| /* |
| * Copyright © 2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| #include <linux/firmware.h> |
| #include <linux/circ_buf.h> |
| #include <linux/debugfs.h> |
| #include <linux/relay.h> |
| #include "i915_drv.h" |
| #include "intel_guc.h" |
| |
| /** |
| * DOC: GuC-based command submission |
| * |
| * i915_guc_client: |
| * We use the term client to avoid confusion with contexts. A i915_guc_client is |
| * equivalent to GuC object guc_context_desc. This context descriptor is |
| * allocated from a pool of 1024 entries. Kernel driver will allocate doorbell |
| * and workqueue for it. Also the process descriptor (guc_process_desc), which |
| * is mapped to client space. So the client can write Work Item then ring the |
| * doorbell. |
| * |
| * To simplify the implementation, we allocate one gem object that contains all |
| * pages for doorbell, process descriptor and workqueue. |
| * |
| * The Scratch registers: |
| * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes |
| * a value to the action register (SOFT_SCRATCH_0) along with any data. It then |
| * triggers an interrupt on the GuC via another register write (0xC4C8). |
| * Firmware writes a success/fail code back to the action register after |
| * processes the request. The kernel driver polls waiting for this update and |
| * then proceeds. |
| * See host2guc_action() |
| * |
| * Doorbells: |
| * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW) |
| * mapped into process space. |
| * |
| * Work Items: |
| * There are several types of work items that the host may place into a |
| * workqueue, each with its own requirements and limitations. Currently only |
| * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which |
| * represents in-order queue. The kernel driver packs ring tail pointer and an |
| * ELSP context descriptor dword into Work Item. |
| * See guc_wq_item_append() |
| * |
| */ |
| |
| /* |
| * Read GuC command/status register (SOFT_SCRATCH_0) |
| * Return true if it contains a response rather than a command |
| */ |
| static inline bool host2guc_action_response(struct drm_i915_private *dev_priv, |
| u32 *status) |
| { |
| u32 val = I915_READ(SOFT_SCRATCH(0)); |
| *status = val; |
| return GUC2HOST_IS_RESPONSE(val); |
| } |
| |
| static int host2guc_action(struct intel_guc *guc, u32 *data, u32 len) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| u32 status; |
| int i; |
| int ret; |
| |
| if (WARN_ON(len < 1 || len > 15)) |
| return -EINVAL; |
| |
| mutex_lock(&guc->action_lock); |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| dev_priv->guc.action_count += 1; |
| dev_priv->guc.action_cmd = data[0]; |
| |
| for (i = 0; i < len; i++) |
| I915_WRITE(SOFT_SCRATCH(i), data[i]); |
| |
| POSTING_READ(SOFT_SCRATCH(i - 1)); |
| |
| I915_WRITE(HOST2GUC_INTERRUPT, HOST2GUC_TRIGGER); |
| |
| /* |
| * Fast commands should complete in less than 10us, so sample quickly |
| * up to that length of time, then switch to a slower sleep-wait loop. |
| * No HOST2GUC command should ever take longer than 10ms. |
| */ |
| ret = wait_for_us(host2guc_action_response(dev_priv, &status), 10); |
| if (ret) |
| ret = wait_for(host2guc_action_response(dev_priv, &status), 10); |
| if (status != GUC2HOST_STATUS_SUCCESS) { |
| /* |
| * Either the GuC explicitly returned an error (which |
| * we convert to -EIO here) or no response at all was |
| * received within the timeout limit (-ETIMEDOUT) |
| */ |
| if (ret != -ETIMEDOUT) |
| ret = -EIO; |
| |
| DRM_WARN("Action 0x%X failed; ret=%d status=0x%08X response=0x%08X\n", |
| data[0], ret, status, I915_READ(SOFT_SCRATCH(15))); |
| |
| dev_priv->guc.action_fail += 1; |
| dev_priv->guc.action_err = ret; |
| } |
| dev_priv->guc.action_status = status; |
| |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| mutex_unlock(&guc->action_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Tell the GuC to allocate or deallocate a specific doorbell |
| */ |
| |
| static int host2guc_allocate_doorbell(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| u32 data[2]; |
| |
| data[0] = HOST2GUC_ACTION_ALLOCATE_DOORBELL; |
| data[1] = client->ctx_index; |
| |
| return host2guc_action(guc, data, 2); |
| } |
| |
| static int host2guc_release_doorbell(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| u32 data[2]; |
| |
| data[0] = HOST2GUC_ACTION_DEALLOCATE_DOORBELL; |
| data[1] = client->ctx_index; |
| |
| return host2guc_action(guc, data, 2); |
| } |
| |
| static int host2guc_sample_forcewake(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| u32 data[2]; |
| |
| data[0] = HOST2GUC_ACTION_SAMPLE_FORCEWAKE; |
| /* WaRsDisableCoarsePowerGating:skl,bxt */ |
| if (!intel_enable_rc6() || NEEDS_WaRsDisableCoarsePowerGating(dev_priv)) |
| data[1] = 0; |
| else |
| /* bit 0 and 1 are for Render and Media domain separately */ |
| data[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA; |
| |
| return host2guc_action(guc, data, ARRAY_SIZE(data)); |
| } |
| |
| static int host2guc_logbuffer_flush_complete(struct intel_guc *guc) |
| { |
| u32 data[1]; |
| |
| data[0] = HOST2GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE; |
| |
| return host2guc_action(guc, data, 1); |
| } |
| |
| static int host2guc_force_logbuffer_flush(struct intel_guc *guc) |
| { |
| u32 data[2]; |
| |
| data[0] = HOST2GUC_ACTION_FORCE_LOG_BUFFER_FLUSH; |
| data[1] = 0; |
| |
| return host2guc_action(guc, data, 2); |
| } |
| |
| static int host2guc_logging_control(struct intel_guc *guc, u32 control_val) |
| { |
| u32 data[2]; |
| |
| data[0] = HOST2GUC_ACTION_UK_LOG_ENABLE_LOGGING; |
| data[1] = control_val; |
| |
| return host2guc_action(guc, data, 2); |
| } |
| |
| /* |
| * Initialise, update, or clear doorbell data shared with the GuC |
| * |
| * These functions modify shared data and so need access to the mapped |
| * client object which contains the page being used for the doorbell |
| */ |
| |
| static int guc_update_doorbell_id(struct intel_guc *guc, |
| struct i915_guc_client *client, |
| u16 new_id) |
| { |
| struct sg_table *sg = guc->ctx_pool_vma->pages; |
| void *doorbell_bitmap = guc->doorbell_bitmap; |
| struct guc_doorbell_info *doorbell; |
| struct guc_context_desc desc; |
| size_t len; |
| |
| doorbell = client->vaddr + client->doorbell_offset; |
| |
| if (client->doorbell_id != GUC_INVALID_DOORBELL_ID && |
| test_bit(client->doorbell_id, doorbell_bitmap)) { |
| /* Deactivate the old doorbell */ |
| doorbell->db_status = GUC_DOORBELL_DISABLED; |
| (void)host2guc_release_doorbell(guc, client); |
| __clear_bit(client->doorbell_id, doorbell_bitmap); |
| } |
| |
| /* Update the GuC's idea of the doorbell ID */ |
| len = sg_pcopy_to_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), |
| sizeof(desc) * client->ctx_index); |
| if (len != sizeof(desc)) |
| return -EFAULT; |
| desc.db_id = new_id; |
| len = sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), |
| sizeof(desc) * client->ctx_index); |
| if (len != sizeof(desc)) |
| return -EFAULT; |
| |
| client->doorbell_id = new_id; |
| if (new_id == GUC_INVALID_DOORBELL_ID) |
| return 0; |
| |
| /* Activate the new doorbell */ |
| __set_bit(new_id, doorbell_bitmap); |
| doorbell->cookie = 0; |
| doorbell->db_status = GUC_DOORBELL_ENABLED; |
| return host2guc_allocate_doorbell(guc, client); |
| } |
| |
| static int guc_init_doorbell(struct intel_guc *guc, |
| struct i915_guc_client *client, |
| uint16_t db_id) |
| { |
| return guc_update_doorbell_id(guc, client, db_id); |
| } |
| |
| static void guc_disable_doorbell(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| (void)guc_update_doorbell_id(guc, client, GUC_INVALID_DOORBELL_ID); |
| |
| /* XXX: wait for any interrupts */ |
| /* XXX: wait for workqueue to drain */ |
| } |
| |
| static uint16_t |
| select_doorbell_register(struct intel_guc *guc, uint32_t priority) |
| { |
| /* |
| * The bitmap tracks which doorbell registers are currently in use. |
| * It is split into two halves; the first half is used for normal |
| * priority contexts, the second half for high-priority ones. |
| * Note that logically higher priorities are numerically less than |
| * normal ones, so the test below means "is it high-priority?" |
| */ |
| const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH); |
| const uint16_t half = GUC_MAX_DOORBELLS / 2; |
| const uint16_t start = hi_pri ? half : 0; |
| const uint16_t end = start + half; |
| uint16_t id; |
| |
| id = find_next_zero_bit(guc->doorbell_bitmap, end, start); |
| if (id == end) |
| id = GUC_INVALID_DOORBELL_ID; |
| |
| DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n", |
| hi_pri ? "high" : "normal", id); |
| |
| return id; |
| } |
| |
| /* |
| * Select, assign and relase doorbell cachelines |
| * |
| * These functions track which doorbell cachelines are in use. |
| * The data they manipulate is protected by the host2guc lock. |
| */ |
| |
| static uint32_t select_doorbell_cacheline(struct intel_guc *guc) |
| { |
| const uint32_t cacheline_size = cache_line_size(); |
| uint32_t offset; |
| |
| /* Doorbell uses a single cache line within a page */ |
| offset = offset_in_page(guc->db_cacheline); |
| |
| /* Moving to next cache line to reduce contention */ |
| guc->db_cacheline += cacheline_size; |
| |
| DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n", |
| offset, guc->db_cacheline, cacheline_size); |
| |
| return offset; |
| } |
| |
| /* |
| * Initialise the process descriptor shared with the GuC firmware. |
| */ |
| static void guc_proc_desc_init(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| struct guc_process_desc *desc; |
| |
| desc = client->vaddr + client->proc_desc_offset; |
| |
| memset(desc, 0, sizeof(*desc)); |
| |
| /* |
| * XXX: pDoorbell and WQVBaseAddress are pointers in process address |
| * space for ring3 clients (set them as in mmap_ioctl) or kernel |
| * space for kernel clients (map on demand instead? May make debug |
| * easier to have it mapped). |
| */ |
| desc->wq_base_addr = 0; |
| desc->db_base_addr = 0; |
| |
| desc->context_id = client->ctx_index; |
| desc->wq_size_bytes = client->wq_size; |
| desc->wq_status = WQ_STATUS_ACTIVE; |
| desc->priority = client->priority; |
| } |
| |
| /* |
| * Initialise/clear the context descriptor shared with the GuC firmware. |
| * |
| * This descriptor tells the GuC where (in GGTT space) to find the important |
| * data structures relating to this client (doorbell, process descriptor, |
| * write queue, etc). |
| */ |
| |
| static void guc_ctx_desc_init(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| struct intel_engine_cs *engine; |
| struct i915_gem_context *ctx = client->owner; |
| struct guc_context_desc desc; |
| struct sg_table *sg; |
| unsigned int tmp; |
| u32 gfx_addr; |
| |
| memset(&desc, 0, sizeof(desc)); |
| |
| desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL; |
| desc.context_id = client->ctx_index; |
| desc.priority = client->priority; |
| desc.db_id = client->doorbell_id; |
| |
| for_each_engine_masked(engine, dev_priv, client->engines, tmp) { |
| struct intel_context *ce = &ctx->engine[engine->id]; |
| uint32_t guc_engine_id = engine->guc_id; |
| struct guc_execlist_context *lrc = &desc.lrc[guc_engine_id]; |
| |
| /* TODO: We have a design issue to be solved here. Only when we |
| * receive the first batch, we know which engine is used by the |
| * user. But here GuC expects the lrc and ring to be pinned. It |
| * is not an issue for default context, which is the only one |
| * for now who owns a GuC client. But for future owner of GuC |
| * client, need to make sure lrc is pinned prior to enter here. |
| */ |
| if (!ce->state) |
| break; /* XXX: continue? */ |
| |
| lrc->context_desc = lower_32_bits(ce->lrc_desc); |
| |
| /* The state page is after PPHWSP */ |
| lrc->ring_lcra = |
| i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE; |
| lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) | |
| (guc_engine_id << GUC_ELC_ENGINE_OFFSET); |
| |
| lrc->ring_begin = i915_ggtt_offset(ce->ring->vma); |
| lrc->ring_end = lrc->ring_begin + ce->ring->size - 1; |
| lrc->ring_next_free_location = lrc->ring_begin; |
| lrc->ring_current_tail_pointer_value = 0; |
| |
| desc.engines_used |= (1 << guc_engine_id); |
| } |
| |
| DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n", |
| client->engines, desc.engines_used); |
| WARN_ON(desc.engines_used == 0); |
| |
| /* |
| * The doorbell, process descriptor, and workqueue are all parts |
| * of the client object, which the GuC will reference via the GGTT |
| */ |
| gfx_addr = i915_ggtt_offset(client->vma); |
| desc.db_trigger_phy = sg_dma_address(client->vma->pages->sgl) + |
| client->doorbell_offset; |
| desc.db_trigger_cpu = |
| (uintptr_t)client->vaddr + client->doorbell_offset; |
| desc.db_trigger_uk = gfx_addr + client->doorbell_offset; |
| desc.process_desc = gfx_addr + client->proc_desc_offset; |
| desc.wq_addr = gfx_addr + client->wq_offset; |
| desc.wq_size = client->wq_size; |
| |
| /* |
| * XXX: Take LRCs from an existing context if this is not an |
| * IsKMDCreatedContext client |
| */ |
| desc.desc_private = (uintptr_t)client; |
| |
| /* Pool context is pinned already */ |
| sg = guc->ctx_pool_vma->pages; |
| sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), |
| sizeof(desc) * client->ctx_index); |
| } |
| |
| static void guc_ctx_desc_fini(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| struct guc_context_desc desc; |
| struct sg_table *sg; |
| |
| memset(&desc, 0, sizeof(desc)); |
| |
| sg = guc->ctx_pool_vma->pages; |
| sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), |
| sizeof(desc) * client->ctx_index); |
| } |
| |
| /** |
| * i915_guc_wq_reserve() - reserve space in the GuC's workqueue |
| * @request: request associated with the commands |
| * |
| * Return: 0 if space is available |
| * -EAGAIN if space is not currently available |
| * |
| * This function must be called (and must return 0) before a request |
| * is submitted to the GuC via i915_guc_submit() below. Once a result |
| * of 0 has been returned, it must be balanced by a corresponding |
| * call to submit(). |
| * |
| * Reservation allows the caller to determine in advance that space |
| * will be available for the next submission before committing resources |
| * to it, and helps avoid late failures with complicated recovery paths. |
| */ |
| int i915_guc_wq_reserve(struct drm_i915_gem_request *request) |
| { |
| const size_t wqi_size = sizeof(struct guc_wq_item); |
| struct i915_guc_client *gc = request->i915->guc.execbuf_client; |
| struct guc_process_desc *desc = gc->vaddr + gc->proc_desc_offset; |
| u32 freespace; |
| int ret; |
| |
| spin_lock(&gc->wq_lock); |
| freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size); |
| freespace -= gc->wq_rsvd; |
| if (likely(freespace >= wqi_size)) { |
| gc->wq_rsvd += wqi_size; |
| ret = 0; |
| } else { |
| gc->no_wq_space++; |
| ret = -EAGAIN; |
| } |
| spin_unlock(&gc->wq_lock); |
| |
| return ret; |
| } |
| |
| void i915_guc_wq_unreserve(struct drm_i915_gem_request *request) |
| { |
| const size_t wqi_size = sizeof(struct guc_wq_item); |
| struct i915_guc_client *gc = request->i915->guc.execbuf_client; |
| |
| GEM_BUG_ON(READ_ONCE(gc->wq_rsvd) < wqi_size); |
| |
| spin_lock(&gc->wq_lock); |
| gc->wq_rsvd -= wqi_size; |
| spin_unlock(&gc->wq_lock); |
| } |
| |
| /* Construct a Work Item and append it to the GuC's Work Queue */ |
| static void guc_wq_item_append(struct i915_guc_client *gc, |
| struct drm_i915_gem_request *rq) |
| { |
| /* wqi_len is in DWords, and does not include the one-word header */ |
| const size_t wqi_size = sizeof(struct guc_wq_item); |
| const u32 wqi_len = wqi_size/sizeof(u32) - 1; |
| struct intel_engine_cs *engine = rq->engine; |
| struct guc_process_desc *desc; |
| struct guc_wq_item *wqi; |
| u32 freespace, tail, wq_off; |
| |
| desc = gc->vaddr + gc->proc_desc_offset; |
| |
| /* Free space is guaranteed, see i915_guc_wq_reserve() above */ |
| freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size); |
| GEM_BUG_ON(freespace < wqi_size); |
| |
| /* The GuC firmware wants the tail index in QWords, not bytes */ |
| tail = rq->tail; |
| GEM_BUG_ON(tail & 7); |
| tail >>= 3; |
| GEM_BUG_ON(tail > WQ_RING_TAIL_MAX); |
| |
| /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we |
| * should not have the case where structure wqi is across page, neither |
| * wrapped to the beginning. This simplifies the implementation below. |
| * |
| * XXX: if not the case, we need save data to a temp wqi and copy it to |
| * workqueue buffer dw by dw. |
| */ |
| BUILD_BUG_ON(wqi_size != 16); |
| GEM_BUG_ON(gc->wq_rsvd < wqi_size); |
| |
| /* postincrement WQ tail for next time */ |
| wq_off = gc->wq_tail; |
| GEM_BUG_ON(wq_off & (wqi_size - 1)); |
| gc->wq_tail += wqi_size; |
| gc->wq_tail &= gc->wq_size - 1; |
| gc->wq_rsvd -= wqi_size; |
| |
| /* WQ starts from the page after doorbell / process_desc */ |
| wqi = gc->vaddr + wq_off + GUC_DB_SIZE; |
| |
| /* Now fill in the 4-word work queue item */ |
| wqi->header = WQ_TYPE_INORDER | |
| (wqi_len << WQ_LEN_SHIFT) | |
| (engine->guc_id << WQ_TARGET_SHIFT) | |
| WQ_NO_WCFLUSH_WAIT; |
| |
| /* The GuC wants only the low-order word of the context descriptor */ |
| wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine); |
| |
| wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT; |
| wqi->fence_id = rq->global_seqno; |
| } |
| |
| static int guc_ring_doorbell(struct i915_guc_client *gc) |
| { |
| struct guc_process_desc *desc; |
| union guc_doorbell_qw db_cmp, db_exc, db_ret; |
| union guc_doorbell_qw *db; |
| int attempt = 2, ret = -EAGAIN; |
| |
| desc = gc->vaddr + gc->proc_desc_offset; |
| |
| /* Update the tail so it is visible to GuC */ |
| desc->tail = gc->wq_tail; |
| |
| /* current cookie */ |
| db_cmp.db_status = GUC_DOORBELL_ENABLED; |
| db_cmp.cookie = gc->cookie; |
| |
| /* cookie to be updated */ |
| db_exc.db_status = GUC_DOORBELL_ENABLED; |
| db_exc.cookie = gc->cookie + 1; |
| if (db_exc.cookie == 0) |
| db_exc.cookie = 1; |
| |
| /* pointer of current doorbell cacheline */ |
| db = gc->vaddr + gc->doorbell_offset; |
| |
| while (attempt--) { |
| /* lets ring the doorbell */ |
| db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db, |
| db_cmp.value_qw, db_exc.value_qw); |
| |
| /* if the exchange was successfully executed */ |
| if (db_ret.value_qw == db_cmp.value_qw) { |
| /* db was successfully rung */ |
| gc->cookie = db_exc.cookie; |
| ret = 0; |
| break; |
| } |
| |
| /* XXX: doorbell was lost and need to acquire it again */ |
| if (db_ret.db_status == GUC_DOORBELL_DISABLED) |
| break; |
| |
| DRM_WARN("Cookie mismatch. Expected %d, found %d\n", |
| db_cmp.cookie, db_ret.cookie); |
| |
| /* update the cookie to newly read cookie from GuC */ |
| db_cmp.cookie = db_ret.cookie; |
| db_exc.cookie = db_ret.cookie + 1; |
| if (db_exc.cookie == 0) |
| db_exc.cookie = 1; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * i915_guc_submit() - Submit commands through GuC |
| * @rq: request associated with the commands |
| * |
| * Return: 0 on success, otherwise an errno. |
| * (Note: nonzero really shouldn't happen!) |
| * |
| * The caller must have already called i915_guc_wq_reserve() above with |
| * a result of 0 (success), guaranteeing that there is space in the work |
| * queue for the new request, so enqueuing the item cannot fail. |
| * |
| * Bad Things Will Happen if the caller violates this protocol e.g. calls |
| * submit() when _reserve() says there's no space, or calls _submit() |
| * a different number of times from (successful) calls to _reserve(). |
| * |
| * The only error here arises if the doorbell hardware isn't functioning |
| * as expected, which really shouln't happen. |
| */ |
| static void i915_guc_submit(struct drm_i915_gem_request *rq) |
| { |
| struct drm_i915_private *dev_priv = rq->i915; |
| unsigned int engine_id = rq->engine->id; |
| struct intel_guc *guc = &rq->i915->guc; |
| struct i915_guc_client *client = guc->execbuf_client; |
| int b_ret; |
| |
| spin_lock(&client->wq_lock); |
| guc_wq_item_append(client, rq); |
| |
| /* WA to flush out the pending GMADR writes to ring buffer. */ |
| if (i915_vma_is_map_and_fenceable(rq->ring->vma)) |
| POSTING_READ_FW(GUC_STATUS); |
| |
| b_ret = guc_ring_doorbell(client); |
| |
| client->submissions[engine_id] += 1; |
| client->retcode = b_ret; |
| if (b_ret) |
| client->b_fail += 1; |
| |
| guc->submissions[engine_id] += 1; |
| guc->last_seqno[engine_id] = rq->global_seqno; |
| spin_unlock(&client->wq_lock); |
| } |
| |
| /* |
| * Everything below here is concerned with setup & teardown, and is |
| * therefore not part of the somewhat time-critical batch-submission |
| * path of i915_guc_submit() above. |
| */ |
| |
| /** |
| * guc_allocate_vma() - Allocate a GGTT VMA for GuC usage |
| * @guc: the guc |
| * @size: size of area to allocate (both virtual space and memory) |
| * |
| * This is a wrapper to create an object for use with the GuC. In order to |
| * use it inside the GuC, an object needs to be pinned lifetime, so we allocate |
| * both some backing storage and a range inside the Global GTT. We must pin |
| * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that |
| * range is reserved inside GuC. |
| * |
| * Return: A i915_vma if successful, otherwise an ERR_PTR. |
| */ |
| static struct i915_vma *guc_allocate_vma(struct intel_guc *guc, u32 size) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma; |
| int ret; |
| |
| obj = i915_gem_object_create(&dev_priv->drm, size); |
| if (IS_ERR(obj)) |
| return ERR_CAST(obj); |
| |
| vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL); |
| if (IS_ERR(vma)) |
| goto err; |
| |
| ret = i915_vma_pin(vma, 0, PAGE_SIZE, |
| PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP); |
| if (ret) { |
| vma = ERR_PTR(ret); |
| goto err; |
| } |
| |
| /* Invalidate GuC TLB to let GuC take the latest updates to GTT. */ |
| I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); |
| |
| return vma; |
| |
| err: |
| i915_gem_object_put(obj); |
| return vma; |
| } |
| |
| static void |
| guc_client_free(struct drm_i915_private *dev_priv, |
| struct i915_guc_client *client) |
| { |
| struct intel_guc *guc = &dev_priv->guc; |
| |
| if (!client) |
| return; |
| |
| /* |
| * XXX: wait for any outstanding submissions before freeing memory. |
| * Be sure to drop any locks |
| */ |
| |
| if (client->vaddr) { |
| /* |
| * If we got as far as setting up a doorbell, make sure we |
| * shut it down before unmapping & deallocating the memory. |
| */ |
| guc_disable_doorbell(guc, client); |
| |
| i915_gem_object_unpin_map(client->vma->obj); |
| } |
| |
| i915_vma_unpin_and_release(&client->vma); |
| |
| if (client->ctx_index != GUC_INVALID_CTX_ID) { |
| guc_ctx_desc_fini(guc, client); |
| ida_simple_remove(&guc->ctx_ids, client->ctx_index); |
| } |
| |
| kfree(client); |
| } |
| |
| /* Check that a doorbell register is in the expected state */ |
| static bool guc_doorbell_check(struct intel_guc *guc, uint16_t db_id) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| i915_reg_t drbreg = GEN8_DRBREGL(db_id); |
| uint32_t value = I915_READ(drbreg); |
| bool enabled = (value & GUC_DOORBELL_ENABLED) != 0; |
| bool expected = test_bit(db_id, guc->doorbell_bitmap); |
| |
| if (enabled == expected) |
| return true; |
| |
| DRM_DEBUG_DRIVER("Doorbell %d (reg 0x%x) 0x%x, should be %s\n", |
| db_id, drbreg.reg, value, |
| expected ? "active" : "inactive"); |
| |
| return false; |
| } |
| |
| /* |
| * Borrow the first client to set up & tear down each unused doorbell |
| * in turn, to ensure that all doorbell h/w is (re)initialised. |
| */ |
| static void guc_init_doorbell_hw(struct intel_guc *guc) |
| { |
| struct i915_guc_client *client = guc->execbuf_client; |
| uint16_t db_id; |
| int i, err; |
| |
| /* Save client's original doorbell selection */ |
| db_id = client->doorbell_id; |
| |
| for (i = 0; i < GUC_MAX_DOORBELLS; ++i) { |
| /* Skip if doorbell is OK */ |
| if (guc_doorbell_check(guc, i)) |
| continue; |
| |
| err = guc_update_doorbell_id(guc, client, i); |
| if (err) |
| DRM_DEBUG_DRIVER("Doorbell %d update failed, err %d\n", |
| i, err); |
| } |
| |
| /* Restore to original value */ |
| err = guc_update_doorbell_id(guc, client, db_id); |
| if (err) |
| DRM_WARN("Failed to restore doorbell to %d, err %d\n", |
| db_id, err); |
| |
| /* Read back & verify all doorbell registers */ |
| for (i = 0; i < GUC_MAX_DOORBELLS; ++i) |
| (void)guc_doorbell_check(guc, i); |
| } |
| |
| /** |
| * guc_client_alloc() - Allocate an i915_guc_client |
| * @dev_priv: driver private data structure |
| * @engines: The set of engines to enable for this client |
| * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW |
| * The kernel client to replace ExecList submission is created with |
| * NORMAL priority. Priority of a client for scheduler can be HIGH, |
| * while a preemption context can use CRITICAL. |
| * @ctx: the context that owns the client (we use the default render |
| * context) |
| * |
| * Return: An i915_guc_client object if success, else NULL. |
| */ |
| static struct i915_guc_client * |
| guc_client_alloc(struct drm_i915_private *dev_priv, |
| uint32_t engines, |
| uint32_t priority, |
| struct i915_gem_context *ctx) |
| { |
| struct i915_guc_client *client; |
| struct intel_guc *guc = &dev_priv->guc; |
| struct i915_vma *vma; |
| void *vaddr; |
| uint16_t db_id; |
| |
| client = kzalloc(sizeof(*client), GFP_KERNEL); |
| if (!client) |
| return NULL; |
| |
| client->owner = ctx; |
| client->guc = guc; |
| client->engines = engines; |
| client->priority = priority; |
| client->doorbell_id = GUC_INVALID_DOORBELL_ID; |
| |
| client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0, |
| GUC_MAX_GPU_CONTEXTS, GFP_KERNEL); |
| if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) { |
| client->ctx_index = GUC_INVALID_CTX_ID; |
| goto err; |
| } |
| |
| /* The first page is doorbell/proc_desc. Two followed pages are wq. */ |
| vma = guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE); |
| if (IS_ERR(vma)) |
| goto err; |
| |
| /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */ |
| client->vma = vma; |
| |
| vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); |
| if (IS_ERR(vaddr)) |
| goto err; |
| |
| client->vaddr = vaddr; |
| |
| spin_lock_init(&client->wq_lock); |
| client->wq_offset = GUC_DB_SIZE; |
| client->wq_size = GUC_WQ_SIZE; |
| |
| db_id = select_doorbell_register(guc, client->priority); |
| if (db_id == GUC_INVALID_DOORBELL_ID) |
| /* XXX: evict a doorbell instead? */ |
| goto err; |
| |
| client->doorbell_offset = select_doorbell_cacheline(guc); |
| |
| /* |
| * Since the doorbell only requires a single cacheline, we can save |
| * space by putting the application process descriptor in the same |
| * page. Use the half of the page that doesn't include the doorbell. |
| */ |
| if (client->doorbell_offset >= (GUC_DB_SIZE / 2)) |
| client->proc_desc_offset = 0; |
| else |
| client->proc_desc_offset = (GUC_DB_SIZE / 2); |
| |
| guc_proc_desc_init(guc, client); |
| guc_ctx_desc_init(guc, client); |
| if (guc_init_doorbell(guc, client, db_id)) |
| goto err; |
| |
| DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: ctx_index %u\n", |
| priority, client, client->engines, client->ctx_index); |
| DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%x\n", |
| client->doorbell_id, client->doorbell_offset); |
| |
| return client; |
| |
| err: |
| guc_client_free(dev_priv, client); |
| return NULL; |
| } |
| |
| /* |
| * Sub buffer switch callback. Called whenever relay has to switch to a new |
| * sub buffer, relay stays on the same sub buffer if 0 is returned. |
| */ |
| static int subbuf_start_callback(struct rchan_buf *buf, |
| void *subbuf, |
| void *prev_subbuf, |
| size_t prev_padding) |
| { |
| /* Use no-overwrite mode by default, where relay will stop accepting |
| * new data if there are no empty sub buffers left. |
| * There is no strict synchronization enforced by relay between Consumer |
| * and Producer. In overwrite mode, there is a possibility of getting |
| * inconsistent/garbled data, the producer could be writing on to the |
| * same sub buffer from which Consumer is reading. This can't be avoided |
| * unless Consumer is fast enough and can always run in tandem with |
| * Producer. |
| */ |
| if (relay_buf_full(buf)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * file_create() callback. Creates relay file in debugfs. |
| */ |
| static struct dentry *create_buf_file_callback(const char *filename, |
| struct dentry *parent, |
| umode_t mode, |
| struct rchan_buf *buf, |
| int *is_global) |
| { |
| struct dentry *buf_file; |
| |
| /* This to enable the use of a single buffer for the relay channel and |
| * correspondingly have a single file exposed to User, through which |
| * it can collect the logs in order without any post-processing. |
| * Need to set 'is_global' even if parent is NULL for early logging. |
| */ |
| *is_global = 1; |
| |
| if (!parent) |
| return NULL; |
| |
| /* Not using the channel filename passed as an argument, since for each |
| * channel relay appends the corresponding CPU number to the filename |
| * passed in relay_open(). This should be fine as relay just needs a |
| * dentry of the file associated with the channel buffer and that file's |
| * name need not be same as the filename passed as an argument. |
| */ |
| buf_file = debugfs_create_file("guc_log", mode, |
| parent, buf, &relay_file_operations); |
| return buf_file; |
| } |
| |
| /* |
| * file_remove() default callback. Removes relay file in debugfs. |
| */ |
| static int remove_buf_file_callback(struct dentry *dentry) |
| { |
| debugfs_remove(dentry); |
| return 0; |
| } |
| |
| /* relay channel callbacks */ |
| static struct rchan_callbacks relay_callbacks = { |
| .subbuf_start = subbuf_start_callback, |
| .create_buf_file = create_buf_file_callback, |
| .remove_buf_file = remove_buf_file_callback, |
| }; |
| |
| static void guc_log_remove_relay_file(struct intel_guc *guc) |
| { |
| relay_close(guc->log.relay_chan); |
| } |
| |
| static int guc_log_create_relay_channel(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| struct rchan *guc_log_relay_chan; |
| size_t n_subbufs, subbuf_size; |
| |
| /* Keep the size of sub buffers same as shared log buffer */ |
| subbuf_size = guc->log.vma->obj->base.size; |
| |
| /* Store up to 8 snapshots, which is large enough to buffer sufficient |
| * boot time logs and provides enough leeway to User, in terms of |
| * latency, for consuming the logs from relay. Also doesn't take |
| * up too much memory. |
| */ |
| n_subbufs = 8; |
| |
| guc_log_relay_chan = relay_open(NULL, NULL, subbuf_size, |
| n_subbufs, &relay_callbacks, dev_priv); |
| if (!guc_log_relay_chan) { |
| DRM_ERROR("Couldn't create relay chan for GuC logging\n"); |
| return -ENOMEM; |
| } |
| |
| GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size); |
| guc->log.relay_chan = guc_log_relay_chan; |
| return 0; |
| } |
| |
| static int guc_log_create_relay_file(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| struct dentry *log_dir; |
| int ret; |
| |
| /* For now create the log file in /sys/kernel/debug/dri/0 dir */ |
| log_dir = dev_priv->drm.primary->debugfs_root; |
| |
| /* If /sys/kernel/debug/dri/0 location do not exist, then debugfs is |
| * not mounted and so can't create the relay file. |
| * The relay API seems to fit well with debugfs only, for availing relay |
| * there are 3 requirements which can be met for debugfs file only in a |
| * straightforward/clean manner :- |
| * i) Need the associated dentry pointer of the file, while opening the |
| * relay channel. |
| * ii) Should be able to use 'relay_file_operations' fops for the file. |
| * iii) Set the 'i_private' field of file's inode to the pointer of |
| * relay channel buffer. |
| */ |
| if (!log_dir) { |
| DRM_ERROR("Debugfs dir not available yet for GuC log file\n"); |
| return -ENODEV; |
| } |
| |
| ret = relay_late_setup_files(guc->log.relay_chan, "guc_log", log_dir); |
| if (ret) { |
| DRM_ERROR("Couldn't associate relay chan with file %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void guc_move_to_next_buf(struct intel_guc *guc) |
| { |
| /* Make sure the updates made in the sub buffer are visible when |
| * Consumer sees the following update to offset inside the sub buffer. |
| */ |
| smp_wmb(); |
| |
| /* All data has been written, so now move the offset of sub buffer. */ |
| relay_reserve(guc->log.relay_chan, guc->log.vma->obj->base.size); |
| |
| /* Switch to the next sub buffer */ |
| relay_flush(guc->log.relay_chan); |
| } |
| |
| static void *guc_get_write_buffer(struct intel_guc *guc) |
| { |
| if (!guc->log.relay_chan) |
| return NULL; |
| |
| /* Just get the base address of a new sub buffer and copy data into it |
| * ourselves. NULL will be returned in no-overwrite mode, if all sub |
| * buffers are full. Could have used the relay_write() to indirectly |
| * copy the data, but that would have been bit convoluted, as we need to |
| * write to only certain locations inside a sub buffer which cannot be |
| * done without using relay_reserve() along with relay_write(). So its |
| * better to use relay_reserve() alone. |
| */ |
| return relay_reserve(guc->log.relay_chan, 0); |
| } |
| |
| static bool |
| guc_check_log_buf_overflow(struct intel_guc *guc, |
| enum guc_log_buffer_type type, unsigned int full_cnt) |
| { |
| unsigned int prev_full_cnt = guc->log.prev_overflow_count[type]; |
| bool overflow = false; |
| |
| if (full_cnt != prev_full_cnt) { |
| overflow = true; |
| |
| guc->log.prev_overflow_count[type] = full_cnt; |
| guc->log.total_overflow_count[type] += full_cnt - prev_full_cnt; |
| |
| if (full_cnt < prev_full_cnt) { |
| /* buffer_full_cnt is a 4 bit counter */ |
| guc->log.total_overflow_count[type] += 16; |
| } |
| DRM_ERROR_RATELIMITED("GuC log buffer overflow\n"); |
| } |
| |
| return overflow; |
| } |
| |
| static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type) |
| { |
| switch (type) { |
| case GUC_ISR_LOG_BUFFER: |
| return (GUC_LOG_ISR_PAGES + 1) * PAGE_SIZE; |
| case GUC_DPC_LOG_BUFFER: |
| return (GUC_LOG_DPC_PAGES + 1) * PAGE_SIZE; |
| case GUC_CRASH_DUMP_LOG_BUFFER: |
| return (GUC_LOG_CRASH_PAGES + 1) * PAGE_SIZE; |
| default: |
| MISSING_CASE(type); |
| } |
| |
| return 0; |
| } |
| |
| static void guc_read_update_log_buffer(struct intel_guc *guc) |
| { |
| unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt; |
| struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state; |
| struct guc_log_buffer_state log_buf_state_local; |
| enum guc_log_buffer_type type; |
| void *src_data, *dst_data; |
| bool new_overflow; |
| |
| if (WARN_ON(!guc->log.buf_addr)) |
| return; |
| |
| /* Get the pointer to shared GuC log buffer */ |
| log_buf_state = src_data = guc->log.buf_addr; |
| |
| /* Get the pointer to local buffer to store the logs */ |
| log_buf_snapshot_state = dst_data = guc_get_write_buffer(guc); |
| |
| /* Actual logs are present from the 2nd page */ |
| src_data += PAGE_SIZE; |
| dst_data += PAGE_SIZE; |
| |
| for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { |
| /* Make a copy of the state structure, inside GuC log buffer |
| * (which is uncached mapped), on the stack to avoid reading |
| * from it multiple times. |
| */ |
| memcpy(&log_buf_state_local, log_buf_state, |
| sizeof(struct guc_log_buffer_state)); |
| buffer_size = guc_get_log_buffer_size(type); |
| read_offset = log_buf_state_local.read_ptr; |
| write_offset = log_buf_state_local.sampled_write_ptr; |
| full_cnt = log_buf_state_local.buffer_full_cnt; |
| |
| /* Bookkeeping stuff */ |
| guc->log.flush_count[type] += log_buf_state_local.flush_to_file; |
| new_overflow = guc_check_log_buf_overflow(guc, type, full_cnt); |
| |
| /* Update the state of shared log buffer */ |
| log_buf_state->read_ptr = write_offset; |
| log_buf_state->flush_to_file = 0; |
| log_buf_state++; |
| |
| if (unlikely(!log_buf_snapshot_state)) |
| continue; |
| |
| /* First copy the state structure in snapshot buffer */ |
| memcpy(log_buf_snapshot_state, &log_buf_state_local, |
| sizeof(struct guc_log_buffer_state)); |
| |
| /* The write pointer could have been updated by GuC firmware, |
| * after sending the flush interrupt to Host, for consistency |
| * set write pointer value to same value of sampled_write_ptr |
| * in the snapshot buffer. |
| */ |
| log_buf_snapshot_state->write_ptr = write_offset; |
| log_buf_snapshot_state++; |
| |
| /* Now copy the actual logs. */ |
| if (unlikely(new_overflow)) { |
| /* copy the whole buffer in case of overflow */ |
| read_offset = 0; |
| write_offset = buffer_size; |
| } else if (unlikely((read_offset > buffer_size) || |
| (write_offset > buffer_size))) { |
| DRM_ERROR("invalid log buffer state\n"); |
| /* copy whole buffer as offsets are unreliable */ |
| read_offset = 0; |
| write_offset = buffer_size; |
| } |
| |
| /* Just copy the newly written data */ |
| if (read_offset > write_offset) { |
| i915_memcpy_from_wc(dst_data, src_data, write_offset); |
| bytes_to_copy = buffer_size - read_offset; |
| } else { |
| bytes_to_copy = write_offset - read_offset; |
| } |
| i915_memcpy_from_wc(dst_data + read_offset, |
| src_data + read_offset, bytes_to_copy); |
| |
| src_data += buffer_size; |
| dst_data += buffer_size; |
| } |
| |
| if (log_buf_snapshot_state) |
| guc_move_to_next_buf(guc); |
| else { |
| /* Used rate limited to avoid deluge of messages, logs might be |
| * getting consumed by User at a slow rate. |
| */ |
| DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n"); |
| guc->log.capture_miss_count++; |
| } |
| } |
| |
| static void guc_capture_logs_work(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, struct drm_i915_private, guc.log.flush_work); |
| |
| i915_guc_capture_logs(dev_priv); |
| } |
| |
| static void guc_log_cleanup(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| |
| lockdep_assert_held(&dev_priv->drm.struct_mutex); |
| |
| /* First disable the flush interrupt */ |
| gen9_disable_guc_interrupts(dev_priv); |
| |
| if (guc->log.flush_wq) |
| destroy_workqueue(guc->log.flush_wq); |
| |
| guc->log.flush_wq = NULL; |
| |
| if (guc->log.relay_chan) |
| guc_log_remove_relay_file(guc); |
| |
| guc->log.relay_chan = NULL; |
| |
| if (guc->log.buf_addr) |
| i915_gem_object_unpin_map(guc->log.vma->obj); |
| |
| guc->log.buf_addr = NULL; |
| } |
| |
| static int guc_log_create_extras(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| void *vaddr; |
| int ret; |
| |
| lockdep_assert_held(&dev_priv->drm.struct_mutex); |
| |
| /* Nothing to do */ |
| if (i915.guc_log_level < 0) |
| return 0; |
| |
| if (!guc->log.buf_addr) { |
| /* Create a WC (Uncached for read) vmalloc mapping of log |
| * buffer pages, so that we can directly get the data |
| * (up-to-date) from memory. |
| */ |
| vaddr = i915_gem_object_pin_map(guc->log.vma->obj, I915_MAP_WC); |
| if (IS_ERR(vaddr)) { |
| ret = PTR_ERR(vaddr); |
| DRM_ERROR("Couldn't map log buffer pages %d\n", ret); |
| return ret; |
| } |
| |
| guc->log.buf_addr = vaddr; |
| } |
| |
| if (!guc->log.relay_chan) { |
| /* Create a relay channel, so that we have buffers for storing |
| * the GuC firmware logs, the channel will be linked with a file |
| * later on when debugfs is registered. |
| */ |
| ret = guc_log_create_relay_channel(guc); |
| if (ret) |
| return ret; |
| } |
| |
| if (!guc->log.flush_wq) { |
| INIT_WORK(&guc->log.flush_work, guc_capture_logs_work); |
| |
| /* |
| * GuC log buffer flush work item has to do register access to |
| * send the ack to GuC and this work item, if not synced before |
| * suspend, can potentially get executed after the GFX device is |
| * suspended. |
| * By marking the WQ as freezable, we don't have to bother about |
| * flushing of this work item from the suspend hooks, the pending |
| * work item if any will be either executed before the suspend |
| * or scheduled later on resume. This way the handling of work |
| * item can be kept same between system suspend & rpm suspend. |
| */ |
| guc->log.flush_wq = alloc_ordered_workqueue("i915-guc_log", |
| WQ_HIGHPRI | WQ_FREEZABLE); |
| if (guc->log.flush_wq == NULL) { |
| DRM_ERROR("Couldn't allocate the wq for GuC logging\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void guc_log_create(struct intel_guc *guc) |
| { |
| struct i915_vma *vma; |
| unsigned long offset; |
| uint32_t size, flags; |
| |
| if (i915.guc_log_level > GUC_LOG_VERBOSITY_MAX) |
| i915.guc_log_level = GUC_LOG_VERBOSITY_MAX; |
| |
| /* The first page is to save log buffer state. Allocate one |
| * extra page for others in case for overlap */ |
| size = (1 + GUC_LOG_DPC_PAGES + 1 + |
| GUC_LOG_ISR_PAGES + 1 + |
| GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT; |
| |
| vma = guc->log.vma; |
| if (!vma) { |
| /* We require SSE 4.1 for fast reads from the GuC log buffer and |
| * it should be present on the chipsets supporting GuC based |
| * submisssions. |
| */ |
| if (WARN_ON(!i915_memcpy_from_wc(NULL, NULL, 0))) { |
| /* logging will not be enabled */ |
| i915.guc_log_level = -1; |
| return; |
| } |
| |
| vma = guc_allocate_vma(guc, size); |
| if (IS_ERR(vma)) { |
| /* logging will be off */ |
| i915.guc_log_level = -1; |
| return; |
| } |
| |
| guc->log.vma = vma; |
| |
| if (guc_log_create_extras(guc)) { |
| guc_log_cleanup(guc); |
| i915_vma_unpin_and_release(&guc->log.vma); |
| i915.guc_log_level = -1; |
| return; |
| } |
| } |
| |
| /* each allocated unit is a page */ |
| flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL | |
| (GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) | |
| (GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) | |
| (GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT); |
| |
| offset = i915_ggtt_offset(vma) >> PAGE_SHIFT; /* in pages */ |
| guc->log.flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags; |
| } |
| |
| static int guc_log_late_setup(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| int ret; |
| |
| lockdep_assert_held(&dev_priv->drm.struct_mutex); |
| |
| if (i915.guc_log_level < 0) |
| return -EINVAL; |
| |
| /* If log_level was set as -1 at boot time, then setup needed to |
| * handle log buffer flush interrupts would not have been done yet, |
| * so do that now. |
| */ |
| ret = guc_log_create_extras(guc); |
| if (ret) |
| goto err; |
| |
| ret = guc_log_create_relay_file(guc); |
| if (ret) |
| goto err; |
| |
| return 0; |
| err: |
| guc_log_cleanup(guc); |
| /* logging will remain off */ |
| i915.guc_log_level = -1; |
| return ret; |
| } |
| |
| static void guc_policies_init(struct guc_policies *policies) |
| { |
| struct guc_policy *policy; |
| u32 p, i; |
| |
| policies->dpc_promote_time = 500000; |
| policies->max_num_work_items = POLICY_MAX_NUM_WI; |
| |
| for (p = 0; p < GUC_CTX_PRIORITY_NUM; p++) { |
| for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) { |
| policy = &policies->policy[p][i]; |
| |
| policy->execution_quantum = 1000000; |
| policy->preemption_time = 500000; |
| policy->fault_time = 250000; |
| policy->policy_flags = 0; |
| } |
| } |
| |
| policies->is_valid = 1; |
| } |
| |
| static void guc_addon_create(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| struct i915_vma *vma; |
| struct guc_ads *ads; |
| struct guc_policies *policies; |
| struct guc_mmio_reg_state *reg_state; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| struct page *page; |
| u32 size; |
| |
| /* The ads obj includes the struct itself and buffers passed to GuC */ |
| size = sizeof(struct guc_ads) + sizeof(struct guc_policies) + |
| sizeof(struct guc_mmio_reg_state) + |
| GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE; |
| |
| vma = guc->ads_vma; |
| if (!vma) { |
| vma = guc_allocate_vma(guc, PAGE_ALIGN(size)); |
| if (IS_ERR(vma)) |
| return; |
| |
| guc->ads_vma = vma; |
| } |
| |
| page = i915_vma_first_page(vma); |
| ads = kmap(page); |
| |
| /* |
| * The GuC requires a "Golden Context" when it reinitialises |
| * engines after a reset. Here we use the Render ring default |
| * context, which must already exist and be pinned in the GGTT, |
| * so its address won't change after we've told the GuC where |
| * to find it. |
| */ |
| engine = dev_priv->engine[RCS]; |
| ads->golden_context_lrca = engine->status_page.ggtt_offset; |
| |
| for_each_engine(engine, dev_priv, id) |
| ads->eng_state_size[engine->guc_id] = intel_lr_context_size(engine); |
| |
| /* GuC scheduling policies */ |
| policies = (void *)ads + sizeof(struct guc_ads); |
| guc_policies_init(policies); |
| |
| ads->scheduler_policies = |
| i915_ggtt_offset(vma) + sizeof(struct guc_ads); |
| |
| /* MMIO reg state */ |
| reg_state = (void *)policies + sizeof(struct guc_policies); |
| |
| for_each_engine(engine, dev_priv, id) { |
| reg_state->mmio_white_list[engine->guc_id].mmio_start = |
| engine->mmio_base + GUC_MMIO_WHITE_LIST_START; |
| |
| /* Nothing to be saved or restored for now. */ |
| reg_state->mmio_white_list[engine->guc_id].count = 0; |
| } |
| |
| ads->reg_state_addr = ads->scheduler_policies + |
| sizeof(struct guc_policies); |
| |
| ads->reg_state_buffer = ads->reg_state_addr + |
| sizeof(struct guc_mmio_reg_state); |
| |
| kunmap(page); |
| } |
| |
| /* |
| * Set up the memory resources to be shared with the GuC. At this point, |
| * we require just one object that can be mapped through the GGTT. |
| */ |
| int i915_guc_submission_init(struct drm_i915_private *dev_priv) |
| { |
| const size_t ctxsize = sizeof(struct guc_context_desc); |
| const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize; |
| const size_t gemsize = round_up(poolsize, PAGE_SIZE); |
| struct intel_guc *guc = &dev_priv->guc; |
| struct i915_vma *vma; |
| |
| /* Wipe bitmap & delete client in case of reinitialisation */ |
| bitmap_clear(guc->doorbell_bitmap, 0, GUC_MAX_DOORBELLS); |
| i915_guc_submission_disable(dev_priv); |
| |
| if (!i915.enable_guc_submission) |
| return 0; /* not enabled */ |
| |
| if (guc->ctx_pool_vma) |
| return 0; /* already allocated */ |
| |
| vma = guc_allocate_vma(guc, gemsize); |
| if (IS_ERR(vma)) |
| return PTR_ERR(vma); |
| |
| guc->ctx_pool_vma = vma; |
| ida_init(&guc->ctx_ids); |
| mutex_init(&guc->action_lock); |
| guc_log_create(guc); |
| guc_addon_create(guc); |
| |
| return 0; |
| } |
| |
| int i915_guc_submission_enable(struct drm_i915_private *dev_priv) |
| { |
| struct intel_guc *guc = &dev_priv->guc; |
| struct drm_i915_gem_request *request; |
| struct i915_guc_client *client; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* client for execbuf submission */ |
| client = guc_client_alloc(dev_priv, |
| INTEL_INFO(dev_priv)->ring_mask, |
| GUC_CTX_PRIORITY_KMD_NORMAL, |
| dev_priv->kernel_context); |
| if (!client) { |
| DRM_ERROR("Failed to create normal GuC client!\n"); |
| return -ENOMEM; |
| } |
| |
| guc->execbuf_client = client; |
| host2guc_sample_forcewake(guc, client); |
| guc_init_doorbell_hw(guc); |
| |
| /* Take over from manual control of ELSP (execlists) */ |
| for_each_engine(engine, dev_priv, id) { |
| engine->submit_request = i915_guc_submit; |
| |
| /* Replay the current set of previously submitted requests */ |
| list_for_each_entry(request, |
| &engine->timeline->requests, link) { |
| client->wq_rsvd += sizeof(struct guc_wq_item); |
| if (i915_sw_fence_done(&request->submit)) |
| i915_guc_submit(request); |
| } |
| } |
| |
| return 0; |
| } |
| |
| void i915_guc_submission_disable(struct drm_i915_private *dev_priv) |
| { |
| struct intel_guc *guc = &dev_priv->guc; |
| |
| if (!guc->execbuf_client) |
| return; |
| |
| /* Revert back to manual ELSP submission */ |
| intel_execlists_enable_submission(dev_priv); |
| |
| guc_client_free(dev_priv, guc->execbuf_client); |
| guc->execbuf_client = NULL; |
| } |
| |
| void i915_guc_submission_fini(struct drm_i915_private *dev_priv) |
| { |
| struct intel_guc *guc = &dev_priv->guc; |
| |
| i915_vma_unpin_and_release(&guc->ads_vma); |
| i915_vma_unpin_and_release(&guc->log.vma); |
| |
| if (guc->ctx_pool_vma) |
| ida_destroy(&guc->ctx_ids); |
| i915_vma_unpin_and_release(&guc->ctx_pool_vma); |
| } |
| |
| /** |
| * intel_guc_suspend() - notify GuC entering suspend state |
| * @dev: drm device |
| */ |
| int intel_guc_suspend(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_guc *guc = &dev_priv->guc; |
| struct i915_gem_context *ctx; |
| u32 data[3]; |
| |
| if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS) |
| return 0; |
| |
| gen9_disable_guc_interrupts(dev_priv); |
| |
| ctx = dev_priv->kernel_context; |
| |
| data[0] = HOST2GUC_ACTION_ENTER_S_STATE; |
| /* any value greater than GUC_POWER_D0 */ |
| data[1] = GUC_POWER_D1; |
| /* first page is shared data with GuC */ |
| data[2] = i915_ggtt_offset(ctx->engine[RCS].state); |
| |
| return host2guc_action(guc, data, ARRAY_SIZE(data)); |
| } |
| |
| |
| /** |
| * intel_guc_resume() - notify GuC resuming from suspend state |
| * @dev: drm device |
| */ |
| int intel_guc_resume(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_guc *guc = &dev_priv->guc; |
| struct i915_gem_context *ctx; |
| u32 data[3]; |
| |
| if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS) |
| return 0; |
| |
| if (i915.guc_log_level >= 0) |
| gen9_enable_guc_interrupts(dev_priv); |
| |
| ctx = dev_priv->kernel_context; |
| |
| data[0] = HOST2GUC_ACTION_EXIT_S_STATE; |
| data[1] = GUC_POWER_D0; |
| /* first page is shared data with GuC */ |
| data[2] = i915_ggtt_offset(ctx->engine[RCS].state); |
| |
| return host2guc_action(guc, data, ARRAY_SIZE(data)); |
| } |
| |
| void i915_guc_capture_logs(struct drm_i915_private *dev_priv) |
| { |
| guc_read_update_log_buffer(&dev_priv->guc); |
| |
| /* Generally device is expected to be active only at this |
| * time, so get/put should be really quick. |
| */ |
| intel_runtime_pm_get(dev_priv); |
| host2guc_logbuffer_flush_complete(&dev_priv->guc); |
| intel_runtime_pm_put(dev_priv); |
| } |
| |
| void i915_guc_flush_logs(struct drm_i915_private *dev_priv) |
| { |
| if (!i915.enable_guc_submission || (i915.guc_log_level < 0)) |
| return; |
| |
| /* First disable the interrupts, will be renabled afterwards */ |
| gen9_disable_guc_interrupts(dev_priv); |
| |
| /* Before initiating the forceful flush, wait for any pending/ongoing |
| * flush to complete otherwise forceful flush may not actually happen. |
| */ |
| flush_work(&dev_priv->guc.log.flush_work); |
| |
| /* Ask GuC to update the log buffer state */ |
| host2guc_force_logbuffer_flush(&dev_priv->guc); |
| |
| /* GuC would have updated log buffer by now, so capture it */ |
| i915_guc_capture_logs(dev_priv); |
| } |
| |
| void i915_guc_unregister(struct drm_i915_private *dev_priv) |
| { |
| if (!i915.enable_guc_submission) |
| return; |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| guc_log_cleanup(&dev_priv->guc); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| } |
| |
| void i915_guc_register(struct drm_i915_private *dev_priv) |
| { |
| if (!i915.enable_guc_submission) |
| return; |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| guc_log_late_setup(&dev_priv->guc); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| } |
| |
| int i915_guc_log_control(struct drm_i915_private *dev_priv, u64 control_val) |
| { |
| union guc_log_control log_param; |
| int ret; |
| |
| log_param.value = control_val; |
| |
| if (log_param.verbosity < GUC_LOG_VERBOSITY_MIN || |
| log_param.verbosity > GUC_LOG_VERBOSITY_MAX) |
| return -EINVAL; |
| |
| /* This combination doesn't make sense & won't have any effect */ |
| if (!log_param.logging_enabled && (i915.guc_log_level < 0)) |
| return 0; |
| |
| ret = host2guc_logging_control(&dev_priv->guc, log_param.value); |
| if (ret < 0) { |
| DRM_DEBUG_DRIVER("host2guc action failed %d\n", ret); |
| return ret; |
| } |
| |
| i915.guc_log_level = log_param.verbosity; |
| |
| /* If log_level was set as -1 at boot time, then the relay channel file |
| * wouldn't have been created by now and interrupts also would not have |
| * been enabled. |
| */ |
| if (!dev_priv->guc.log.relay_chan) { |
| ret = guc_log_late_setup(&dev_priv->guc); |
| if (!ret) |
| gen9_enable_guc_interrupts(dev_priv); |
| } else if (!log_param.logging_enabled) { |
| /* Once logging is disabled, GuC won't generate logs & send an |
| * interrupt. But there could be some data in the log buffer |
| * which is yet to be captured. So request GuC to update the log |
| * buffer state and then collect the left over logs. |
| */ |
| i915_guc_flush_logs(dev_priv); |
| |
| /* As logging is disabled, update log level to reflect that */ |
| i915.guc_log_level = -1; |
| } else { |
| /* In case interrupts were disabled, enable them now */ |
| gen9_enable_guc_interrupts(dev_priv); |
| } |
| |
| return ret; |
| } |