| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| * |
| * This code maintains the "home" for each page in the system. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/spinlock.h> |
| #include <linux/list.h> |
| #include <linux/bootmem.h> |
| #include <linux/rmap.h> |
| #include <linux/pagemap.h> |
| #include <linux/mutex.h> |
| #include <linux/interrupt.h> |
| #include <linux/sysctl.h> |
| #include <linux/pagevec.h> |
| #include <linux/ptrace.h> |
| #include <linux/timex.h> |
| #include <linux/cache.h> |
| #include <linux/smp.h> |
| #include <linux/module.h> |
| #include <linux/hugetlb.h> |
| |
| #include <asm/page.h> |
| #include <asm/sections.h> |
| #include <asm/tlbflush.h> |
| #include <asm/pgalloc.h> |
| #include <asm/homecache.h> |
| |
| #include <arch/sim.h> |
| |
| #include "migrate.h" |
| |
| |
| /* |
| * The noallocl2 option suppresses all use of the L2 cache to cache |
| * locally from a remote home. |
| */ |
| static int __write_once noallocl2; |
| static int __init set_noallocl2(char *str) |
| { |
| noallocl2 = 1; |
| return 0; |
| } |
| early_param("noallocl2", set_noallocl2); |
| |
| |
| /* |
| * Update the irq_stat for cpus that we are going to interrupt |
| * with TLB or cache flushes. Also handle removing dataplane cpus |
| * from the TLB flush set, and setting dataplane_tlb_state instead. |
| */ |
| static void hv_flush_update(const struct cpumask *cache_cpumask, |
| struct cpumask *tlb_cpumask, |
| unsigned long tlb_va, unsigned long tlb_length, |
| HV_Remote_ASID *asids, int asidcount) |
| { |
| struct cpumask mask; |
| int i, cpu; |
| |
| cpumask_clear(&mask); |
| if (cache_cpumask) |
| cpumask_or(&mask, &mask, cache_cpumask); |
| if (tlb_cpumask && tlb_length) { |
| cpumask_or(&mask, &mask, tlb_cpumask); |
| } |
| |
| for (i = 0; i < asidcount; ++i) |
| cpumask_set_cpu(asids[i].y * smp_width + asids[i].x, &mask); |
| |
| /* |
| * Don't bother to update atomically; losing a count |
| * here is not that critical. |
| */ |
| for_each_cpu(cpu, &mask) |
| ++per_cpu(irq_stat, cpu).irq_hv_flush_count; |
| } |
| |
| /* |
| * This wrapper function around hv_flush_remote() does several things: |
| * |
| * - Provides a return value error-checking panic path, since |
| * there's never any good reason for hv_flush_remote() to fail. |
| * - Accepts a 32-bit PFN rather than a 64-bit PA, which generally |
| * is the type that Linux wants to pass around anyway. |
| * - Canonicalizes that lengths of zero make cpumasks NULL. |
| * - Handles deferring TLB flushes for dataplane tiles. |
| * - Tracks remote interrupts in the per-cpu irq_cpustat_t. |
| * |
| * Note that we have to wait until the cache flush completes before |
| * updating the per-cpu last_cache_flush word, since otherwise another |
| * concurrent flush can race, conclude the flush has already |
| * completed, and start to use the page while it's still dirty |
| * remotely (running concurrently with the actual evict, presumably). |
| */ |
| void flush_remote(unsigned long cache_pfn, unsigned long cache_control, |
| const struct cpumask *cache_cpumask_orig, |
| HV_VirtAddr tlb_va, unsigned long tlb_length, |
| unsigned long tlb_pgsize, |
| const struct cpumask *tlb_cpumask_orig, |
| HV_Remote_ASID *asids, int asidcount) |
| { |
| int rc; |
| struct cpumask cache_cpumask_copy, tlb_cpumask_copy; |
| struct cpumask *cache_cpumask, *tlb_cpumask; |
| HV_PhysAddr cache_pa; |
| char cache_buf[NR_CPUS*5], tlb_buf[NR_CPUS*5]; |
| |
| mb(); /* provided just to simplify "magic hypervisor" mode */ |
| |
| /* |
| * Canonicalize and copy the cpumasks. |
| */ |
| if (cache_cpumask_orig && cache_control) { |
| cpumask_copy(&cache_cpumask_copy, cache_cpumask_orig); |
| cache_cpumask = &cache_cpumask_copy; |
| } else { |
| cpumask_clear(&cache_cpumask_copy); |
| cache_cpumask = NULL; |
| } |
| if (cache_cpumask == NULL) |
| cache_control = 0; |
| if (tlb_cpumask_orig && tlb_length) { |
| cpumask_copy(&tlb_cpumask_copy, tlb_cpumask_orig); |
| tlb_cpumask = &tlb_cpumask_copy; |
| } else { |
| cpumask_clear(&tlb_cpumask_copy); |
| tlb_cpumask = NULL; |
| } |
| |
| hv_flush_update(cache_cpumask, tlb_cpumask, tlb_va, tlb_length, |
| asids, asidcount); |
| cache_pa = (HV_PhysAddr)cache_pfn << PAGE_SHIFT; |
| rc = hv_flush_remote(cache_pa, cache_control, |
| cpumask_bits(cache_cpumask), |
| tlb_va, tlb_length, tlb_pgsize, |
| cpumask_bits(tlb_cpumask), |
| asids, asidcount); |
| if (rc == 0) |
| return; |
| cpumask_scnprintf(cache_buf, sizeof(cache_buf), &cache_cpumask_copy); |
| cpumask_scnprintf(tlb_buf, sizeof(tlb_buf), &tlb_cpumask_copy); |
| |
| pr_err("hv_flush_remote(%#llx, %#lx, %p [%s], %#lx, %#lx, %#lx, %p [%s], %p, %d) = %d\n", |
| cache_pa, cache_control, cache_cpumask, cache_buf, |
| (unsigned long)tlb_va, tlb_length, tlb_pgsize, |
| tlb_cpumask, tlb_buf, asids, asidcount, rc); |
| panic("Unsafe to continue."); |
| } |
| |
| static void homecache_finv_page_va(void* va, int home) |
| { |
| int cpu = get_cpu(); |
| if (home == cpu) { |
| finv_buffer_local(va, PAGE_SIZE); |
| } else if (home == PAGE_HOME_HASH) { |
| finv_buffer_remote(va, PAGE_SIZE, 1); |
| } else { |
| BUG_ON(home < 0 || home >= NR_CPUS); |
| finv_buffer_remote(va, PAGE_SIZE, 0); |
| } |
| put_cpu(); |
| } |
| |
| void homecache_finv_map_page(struct page *page, int home) |
| { |
| unsigned long flags; |
| unsigned long va; |
| pte_t *ptep; |
| pte_t pte; |
| |
| if (home == PAGE_HOME_UNCACHED) |
| return; |
| local_irq_save(flags); |
| #ifdef CONFIG_HIGHMEM |
| va = __fix_to_virt(FIX_KMAP_BEGIN + kmap_atomic_idx_push() + |
| (KM_TYPE_NR * smp_processor_id())); |
| #else |
| va = __fix_to_virt(FIX_HOMECACHE_BEGIN + smp_processor_id()); |
| #endif |
| ptep = virt_to_kpte(va); |
| pte = pfn_pte(page_to_pfn(page), PAGE_KERNEL); |
| __set_pte(ptep, pte_set_home(pte, home)); |
| homecache_finv_page_va((void *)va, home); |
| __pte_clear(ptep); |
| hv_flush_page(va, PAGE_SIZE); |
| #ifdef CONFIG_HIGHMEM |
| kmap_atomic_idx_pop(); |
| #endif |
| local_irq_restore(flags); |
| } |
| |
| static void homecache_finv_page_home(struct page *page, int home) |
| { |
| if (!PageHighMem(page) && home == page_home(page)) |
| homecache_finv_page_va(page_address(page), home); |
| else |
| homecache_finv_map_page(page, home); |
| } |
| |
| static inline bool incoherent_home(int home) |
| { |
| return home == PAGE_HOME_IMMUTABLE || home == PAGE_HOME_INCOHERENT; |
| } |
| |
| static void homecache_finv_page_internal(struct page *page, int force_map) |
| { |
| int home = page_home(page); |
| if (home == PAGE_HOME_UNCACHED) |
| return; |
| if (incoherent_home(home)) { |
| int cpu; |
| for_each_cpu(cpu, &cpu_cacheable_map) |
| homecache_finv_map_page(page, cpu); |
| } else if (force_map) { |
| /* Force if, e.g., the normal mapping is migrating. */ |
| homecache_finv_map_page(page, home); |
| } else { |
| homecache_finv_page_home(page, home); |
| } |
| sim_validate_lines_evicted(PFN_PHYS(page_to_pfn(page)), PAGE_SIZE); |
| } |
| |
| void homecache_finv_page(struct page *page) |
| { |
| homecache_finv_page_internal(page, 0); |
| } |
| |
| void homecache_evict(const struct cpumask *mask) |
| { |
| flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0); |
| } |
| |
| /* Report the home corresponding to a given PTE. */ |
| static int pte_to_home(pte_t pte) |
| { |
| if (hv_pte_get_nc(pte)) |
| return PAGE_HOME_IMMUTABLE; |
| switch (hv_pte_get_mode(pte)) { |
| case HV_PTE_MODE_CACHE_TILE_L3: |
| return get_remote_cache_cpu(pte); |
| case HV_PTE_MODE_CACHE_NO_L3: |
| return PAGE_HOME_INCOHERENT; |
| case HV_PTE_MODE_UNCACHED: |
| return PAGE_HOME_UNCACHED; |
| case HV_PTE_MODE_CACHE_HASH_L3: |
| return PAGE_HOME_HASH; |
| } |
| panic("Bad PTE %#llx\n", pte.val); |
| } |
| |
| /* Update the home of a PTE if necessary (can also be used for a pgprot_t). */ |
| pte_t pte_set_home(pte_t pte, int home) |
| { |
| /* Check for non-linear file mapping "PTEs" and pass them through. */ |
| if (pte_file(pte)) |
| return pte; |
| |
| #if CHIP_HAS_MMIO() |
| /* Check for MMIO mappings and pass them through. */ |
| if (hv_pte_get_mode(pte) == HV_PTE_MODE_MMIO) |
| return pte; |
| #endif |
| |
| |
| /* |
| * Only immutable pages get NC mappings. If we have a |
| * non-coherent PTE, but the underlying page is not |
| * immutable, it's likely the result of a forced |
| * caching setting running up against ptrace setting |
| * the page to be writable underneath. In this case, |
| * just keep the PTE coherent. |
| */ |
| if (hv_pte_get_nc(pte) && home != PAGE_HOME_IMMUTABLE) { |
| pte = hv_pte_clear_nc(pte); |
| pr_err("non-immutable page incoherently referenced: %#llx\n", |
| pte.val); |
| } |
| |
| switch (home) { |
| |
| case PAGE_HOME_UNCACHED: |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED); |
| break; |
| |
| case PAGE_HOME_INCOHERENT: |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3); |
| break; |
| |
| case PAGE_HOME_IMMUTABLE: |
| /* |
| * We could home this page anywhere, since it's immutable, |
| * but by default just home it to follow "hash_default". |
| */ |
| BUG_ON(hv_pte_get_writable(pte)); |
| if (pte_get_forcecache(pte)) { |
| /* Upgrade "force any cpu" to "No L3" for immutable. */ |
| if (hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_TILE_L3 |
| && pte_get_anyhome(pte)) { |
| pte = hv_pte_set_mode(pte, |
| HV_PTE_MODE_CACHE_NO_L3); |
| } |
| } else |
| if (hash_default) |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3); |
| else |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3); |
| pte = hv_pte_set_nc(pte); |
| break; |
| |
| case PAGE_HOME_HASH: |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3); |
| break; |
| |
| default: |
| BUG_ON(home < 0 || home >= NR_CPUS || |
| !cpu_is_valid_lotar(home)); |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3); |
| pte = set_remote_cache_cpu(pte, home); |
| break; |
| } |
| |
| if (noallocl2) |
| pte = hv_pte_set_no_alloc_l2(pte); |
| |
| /* Simplify "no local and no l3" to "uncached" */ |
| if (hv_pte_get_no_alloc_l2(pte) && hv_pte_get_no_alloc_l1(pte) && |
| hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_NO_L3) { |
| pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED); |
| } |
| |
| /* Checking this case here gives a better panic than from the hv. */ |
| BUG_ON(hv_pte_get_mode(pte) == 0); |
| |
| return pte; |
| } |
| EXPORT_SYMBOL(pte_set_home); |
| |
| /* |
| * The routines in this section are the "static" versions of the normal |
| * dynamic homecaching routines; they just set the home cache |
| * of a kernel page once, and require a full-chip cache/TLB flush, |
| * so they're not suitable for anything but infrequent use. |
| */ |
| |
| int page_home(struct page *page) |
| { |
| if (PageHighMem(page)) { |
| return PAGE_HOME_HASH; |
| } else { |
| unsigned long kva = (unsigned long)page_address(page); |
| return pte_to_home(*virt_to_kpte(kva)); |
| } |
| } |
| EXPORT_SYMBOL(page_home); |
| |
| void homecache_change_page_home(struct page *page, int order, int home) |
| { |
| int i, pages = (1 << order); |
| unsigned long kva; |
| |
| BUG_ON(PageHighMem(page)); |
| BUG_ON(page_count(page) > 1); |
| BUG_ON(page_mapcount(page) != 0); |
| kva = (unsigned long) page_address(page); |
| flush_remote(0, HV_FLUSH_EVICT_L2, &cpu_cacheable_map, |
| kva, pages * PAGE_SIZE, PAGE_SIZE, cpu_online_mask, |
| NULL, 0); |
| |
| for (i = 0; i < pages; ++i, kva += PAGE_SIZE) { |
| pte_t *ptep = virt_to_kpte(kva); |
| pte_t pteval = *ptep; |
| BUG_ON(!pte_present(pteval) || pte_huge(pteval)); |
| __set_pte(ptep, pte_set_home(pteval, home)); |
| } |
| } |
| EXPORT_SYMBOL(homecache_change_page_home); |
| |
| struct page *homecache_alloc_pages(gfp_t gfp_mask, |
| unsigned int order, int home) |
| { |
| struct page *page; |
| BUG_ON(gfp_mask & __GFP_HIGHMEM); /* must be lowmem */ |
| page = alloc_pages(gfp_mask, order); |
| if (page) |
| homecache_change_page_home(page, order, home); |
| return page; |
| } |
| EXPORT_SYMBOL(homecache_alloc_pages); |
| |
| struct page *homecache_alloc_pages_node(int nid, gfp_t gfp_mask, |
| unsigned int order, int home) |
| { |
| struct page *page; |
| BUG_ON(gfp_mask & __GFP_HIGHMEM); /* must be lowmem */ |
| page = alloc_pages_node(nid, gfp_mask, order); |
| if (page) |
| homecache_change_page_home(page, order, home); |
| return page; |
| } |
| |
| void __homecache_free_pages(struct page *page, unsigned int order) |
| { |
| if (put_page_testzero(page)) { |
| homecache_change_page_home(page, order, PAGE_HOME_HASH); |
| if (order == 0) { |
| free_hot_cold_page(page, false); |
| } else { |
| init_page_count(page); |
| __free_pages(page, order); |
| } |
| } |
| } |
| EXPORT_SYMBOL(__homecache_free_pages); |
| |
| void homecache_free_pages(unsigned long addr, unsigned int order) |
| { |
| if (addr != 0) { |
| VM_BUG_ON(!virt_addr_valid((void *)addr)); |
| __homecache_free_pages(virt_to_page((void *)addr), order); |
| } |
| } |
| EXPORT_SYMBOL(homecache_free_pages); |