| /* |
| * Core of Xen paravirt_ops implementation. |
| * |
| * This file contains the xen_paravirt_ops structure itself, and the |
| * implementations for: |
| * - privileged instructions |
| * - interrupt flags |
| * - segment operations |
| * - booting and setup |
| * |
| * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/preempt.h> |
| #include <linux/hardirq.h> |
| #include <linux/percpu.h> |
| #include <linux/delay.h> |
| #include <linux/start_kernel.h> |
| #include <linux/sched.h> |
| #include <linux/kprobes.h> |
| #include <linux/bootmem.h> |
| #include <linux/export.h> |
| #include <linux/mm.h> |
| #include <linux/page-flags.h> |
| #include <linux/highmem.h> |
| #include <linux/console.h> |
| #include <linux/pci.h> |
| #include <linux/gfp.h> |
| #include <linux/memblock.h> |
| #include <linux/edd.h> |
| #include <linux/frame.h> |
| |
| #include <xen/xen.h> |
| #include <xen/events.h> |
| #include <xen/interface/xen.h> |
| #include <xen/interface/version.h> |
| #include <xen/interface/physdev.h> |
| #include <xen/interface/vcpu.h> |
| #include <xen/interface/memory.h> |
| #include <xen/interface/nmi.h> |
| #include <xen/interface/xen-mca.h> |
| #include <xen/features.h> |
| #include <xen/page.h> |
| #include <xen/hvc-console.h> |
| #include <xen/acpi.h> |
| |
| #include <asm/paravirt.h> |
| #include <asm/apic.h> |
| #include <asm/page.h> |
| #include <asm/xen/pci.h> |
| #include <asm/xen/hypercall.h> |
| #include <asm/xen/hypervisor.h> |
| #include <asm/xen/cpuid.h> |
| #include <asm/fixmap.h> |
| #include <asm/processor.h> |
| #include <asm/proto.h> |
| #include <asm/msr-index.h> |
| #include <asm/traps.h> |
| #include <asm/setup.h> |
| #include <asm/desc.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <asm/reboot.h> |
| #include <asm/stackprotector.h> |
| #include <asm/hypervisor.h> |
| #include <asm/mach_traps.h> |
| #include <asm/mwait.h> |
| #include <asm/pci_x86.h> |
| #include <asm/cpu.h> |
| |
| #ifdef CONFIG_ACPI |
| #include <linux/acpi.h> |
| #include <asm/acpi.h> |
| #include <acpi/pdc_intel.h> |
| #include <acpi/processor.h> |
| #include <xen/interface/platform.h> |
| #endif |
| |
| #include "xen-ops.h" |
| #include "mmu.h" |
| #include "smp.h" |
| #include "multicalls.h" |
| #include "pmu.h" |
| |
| void *xen_initial_gdt; |
| |
| static int xen_cpu_up_prepare_pv(unsigned int cpu); |
| static int xen_cpu_dead_pv(unsigned int cpu); |
| |
| struct tls_descs { |
| struct desc_struct desc[3]; |
| }; |
| |
| /* |
| * Updating the 3 TLS descriptors in the GDT on every task switch is |
| * surprisingly expensive so we avoid updating them if they haven't |
| * changed. Since Xen writes different descriptors than the one |
| * passed in the update_descriptor hypercall we keep shadow copies to |
| * compare against. |
| */ |
| static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); |
| |
| static void __init xen_banner(void) |
| { |
| unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); |
| struct xen_extraversion extra; |
| HYPERVISOR_xen_version(XENVER_extraversion, &extra); |
| |
| pr_info("Booting paravirtualized kernel on %s\n", pv_info.name); |
| printk(KERN_INFO "Xen version: %d.%d%s%s\n", |
| version >> 16, version & 0xffff, extra.extraversion, |
| xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); |
| } |
| /* Check if running on Xen version (major, minor) or later */ |
| bool |
| xen_running_on_version_or_later(unsigned int major, unsigned int minor) |
| { |
| unsigned int version; |
| |
| if (!xen_domain()) |
| return false; |
| |
| version = HYPERVISOR_xen_version(XENVER_version, NULL); |
| if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) || |
| ((version >> 16) > major)) |
| return true; |
| return false; |
| } |
| |
| static __read_mostly unsigned int cpuid_leaf5_ecx_val; |
| static __read_mostly unsigned int cpuid_leaf5_edx_val; |
| |
| static void xen_cpuid(unsigned int *ax, unsigned int *bx, |
| unsigned int *cx, unsigned int *dx) |
| { |
| unsigned maskebx = ~0; |
| |
| /* |
| * Mask out inconvenient features, to try and disable as many |
| * unsupported kernel subsystems as possible. |
| */ |
| switch (*ax) { |
| case CPUID_MWAIT_LEAF: |
| /* Synthesize the values.. */ |
| *ax = 0; |
| *bx = 0; |
| *cx = cpuid_leaf5_ecx_val; |
| *dx = cpuid_leaf5_edx_val; |
| return; |
| |
| case 0xb: |
| /* Suppress extended topology stuff */ |
| maskebx = 0; |
| break; |
| } |
| |
| asm(XEN_EMULATE_PREFIX "cpuid" |
| : "=a" (*ax), |
| "=b" (*bx), |
| "=c" (*cx), |
| "=d" (*dx) |
| : "0" (*ax), "2" (*cx)); |
| |
| *bx &= maskebx; |
| } |
| STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */ |
| |
| static bool __init xen_check_mwait(void) |
| { |
| #ifdef CONFIG_ACPI |
| struct xen_platform_op op = { |
| .cmd = XENPF_set_processor_pminfo, |
| .u.set_pminfo.id = -1, |
| .u.set_pminfo.type = XEN_PM_PDC, |
| }; |
| uint32_t buf[3]; |
| unsigned int ax, bx, cx, dx; |
| unsigned int mwait_mask; |
| |
| /* We need to determine whether it is OK to expose the MWAIT |
| * capability to the kernel to harvest deeper than C3 states from ACPI |
| * _CST using the processor_harvest_xen.c module. For this to work, we |
| * need to gather the MWAIT_LEAF values (which the cstate.c code |
| * checks against). The hypervisor won't expose the MWAIT flag because |
| * it would break backwards compatibility; so we will find out directly |
| * from the hardware and hypercall. |
| */ |
| if (!xen_initial_domain()) |
| return false; |
| |
| /* |
| * When running under platform earlier than Xen4.2, do not expose |
| * mwait, to avoid the risk of loading native acpi pad driver |
| */ |
| if (!xen_running_on_version_or_later(4, 2)) |
| return false; |
| |
| ax = 1; |
| cx = 0; |
| |
| native_cpuid(&ax, &bx, &cx, &dx); |
| |
| mwait_mask = (1 << (X86_FEATURE_EST % 32)) | |
| (1 << (X86_FEATURE_MWAIT % 32)); |
| |
| if ((cx & mwait_mask) != mwait_mask) |
| return false; |
| |
| /* We need to emulate the MWAIT_LEAF and for that we need both |
| * ecx and edx. The hypercall provides only partial information. |
| */ |
| |
| ax = CPUID_MWAIT_LEAF; |
| bx = 0; |
| cx = 0; |
| dx = 0; |
| |
| native_cpuid(&ax, &bx, &cx, &dx); |
| |
| /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, |
| * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. |
| */ |
| buf[0] = ACPI_PDC_REVISION_ID; |
| buf[1] = 1; |
| buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); |
| |
| set_xen_guest_handle(op.u.set_pminfo.pdc, buf); |
| |
| if ((HYPERVISOR_platform_op(&op) == 0) && |
| (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { |
| cpuid_leaf5_ecx_val = cx; |
| cpuid_leaf5_edx_val = dx; |
| } |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| static bool __init xen_check_xsave(void) |
| { |
| unsigned int cx, xsave_mask; |
| |
| cx = cpuid_ecx(1); |
| |
| xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) | |
| (1 << (X86_FEATURE_OSXSAVE % 32)); |
| |
| /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ |
| return (cx & xsave_mask) == xsave_mask; |
| } |
| |
| static void __init xen_init_capabilities(void) |
| { |
| setup_force_cpu_cap(X86_FEATURE_XENPV); |
| setup_clear_cpu_cap(X86_FEATURE_DCA); |
| setup_clear_cpu_cap(X86_FEATURE_APERFMPERF); |
| setup_clear_cpu_cap(X86_FEATURE_MTRR); |
| setup_clear_cpu_cap(X86_FEATURE_ACC); |
| setup_clear_cpu_cap(X86_FEATURE_X2APIC); |
| |
| if (!xen_initial_domain()) |
| setup_clear_cpu_cap(X86_FEATURE_ACPI); |
| |
| if (xen_check_mwait()) |
| setup_force_cpu_cap(X86_FEATURE_MWAIT); |
| else |
| setup_clear_cpu_cap(X86_FEATURE_MWAIT); |
| |
| if (!xen_check_xsave()) { |
| setup_clear_cpu_cap(X86_FEATURE_XSAVE); |
| setup_clear_cpu_cap(X86_FEATURE_OSXSAVE); |
| } |
| } |
| |
| static void xen_set_debugreg(int reg, unsigned long val) |
| { |
| HYPERVISOR_set_debugreg(reg, val); |
| } |
| |
| static unsigned long xen_get_debugreg(int reg) |
| { |
| return HYPERVISOR_get_debugreg(reg); |
| } |
| |
| static void xen_end_context_switch(struct task_struct *next) |
| { |
| xen_mc_flush(); |
| paravirt_end_context_switch(next); |
| } |
| |
| static unsigned long xen_store_tr(void) |
| { |
| return 0; |
| } |
| |
| /* |
| * Set the page permissions for a particular virtual address. If the |
| * address is a vmalloc mapping (or other non-linear mapping), then |
| * find the linear mapping of the page and also set its protections to |
| * match. |
| */ |
| static void set_aliased_prot(void *v, pgprot_t prot) |
| { |
| int level; |
| pte_t *ptep; |
| pte_t pte; |
| unsigned long pfn; |
| struct page *page; |
| unsigned char dummy; |
| |
| ptep = lookup_address((unsigned long)v, &level); |
| BUG_ON(ptep == NULL); |
| |
| pfn = pte_pfn(*ptep); |
| page = pfn_to_page(pfn); |
| |
| pte = pfn_pte(pfn, prot); |
| |
| /* |
| * Careful: update_va_mapping() will fail if the virtual address |
| * we're poking isn't populated in the page tables. We don't |
| * need to worry about the direct map (that's always in the page |
| * tables), but we need to be careful about vmap space. In |
| * particular, the top level page table can lazily propagate |
| * entries between processes, so if we've switched mms since we |
| * vmapped the target in the first place, we might not have the |
| * top-level page table entry populated. |
| * |
| * We disable preemption because we want the same mm active when |
| * we probe the target and when we issue the hypercall. We'll |
| * have the same nominal mm, but if we're a kernel thread, lazy |
| * mm dropping could change our pgd. |
| * |
| * Out of an abundance of caution, this uses __get_user() to fault |
| * in the target address just in case there's some obscure case |
| * in which the target address isn't readable. |
| */ |
| |
| preempt_disable(); |
| |
| probe_kernel_read(&dummy, v, 1); |
| |
| if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) |
| BUG(); |
| |
| if (!PageHighMem(page)) { |
| void *av = __va(PFN_PHYS(pfn)); |
| |
| if (av != v) |
| if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) |
| BUG(); |
| } else |
| kmap_flush_unused(); |
| |
| preempt_enable(); |
| } |
| |
| static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) |
| { |
| const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; |
| int i; |
| |
| /* |
| * We need to mark the all aliases of the LDT pages RO. We |
| * don't need to call vm_flush_aliases(), though, since that's |
| * only responsible for flushing aliases out the TLBs, not the |
| * page tables, and Xen will flush the TLB for us if needed. |
| * |
| * To avoid confusing future readers: none of this is necessary |
| * to load the LDT. The hypervisor only checks this when the |
| * LDT is faulted in due to subsequent descriptor access. |
| */ |
| |
| for (i = 0; i < entries; i += entries_per_page) |
| set_aliased_prot(ldt + i, PAGE_KERNEL_RO); |
| } |
| |
| static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) |
| { |
| const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; |
| int i; |
| |
| for (i = 0; i < entries; i += entries_per_page) |
| set_aliased_prot(ldt + i, PAGE_KERNEL); |
| } |
| |
| static void xen_set_ldt(const void *addr, unsigned entries) |
| { |
| struct mmuext_op *op; |
| struct multicall_space mcs = xen_mc_entry(sizeof(*op)); |
| |
| trace_xen_cpu_set_ldt(addr, entries); |
| |
| op = mcs.args; |
| op->cmd = MMUEXT_SET_LDT; |
| op->arg1.linear_addr = (unsigned long)addr; |
| op->arg2.nr_ents = entries; |
| |
| MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
| |
| xen_mc_issue(PARAVIRT_LAZY_CPU); |
| } |
| |
| static void xen_load_gdt(const struct desc_ptr *dtr) |
| { |
| unsigned long va = dtr->address; |
| unsigned int size = dtr->size + 1; |
| unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE); |
| unsigned long frames[pages]; |
| int f; |
| |
| /* |
| * A GDT can be up to 64k in size, which corresponds to 8192 |
| * 8-byte entries, or 16 4k pages.. |
| */ |
| |
| BUG_ON(size > 65536); |
| BUG_ON(va & ~PAGE_MASK); |
| |
| for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { |
| int level; |
| pte_t *ptep; |
| unsigned long pfn, mfn; |
| void *virt; |
| |
| /* |
| * The GDT is per-cpu and is in the percpu data area. |
| * That can be virtually mapped, so we need to do a |
| * page-walk to get the underlying MFN for the |
| * hypercall. The page can also be in the kernel's |
| * linear range, so we need to RO that mapping too. |
| */ |
| ptep = lookup_address(va, &level); |
| BUG_ON(ptep == NULL); |
| |
| pfn = pte_pfn(*ptep); |
| mfn = pfn_to_mfn(pfn); |
| virt = __va(PFN_PHYS(pfn)); |
| |
| frames[f] = mfn; |
| |
| make_lowmem_page_readonly((void *)va); |
| make_lowmem_page_readonly(virt); |
| } |
| |
| if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) |
| BUG(); |
| } |
| |
| /* |
| * load_gdt for early boot, when the gdt is only mapped once |
| */ |
| static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) |
| { |
| unsigned long va = dtr->address; |
| unsigned int size = dtr->size + 1; |
| unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE); |
| unsigned long frames[pages]; |
| int f; |
| |
| /* |
| * A GDT can be up to 64k in size, which corresponds to 8192 |
| * 8-byte entries, or 16 4k pages.. |
| */ |
| |
| BUG_ON(size > 65536); |
| BUG_ON(va & ~PAGE_MASK); |
| |
| for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { |
| pte_t pte; |
| unsigned long pfn, mfn; |
| |
| pfn = virt_to_pfn(va); |
| mfn = pfn_to_mfn(pfn); |
| |
| pte = pfn_pte(pfn, PAGE_KERNEL_RO); |
| |
| if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) |
| BUG(); |
| |
| frames[f] = mfn; |
| } |
| |
| if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) |
| BUG(); |
| } |
| |
| static inline bool desc_equal(const struct desc_struct *d1, |
| const struct desc_struct *d2) |
| { |
| return d1->a == d2->a && d1->b == d2->b; |
| } |
| |
| static void load_TLS_descriptor(struct thread_struct *t, |
| unsigned int cpu, unsigned int i) |
| { |
| struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; |
| struct desc_struct *gdt; |
| xmaddr_t maddr; |
| struct multicall_space mc; |
| |
| if (desc_equal(shadow, &t->tls_array[i])) |
| return; |
| |
| *shadow = t->tls_array[i]; |
| |
| gdt = get_cpu_gdt_rw(cpu); |
| maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); |
| mc = __xen_mc_entry(0); |
| |
| MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); |
| } |
| |
| static void xen_load_tls(struct thread_struct *t, unsigned int cpu) |
| { |
| /* |
| * XXX sleazy hack: If we're being called in a lazy-cpu zone |
| * and lazy gs handling is enabled, it means we're in a |
| * context switch, and %gs has just been saved. This means we |
| * can zero it out to prevent faults on exit from the |
| * hypervisor if the next process has no %gs. Either way, it |
| * has been saved, and the new value will get loaded properly. |
| * This will go away as soon as Xen has been modified to not |
| * save/restore %gs for normal hypercalls. |
| * |
| * On x86_64, this hack is not used for %gs, because gs points |
| * to KERNEL_GS_BASE (and uses it for PDA references), so we |
| * must not zero %gs on x86_64 |
| * |
| * For x86_64, we need to zero %fs, otherwise we may get an |
| * exception between the new %fs descriptor being loaded and |
| * %fs being effectively cleared at __switch_to(). |
| */ |
| if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { |
| #ifdef CONFIG_X86_32 |
| lazy_load_gs(0); |
| #else |
| loadsegment(fs, 0); |
| #endif |
| } |
| |
| xen_mc_batch(); |
| |
| load_TLS_descriptor(t, cpu, 0); |
| load_TLS_descriptor(t, cpu, 1); |
| load_TLS_descriptor(t, cpu, 2); |
| |
| xen_mc_issue(PARAVIRT_LAZY_CPU); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static void xen_load_gs_index(unsigned int idx) |
| { |
| if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) |
| BUG(); |
| } |
| #endif |
| |
| static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, |
| const void *ptr) |
| { |
| xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); |
| u64 entry = *(u64 *)ptr; |
| |
| trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); |
| |
| preempt_disable(); |
| |
| xen_mc_flush(); |
| if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) |
| BUG(); |
| |
| preempt_enable(); |
| } |
| |
| static int cvt_gate_to_trap(int vector, const gate_desc *val, |
| struct trap_info *info) |
| { |
| unsigned long addr; |
| |
| if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT) |
| return 0; |
| |
| info->vector = vector; |
| |
| addr = gate_offset(val); |
| #ifdef CONFIG_X86_64 |
| /* |
| * Look for known traps using IST, and substitute them |
| * appropriately. The debugger ones are the only ones we care |
| * about. Xen will handle faults like double_fault, |
| * so we should never see them. Warn if |
| * there's an unexpected IST-using fault handler. |
| */ |
| if (addr == (unsigned long)debug) |
| addr = (unsigned long)xen_debug; |
| else if (addr == (unsigned long)int3) |
| addr = (unsigned long)xen_int3; |
| else if (addr == (unsigned long)stack_segment) |
| addr = (unsigned long)xen_stack_segment; |
| else if (addr == (unsigned long)double_fault) { |
| /* Don't need to handle these */ |
| return 0; |
| #ifdef CONFIG_X86_MCE |
| } else if (addr == (unsigned long)machine_check) { |
| /* |
| * when xen hypervisor inject vMCE to guest, |
| * use native mce handler to handle it |
| */ |
| ; |
| #endif |
| } else if (addr == (unsigned long)nmi) |
| /* |
| * Use the native version as well. |
| */ |
| ; |
| else { |
| /* Some other trap using IST? */ |
| if (WARN_ON(val->bits.ist != 0)) |
| return 0; |
| } |
| #endif /* CONFIG_X86_64 */ |
| info->address = addr; |
| |
| info->cs = gate_segment(val); |
| info->flags = val->bits.dpl; |
| /* interrupt gates clear IF */ |
| if (val->bits.type == GATE_INTERRUPT) |
| info->flags |= 1 << 2; |
| |
| return 1; |
| } |
| |
| /* Locations of each CPU's IDT */ |
| static DEFINE_PER_CPU(struct desc_ptr, idt_desc); |
| |
| /* Set an IDT entry. If the entry is part of the current IDT, then |
| also update Xen. */ |
| static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) |
| { |
| unsigned long p = (unsigned long)&dt[entrynum]; |
| unsigned long start, end; |
| |
| trace_xen_cpu_write_idt_entry(dt, entrynum, g); |
| |
| preempt_disable(); |
| |
| start = __this_cpu_read(idt_desc.address); |
| end = start + __this_cpu_read(idt_desc.size) + 1; |
| |
| xen_mc_flush(); |
| |
| native_write_idt_entry(dt, entrynum, g); |
| |
| if (p >= start && (p + 8) <= end) { |
| struct trap_info info[2]; |
| |
| info[1].address = 0; |
| |
| if (cvt_gate_to_trap(entrynum, g, &info[0])) |
| if (HYPERVISOR_set_trap_table(info)) |
| BUG(); |
| } |
| |
| preempt_enable(); |
| } |
| |
| static void xen_convert_trap_info(const struct desc_ptr *desc, |
| struct trap_info *traps) |
| { |
| unsigned in, out, count; |
| |
| count = (desc->size+1) / sizeof(gate_desc); |
| BUG_ON(count > 256); |
| |
| for (in = out = 0; in < count; in++) { |
| gate_desc *entry = (gate_desc *)(desc->address) + in; |
| |
| if (cvt_gate_to_trap(in, entry, &traps[out])) |
| out++; |
| } |
| traps[out].address = 0; |
| } |
| |
| void xen_copy_trap_info(struct trap_info *traps) |
| { |
| const struct desc_ptr *desc = this_cpu_ptr(&idt_desc); |
| |
| xen_convert_trap_info(desc, traps); |
| } |
| |
| /* Load a new IDT into Xen. In principle this can be per-CPU, so we |
| hold a spinlock to protect the static traps[] array (static because |
| it avoids allocation, and saves stack space). */ |
| static void xen_load_idt(const struct desc_ptr *desc) |
| { |
| static DEFINE_SPINLOCK(lock); |
| static struct trap_info traps[257]; |
| |
| trace_xen_cpu_load_idt(desc); |
| |
| spin_lock(&lock); |
| |
| memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc)); |
| |
| xen_convert_trap_info(desc, traps); |
| |
| xen_mc_flush(); |
| if (HYPERVISOR_set_trap_table(traps)) |
| BUG(); |
| |
| spin_unlock(&lock); |
| } |
| |
| /* Write a GDT descriptor entry. Ignore LDT descriptors, since |
| they're handled differently. */ |
| static void xen_write_gdt_entry(struct desc_struct *dt, int entry, |
| const void *desc, int type) |
| { |
| trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); |
| |
| preempt_disable(); |
| |
| switch (type) { |
| case DESC_LDT: |
| case DESC_TSS: |
| /* ignore */ |
| break; |
| |
| default: { |
| xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); |
| |
| xen_mc_flush(); |
| if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) |
| BUG(); |
| } |
| |
| } |
| |
| preempt_enable(); |
| } |
| |
| /* |
| * Version of write_gdt_entry for use at early boot-time needed to |
| * update an entry as simply as possible. |
| */ |
| static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, |
| const void *desc, int type) |
| { |
| trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); |
| |
| switch (type) { |
| case DESC_LDT: |
| case DESC_TSS: |
| /* ignore */ |
| break; |
| |
| default: { |
| xmaddr_t maddr = virt_to_machine(&dt[entry]); |
| |
| if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) |
| dt[entry] = *(struct desc_struct *)desc; |
| } |
| |
| } |
| } |
| |
| static void xen_load_sp0(struct tss_struct *tss, |
| struct thread_struct *thread) |
| { |
| struct multicall_space mcs; |
| |
| mcs = xen_mc_entry(0); |
| MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0); |
| xen_mc_issue(PARAVIRT_LAZY_CPU); |
| tss->x86_tss.sp0 = thread->sp0; |
| } |
| |
| void xen_set_iopl_mask(unsigned mask) |
| { |
| struct physdev_set_iopl set_iopl; |
| |
| /* Force the change at ring 0. */ |
| set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; |
| HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); |
| } |
| |
| static void xen_io_delay(void) |
| { |
| } |
| |
| static DEFINE_PER_CPU(unsigned long, xen_cr0_value); |
| |
| static unsigned long xen_read_cr0(void) |
| { |
| unsigned long cr0 = this_cpu_read(xen_cr0_value); |
| |
| if (unlikely(cr0 == 0)) { |
| cr0 = native_read_cr0(); |
| this_cpu_write(xen_cr0_value, cr0); |
| } |
| |
| return cr0; |
| } |
| |
| static void xen_write_cr0(unsigned long cr0) |
| { |
| struct multicall_space mcs; |
| |
| this_cpu_write(xen_cr0_value, cr0); |
| |
| /* Only pay attention to cr0.TS; everything else is |
| ignored. */ |
| mcs = xen_mc_entry(0); |
| |
| MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); |
| |
| xen_mc_issue(PARAVIRT_LAZY_CPU); |
| } |
| |
| static void xen_write_cr4(unsigned long cr4) |
| { |
| cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE); |
| |
| native_write_cr4(cr4); |
| } |
| #ifdef CONFIG_X86_64 |
| static inline unsigned long xen_read_cr8(void) |
| { |
| return 0; |
| } |
| static inline void xen_write_cr8(unsigned long val) |
| { |
| BUG_ON(val); |
| } |
| #endif |
| |
| static u64 xen_read_msr_safe(unsigned int msr, int *err) |
| { |
| u64 val; |
| |
| if (pmu_msr_read(msr, &val, err)) |
| return val; |
| |
| val = native_read_msr_safe(msr, err); |
| switch (msr) { |
| case MSR_IA32_APICBASE: |
| #ifdef CONFIG_X86_X2APIC |
| if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31)))) |
| #endif |
| val &= ~X2APIC_ENABLE; |
| break; |
| } |
| return val; |
| } |
| |
| static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) |
| { |
| int ret; |
| |
| ret = 0; |
| |
| switch (msr) { |
| #ifdef CONFIG_X86_64 |
| unsigned which; |
| u64 base; |
| |
| case MSR_FS_BASE: which = SEGBASE_FS; goto set; |
| case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; |
| case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; |
| |
| set: |
| base = ((u64)high << 32) | low; |
| if (HYPERVISOR_set_segment_base(which, base) != 0) |
| ret = -EIO; |
| break; |
| #endif |
| |
| case MSR_STAR: |
| case MSR_CSTAR: |
| case MSR_LSTAR: |
| case MSR_SYSCALL_MASK: |
| case MSR_IA32_SYSENTER_CS: |
| case MSR_IA32_SYSENTER_ESP: |
| case MSR_IA32_SYSENTER_EIP: |
| /* Fast syscall setup is all done in hypercalls, so |
| these are all ignored. Stub them out here to stop |
| Xen console noise. */ |
| break; |
| |
| default: |
| if (!pmu_msr_write(msr, low, high, &ret)) |
| ret = native_write_msr_safe(msr, low, high); |
| } |
| |
| return ret; |
| } |
| |
| static u64 xen_read_msr(unsigned int msr) |
| { |
| /* |
| * This will silently swallow a #GP from RDMSR. It may be worth |
| * changing that. |
| */ |
| int err; |
| |
| return xen_read_msr_safe(msr, &err); |
| } |
| |
| static void xen_write_msr(unsigned int msr, unsigned low, unsigned high) |
| { |
| /* |
| * This will silently swallow a #GP from WRMSR. It may be worth |
| * changing that. |
| */ |
| xen_write_msr_safe(msr, low, high); |
| } |
| |
| void xen_setup_shared_info(void) |
| { |
| set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info); |
| |
| HYPERVISOR_shared_info = |
| (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); |
| |
| xen_setup_mfn_list_list(); |
| |
| if (system_state == SYSTEM_BOOTING) { |
| #ifndef CONFIG_SMP |
| /* |
| * In UP this is as good a place as any to set up shared info. |
| * Limit this to boot only, at restore vcpu setup is done via |
| * xen_vcpu_restore(). |
| */ |
| xen_setup_vcpu_info_placement(); |
| #endif |
| /* |
| * Now that shared info is set up we can start using routines |
| * that point to pvclock area. |
| */ |
| xen_init_time_ops(); |
| } |
| } |
| |
| /* This is called once we have the cpu_possible_mask */ |
| void __ref xen_setup_vcpu_info_placement(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| /* Set up direct vCPU id mapping for PV guests. */ |
| per_cpu(xen_vcpu_id, cpu) = cpu; |
| |
| /* |
| * xen_vcpu_setup(cpu) can fail -- in which case it |
| * falls back to the shared_info version for cpus |
| * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS. |
| * |
| * xen_cpu_up_prepare_pv() handles the rest by failing |
| * them in hotplug. |
| */ |
| (void) xen_vcpu_setup(cpu); |
| } |
| |
| /* |
| * xen_vcpu_setup managed to place the vcpu_info within the |
| * percpu area for all cpus, so make use of it. |
| */ |
| if (xen_have_vcpu_info_placement) { |
| pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); |
| pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); |
| pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); |
| pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); |
| pv_mmu_ops.read_cr2 = xen_read_cr2_direct; |
| } |
| } |
| |
| static const struct pv_info xen_info __initconst = { |
| .shared_kernel_pmd = 0, |
| |
| #ifdef CONFIG_X86_64 |
| .extra_user_64bit_cs = FLAT_USER_CS64, |
| #endif |
| .name = "Xen", |
| }; |
| |
| static const struct pv_cpu_ops xen_cpu_ops __initconst = { |
| .cpuid = xen_cpuid, |
| |
| .set_debugreg = xen_set_debugreg, |
| .get_debugreg = xen_get_debugreg, |
| |
| .read_cr0 = xen_read_cr0, |
| .write_cr0 = xen_write_cr0, |
| |
| .read_cr4 = native_read_cr4, |
| .write_cr4 = xen_write_cr4, |
| |
| #ifdef CONFIG_X86_64 |
| .read_cr8 = xen_read_cr8, |
| .write_cr8 = xen_write_cr8, |
| #endif |
| |
| .wbinvd = native_wbinvd, |
| |
| .read_msr = xen_read_msr, |
| .write_msr = xen_write_msr, |
| |
| .read_msr_safe = xen_read_msr_safe, |
| .write_msr_safe = xen_write_msr_safe, |
| |
| .read_pmc = xen_read_pmc, |
| |
| .iret = xen_iret, |
| #ifdef CONFIG_X86_64 |
| .usergs_sysret64 = xen_sysret64, |
| #endif |
| |
| .load_tr_desc = paravirt_nop, |
| .set_ldt = xen_set_ldt, |
| .load_gdt = xen_load_gdt, |
| .load_idt = xen_load_idt, |
| .load_tls = xen_load_tls, |
| #ifdef CONFIG_X86_64 |
| .load_gs_index = xen_load_gs_index, |
| #endif |
| |
| .alloc_ldt = xen_alloc_ldt, |
| .free_ldt = xen_free_ldt, |
| |
| .store_idt = native_store_idt, |
| .store_tr = xen_store_tr, |
| |
| .write_ldt_entry = xen_write_ldt_entry, |
| .write_gdt_entry = xen_write_gdt_entry, |
| .write_idt_entry = xen_write_idt_entry, |
| .load_sp0 = xen_load_sp0, |
| |
| .set_iopl_mask = xen_set_iopl_mask, |
| .io_delay = xen_io_delay, |
| |
| /* Xen takes care of %gs when switching to usermode for us */ |
| .swapgs = paravirt_nop, |
| |
| .start_context_switch = paravirt_start_context_switch, |
| .end_context_switch = xen_end_context_switch, |
| }; |
| |
| static void xen_restart(char *msg) |
| { |
| xen_reboot(SHUTDOWN_reboot); |
| } |
| |
| static void xen_machine_halt(void) |
| { |
| xen_reboot(SHUTDOWN_poweroff); |
| } |
| |
| static void xen_machine_power_off(void) |
| { |
| if (pm_power_off) |
| pm_power_off(); |
| xen_reboot(SHUTDOWN_poweroff); |
| } |
| |
| static void xen_crash_shutdown(struct pt_regs *regs) |
| { |
| xen_reboot(SHUTDOWN_crash); |
| } |
| |
| static const struct machine_ops xen_machine_ops __initconst = { |
| .restart = xen_restart, |
| .halt = xen_machine_halt, |
| .power_off = xen_machine_power_off, |
| .shutdown = xen_machine_halt, |
| .crash_shutdown = xen_crash_shutdown, |
| .emergency_restart = xen_emergency_restart, |
| }; |
| |
| static unsigned char xen_get_nmi_reason(void) |
| { |
| unsigned char reason = 0; |
| |
| /* Construct a value which looks like it came from port 0x61. */ |
| if (test_bit(_XEN_NMIREASON_io_error, |
| &HYPERVISOR_shared_info->arch.nmi_reason)) |
| reason |= NMI_REASON_IOCHK; |
| if (test_bit(_XEN_NMIREASON_pci_serr, |
| &HYPERVISOR_shared_info->arch.nmi_reason)) |
| reason |= NMI_REASON_SERR; |
| |
| return reason; |
| } |
| |
| static void __init xen_boot_params_init_edd(void) |
| { |
| #if IS_ENABLED(CONFIG_EDD) |
| struct xen_platform_op op; |
| struct edd_info *edd_info; |
| u32 *mbr_signature; |
| unsigned nr; |
| int ret; |
| |
| edd_info = boot_params.eddbuf; |
| mbr_signature = boot_params.edd_mbr_sig_buffer; |
| |
| op.cmd = XENPF_firmware_info; |
| |
| op.u.firmware_info.type = XEN_FW_DISK_INFO; |
| for (nr = 0; nr < EDDMAXNR; nr++) { |
| struct edd_info *info = edd_info + nr; |
| |
| op.u.firmware_info.index = nr; |
| info->params.length = sizeof(info->params); |
| set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params, |
| &info->params); |
| ret = HYPERVISOR_platform_op(&op); |
| if (ret) |
| break; |
| |
| #define C(x) info->x = op.u.firmware_info.u.disk_info.x |
| C(device); |
| C(version); |
| C(interface_support); |
| C(legacy_max_cylinder); |
| C(legacy_max_head); |
| C(legacy_sectors_per_track); |
| #undef C |
| } |
| boot_params.eddbuf_entries = nr; |
| |
| op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE; |
| for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) { |
| op.u.firmware_info.index = nr; |
| ret = HYPERVISOR_platform_op(&op); |
| if (ret) |
| break; |
| mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature; |
| } |
| boot_params.edd_mbr_sig_buf_entries = nr; |
| #endif |
| } |
| |
| /* |
| * Set up the GDT and segment registers for -fstack-protector. Until |
| * we do this, we have to be careful not to call any stack-protected |
| * function, which is most of the kernel. |
| */ |
| static void xen_setup_gdt(int cpu) |
| { |
| pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot; |
| pv_cpu_ops.load_gdt = xen_load_gdt_boot; |
| |
| setup_stack_canary_segment(0); |
| switch_to_new_gdt(0); |
| |
| pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry; |
| pv_cpu_ops.load_gdt = xen_load_gdt; |
| } |
| |
| static void __init xen_dom0_set_legacy_features(void) |
| { |
| x86_platform.legacy.rtc = 1; |
| } |
| |
| /* First C function to be called on Xen boot */ |
| asmlinkage __visible void __init xen_start_kernel(void) |
| { |
| struct physdev_set_iopl set_iopl; |
| unsigned long initrd_start = 0; |
| int rc; |
| |
| if (!xen_start_info) |
| return; |
| |
| xen_domain_type = XEN_PV_DOMAIN; |
| |
| xen_setup_features(); |
| |
| xen_setup_machphys_mapping(); |
| |
| /* Install Xen paravirt ops */ |
| pv_info = xen_info; |
| pv_init_ops.patch = paravirt_patch_default; |
| pv_cpu_ops = xen_cpu_ops; |
| |
| x86_platform.get_nmi_reason = xen_get_nmi_reason; |
| |
| x86_init.resources.memory_setup = xen_memory_setup; |
| x86_init.oem.arch_setup = xen_arch_setup; |
| x86_init.oem.banner = xen_banner; |
| |
| /* |
| * Set up some pagetable state before starting to set any ptes. |
| */ |
| |
| xen_init_mmu_ops(); |
| |
| /* Prevent unwanted bits from being set in PTEs. */ |
| __supported_pte_mask &= ~_PAGE_GLOBAL; |
| |
| /* |
| * Prevent page tables from being allocated in highmem, even |
| * if CONFIG_HIGHPTE is enabled. |
| */ |
| __userpte_alloc_gfp &= ~__GFP_HIGHMEM; |
| |
| /* Work out if we support NX */ |
| x86_configure_nx(); |
| |
| /* Get mfn list */ |
| xen_build_dynamic_phys_to_machine(); |
| |
| /* |
| * Set up kernel GDT and segment registers, mainly so that |
| * -fstack-protector code can be executed. |
| */ |
| xen_setup_gdt(0); |
| |
| xen_init_irq_ops(); |
| xen_init_capabilities(); |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| /* |
| * set up the basic apic ops. |
| */ |
| xen_init_apic(); |
| #endif |
| |
| if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { |
| pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; |
| pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; |
| } |
| |
| machine_ops = xen_machine_ops; |
| |
| /* |
| * The only reliable way to retain the initial address of the |
| * percpu gdt_page is to remember it here, so we can go and |
| * mark it RW later, when the initial percpu area is freed. |
| */ |
| xen_initial_gdt = &per_cpu(gdt_page, 0); |
| |
| xen_smp_init(); |
| |
| #ifdef CONFIG_ACPI_NUMA |
| /* |
| * The pages we from Xen are not related to machine pages, so |
| * any NUMA information the kernel tries to get from ACPI will |
| * be meaningless. Prevent it from trying. |
| */ |
| acpi_numa = -1; |
| #endif |
| /* Let's presume PV guests always boot on vCPU with id 0. */ |
| per_cpu(xen_vcpu_id, 0) = 0; |
| |
| /* |
| * Setup xen_vcpu early because start_kernel needs it for |
| * local_irq_disable(), irqs_disabled(). |
| * |
| * Don't do the full vcpu_info placement stuff until we have |
| * the cpu_possible_mask and a non-dummy shared_info. |
| */ |
| xen_vcpu_info_reset(0); |
| |
| WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv)); |
| |
| local_irq_disable(); |
| early_boot_irqs_disabled = true; |
| |
| xen_raw_console_write("mapping kernel into physical memory\n"); |
| xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, |
| xen_start_info->nr_pages); |
| xen_reserve_special_pages(); |
| |
| /* keep using Xen gdt for now; no urgent need to change it */ |
| |
| #ifdef CONFIG_X86_32 |
| pv_info.kernel_rpl = 1; |
| if (xen_feature(XENFEAT_supervisor_mode_kernel)) |
| pv_info.kernel_rpl = 0; |
| #else |
| pv_info.kernel_rpl = 0; |
| #endif |
| /* set the limit of our address space */ |
| xen_reserve_top(); |
| |
| /* |
| * We used to do this in xen_arch_setup, but that is too late |
| * on AMD were early_cpu_init (run before ->arch_setup()) calls |
| * early_amd_init which pokes 0xcf8 port. |
| */ |
| set_iopl.iopl = 1; |
| rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); |
| if (rc != 0) |
| xen_raw_printk("physdev_op failed %d\n", rc); |
| |
| #ifdef CONFIG_X86_32 |
| /* set up basic CPUID stuff */ |
| cpu_detect(&new_cpu_data); |
| set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU); |
| new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1); |
| #endif |
| |
| if (xen_start_info->mod_start) { |
| if (xen_start_info->flags & SIF_MOD_START_PFN) |
| initrd_start = PFN_PHYS(xen_start_info->mod_start); |
| else |
| initrd_start = __pa(xen_start_info->mod_start); |
| } |
| |
| /* Poke various useful things into boot_params */ |
| boot_params.hdr.type_of_loader = (9 << 4) | 0; |
| boot_params.hdr.ramdisk_image = initrd_start; |
| boot_params.hdr.ramdisk_size = xen_start_info->mod_len; |
| boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); |
| boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN; |
| |
| if (!xen_initial_domain()) { |
| add_preferred_console("xenboot", 0, NULL); |
| add_preferred_console("tty", 0, NULL); |
| add_preferred_console("hvc", 0, NULL); |
| if (pci_xen) |
| x86_init.pci.arch_init = pci_xen_init; |
| } else { |
| const struct dom0_vga_console_info *info = |
| (void *)((char *)xen_start_info + |
| xen_start_info->console.dom0.info_off); |
| struct xen_platform_op op = { |
| .cmd = XENPF_firmware_info, |
| .interface_version = XENPF_INTERFACE_VERSION, |
| .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS, |
| }; |
| |
| x86_platform.set_legacy_features = |
| xen_dom0_set_legacy_features; |
| xen_init_vga(info, xen_start_info->console.dom0.info_size); |
| xen_start_info->console.domU.mfn = 0; |
| xen_start_info->console.domU.evtchn = 0; |
| |
| if (HYPERVISOR_platform_op(&op) == 0) |
| boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags; |
| |
| /* Make sure ACS will be enabled */ |
| pci_request_acs(); |
| |
| xen_acpi_sleep_register(); |
| |
| /* Avoid searching for BIOS MP tables */ |
| x86_init.mpparse.find_smp_config = x86_init_noop; |
| x86_init.mpparse.get_smp_config = x86_init_uint_noop; |
| |
| xen_boot_params_init_edd(); |
| } |
| #ifdef CONFIG_PCI |
| /* PCI BIOS service won't work from a PV guest. */ |
| pci_probe &= ~PCI_PROBE_BIOS; |
| #endif |
| xen_raw_console_write("about to get started...\n"); |
| |
| /* We need this for printk timestamps */ |
| xen_setup_runstate_info(0); |
| |
| xen_efi_init(); |
| |
| /* Start the world */ |
| #ifdef CONFIG_X86_32 |
| i386_start_kernel(); |
| #else |
| cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */ |
| x86_64_start_reservations((char *)__pa_symbol(&boot_params)); |
| #endif |
| } |
| |
| static int xen_cpu_up_prepare_pv(unsigned int cpu) |
| { |
| int rc; |
| |
| if (per_cpu(xen_vcpu, cpu) == NULL) |
| return -ENODEV; |
| |
| xen_setup_timer(cpu); |
| |
| rc = xen_smp_intr_init(cpu); |
| if (rc) { |
| WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n", |
| cpu, rc); |
| return rc; |
| } |
| |
| rc = xen_smp_intr_init_pv(cpu); |
| if (rc) { |
| WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n", |
| cpu, rc); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int xen_cpu_dead_pv(unsigned int cpu) |
| { |
| xen_smp_intr_free(cpu); |
| xen_smp_intr_free_pv(cpu); |
| |
| xen_teardown_timer(cpu); |
| |
| return 0; |
| } |
| |
| static uint32_t __init xen_platform_pv(void) |
| { |
| if (xen_pv_domain()) |
| return xen_cpuid_base(); |
| |
| return 0; |
| } |
| |
| const struct hypervisor_x86 x86_hyper_xen_pv = { |
| .name = "Xen PV", |
| .detect = xen_platform_pv, |
| .pin_vcpu = xen_pin_vcpu, |
| }; |
| EXPORT_SYMBOL(x86_hyper_xen_pv); |