global_reference *ref); |
| extern int ttm_bo_global_init(struct drm_global_reference *ref); |
| |
| extern int ttm_bo_device_release(struct ttm_bo_device *bdev); |
| |
| /** |
| * ttm_bo_device_init |
| * |
| * @bdev: A pointer to a struct ttm_bo_device to initialize. |
| * @glob: A pointer to an initialized struct ttm_bo_global. |
| * @driver: A pointer to a struct ttm_bo_driver set up by the caller. |
| * @mapping: The address space to use for this bo. |
| * @file_page_offset: Offset into the device address space that is available |
| * for buffer data. This ensures compatibility with other users of the |
| * address space. |
| * |
| * Initializes a struct ttm_bo_device: |
| * Returns: |
| * !0: Failure. |
| */ |
| extern int ttm_bo_device_init(struct ttm_bo_device *bdev, |
| struct ttm_bo_global *glob, |
| struct ttm_bo_driver *driver, |
| struct address_space *mapping, |
| uint64_t file_page_offset, bool need_dma32); |
| |
| /** |
| * ttm_bo_unmap_virtual |
| * |
| * @bo: tear down the virtual mappings for this BO |
| */ |
| extern void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo); |
| |
| /** |
| * ttm_bo_unmap_virtual |
| * |
| * @bo: tear down the virtual mappings for this BO |
| * |
| * The caller must take ttm_mem_io_lock before calling this function. |
| */ |
| extern void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo); |
| |
| extern int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo); |
| extern void ttm_mem_io_free_vm(struct ttm_buffer_object *bo); |
| extern int ttm_mem_io_lock(struct ttm_mem_type_manager *man, |
| bool interruptible); |
| extern void ttm_mem_io_unlock(struct ttm_mem_type_manager *man); |
| |
| extern void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo); |
| extern void ttm_bo_add_to_lru(struct ttm_buffer_object *bo); |
| |
| /** |
| * __ttm_bo_reserve: |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @interruptible: Sleep interruptible if waiting. |
| * @no_wait: Don't sleep while trying to reserve, rather return -EBUSY. |
| * @use_ticket: If @bo is already reserved, Only sleep waiting for |
| * it to become unreserved if @ticket->stamp is older. |
| * |
| * Will not remove reserved buffers from the lru lists. |
| * Otherwise identical to ttm_bo_reserve. |
| * |
| * Returns: |
| * -EDEADLK: The reservation may cause a deadlock. |
| * Release all buffer reservations, wait for @bo to become unreserved and |
| * try again. (only if use_sequence == 1). |
| * -ERESTARTSYS: A wait for the buffer to become unreserved was interrupted by |
| * a signal. Release all buffer reservations and return to user-space. |
| * -EBUSY: The function needed to sleep, but @no_wait was true |
| * -EALREADY: Bo already reserved using @ticket. This error code will only |
| * be returned if @use_ticket is set to true. |
| */ |
| static inline int __ttm_bo_reserve(struct ttm_buffer_object *bo, |
| bool interruptible, |
| bool no_wait, bool use_ticket, |
| struct ww_acquire_ctx *ticket) |
| { |
| int ret = 0; |
| |
| if (no_wait) { |
| bool success; |
| if (WARN_ON(ticket)) |
| return -EBUSY; |
| |
| success = ww_mutex_trylock(&bo->resv->lock); |
| return success ? 0 : -EBUSY; |
| } |
| |
| if (interruptible) |
| ret = ww_mutex_lock_interruptible(&bo->resv->lock, ticket); |
| else |
| ret = ww_mutex_lock(&bo->resv->lock, ticket); |
| if (ret == -EINTR) |
| return -ERESTARTSYS; |
| return ret; |
| } |
| |
| /** |
| * ttm_bo_reserve: |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @interruptible: Sleep interruptible if waiting. |
| * @no_wait: Don't sleep while trying to reserve, rather return -EBUSY. |
| * @use_ticket: If @bo is already reserved, Only sleep waiting for |
| * it to become unreserved if @ticket->stamp is older. |
| * |
| * Locks a buffer object for validation. (Or prevents other processes from |
| * locking it for validation) and removes it from lru lists, while taking |
| * a number of measures to prevent deadlocks. |
| * |
| * Deadlocks may occur when two processes try to reserve multiple buffers in |
| * different order, either by will or as a result of a buffer being evicted |
| * to make room for a buffer already reserved. (Buffers are reserved before |
| * they are evicted). The following algorithm prevents such deadlocks from |
| * occurring: |
| * Processes attempting to reserve multiple buffers other than for eviction, |
| * (typically execbuf), should first obtain a unique 32-bit |
| * validation sequence number, |
| * and call this function with @use_ticket == 1 and @ticket->stamp == the unique |
| * sequence number. If upon call of this function, the buffer object is already |
| * reserved, the validation sequence is checked against the validation |
| * sequence of the process currently reserving the buffer, |
| * and if the current validation sequence is greater than that of the process |
| * holding the reservation, the function returns -EAGAIN. Otherwise it sleeps |
| * waiting for the buffer to become unreserved, after which it retries |
| * reserving. |
| * The caller should, when receiving an -EAGAIN error |
| * release all its buffer reservations, wait for @bo to become unreserved, and |
| * then rerun the validation with the same validation sequence. This procedure |
| * will always guarantee that the process with the lowest validation sequence |
| * will eventually succeed, preventing both deadlocks and starvation. |
| * |
| * Returns: |
| * -EDEADLK: The reservation may cause a deadlock. |
| * Release all buffer reservations, wait for @bo to become unreserved and |
| * try again. (only if use_sequence == 1). |
| * -ERESTARTSYS: A wait for the buffer to become unreserved was interrupted by |
| * a signal. Release all buffer reservations and return to user-space. |
| * -EBUSY: The function needed to sleep, but @no_wait was true |
| * -EALREADY: Bo already reserved using @ticket. This error code will only |
| * be returned if @use_ticket is set to true. |
| */ |
| static inline int ttm_bo_reserve(struct ttm_buffer_object *bo, |
| bool interruptible, |
| bool no_wait, bool use_ticket, |
| struct ww_acquire_ctx *ticket) |
| { |
| int ret; |
| |
| WARN_ON(!atomic_read(&bo->kref.refcount)); |
| |
| ret = __ttm_bo_reserve(bo, interruptible, no_wait, use_ticket, ticket); |
| if (likely(ret == 0)) |
| ttm_bo_del_sub_from_lru(bo); |
| |
| return ret; |
| } |
| |
| /** |
| * ttm_bo_reserve_slowpath: |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @interruptible: Sleep interruptible if waiting. |
| * @sequence: Set (@bo)->sequence to this value after lock |
| * |
| * This is called after ttm_bo_reserve returns -EAGAIN and we backed off |
| * from all our other reservations. Because there are no other reservations |
| * held by us, this function cannot deadlock any more. |
| */ |
| static inline int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo, |
| bool interruptible, |
| struct ww_acquire_ctx *ticket) |
| { |
| int ret = 0; |
| |
| WARN_ON(!atomic_read(&bo->kref.refcount)); |
| |
| if (interruptible) |
| ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock, |
| ticket); |
| else |
| ww_mutex_lock_slow(&bo->resv->lock, ticket); |
| |
| if (likely(ret == 0)) |
| ttm_bo_del_sub_from_lru(bo); |
| else if (ret == -EINTR) |
| ret = -ERESTARTSYS; |
| |
| return ret; |
| } |
| |
| /** |
| * __ttm_bo_unreserve |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * |
| * Unreserve a previous reservation of @bo where the buffer object is |
| * already on lru lists. |
| */ |
| static inline void __ttm_bo_unreserve(struct ttm_buffer_object *bo) |
| { |
| ww_mutex_unlock(&bo->resv->lock); |
| } |
| |
| /** |
| * ttm_bo_unreserve |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * |
| * Unreserve a previous reservation of @bo. |
| */ |
| static inline void ttm_bo_unreserve(struct ttm_buffer_object *bo) |
| { |
| if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { |
| spin_lock(&bo->glob->lru_lock); |
| ttm_bo_add_to_lru(bo); |
| spin_unlock(&bo->glob->lru_lock); |
| } |
| __ttm_bo_unreserve(bo); |
| } |
| |
| /** |
| * ttm_bo_unreserve_ticket |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @ticket: ww_acquire_ctx used for reserving |
| * |
| * Unreserve a previous reservation of @bo made with @ticket. |
| */ |
| static inline void ttm_bo_unreserve_ticket(struct ttm_buffer_object *bo, |
| struct ww_acquire_ctx *t) |
| { |
| ttm_bo_unreserve(bo); |
| } |
| |
| /* |
| * ttm_bo_util.c |
| */ |
| |
| int ttm_mem_io_reserve(struct ttm_bo_device *bdev, |
| struct ttm_mem_reg *mem); |
| void ttm_mem_io_free(struct ttm_bo_device *bdev, |
| struct ttm_mem_reg *mem); |
| /** |
| * ttm_bo_move_ttm |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @evict: 1: This is an eviction. Don't try to pipeline. |
| * @no_wait_gpu: Return immediately if the GPU is busy. |
| * @new_mem: struct ttm_mem_reg indicating where to move. |
| * |
| * Optimized move function for a buffer object with both old and |
| * new placement backed by a TTM. The function will, if successful, |
| * free any old aperture space, and set (@new_mem)->mm_node to NULL, |
| * and update the (@bo)->mem placement flags. If unsuccessful, the old |
| * data remains untouched, and it's up to the caller to free the |
| * memory space indicated by @new_mem. |
| * Returns: |
| * !0: Failure. |
| */ |
| |
| extern int ttm_bo_move_ttm(struct ttm_buffer_object *bo, |
| bool evict, bool no_wait_gpu, |
| struct ttm_mem_reg *new_mem); |
| |
| /** |
| * ttm_bo_move_memcpy |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @evict: 1: This is an eviction. Don't try to pipeline. |
| * @no_wait_gpu: Return immediately if the GPU is busy. |
| * @new_mem: struct ttm_mem_reg indicating where to move. |
| * |
| * Fallback move function for a mappable buffer object in mappable memory. |
| * The function will, if successful, |
| * free any old aperture space, and set (@new_mem)->mm_node to NULL, |
| * and update the (@bo)->mem placement flags. If unsuccessful, the old |
| * data remains untouched, and it's up to the caller to free the |
| * memory space indicated by @new_mem. |
| * Returns: |
| * !0: Failure. |
| */ |
| |
| extern int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, |
| bool evict, bool no_wait_gpu, |
| struct ttm_mem_reg *new_mem); |
| |
| /** |
| * ttm_bo_free_old_node |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * |
| * Utility function to free an old placement after a successful move. |
| */ |
| extern void ttm_bo_free_old_node(struct ttm_buffer_object *bo); |
| |
| /** |
| * ttm_bo_move_accel_cleanup. |
| * |
| * @bo: A pointer to a struct ttm_buffer_object. |
| * @sync_obj: A sync object that signals when moving is complete. |
| * @evict: This is an evict move. Don't return until the buffer is idle. |
| * @no_wait_gpu: Return immediately if the GPU is busy. |
| * @new_mem: struct ttm_mem_reg indicating where to move. |
| * |
| * Accelerated move function to be called when an accelerated move |
| * has been scheduled. The function will create a new temporary buffer object |
| * representing the old placement, and put the sync object on both buffer |
| * objects. After that the newly created buffer object is unref'd to be |
| * destroyed when the move is complete. This will help pipeline |
| * buffer moves. |
| */ |
| |
| extern int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, |
| void *sync_obj, |
| bool evict, bool no_wait_gpu, |
| struct ttm_mem_reg *new_mem); |
| /** |
| * ttm_io_prot |
| * |
| * @c_state: Caching state. |
| * @tmp: Page protection flag for a normal, cached mapping. |
| * |
| * Utility function that returns the pgprot_t that should be used for |
| * setting up a PTE with the caching model indicated by @c_state. |
| */ |
| extern pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp); |
| |
| extern const struct ttm_mem_type_manager_func ttm_bo_manager_func; |
| |
| #if (defined(CONFIG_AGP) || (defined(CONFIG_AGP_MODULE) && defined(MODULE))) |
| #define TTM_HAS_AGP |
| #include <linux/agp_backend.h> |
| |
| /** |
| * ttm_agp_tt_create |
| * |
| * @bdev: Pointer to a struct ttm_bo_device. |
| * @bridge: The agp bridge this device is sitting on. |
| * @size: Size of the data needed backing. |
| * @page_flags: Page flags as identified by TTM_PAGE_FLAG_XX flags. |
| * @dummy_read_page: See struct ttm_bo_device. |
| * |
| * |
| * Create a TTM backend that uses the indicated AGP bridge as an aperture |
| * for TT memory. This function uses the linux agpgart interface to |
| * bind and unbind memory backing a ttm_tt. |
| */ |
| extern struct ttm_tt *ttm_agp_tt_create(struct ttm_bo_device *bdev, |
| struct agp_bridge_data *bridge, |
| unsigned long size, uint32_t page_flags, |
| struct page *dummy_read_page); |
| int ttm_agp_tt_populate(struct ttm_tt *ttm); |
| void ttm_agp_tt_unpopulate(struct ttm_tt *ttm); |
| #endif |
| |
| #endif |