| /* |
| * Copyright IBM Corporation 2001, 2005, 2006 |
| * Copyright Dave Engebretsen & Todd Inglett 2001 |
| * Copyright Linas Vepstas 2005, 2006 |
| * Copyright 2001-2012 IBM Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com> |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/pci.h> |
| #include <linux/proc_fs.h> |
| #include <linux/rbtree.h> |
| #include <linux/seq_file.h> |
| #include <linux/spinlock.h> |
| #include <linux/export.h> |
| #include <linux/of.h> |
| |
| #include <linux/atomic.h> |
| #include <asm/eeh.h> |
| #include <asm/eeh_event.h> |
| #include <asm/io.h> |
| #include <asm/machdep.h> |
| #include <asm/ppc-pci.h> |
| #include <asm/rtas.h> |
| |
| |
| /** Overview: |
| * EEH, or "Extended Error Handling" is a PCI bridge technology for |
| * dealing with PCI bus errors that can't be dealt with within the |
| * usual PCI framework, except by check-stopping the CPU. Systems |
| * that are designed for high-availability/reliability cannot afford |
| * to crash due to a "mere" PCI error, thus the need for EEH. |
| * An EEH-capable bridge operates by converting a detected error |
| * into a "slot freeze", taking the PCI adapter off-line, making |
| * the slot behave, from the OS'es point of view, as if the slot |
| * were "empty": all reads return 0xff's and all writes are silently |
| * ignored. EEH slot isolation events can be triggered by parity |
| * errors on the address or data busses (e.g. during posted writes), |
| * which in turn might be caused by low voltage on the bus, dust, |
| * vibration, humidity, radioactivity or plain-old failed hardware. |
| * |
| * Note, however, that one of the leading causes of EEH slot |
| * freeze events are buggy device drivers, buggy device microcode, |
| * or buggy device hardware. This is because any attempt by the |
| * device to bus-master data to a memory address that is not |
| * assigned to the device will trigger a slot freeze. (The idea |
| * is to prevent devices-gone-wild from corrupting system memory). |
| * Buggy hardware/drivers will have a miserable time co-existing |
| * with EEH. |
| * |
| * Ideally, a PCI device driver, when suspecting that an isolation |
| * event has occurred (e.g. by reading 0xff's), will then ask EEH |
| * whether this is the case, and then take appropriate steps to |
| * reset the PCI slot, the PCI device, and then resume operations. |
| * However, until that day, the checking is done here, with the |
| * eeh_check_failure() routine embedded in the MMIO macros. If |
| * the slot is found to be isolated, an "EEH Event" is synthesized |
| * and sent out for processing. |
| */ |
| |
| /* If a device driver keeps reading an MMIO register in an interrupt |
| * handler after a slot isolation event, it might be broken. |
| * This sets the threshold for how many read attempts we allow |
| * before printing an error message. |
| */ |
| #define EEH_MAX_FAILS 2100000 |
| |
| /* Time to wait for a PCI slot to report status, in milliseconds */ |
| #define PCI_BUS_RESET_WAIT_MSEC (60*1000) |
| |
| /* Platform dependent EEH operations */ |
| struct eeh_ops *eeh_ops = NULL; |
| |
| int eeh_subsystem_enabled; |
| EXPORT_SYMBOL(eeh_subsystem_enabled); |
| |
| /* Global EEH mutex */ |
| DEFINE_MUTEX(eeh_mutex); |
| |
| /* Lock to avoid races due to multiple reports of an error */ |
| static DEFINE_RAW_SPINLOCK(confirm_error_lock); |
| |
| /* Buffer for reporting pci register dumps. Its here in BSS, and |
| * not dynamically alloced, so that it ends up in RMO where RTAS |
| * can access it. |
| */ |
| #define EEH_PCI_REGS_LOG_LEN 4096 |
| static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN]; |
| |
| /* |
| * The struct is used to maintain the EEH global statistic |
| * information. Besides, the EEH global statistics will be |
| * exported to user space through procfs |
| */ |
| struct eeh_stats { |
| u64 no_device; /* PCI device not found */ |
| u64 no_dn; /* OF node not found */ |
| u64 no_cfg_addr; /* Config address not found */ |
| u64 ignored_check; /* EEH check skipped */ |
| u64 total_mmio_ffs; /* Total EEH checks */ |
| u64 false_positives; /* Unnecessary EEH checks */ |
| u64 slot_resets; /* PE reset */ |
| }; |
| |
| static struct eeh_stats eeh_stats; |
| |
| #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE) |
| |
| /** |
| * eeh_gather_pci_data - Copy assorted PCI config space registers to buff |
| * @edev: device to report data for |
| * @buf: point to buffer in which to log |
| * @len: amount of room in buffer |
| * |
| * This routine captures assorted PCI configuration space data, |
| * and puts them into a buffer for RTAS error logging. |
| */ |
| static size_t eeh_gather_pci_data(struct eeh_dev *edev, char * buf, size_t len) |
| { |
| struct device_node *dn = eeh_dev_to_of_node(edev); |
| struct pci_dev *dev = eeh_dev_to_pci_dev(edev); |
| u32 cfg; |
| int cap, i; |
| int n = 0; |
| |
| n += scnprintf(buf+n, len-n, "%s\n", dn->full_name); |
| printk(KERN_WARNING "EEH: of node=%s\n", dn->full_name); |
| |
| eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg); |
| printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg); |
| |
| eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg); |
| printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg); |
| |
| if (!dev) { |
| printk(KERN_WARNING "EEH: no PCI device for this of node\n"); |
| return n; |
| } |
| |
| /* Gather bridge-specific registers */ |
| if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) { |
| eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg); |
| n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg); |
| printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg); |
| |
| eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg); |
| n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg); |
| printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg); |
| } |
| |
| /* Dump out the PCI-X command and status regs */ |
| cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
| if (cap) { |
| eeh_ops->read_config(dn, cap, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg); |
| printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg); |
| |
| eeh_ops->read_config(dn, cap+4, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg); |
| printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg); |
| } |
| |
| /* If PCI-E capable, dump PCI-E cap 10, and the AER */ |
| cap = pci_find_capability(dev, PCI_CAP_ID_EXP); |
| if (cap) { |
| n += scnprintf(buf+n, len-n, "pci-e cap10:\n"); |
| printk(KERN_WARNING |
| "EEH: PCI-E capabilities and status follow:\n"); |
| |
| for (i=0; i<=8; i++) { |
| eeh_ops->read_config(dn, cap+4*i, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); |
| printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg); |
| } |
| |
| cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); |
| if (cap) { |
| n += scnprintf(buf+n, len-n, "pci-e AER:\n"); |
| printk(KERN_WARNING |
| "EEH: PCI-E AER capability register set follows:\n"); |
| |
| for (i=0; i<14; i++) { |
| eeh_ops->read_config(dn, cap+4*i, 4, &cfg); |
| n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); |
| printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg); |
| } |
| } |
| } |
| |
| /* Gather status on devices under the bridge */ |
| if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) { |
| struct device_node *child; |
| |
| for_each_child_of_node(dn, child) { |
| if (of_node_to_eeh_dev(child)) |
| n += eeh_gather_pci_data(of_node_to_eeh_dev(child), buf+n, len-n); |
| } |
| } |
| |
| return n; |
| } |
| |
| /** |
| * eeh_slot_error_detail - Generate combined log including driver log and error log |
| * @edev: device to report error log for |
| * @severity: temporary or permanent error log |
| * |
| * This routine should be called to generate the combined log, which |
| * is comprised of driver log and error log. The driver log is figured |
| * out from the config space of the corresponding PCI device, while |
| * the error log is fetched through platform dependent function call. |
| */ |
| void eeh_slot_error_detail(struct eeh_dev *edev, int severity) |
| { |
| size_t loglen = 0; |
| pci_regs_buf[0] = 0; |
| |
| eeh_pci_enable(edev, EEH_OPT_THAW_MMIO); |
| eeh_ops->configure_bridge(eeh_dev_to_of_node(edev)); |
| eeh_restore_bars(edev); |
| loglen = eeh_gather_pci_data(edev, pci_regs_buf, EEH_PCI_REGS_LOG_LEN); |
| |
| eeh_ops->get_log(eeh_dev_to_of_node(edev), severity, pci_regs_buf, loglen); |
| } |
| |
| /** |
| * eeh_token_to_phys - Convert EEH address token to phys address |
| * @token: I/O token, should be address in the form 0xA.... |
| * |
| * This routine should be called to convert virtual I/O address |
| * to physical one. |
| */ |
| static inline unsigned long eeh_token_to_phys(unsigned long token) |
| { |
| pte_t *ptep; |
| unsigned long pa; |
| |
| ptep = find_linux_pte(init_mm.pgd, token); |
| if (!ptep) |
| return token; |
| pa = pte_pfn(*ptep) << PAGE_SHIFT; |
| |
| return pa | (token & (PAGE_SIZE-1)); |
| } |
| |
| /** |
| * eeh_dn_check_failure - Check if all 1's data is due to EEH slot freeze |
| * @dn: device node |
| * @dev: pci device, if known |
| * |
| * Check for an EEH failure for the given device node. Call this |
| * routine if the result of a read was all 0xff's and you want to |
| * find out if this is due to an EEH slot freeze. This routine |
| * will query firmware for the EEH status. |
| * |
| * Returns 0 if there has not been an EEH error; otherwise returns |
| * a non-zero value and queues up a slot isolation event notification. |
| * |
| * It is safe to call this routine in an interrupt context. |
| */ |
| int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev) |
| { |
| int ret; |
| unsigned long flags; |
| struct eeh_pe *pe; |
| struct eeh_dev *edev; |
| int rc = 0; |
| const char *location; |
| |
| eeh_stats.total_mmio_ffs++; |
| |
| if (!eeh_subsystem_enabled) |
| return 0; |
| |
| if (dn) { |
| edev = of_node_to_eeh_dev(dn); |
| } else if (dev) { |
| edev = pci_dev_to_eeh_dev(dev); |
| dn = pci_device_to_OF_node(dev); |
| } else { |
| eeh_stats.no_dn++; |
| return 0; |
| } |
| pe = edev->pe; |
| |
| /* Access to IO BARs might get this far and still not want checking. */ |
| if (!pe) { |
| eeh_stats.ignored_check++; |
| pr_debug("EEH: Ignored check for %s %s\n", |
| eeh_pci_name(dev), dn->full_name); |
| return 0; |
| } |
| |
| if (!pe->addr && !pe->config_addr) { |
| eeh_stats.no_cfg_addr++; |
| return 0; |
| } |
| |
| /* If we already have a pending isolation event for this |
| * slot, we know it's bad already, we don't need to check. |
| * Do this checking under a lock; as multiple PCI devices |
| * in one slot might report errors simultaneously, and we |
| * only want one error recovery routine running. |
| */ |
| raw_spin_lock_irqsave(&confirm_error_lock, flags); |
| rc = 1; |
| if (pe->state & EEH_PE_ISOLATED) { |
| pe->check_count++; |
| if (pe->check_count % EEH_MAX_FAILS == 0) { |
| location = of_get_property(dn, "ibm,loc-code", NULL); |
| printk(KERN_ERR "EEH: %d reads ignored for recovering device at " |
| "location=%s driver=%s pci addr=%s\n", |
| pe->check_count, location, |
| eeh_driver_name(dev), eeh_pci_name(dev)); |
| printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n", |
| eeh_driver_name(dev)); |
| dump_stack(); |
| } |
| goto dn_unlock; |
| } |
| |
| /* |
| * Now test for an EEH failure. This is VERY expensive. |
| * Note that the eeh_config_addr may be a parent device |
| * in the case of a device behind a bridge, or it may be |
| * function zero of a multi-function device. |
| * In any case they must share a common PHB. |
| */ |
| ret = eeh_ops->get_state(pe, NULL); |
| |
| /* Note that config-io to empty slots may fail; |
| * they are empty when they don't have children. |
| * We will punt with the following conditions: Failure to get |
| * PE's state, EEH not support and Permanently unavailable |
| * state, PE is in good state. |
| */ |
| if ((ret < 0) || |
| (ret == EEH_STATE_NOT_SUPPORT) || |
| (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) == |
| (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) { |
| eeh_stats.false_positives++; |
| pe->false_positives++; |
| rc = 0; |
| goto dn_unlock; |
| } |
| |
| eeh_stats.slot_resets++; |
| |
| /* Avoid repeated reports of this failure, including problems |
| * with other functions on this device, and functions under |
| * bridges. |
| */ |
| eeh_pe_state_mark(pe, EEH_PE_ISOLATED); |
| raw_spin_unlock_irqrestore(&confirm_error_lock, flags); |
| |
| eeh_send_failure_event(pe); |
| |
| /* Most EEH events are due to device driver bugs. Having |
| * a stack trace will help the device-driver authors figure |
| * out what happened. So print that out. |
| */ |
| WARN(1, "EEH: failure detected\n"); |
| return 1; |
| |
| dn_unlock: |
| raw_spin_unlock_irqrestore(&confirm_error_lock, flags); |
| return rc; |
| } |
| |
| EXPORT_SYMBOL_GPL(eeh_dn_check_failure); |
| |
| /** |
| * eeh_check_failure - Check if all 1's data is due to EEH slot freeze |
| * @token: I/O token, should be address in the form 0xA.... |
| * @val: value, should be all 1's (XXX why do we need this arg??) |
| * |
| * Check for an EEH failure at the given token address. Call this |
| * routine if the result of a read was all 0xff's and you want to |
| * find out if this is due to an EEH slot freeze event. This routine |
| * will query firmware for the EEH status. |
| * |
| * Note this routine is safe to call in an interrupt context. |
| */ |
| unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val) |
| { |
| unsigned long addr; |
| struct pci_dev *dev; |
| struct device_node *dn; |
| |
| /* Finding the phys addr + pci device; this is pretty quick. */ |
| addr = eeh_token_to_phys((unsigned long __force) token); |
| dev = pci_addr_cache_get_device(addr); |
| if (!dev) { |
| eeh_stats.no_device++; |
| return val; |
| } |
| |
| dn = pci_device_to_OF_node(dev); |
| eeh_dn_check_failure(dn, dev); |
| |
| pci_dev_put(dev); |
| return val; |
| } |
| |
| EXPORT_SYMBOL(eeh_check_failure); |
| |
| |
| /** |
| * eeh_pci_enable - Enable MMIO or DMA transfers for this slot |
| * @edev: pci device node |
| * |
| * This routine should be called to reenable frozen MMIO or DMA |
| * so that it would work correctly again. It's useful while doing |
| * recovery or log collection on the indicated device. |
| */ |
| int eeh_pci_enable(struct eeh_dev *edev, int function) |
| { |
| int rc; |
| struct device_node *dn = eeh_dev_to_of_node(edev); |
| |
| rc = eeh_ops->set_option(dn, function); |
| if (rc) |
| printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n", |
| function, rc, dn->full_name); |
| |
| rc = eeh_ops->wait_state(dn, PCI_BUS_RESET_WAIT_MSEC); |
| if (rc > 0 && (rc & EEH_STATE_MMIO_ENABLED) && |
| (function == EEH_OPT_THAW_MMIO)) |
| return 0; |
| |
| return rc; |
| } |
| |
| /** |
| * pcibios_set_pcie_slot_reset - Set PCI-E reset state |
| * @dev: pci device struct |
| * @state: reset state to enter |
| * |
| * Return value: |
| * 0 if success |
| */ |
| int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) |
| { |
| struct device_node *dn = pci_device_to_OF_node(dev); |
| |
| switch (state) { |
| case pcie_deassert_reset: |
| eeh_ops->reset(dn, EEH_RESET_DEACTIVATE); |
| break; |
| case pcie_hot_reset: |
| eeh_ops->reset(dn, EEH_RESET_HOT); |
| break; |
| case pcie_warm_reset: |
| eeh_ops->reset(dn, EEH_RESET_FUNDAMENTAL); |
| break; |
| default: |
| return -EINVAL; |
| }; |
| |
| return 0; |
| } |
| |
| /** |
| * __eeh_set_pe_freset - Check the required reset for child devices |
| * @parent: parent device |
| * @freset: return value |
| * |
| * Each device might have its preferred reset type: fundamental or |
| * hot reset. The routine is used to collect the information from |
| * the child devices so that they could be reset accordingly. |
| */ |
| void __eeh_set_pe_freset(struct device_node *parent, unsigned int *freset) |
| { |
| struct device_node *dn; |
| |
| for_each_child_of_node(parent, dn) { |
| if (of_node_to_eeh_dev(dn)) { |
| struct pci_dev *dev = of_node_to_eeh_dev(dn)->pdev; |
| |
| if (dev && dev->driver) |
| *freset |= dev->needs_freset; |
| |
| __eeh_set_pe_freset(dn, freset); |
| } |
| } |
| } |
| |
| /** |
| * eeh_set_pe_freset - Check the required reset for the indicated device and its children |
| * @dn: parent device |
| * @freset: return value |
| * |
| * Each device might have its preferred reset type: fundamental or |
| * hot reset. The routine is used to collected the information for |
| * the indicated device and its children so that the bunch of the |
| * devices could be reset properly. |
| */ |
| void eeh_set_pe_freset(struct device_node *dn, unsigned int *freset) |
| { |
| struct pci_dev *dev; |
| dn = eeh_find_device_pe(dn); |
| |
| /* Back up one, since config addrs might be shared */ |
| if (!pcibios_find_pci_bus(dn) && of_node_to_eeh_dev(dn->parent)) |
| dn = dn->parent; |
| |
| dev = of_node_to_eeh_dev(dn)->pdev; |
| if (dev) |
| *freset |= dev->needs_freset; |
| |
| __eeh_set_pe_freset(dn, freset); |
| } |
| |
| /** |
| * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second |
| * @edev: pci device node to be reset. |
| * |
| * Assert the PCI #RST line for 1/4 second. |
| */ |
| static void eeh_reset_pe_once(struct eeh_dev *edev) |
| { |
| unsigned int freset = 0; |
| struct device_node *dn = eeh_dev_to_of_node(edev); |
| |
| /* Determine type of EEH reset required for |
| * Partitionable Endpoint, a hot-reset (1) |
| * or a fundamental reset (3). |
| * A fundamental reset required by any device under |
| * Partitionable Endpoint trumps hot-reset. |
| */ |
| eeh_set_pe_freset(dn, &freset); |
| |
| if (freset) |
| eeh_ops->reset(dn, EEH_RESET_FUNDAMENTAL); |
| else |
| eeh_ops->reset(dn, EEH_RESET_HOT); |
| |
| /* The PCI bus requires that the reset be held high for at least |
| * a 100 milliseconds. We wait a bit longer 'just in case'. |
| */ |
| #define PCI_BUS_RST_HOLD_TIME_MSEC 250 |
| msleep(PCI_BUS_RST_HOLD_TIME_MSEC); |
| |
| /* We might get hit with another EEH freeze as soon as the |
| * pci slot reset line is dropped. Make sure we don't miss |
| * these, and clear the flag now. |
| */ |
| eeh_clear_slot(dn, EEH_MODE_ISOLATED); |
| |
| eeh_ops->reset(dn, EEH_RESET_DEACTIVATE); |
| |
| /* After a PCI slot has been reset, the PCI Express spec requires |
| * a 1.5 second idle time for the bus to stabilize, before starting |
| * up traffic. |
| */ |
| #define PCI_BUS_SETTLE_TIME_MSEC 1800 |
| msleep(PCI_BUS_SETTLE_TIME_MSEC); |
| } |
| |
| /** |
| * eeh_reset_pe - Reset the indicated PE |
| * @edev: PCI device associated EEH device |
| * |
| * This routine should be called to reset indicated device, including |
| * PE. A PE might include multiple PCI devices and sometimes PCI bridges |
| * might be involved as well. |
| */ |
| int eeh_reset_pe(struct eeh_dev *edev) |
| { |
| int i, rc; |
| struct device_node *dn = eeh_dev_to_of_node(edev); |
| |
| /* Take three shots at resetting the bus */ |
| for (i=0; i<3; i++) { |
| eeh_reset_pe_once(edev); |
| |
| rc = eeh_ops->wait_state(dn, PCI_BUS_RESET_WAIT_MSEC); |
| if (rc == (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) |
| return 0; |
| |
| if (rc < 0) { |
| printk(KERN_ERR "EEH: unrecoverable slot failure %s\n", |
| dn->full_name); |
| return -1; |
| } |
| printk(KERN_ERR "EEH: bus reset %d failed on slot %s, rc=%d\n", |
| i+1, dn->full_name, rc); |
| } |
| |
| return -1; |
| } |
| |
| /** Save and restore of PCI BARs |
| * |
| * Although firmware will set up BARs during boot, it doesn't |
| * set up device BAR's after a device reset, although it will, |
| * if requested, set up bridge configuration. Thus, we need to |
| * configure the PCI devices ourselves. |
| */ |
| |
| /** |
| * eeh_restore_one_device_bars - Restore the Base Address Registers for one device |
| * @edev: PCI device associated EEH device |
| * |
| * Loads the PCI configuration space base address registers, |
| * the expansion ROM base address, the latency timer, and etc. |
| * from the saved values in the device node. |
| */ |
| static inline void eeh_restore_one_device_bars(struct eeh_dev *edev) |
| { |
| int i; |
| u32 cmd; |
| struct device_node *dn = eeh_dev_to_of_node(edev); |
| |
| if (!edev->phb) |
| return; |
| |
| for (i=4; i<10; i++) { |
| eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]); |
| } |
| |
| /* 12 == Expansion ROM Address */ |
| eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]); |
| |
| #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) |
| #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) |
| |
| eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1, |
| SAVED_BYTE(PCI_CACHE_LINE_SIZE)); |
| |
| eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1, |
| SAVED_BYTE(PCI_LATENCY_TIMER)); |
| |
| /* max latency, min grant, interrupt pin and line */ |
| eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]); |
| |
| /* Restore PERR & SERR bits, some devices require it, |
| * don't touch the other command bits |
| */ |
| eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd); |
| if (edev->config_space[1] & PCI_COMMAND_PARITY) |
| cmd |= PCI_COMMAND_PARITY; |
| else |
| cmd &= ~PCI_COMMAND_PARITY; |
| if (edev->config_space[1] & PCI_COMMAND_SERR) |
| cmd |= PCI_COMMAND_SERR; |
| else |
| cmd &= ~PCI_COMMAND_SERR; |
| eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd); |
| } |
| |
| /** |
| * eeh_restore_bars - Restore the PCI config space info |
| * @edev: EEH device |
| * |
| * This routine performs a recursive walk to the children |
| * of this device as well. |
| */ |
| void eeh_restore_bars(struct eeh_dev *edev) |
| { |
| struct device_node *dn; |
| if (!edev) |
| return; |
| |
| if ((edev->mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(edev->class_code)) |
| eeh_restore_one_device_bars(edev); |
| |
| for_each_child_of_node(eeh_dev_to_of_node(edev), dn) |
| eeh_restore_bars(of_node_to_eeh_dev(dn)); |
| } |
| |
| /** |
| * eeh_save_bars - Save device bars |
| * @edev: PCI device associated EEH device |
| * |
| * Save the values of the device bars. Unlike the restore |
| * routine, this routine is *not* recursive. This is because |
| * PCI devices are added individually; but, for the restore, |
| * an entire slot is reset at a time. |
| */ |
| static void eeh_save_bars(struct eeh_dev *edev) |
| { |
| int i; |
| struct device_node *dn; |
| |
| if (!edev) |
| return; |
| dn = eeh_dev_to_of_node(edev); |
| |
| for (i = 0; i < 16; i++) |
| eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]); |
| } |
| |
| /** |
| * eeh_early_enable - Early enable EEH on the indicated device |
| * @dn: device node |
| * @data: BUID |
| * |
| * Enable EEH functionality on the specified PCI device. The function |
| * is expected to be called before real PCI probing is done. However, |
| * the PHBs have been initialized at this point. |
| */ |
| static void *eeh_early_enable(struct device_node *dn, void *data) |
| { |
| int ret; |
| const u32 *class_code = of_get_property(dn, "class-code", NULL); |
| const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL); |
| const u32 *device_id = of_get_property(dn, "device-id", NULL); |
| const u32 *regs; |
| int enable; |
| struct eeh_dev *edev = of_node_to_eeh_dev(dn); |
| |
| edev->class_code = 0; |
| edev->mode = 0; |
| edev->check_count = 0; |
| edev->freeze_count = 0; |
| edev->false_positives = 0; |
| |
| if (!of_device_is_available(dn)) |
| return NULL; |
| |
| /* Ignore bad nodes. */ |
| if (!class_code || !vendor_id || !device_id) |
| return NULL; |
| |
| /* There is nothing to check on PCI to ISA bridges */ |
| if (dn->type && !strcmp(dn->type, "isa")) { |
| edev->mode |= EEH_MODE_NOCHECK; |
| return NULL; |
| } |
| edev->class_code = *class_code; |
| |
| /* Ok... see if this device supports EEH. Some do, some don't, |
| * and the only way to find out is to check each and every one. |
| */ |
| regs = of_get_property(dn, "reg", NULL); |
| if (regs) { |
| /* First register entry is addr (00BBSS00) */ |
| /* Try to enable eeh */ |
| ret = eeh_ops->set_option(dn, EEH_OPT_ENABLE); |
| |
| enable = 0; |
| if (ret == 0) { |
| edev->config_addr = regs[0]; |
| |
| /* If the newer, better, ibm,get-config-addr-info is supported, |
| * then use that instead. |
| */ |
| edev->pe_config_addr = eeh_ops->get_pe_addr(dn); |
| |
| /* Some older systems (Power4) allow the |
| * ibm,set-eeh-option call to succeed even on nodes |
| * where EEH is not supported. Verify support |
| * explicitly. |
| */ |
| ret = eeh_ops->get_state(dn, NULL); |
| if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT) |
| enable = 1; |
| } |
| |
| if (enable) { |
| eeh_subsystem_enabled = 1; |
| edev->mode |= EEH_MODE_SUPPORTED; |
| |
| eeh_add_to_parent_pe(edev); |
| |
| pr_debug("EEH: %s: eeh enabled, config=%x pe_config=%x\n", |
| dn->full_name, edev->config_addr, |
| edev->pe_config_addr); |
| } else { |
| |
| /* This device doesn't support EEH, but it may have an |
| * EEH parent, in which case we mark it as supported. |
| */ |
| if (dn->parent && of_node_to_eeh_dev(dn->parent) && |
| (of_node_to_eeh_dev(dn->parent)->mode & EEH_MODE_SUPPORTED)) { |
| /* Parent supports EEH. */ |
| edev->mode |= EEH_MODE_SUPPORTED; |
| edev->config_addr = of_node_to_eeh_dev(dn->parent)->config_addr; |
| edev->pe_config_addr = of_node_to_eeh_dev(dn->parent)->pe_config_addr; |
| |
| eeh_add_to_parent_pe(edev); |
| |
| return NULL; |
| } |
| } |
| } else { |
| printk(KERN_WARNING "EEH: %s: unable to get reg property.\n", |
| dn->full_name); |
| } |
| |
| eeh_save_bars(edev); |
| return NULL; |
| } |
| |
| /** |
| * eeh_ops_register - Register platform dependent EEH operations |
| * @ops: platform dependent EEH operations |
| * |
| * Register the platform dependent EEH operation callback |
| * functions. The platform should call this function before |
| * any other EEH operations. |
| */ |
| int __init eeh_ops_register(struct eeh_ops *ops) |
| { |
| if (!ops->name) { |
| pr_warning("%s: Invalid EEH ops name for %p\n", |
| __func__, ops); |
| return -EINVAL; |
| } |
| |
| if (eeh_ops && eeh_ops != ops) { |
| pr_warning("%s: EEH ops of platform %s already existing (%s)\n", |
| __func__, eeh_ops->name, ops->name); |
| return -EEXIST; |
| } |
| |
| eeh_ops = ops; |
| |
| return 0; |
| } |
| |
| /** |
| * eeh_ops_unregister - Unreigster platform dependent EEH operations |
| * @name: name of EEH platform operations |
| * |
| * Unregister the platform dependent EEH operation callback |
| * functions. |
| */ |
| int __exit eeh_ops_unregister(const char *name) |
| { |
| if (!name || !strlen(name)) { |
| pr_warning("%s: Invalid EEH ops name\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| if (eeh_ops && !strcmp(eeh_ops->name, name)) { |
| eeh_ops = NULL; |
| return 0; |
| } |
| |
| return -EEXIST; |
| } |
| |
| /** |
| * eeh_init - EEH initialization |
| * |
| * Initialize EEH by trying to enable it for all of the adapters in the system. |
| * As a side effect we can determine here if eeh is supported at all. |
| * Note that we leave EEH on so failed config cycles won't cause a machine |
| * check. If a user turns off EEH for a particular adapter they are really |
| * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't |
| * grant access to a slot if EEH isn't enabled, and so we always enable |
| * EEH for all slots/all devices. |
| * |
| * The eeh-force-off option disables EEH checking globally, for all slots. |
| * Even if force-off is set, the EEH hardware is still enabled, so that |
| * newer systems can boot. |
| */ |
| static int __init eeh_init(void) |
| { |
| struct pci_controller *hose, *tmp; |
| struct device_node *phb; |
| int ret; |
| |
| /* call platform initialization function */ |
| if (!eeh_ops) { |
| pr_warning("%s: Platform EEH operation not found\n", |
| __func__); |
| return -EEXIST; |
| } else if ((ret = eeh_ops->init())) { |
| pr_warning("%s: Failed to call platform init function (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| raw_spin_lock_init(&confirm_error_lock); |
| |
| /* Enable EEH for all adapters */ |
| list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { |
| phb = hose->dn; |
| traverse_pci_devices(phb, eeh_early_enable, NULL); |
| } |
| |
| if (eeh_subsystem_enabled) |
| printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n"); |
| else |
| printk(KERN_WARNING "EEH: No capable adapters found\n"); |
| |
| return ret; |
| } |
| |
| core_initcall_sync(eeh_init); |
| |
| /** |
| * eeh_add_device_early - Enable EEH for the indicated device_node |
| * @dn: device node for which to set up EEH |
| * |
| * This routine must be used to perform EEH initialization for PCI |
| * devices that were added after system boot (e.g. hotplug, dlpar). |
| * This routine must be called before any i/o is performed to the |
| * adapter (inluding any config-space i/o). |
| * Whether this actually enables EEH or not for this device depends |
| * on the CEC architecture, type of the device, on earlier boot |
| * command-line arguments & etc. |
| */ |
| static void eeh_add_device_early(struct device_node *dn) |
| { |
| struct pci_controller *phb; |
| |
| if (!dn || !of_node_to_eeh_dev(dn)) |
| return; |
| phb = of_node_to_eeh_dev(dn)->phb; |
| |
| /* USB Bus children of PCI devices will not have BUID's */ |
| if (NULL == phb || 0 == phb->buid) |
| return; |
| |
| eeh_early_enable(dn, NULL); |
| } |
| |
| /** |
| * eeh_add_device_tree_early - Enable EEH for the indicated device |
| * @dn: device node |
| * |
| * This routine must be used to perform EEH initialization for the |
| * indicated PCI device that was added after system boot (e.g. |
| * hotplug, dlpar). |
| */ |
| void eeh_add_device_tree_early(struct device_node *dn) |
| { |
| struct device_node *sib; |
| |
| for_each_child_of_node(dn, sib) |
| eeh_add_device_tree_early(sib); |
| eeh_add_device_early(dn); |
| } |
| EXPORT_SYMBOL_GPL(eeh_add_device_tree_early); |
| |
| /** |
| * eeh_add_device_late - Perform EEH initialization for the indicated pci device |
| * @dev: pci device for which to set up EEH |
| * |
| * This routine must be used to complete EEH initialization for PCI |
| * devices that were added after system boot (e.g. hotplug, dlpar). |
| */ |
| static void eeh_add_device_late(struct pci_dev *dev) |
| { |
| struct device_node *dn; |
| struct eeh_dev *edev; |
| |
| if (!dev || !eeh_subsystem_enabled) |
| return; |
| |
| pr_debug("EEH: Adding device %s\n", pci_name(dev)); |
| |
| dn = pci_device_to_OF_node(dev); |
| edev = of_node_to_eeh_dev(dn); |
| if (edev->pdev == dev) { |
| pr_debug("EEH: Already referenced !\n"); |
| return; |
| } |
| WARN_ON(edev->pdev); |
| |
| pci_dev_get(dev); |
| edev->pdev = dev; |
| dev->dev.archdata.edev = edev; |
| |
| pci_addr_cache_insert_device(dev); |
| eeh_sysfs_add_device(dev); |
| } |
| |
| /** |
| * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus |
| * @bus: PCI bus |
| * |
| * This routine must be used to perform EEH initialization for PCI |
| * devices which are attached to the indicated PCI bus. The PCI bus |
| * is added after system boot through hotplug or dlpar. |
| */ |
| void eeh_add_device_tree_late(struct pci_bus *bus) |
| { |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| eeh_add_device_late(dev); |
| if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { |
| struct pci_bus *subbus = dev->subordinate; |
| if (subbus) |
| eeh_add_device_tree_late(subbus); |
| } |
| } |
| } |
| EXPORT_SYMBOL_GPL(eeh_add_device_tree_late); |
| |
| /** |
| * eeh_remove_device - Undo EEH setup for the indicated pci device |
| * @dev: pci device to be removed |
| * |
| * This routine should be called when a device is removed from |
| * a running system (e.g. by hotplug or dlpar). It unregisters |
| * the PCI device from the EEH subsystem. I/O errors affecting |
| * this device will no longer be detected after this call; thus, |
| * i/o errors affecting this slot may leave this device unusable. |
| */ |
| static void eeh_remove_device(struct pci_dev *dev) |
| { |
| struct eeh_dev *edev; |
| |
| if (!dev || !eeh_subsystem_enabled) |
| return; |
| edev = pci_dev_to_eeh_dev(dev); |
| |
| /* Unregister the device with the EEH/PCI address search system */ |
| pr_debug("EEH: Removing device %s\n", pci_name(dev)); |
| |
| if (!edev || !edev->pdev) { |
| pr_debug("EEH: Not referenced !\n"); |
| return; |
| } |
| edev->pdev = NULL; |
| dev->dev.archdata.edev = NULL; |
| pci_dev_put(dev); |
| |
| eeh_rmv_from_parent_pe(edev); |
| pci_addr_cache_remove_device(dev); |
| eeh_sysfs_remove_device(dev); |
| } |
| |
| /** |
| * eeh_remove_bus_device - Undo EEH setup for the indicated PCI device |
| * @dev: PCI device |
| * |
| * This routine must be called when a device is removed from the |
| * running system through hotplug or dlpar. The corresponding |
| * PCI address cache will be removed. |
| */ |
| void eeh_remove_bus_device(struct pci_dev *dev) |
| { |
| struct pci_bus *bus = dev->subordinate; |
| struct pci_dev *child, *tmp; |
| |
| eeh_remove_device(dev); |
| |
| if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { |
| list_for_each_entry_safe(child, tmp, &bus->devices, bus_list) |
| eeh_remove_bus_device(child); |
| } |
| } |
| EXPORT_SYMBOL_GPL(eeh_remove_bus_device); |
| |
| static int proc_eeh_show(struct seq_file *m, void *v) |
| { |
| if (0 == eeh_subsystem_enabled) { |
| seq_printf(m, "EEH Subsystem is globally disabled\n"); |
| seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs); |
| } else { |
| seq_printf(m, "EEH Subsystem is enabled\n"); |
| seq_printf(m, |
| "no device=%llu\n" |
| "no device node=%llu\n" |
| "no config address=%llu\n" |
| "check not wanted=%llu\n" |
| "eeh_total_mmio_ffs=%llu\n" |
| "eeh_false_positives=%llu\n" |
| "eeh_slot_resets=%llu\n", |
| eeh_stats.no_device, |
| eeh_stats.no_dn, |
| eeh_stats.no_cfg_addr, |
| eeh_stats.ignored_check, |
| eeh_stats.total_mmio_ffs, |
| eeh_stats.false_positives, |
| eeh_stats.slot_resets); |
| } |
| |
| return 0; |
| } |
| |
| static int proc_eeh_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, proc_eeh_show, NULL); |
| } |
| |
| static const struct file_operations proc_eeh_operations = { |
| .open = proc_eeh_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int __init eeh_init_proc(void) |
| { |
| if (machine_is(pseries)) |
| proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations); |
| return 0; |
| } |
| __initcall(eeh_init_proc); |