| /* |
| * ipmi_si.c |
| * |
| * The interface to the IPMI driver for the system interfaces (KCS, SMIC, |
| * BT). |
| * |
| * Author: MontaVista Software, Inc. |
| * Corey Minyard <minyard@mvista.com> |
| * source@mvista.com |
| * |
| * Copyright 2002 MontaVista Software Inc. |
| * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| * |
| * |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR |
| * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
| * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| /* |
| * This file holds the "policy" for the interface to the SMI state |
| * machine. It does the configuration, handles timers and interrupts, |
| * and drives the real SMI state machine. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/sched.h> |
| #include <linux/seq_file.h> |
| #include <linux/timer.h> |
| #include <linux/errno.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/list.h> |
| #include <linux/pci.h> |
| #include <linux/ioport.h> |
| #include <linux/notifier.h> |
| #include <linux/mutex.h> |
| #include <linux/kthread.h> |
| #include <asm/irq.h> |
| #include <linux/interrupt.h> |
| #include <linux/rcupdate.h> |
| #include <linux/ipmi.h> |
| #include <linux/ipmi_smi.h> |
| #include <asm/io.h> |
| #include "ipmi_si_sm.h" |
| #include <linux/dmi.h> |
| #include <linux/string.h> |
| #include <linux/ctype.h> |
| #include <linux/of_device.h> |
| #include <linux/of_platform.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/acpi.h> |
| |
| #ifdef CONFIG_PARISC |
| #include <asm/hardware.h> /* for register_parisc_driver() stuff */ |
| #include <asm/parisc-device.h> |
| #endif |
| |
| #define PFX "ipmi_si: " |
| |
| /* Measure times between events in the driver. */ |
| #undef DEBUG_TIMING |
| |
| /* Call every 10 ms. */ |
| #define SI_TIMEOUT_TIME_USEC 10000 |
| #define SI_USEC_PER_JIFFY (1000000/HZ) |
| #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) |
| #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a |
| short timeout */ |
| |
| enum si_intf_state { |
| SI_NORMAL, |
| SI_GETTING_FLAGS, |
| SI_GETTING_EVENTS, |
| SI_CLEARING_FLAGS, |
| SI_GETTING_MESSAGES, |
| SI_CHECKING_ENABLES, |
| SI_SETTING_ENABLES |
| /* FIXME - add watchdog stuff. */ |
| }; |
| |
| /* Some BT-specific defines we need here. */ |
| #define IPMI_BT_INTMASK_REG 2 |
| #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 |
| #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 |
| |
| enum si_type { |
| SI_KCS, SI_SMIC, SI_BT |
| }; |
| |
| static const char * const si_to_str[] = { "kcs", "smic", "bt" }; |
| |
| #define DEVICE_NAME "ipmi_si" |
| |
| static struct platform_driver ipmi_driver; |
| |
| /* |
| * Indexes into stats[] in smi_info below. |
| */ |
| enum si_stat_indexes { |
| /* |
| * Number of times the driver requested a timer while an operation |
| * was in progress. |
| */ |
| SI_STAT_short_timeouts = 0, |
| |
| /* |
| * Number of times the driver requested a timer while nothing was in |
| * progress. |
| */ |
| SI_STAT_long_timeouts, |
| |
| /* Number of times the interface was idle while being polled. */ |
| SI_STAT_idles, |
| |
| /* Number of interrupts the driver handled. */ |
| SI_STAT_interrupts, |
| |
| /* Number of time the driver got an ATTN from the hardware. */ |
| SI_STAT_attentions, |
| |
| /* Number of times the driver requested flags from the hardware. */ |
| SI_STAT_flag_fetches, |
| |
| /* Number of times the hardware didn't follow the state machine. */ |
| SI_STAT_hosed_count, |
| |
| /* Number of completed messages. */ |
| SI_STAT_complete_transactions, |
| |
| /* Number of IPMI events received from the hardware. */ |
| SI_STAT_events, |
| |
| /* Number of watchdog pretimeouts. */ |
| SI_STAT_watchdog_pretimeouts, |
| |
| /* Number of asynchronous messages received. */ |
| SI_STAT_incoming_messages, |
| |
| |
| /* This *must* remain last, add new values above this. */ |
| SI_NUM_STATS |
| }; |
| |
| struct smi_info { |
| int intf_num; |
| ipmi_smi_t intf; |
| struct si_sm_data *si_sm; |
| const struct si_sm_handlers *handlers; |
| enum si_type si_type; |
| spinlock_t si_lock; |
| struct ipmi_smi_msg *waiting_msg; |
| struct ipmi_smi_msg *curr_msg; |
| enum si_intf_state si_state; |
| |
| /* |
| * Used to handle the various types of I/O that can occur with |
| * IPMI |
| */ |
| struct si_sm_io io; |
| int (*io_setup)(struct smi_info *info); |
| void (*io_cleanup)(struct smi_info *info); |
| int (*irq_setup)(struct smi_info *info); |
| void (*irq_cleanup)(struct smi_info *info); |
| unsigned int io_size; |
| enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ |
| void (*addr_source_cleanup)(struct smi_info *info); |
| void *addr_source_data; |
| |
| /* |
| * Per-OEM handler, called from handle_flags(). Returns 1 |
| * when handle_flags() needs to be re-run or 0 indicating it |
| * set si_state itself. |
| */ |
| int (*oem_data_avail_handler)(struct smi_info *smi_info); |
| |
| /* |
| * Flags from the last GET_MSG_FLAGS command, used when an ATTN |
| * is set to hold the flags until we are done handling everything |
| * from the flags. |
| */ |
| #define RECEIVE_MSG_AVAIL 0x01 |
| #define EVENT_MSG_BUFFER_FULL 0x02 |
| #define WDT_PRE_TIMEOUT_INT 0x08 |
| #define OEM0_DATA_AVAIL 0x20 |
| #define OEM1_DATA_AVAIL 0x40 |
| #define OEM2_DATA_AVAIL 0x80 |
| #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ |
| OEM1_DATA_AVAIL | \ |
| OEM2_DATA_AVAIL) |
| unsigned char msg_flags; |
| |
| /* Does the BMC have an event buffer? */ |
| bool has_event_buffer; |
| |
| /* |
| * If set to true, this will request events the next time the |
| * state machine is idle. |
| */ |
| atomic_t req_events; |
| |
| /* |
| * If true, run the state machine to completion on every send |
| * call. Generally used after a panic to make sure stuff goes |
| * out. |
| */ |
| bool run_to_completion; |
| |
| /* The I/O port of an SI interface. */ |
| int port; |
| |
| /* |
| * The space between start addresses of the two ports. For |
| * instance, if the first port is 0xca2 and the spacing is 4, then |
| * the second port is 0xca6. |
| */ |
| unsigned int spacing; |
| |
| /* zero if no irq; */ |
| int irq; |
| |
| /* The timer for this si. */ |
| struct timer_list si_timer; |
| |
| /* This flag is set, if the timer is running (timer_pending() isn't enough) */ |
| bool timer_running; |
| |
| /* The time (in jiffies) the last timeout occurred at. */ |
| unsigned long last_timeout_jiffies; |
| |
| /* Are we waiting for the events, pretimeouts, received msgs? */ |
| atomic_t need_watch; |
| |
| /* |
| * The driver will disable interrupts when it gets into a |
| * situation where it cannot handle messages due to lack of |
| * memory. Once that situation clears up, it will re-enable |
| * interrupts. |
| */ |
| bool interrupt_disabled; |
| |
| /* |
| * Does the BMC support events? |
| */ |
| bool supports_event_msg_buff; |
| |
| /* |
| * Can we disable interrupts the global enables receive irq |
| * bit? There are currently two forms of brokenness, some |
| * systems cannot disable the bit (which is technically within |
| * the spec but a bad idea) and some systems have the bit |
| * forced to zero even though interrupts work (which is |
| * clearly outside the spec). The next bool tells which form |
| * of brokenness is present. |
| */ |
| bool cannot_disable_irq; |
| |
| /* |
| * Some systems are broken and cannot set the irq enable |
| * bit, even if they support interrupts. |
| */ |
| bool irq_enable_broken; |
| |
| /* |
| * Did we get an attention that we did not handle? |
| */ |
| bool got_attn; |
| |
| /* From the get device id response... */ |
| struct ipmi_device_id device_id; |
| |
| /* Driver model stuff. */ |
| struct device *dev; |
| struct platform_device *pdev; |
| |
| /* |
| * True if we allocated the device, false if it came from |
| * someplace else (like PCI). |
| */ |
| bool dev_registered; |
| |
| /* Slave address, could be reported from DMI. */ |
| unsigned char slave_addr; |
| |
| /* Counters and things for the proc filesystem. */ |
| atomic_t stats[SI_NUM_STATS]; |
| |
| struct task_struct *thread; |
| |
| struct list_head link; |
| union ipmi_smi_info_union addr_info; |
| }; |
| |
| #define smi_inc_stat(smi, stat) \ |
| atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) |
| #define smi_get_stat(smi, stat) \ |
| ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) |
| |
| #define SI_MAX_PARMS 4 |
| |
| static int force_kipmid[SI_MAX_PARMS]; |
| static int num_force_kipmid; |
| #ifdef CONFIG_PCI |
| static bool pci_registered; |
| #endif |
| #ifdef CONFIG_PARISC |
| static bool parisc_registered; |
| #endif |
| |
| static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; |
| static int num_max_busy_us; |
| |
| static bool unload_when_empty = true; |
| |
| static int add_smi(struct smi_info *smi); |
| static int try_smi_init(struct smi_info *smi); |
| static void cleanup_one_si(struct smi_info *to_clean); |
| static void cleanup_ipmi_si(void); |
| |
| #ifdef DEBUG_TIMING |
| void debug_timestamp(char *msg) |
| { |
| struct timespec64 t; |
| |
| getnstimeofday64(&t); |
| pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec); |
| } |
| #else |
| #define debug_timestamp(x) |
| #endif |
| |
| static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); |
| static int register_xaction_notifier(struct notifier_block *nb) |
| { |
| return atomic_notifier_chain_register(&xaction_notifier_list, nb); |
| } |
| |
| static void deliver_recv_msg(struct smi_info *smi_info, |
| struct ipmi_smi_msg *msg) |
| { |
| /* Deliver the message to the upper layer. */ |
| if (smi_info->intf) |
| ipmi_smi_msg_received(smi_info->intf, msg); |
| else |
| ipmi_free_smi_msg(msg); |
| } |
| |
| static void return_hosed_msg(struct smi_info *smi_info, int cCode) |
| { |
| struct ipmi_smi_msg *msg = smi_info->curr_msg; |
| |
| if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) |
| cCode = IPMI_ERR_UNSPECIFIED; |
| /* else use it as is */ |
| |
| /* Make it a response */ |
| msg->rsp[0] = msg->data[0] | 4; |
| msg->rsp[1] = msg->data[1]; |
| msg->rsp[2] = cCode; |
| msg->rsp_size = 3; |
| |
| smi_info->curr_msg = NULL; |
| deliver_recv_msg(smi_info, msg); |
| } |
| |
| static enum si_sm_result start_next_msg(struct smi_info *smi_info) |
| { |
| int rv; |
| |
| if (!smi_info->waiting_msg) { |
| smi_info->curr_msg = NULL; |
| rv = SI_SM_IDLE; |
| } else { |
| int err; |
| |
| smi_info->curr_msg = smi_info->waiting_msg; |
| smi_info->waiting_msg = NULL; |
| debug_timestamp("Start2"); |
| err = atomic_notifier_call_chain(&xaction_notifier_list, |
| 0, smi_info); |
| if (err & NOTIFY_STOP_MASK) { |
| rv = SI_SM_CALL_WITHOUT_DELAY; |
| goto out; |
| } |
| err = smi_info->handlers->start_transaction( |
| smi_info->si_sm, |
| smi_info->curr_msg->data, |
| smi_info->curr_msg->data_size); |
| if (err) |
| return_hosed_msg(smi_info, err); |
| |
| rv = SI_SM_CALL_WITHOUT_DELAY; |
| } |
| out: |
| return rv; |
| } |
| |
| static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) |
| { |
| smi_info->last_timeout_jiffies = jiffies; |
| mod_timer(&smi_info->si_timer, new_val); |
| smi_info->timer_running = true; |
| } |
| |
| /* |
| * Start a new message and (re)start the timer and thread. |
| */ |
| static void start_new_msg(struct smi_info *smi_info, unsigned char *msg, |
| unsigned int size) |
| { |
| smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); |
| |
| if (smi_info->thread) |
| wake_up_process(smi_info->thread); |
| |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, size); |
| } |
| |
| static void start_check_enables(struct smi_info *smi_info, bool start_timer) |
| { |
| unsigned char msg[2]; |
| |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; |
| |
| if (start_timer) |
| start_new_msg(smi_info, msg, 2); |
| else |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); |
| smi_info->si_state = SI_CHECKING_ENABLES; |
| } |
| |
| static void start_clear_flags(struct smi_info *smi_info, bool start_timer) |
| { |
| unsigned char msg[3]; |
| |
| /* Make sure the watchdog pre-timeout flag is not set at startup. */ |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; |
| msg[2] = WDT_PRE_TIMEOUT_INT; |
| |
| if (start_timer) |
| start_new_msg(smi_info, msg, 3); |
| else |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); |
| smi_info->si_state = SI_CLEARING_FLAGS; |
| } |
| |
| static void start_getting_msg_queue(struct smi_info *smi_info) |
| { |
| smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; |
| smi_info->curr_msg->data_size = 2; |
| |
| start_new_msg(smi_info, smi_info->curr_msg->data, |
| smi_info->curr_msg->data_size); |
| smi_info->si_state = SI_GETTING_MESSAGES; |
| } |
| |
| static void start_getting_events(struct smi_info *smi_info) |
| { |
| smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; |
| smi_info->curr_msg->data_size = 2; |
| |
| start_new_msg(smi_info, smi_info->curr_msg->data, |
| smi_info->curr_msg->data_size); |
| smi_info->si_state = SI_GETTING_EVENTS; |
| } |
| |
| /* |
| * When we have a situtaion where we run out of memory and cannot |
| * allocate messages, we just leave them in the BMC and run the system |
| * polled until we can allocate some memory. Once we have some |
| * memory, we will re-enable the interrupt. |
| * |
| * Note that we cannot just use disable_irq(), since the interrupt may |
| * be shared. |
| */ |
| static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer) |
| { |
| if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { |
| smi_info->interrupt_disabled = true; |
| start_check_enables(smi_info, start_timer); |
| return true; |
| } |
| return false; |
| } |
| |
| static inline bool enable_si_irq(struct smi_info *smi_info) |
| { |
| if ((smi_info->irq) && (smi_info->interrupt_disabled)) { |
| smi_info->interrupt_disabled = false; |
| start_check_enables(smi_info, true); |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Allocate a message. If unable to allocate, start the interrupt |
| * disable process and return NULL. If able to allocate but |
| * interrupts are disabled, free the message and return NULL after |
| * starting the interrupt enable process. |
| */ |
| static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) |
| { |
| struct ipmi_smi_msg *msg; |
| |
| msg = ipmi_alloc_smi_msg(); |
| if (!msg) { |
| if (!disable_si_irq(smi_info, true)) |
| smi_info->si_state = SI_NORMAL; |
| } else if (enable_si_irq(smi_info)) { |
| ipmi_free_smi_msg(msg); |
| msg = NULL; |
| } |
| return msg; |
| } |
| |
| static void handle_flags(struct smi_info *smi_info) |
| { |
| retry: |
| if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { |
| /* Watchdog pre-timeout */ |
| smi_inc_stat(smi_info, watchdog_pretimeouts); |
| |
| start_clear_flags(smi_info, true); |
| smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; |
| if (smi_info->intf) |
| ipmi_smi_watchdog_pretimeout(smi_info->intf); |
| } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { |
| /* Messages available. */ |
| smi_info->curr_msg = alloc_msg_handle_irq(smi_info); |
| if (!smi_info->curr_msg) |
| return; |
| |
| start_getting_msg_queue(smi_info); |
| } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { |
| /* Events available. */ |
| smi_info->curr_msg = alloc_msg_handle_irq(smi_info); |
| if (!smi_info->curr_msg) |
| return; |
| |
| start_getting_events(smi_info); |
| } else if (smi_info->msg_flags & OEM_DATA_AVAIL && |
| smi_info->oem_data_avail_handler) { |
| if (smi_info->oem_data_avail_handler(smi_info)) |
| goto retry; |
| } else |
| smi_info->si_state = SI_NORMAL; |
| } |
| |
| /* |
| * Global enables we care about. |
| */ |
| #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ |
| IPMI_BMC_EVT_MSG_INTR) |
| |
| static u8 current_global_enables(struct smi_info *smi_info, u8 base, |
| bool *irq_on) |
| { |
| u8 enables = 0; |
| |
| if (smi_info->supports_event_msg_buff) |
| enables |= IPMI_BMC_EVT_MSG_BUFF; |
| |
| if (((smi_info->irq && !smi_info->interrupt_disabled) || |
| smi_info->cannot_disable_irq) && |
| !smi_info->irq_enable_broken) |
| enables |= IPMI_BMC_RCV_MSG_INTR; |
| |
| if (smi_info->supports_event_msg_buff && |
| smi_info->irq && !smi_info->interrupt_disabled && |
| !smi_info->irq_enable_broken) |
| enables |= IPMI_BMC_EVT_MSG_INTR; |
| |
| *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); |
| |
| return enables; |
| } |
| |
| static void check_bt_irq(struct smi_info *smi_info, bool irq_on) |
| { |
| u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); |
| |
| irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; |
| |
| if ((bool)irqstate == irq_on) |
| return; |
| |
| if (irq_on) |
| smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, |
| IPMI_BT_INTMASK_ENABLE_IRQ_BIT); |
| else |
| smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); |
| } |
| |
| static void handle_transaction_done(struct smi_info *smi_info) |
| { |
| struct ipmi_smi_msg *msg; |
| |
| debug_timestamp("Done"); |
| switch (smi_info->si_state) { |
| case SI_NORMAL: |
| if (!smi_info->curr_msg) |
| break; |
| |
| smi_info->curr_msg->rsp_size |
| = smi_info->handlers->get_result( |
| smi_info->si_sm, |
| smi_info->curr_msg->rsp, |
| IPMI_MAX_MSG_LENGTH); |
| |
| /* |
| * Do this here becase deliver_recv_msg() releases the |
| * lock, and a new message can be put in during the |
| * time the lock is released. |
| */ |
| msg = smi_info->curr_msg; |
| smi_info->curr_msg = NULL; |
| deliver_recv_msg(smi_info, msg); |
| break; |
| |
| case SI_GETTING_FLAGS: |
| { |
| unsigned char msg[4]; |
| unsigned int len; |
| |
| /* We got the flags from the SMI, now handle them. */ |
| len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); |
| if (msg[2] != 0) { |
| /* Error fetching flags, just give up for now. */ |
| smi_info->si_state = SI_NORMAL; |
| } else if (len < 4) { |
| /* |
| * Hmm, no flags. That's technically illegal, but |
| * don't use uninitialized data. |
| */ |
| smi_info->si_state = SI_NORMAL; |
| } else { |
| smi_info->msg_flags = msg[3]; |
| handle_flags(smi_info); |
| } |
| break; |
| } |
| |
| case SI_CLEARING_FLAGS: |
| { |
| unsigned char msg[3]; |
| |
| /* We cleared the flags. */ |
| smi_info->handlers->get_result(smi_info->si_sm, msg, 3); |
| if (msg[2] != 0) { |
| /* Error clearing flags */ |
| dev_warn(smi_info->dev, |
| "Error clearing flags: %2.2x\n", msg[2]); |
| } |
| smi_info->si_state = SI_NORMAL; |
| break; |
| } |
| |
| case SI_GETTING_EVENTS: |
| { |
| smi_info->curr_msg->rsp_size |
| = smi_info->handlers->get_result( |
| smi_info->si_sm, |
| smi_info->curr_msg->rsp, |
| IPMI_MAX_MSG_LENGTH); |
| |
| /* |
| * Do this here becase deliver_recv_msg() releases the |
| * lock, and a new message can be put in during the |
| * time the lock is released. |
| */ |
| msg = smi_info->curr_msg; |
| smi_info->curr_msg = NULL; |
| if (msg->rsp[2] != 0) { |
| /* Error getting event, probably done. */ |
| msg->done(msg); |
| |
| /* Take off the event flag. */ |
| smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; |
| handle_flags(smi_info); |
| } else { |
| smi_inc_stat(smi_info, events); |
| |
| /* |
| * Do this before we deliver the message |
| * because delivering the message releases the |
| * lock and something else can mess with the |
| * state. |
| */ |
| handle_flags(smi_info); |
| |
| deliver_recv_msg(smi_info, msg); |
| } |
| break; |
| } |
| |
| case SI_GETTING_MESSAGES: |
| { |
| smi_info->curr_msg->rsp_size |
| = smi_info->handlers->get_result( |
| smi_info->si_sm, |
| smi_info->curr_msg->rsp, |
| IPMI_MAX_MSG_LENGTH); |
| |
| /* |
| * Do this here becase deliver_recv_msg() releases the |
| * lock, and a new message can be put in during the |
| * time the lock is released. |
| */ |
| msg = smi_info->curr_msg; |
| smi_info->curr_msg = NULL; |
| if (msg->rsp[2] != 0) { |
| /* Error getting event, probably done. */ |
| msg->done(msg); |
| |
| /* Take off the msg flag. */ |
| smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; |
| handle_flags(smi_info); |
| } else { |
| smi_inc_stat(smi_info, incoming_messages); |
| |
| /* |
| * Do this before we deliver the message |
| * because delivering the message releases the |
| * lock and something else can mess with the |
| * state. |
| */ |
| handle_flags(smi_info); |
| |
| deliver_recv_msg(smi_info, msg); |
| } |
| break; |
| } |
| |
| case SI_CHECKING_ENABLES: |
| { |
| unsigned char msg[4]; |
| u8 enables; |
| bool irq_on; |
| |
| /* We got the flags from the SMI, now handle them. */ |
| smi_info->handlers->get_result(smi_info->si_sm, msg, 4); |
| if (msg[2] != 0) { |
| dev_warn(smi_info->dev, |
| "Couldn't get irq info: %x.\n", msg[2]); |
| dev_warn(smi_info->dev, |
| "Maybe ok, but ipmi might run very slowly.\n"); |
| smi_info->si_state = SI_NORMAL; |
| break; |
| } |
| enables = current_global_enables(smi_info, 0, &irq_on); |
| if (smi_info->si_type == SI_BT) |
| /* BT has its own interrupt enable bit. */ |
| check_bt_irq(smi_info, irq_on); |
| if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { |
| /* Enables are not correct, fix them. */ |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; |
| msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); |
| smi_info->handlers->start_transaction( |
| smi_info->si_sm, msg, 3); |
| smi_info->si_state = SI_SETTING_ENABLES; |
| } else if (smi_info->supports_event_msg_buff) { |
| smi_info->curr_msg = ipmi_alloc_smi_msg(); |
| if (!smi_info->curr_msg) { |
| smi_info->si_state = SI_NORMAL; |
| break; |
| } |
| start_getting_events(smi_info); |
| } else { |
| smi_info->si_state = SI_NORMAL; |
| } |
| break; |
| } |
| |
| case SI_SETTING_ENABLES: |
| { |
| unsigned char msg[4]; |
| |
| smi_info->handlers->get_result(smi_info->si_sm, msg, 4); |
| if (msg[2] != 0) |
| dev_warn(smi_info->dev, |
| "Could not set the global enables: 0x%x.\n", |
| msg[2]); |
| |
| if (smi_info->supports_event_msg_buff) { |
| smi_info->curr_msg = ipmi_alloc_smi_msg(); |
| if (!smi_info->curr_msg) { |
| smi_info->si_state = SI_NORMAL; |
| break; |
| } |
| start_getting_events(smi_info); |
| } else { |
| smi_info->si_state = SI_NORMAL; |
| } |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Called on timeouts and events. Timeouts should pass the elapsed |
| * time, interrupts should pass in zero. Must be called with |
| * si_lock held and interrupts disabled. |
| */ |
| static enum si_sm_result smi_event_handler(struct smi_info *smi_info, |
| int time) |
| { |
| enum si_sm_result si_sm_result; |
| |
| restart: |
| /* |
| * There used to be a loop here that waited a little while |
| * (around 25us) before giving up. That turned out to be |
| * pointless, the minimum delays I was seeing were in the 300us |
| * range, which is far too long to wait in an interrupt. So |
| * we just run until the state machine tells us something |
| * happened or it needs a delay. |
| */ |
| si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); |
| time = 0; |
| while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) |
| si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); |
| |
| if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { |
| smi_inc_stat(smi_info, complete_transactions); |
| |
| handle_transaction_done(smi_info); |
| goto restart; |
| } else if (si_sm_result == SI_SM_HOSED) { |
| smi_inc_stat(smi_info, hosed_count); |
| |
| /* |
| * Do the before return_hosed_msg, because that |
| * releases the lock. |
| */ |
| smi_info->si_state = SI_NORMAL; |
| if (smi_info->curr_msg != NULL) { |
| /* |
| * If we were handling a user message, format |
| * a response to send to the upper layer to |
| * tell it about the error. |
| */ |
| return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); |
| } |
| goto restart; |
| } |
| |
| /* |
| * We prefer handling attn over new messages. But don't do |
| * this if there is not yet an upper layer to handle anything. |
| */ |
| if (likely(smi_info->intf) && |
| (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) { |
| unsigned char msg[2]; |
| |
| if (smi_info->si_state != SI_NORMAL) { |
| /* |
| * We got an ATTN, but we are doing something else. |
| * Handle the ATTN later. |
| */ |
| smi_info->got_attn = true; |
| } else { |
| smi_info->got_attn = false; |
| smi_inc_stat(smi_info, attentions); |
| |
| /* |
| * Got a attn, send down a get message flags to see |
| * what's causing it. It would be better to handle |
| * this in the upper layer, but due to the way |
| * interrupts work with the SMI, that's not really |
| * possible. |
| */ |
| msg[0] = (IPMI_NETFN_APP_REQUEST << 2); |
| msg[1] = IPMI_GET_MSG_FLAGS_CMD; |
| |
| start_new_msg(smi_info, msg, 2); |
| smi_info->si_state = SI_GETTING_FLAGS; |
| goto restart; |
| } |
| } |
| |
| /* If we are currently idle, try to start the next message. */ |
| if (si_sm_result == SI_SM_IDLE) { |
| smi_inc_stat(smi_info, idles); |
| |
| si_sm_result = start_next_msg(smi_info); |
| if (si_sm_result != SI_SM_IDLE) |
| goto restart; |
| } |
| |
| if ((si_sm_result == SI_SM_IDLE) |
| && (atomic_read(&smi_info->req_events))) { |
| /* |
| * We are idle and the upper layer requested that I fetch |
| * events, so do so. |
| */ |
| atomic_set(&smi_info->req_events, 0); |
| |
| /* |
| * Take this opportunity to check the interrupt and |
| * message enable state for the BMC. The BMC can be |
| * asynchronously reset, and may thus get interrupts |
| * disable and messages disabled. |
| */ |
| if (smi_info->supports_event_msg_buff || smi_info->irq) { |
| start_check_enables(smi_info, true); |
| } else { |
| smi_info->curr_msg = alloc_msg_handle_irq(smi_info); |
| if (!smi_info->curr_msg) |
| goto out; |
| |
| start_getting_events(smi_info); |
| } |
| goto restart; |
| } |
| |
| if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) { |
| /* Ok it if fails, the timer will just go off. */ |
| if (del_timer(&smi_info->si_timer)) |
| smi_info->timer_running = false; |
| } |
| |
| out: |
| return si_sm_result; |
| } |
| |
| static void check_start_timer_thread(struct smi_info *smi_info) |
| { |
| if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { |
| smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); |
| |
| if (smi_info->thread) |
| wake_up_process(smi_info->thread); |
| |
| start_next_msg(smi_info); |
| smi_event_handler(smi_info, 0); |
| } |
| } |
| |
| static void flush_messages(void *send_info) |
| { |
| struct smi_info *smi_info = send_info; |
| enum si_sm_result result; |
| |
| /* |
| * Currently, this function is called only in run-to-completion |
| * mode. This means we are single-threaded, no need for locks. |
| */ |
| result = smi_event_handler(smi_info, 0); |
| while (result != SI_SM_IDLE) { |
| udelay(SI_SHORT_TIMEOUT_USEC); |
| result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); |
| } |
| } |
| |
| static void sender(void *send_info, |
| struct ipmi_smi_msg *msg) |
| { |
| struct smi_info *smi_info = send_info; |
| unsigned long flags; |
| |
| debug_timestamp("Enqueue"); |
| |
| if (smi_info->run_to_completion) { |
| /* |
| * If we are running to completion, start it. Upper |
| * layer will call flush_messages to clear it out. |
| */ |
| smi_info->waiting_msg = msg; |
| return; |
| } |
| |
| spin_lock_irqsave(&smi_info->si_lock, flags); |
| /* |
| * The following two lines don't need to be under the lock for |
| * the lock's sake, but they do need SMP memory barriers to |
| * avoid getting things out of order. We are already claiming |
| * the lock, anyway, so just do it under the lock to avoid the |
| * ordering problem. |
| */ |
| BUG_ON(smi_info->waiting_msg); |
| smi_info->waiting_msg = msg; |
| check_start_timer_thread(smi_info); |
| spin_unlock_irqrestore(&smi_info->si_lock, flags); |
| } |
| |
| static void set_run_to_completion(void *send_info, bool i_run_to_completion) |
| { |
| struct smi_info *smi_info = send_info; |
| |
| smi_info->run_to_completion = i_run_to_completion; |
| if (i_run_to_completion) |
| flush_messages(smi_info); |
| } |
| |
| /* |
| * Use -1 in the nsec value of the busy waiting timespec to tell that |
| * we are spinning in kipmid looking for something and not delaying |
| * between checks |
| */ |
| static inline void ipmi_si_set_not_busy(struct timespec64 *ts) |
| { |
| ts->tv_nsec = -1; |
| } |
| static inline int ipmi_si_is_busy(struct timespec64 *ts) |
| { |
| return ts->tv_nsec != -1; |
| } |
| |
| static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result, |
| const struct smi_info *smi_info, |
| struct timespec64 *busy_until) |
| { |
| unsigned int max_busy_us = 0; |
| |
| if (smi_info->intf_num < num_max_busy_us) |
| max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; |
| if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) |
| ipmi_si_set_not_busy(busy_until); |
| else if (!ipmi_si_is_busy(busy_until)) { |
| getnstimeofday64(busy_until); |
| timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); |
| } else { |
| struct timespec64 now; |
| |
| getnstimeofday64(&now); |
| if (unlikely(timespec64_compare(&now, busy_until) > 0)) { |
| ipmi_si_set_not_busy(busy_until); |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| |
| /* |
| * A busy-waiting loop for speeding up IPMI operation. |
| * |
| * Lousy hardware makes this hard. This is only enabled for systems |
| * that are not BT and do not have interrupts. It starts spinning |
| * when an operation is complete or until max_busy tells it to stop |
| * (if that is enabled). See the paragraph on kimid_max_busy_us in |
| * Documentation/IPMI.txt for details. |
| */ |
| static int ipmi_thread(void *data) |
| { |
| struct smi_info *smi_info = data; |
| unsigned long flags; |
| enum si_sm_result smi_result; |
| struct timespec64 busy_until; |
| |
| ipmi_si_set_not_busy(&busy_until); |
| set_user_nice(current, MAX_NICE); |
| while (!kthread_should_stop()) { |
| int busy_wait; |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| smi_result = smi_event_handler(smi_info, 0); |
| |
| /* |
| * If the driver is doing something, there is a possible |
| * race with the timer. If the timer handler see idle, |
| * and the thread here sees something else, the timer |
| * handler won't restart the timer even though it is |
| * required. So start it here if necessary. |
| */ |
| if (smi_result != SI_SM_IDLE && !smi_info->timer_running) |
| smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); |
| |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, |
| &busy_until); |
| if (smi_result == SI_SM_CALL_WITHOUT_DELAY) |
| ; /* do nothing */ |
| else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) |
| schedule(); |
| else if (smi_result == SI_SM_IDLE) { |
| if (atomic_read(&smi_info->need_watch)) { |
| schedule_timeout_interruptible(100); |
| } else { |
| /* Wait to be woken up when we are needed. */ |
| __set_current_state(TASK_INTERRUPTIBLE); |
| schedule(); |
| } |
| } else |
| schedule_timeout_interruptible(1); |
| } |
| return 0; |
| } |
| |
| |
| static void poll(void *send_info) |
| { |
| struct smi_info *smi_info = send_info; |
| unsigned long flags = 0; |
| bool run_to_completion = smi_info->run_to_completion; |
| |
| /* |
| * Make sure there is some delay in the poll loop so we can |
| * drive time forward and timeout things. |
| */ |
| udelay(10); |
| if (!run_to_completion) |
| spin_lock_irqsave(&smi_info->si_lock, flags); |
| smi_event_handler(smi_info, 10); |
| if (!run_to_completion) |
| spin_unlock_irqrestore(&smi_info->si_lock, flags); |
| } |
| |
| static void request_events(void *send_info) |
| { |
| struct smi_info *smi_info = send_info; |
| |
| if (!smi_info->has_event_buffer) |
| return; |
| |
| atomic_set(&smi_info->req_events, 1); |
| } |
| |
| static void set_need_watch(void *send_info, bool enable) |
| { |
| struct smi_info *smi_info = send_info; |
| unsigned long flags; |
| |
| atomic_set(&smi_info->need_watch, enable); |
| spin_lock_irqsave(&smi_info->si_lock, flags); |
| check_start_timer_thread(smi_info); |
| spin_unlock_irqrestore(&smi_info->si_lock, flags); |
| } |
| |
| static int initialized; |
| |
| static void smi_timeout(unsigned long data) |
| { |
| struct smi_info *smi_info = (struct smi_info *) data; |
| enum si_sm_result smi_result; |
| unsigned long flags; |
| unsigned long jiffies_now; |
| long time_diff; |
| long timeout; |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| debug_timestamp("Timer"); |
| |
| jiffies_now = jiffies; |
| time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) |
| * SI_USEC_PER_JIFFY); |
| smi_result = smi_event_handler(smi_info, time_diff); |
| |
| if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { |
| /* Running with interrupts, only do long timeouts. */ |
| timeout = jiffies + SI_TIMEOUT_JIFFIES; |
| smi_inc_stat(smi_info, long_timeouts); |
| goto do_mod_timer; |
| } |
| |
| /* |
| * If the state machine asks for a short delay, then shorten |
| * the timer timeout. |
| */ |
| if (smi_result == SI_SM_CALL_WITH_DELAY) { |
| smi_inc_stat(smi_info, short_timeouts); |
| timeout = jiffies + 1; |
| } else { |
| smi_inc_stat(smi_info, long_timeouts); |
| timeout = jiffies + SI_TIMEOUT_JIFFIES; |
| } |
| |
| do_mod_timer: |
| if (smi_result != SI_SM_IDLE) |
| smi_mod_timer(smi_info, timeout); |
| else |
| smi_info->timer_running = false; |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| } |
| |
| static irqreturn_t si_irq_handler(int irq, void *data) |
| { |
| struct smi_info *smi_info = data; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| |
| smi_inc_stat(smi_info, interrupts); |
| |
| debug_timestamp("Interrupt"); |
| |
| smi_event_handler(smi_info, 0); |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t si_bt_irq_handler(int irq, void *data) |
| { |
| struct smi_info *smi_info = data; |
| /* We need to clear the IRQ flag for the BT interface. */ |
| smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, |
| IPMI_BT_INTMASK_CLEAR_IRQ_BIT |
| | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); |
| return si_irq_handler(irq, data); |
| } |
| |
| static int smi_start_processing(void *send_info, |
| ipmi_smi_t intf) |
| { |
| struct smi_info *new_smi = send_info; |
| int enable = 0; |
| |
| new_smi->intf = intf; |
| |
| /* Set up the timer that drives the interface. */ |
| setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); |
| smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); |
| |
| /* Try to claim any interrupts. */ |
| if (new_smi->irq_setup) |
| new_smi->irq_setup(new_smi); |
| |
| /* |
| * Check if the user forcefully enabled the daemon. |
| */ |
| if (new_smi->intf_num < num_force_kipmid) |
| enable = force_kipmid[new_smi->intf_num]; |
| /* |
| * The BT interface is efficient enough to not need a thread, |
| * and there is no need for a thread if we have interrupts. |
| */ |
| else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) |
| enable = 1; |
| |
| if (enable) { |
| new_smi->thread = kthread_run(ipmi_thread, new_smi, |
| "kipmi%d", new_smi->intf_num); |
| if (IS_ERR(new_smi->thread)) { |
| dev_notice(new_smi->dev, "Could not start" |
| " kernel thread due to error %ld, only using" |
| " timers to drive the interface\n", |
| PTR_ERR(new_smi->thread)); |
| new_smi->thread = NULL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int get_smi_info(void *send_info, struct ipmi_smi_info *data) |
| { |
| struct smi_info *smi = send_info; |
| |
| data->addr_src = smi->addr_source; |
| data->dev = smi->dev; |
| data->addr_info = smi->addr_info; |
| get_device(smi->dev); |
| |
| return 0; |
| } |
| |
| static void set_maintenance_mode(void *send_info, bool enable) |
| { |
| struct smi_info *smi_info = send_info; |
| |
| if (!enable) |
| atomic_set(&smi_info->req_events, 0); |
| } |
| |
| static const struct ipmi_smi_handlers handlers = { |
| .owner = THIS_MODULE, |
| .start_processing = smi_start_processing, |
| .get_smi_info = get_smi_info, |
| .sender = sender, |
| .request_events = request_events, |
| .set_need_watch = set_need_watch, |
| .set_maintenance_mode = set_maintenance_mode, |
| .set_run_to_completion = set_run_to_completion, |
| .flush_messages = flush_messages, |
| .poll = poll, |
| }; |
| |
| /* |
| * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, |
| * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. |
| */ |
| |
| static LIST_HEAD(smi_infos); |
| static DEFINE_MUTEX(smi_infos_lock); |
| static int smi_num; /* Used to sequence the SMIs */ |
| |
| #define DEFAULT_REGSPACING 1 |
| #define DEFAULT_REGSIZE 1 |
| |
| #ifdef CONFIG_ACPI |
| static bool si_tryacpi = true; |
| #endif |
| #ifdef CONFIG_DMI |
| static bool si_trydmi = true; |
| #endif |
| static bool si_tryplatform = true; |
| #ifdef CONFIG_PCI |
| static bool si_trypci = true; |
| #endif |
| static char *si_type[SI_MAX_PARMS]; |
| #define MAX_SI_TYPE_STR 30 |
| static char si_type_str[MAX_SI_TYPE_STR]; |
| static unsigned long addrs[SI_MAX_PARMS]; |
| static unsigned int num_addrs; |
| static unsigned int ports[SI_MAX_PARMS]; |
| static unsigned int num_ports; |
| static int irqs[SI_MAX_PARMS]; |
| static unsigned int num_irqs; |
| static int regspacings[SI_MAX_PARMS]; |
| static unsigned int num_regspacings; |
| static int regsizes[SI_MAX_PARMS]; |
| static unsigned int num_regsizes; |
| static int regshifts[SI_MAX_PARMS]; |
| static unsigned int num_regshifts; |
| static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ |
| static unsigned int num_slave_addrs; |
| |
| #define IPMI_IO_ADDR_SPACE 0 |
| #define IPMI_MEM_ADDR_SPACE 1 |
| static const char * const addr_space_to_str[] = { "i/o", "mem" }; |
| |
| static int hotmod_handler(const char *val, struct kernel_param *kp); |
| |
| module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); |
| MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" |
| " Documentation/IPMI.txt in the kernel sources for the" |
| " gory details."); |
| |
| #ifdef CONFIG_ACPI |
| module_param_named(tryacpi, si_tryacpi, bool, 0); |
| MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" |
| " default scan of the interfaces identified via ACPI"); |
| #endif |
| #ifdef CONFIG_DMI |
| module_param_named(trydmi, si_trydmi, bool, 0); |
| MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" |
| " default scan of the interfaces identified via DMI"); |
| #endif |
| module_param_named(tryplatform, si_tryplatform, bool, 0); |
| MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the" |
| " default scan of the interfaces identified via platform" |
| " interfaces like openfirmware"); |
| #ifdef CONFIG_PCI |
| module_param_named(trypci, si_trypci, bool, 0); |
| MODULE_PARM_DESC(trypci, "Setting this to zero will disable the" |
| " default scan of the interfaces identified via pci"); |
| #endif |
| module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); |
| MODULE_PARM_DESC(type, "Defines the type of each interface, each" |
| " interface separated by commas. The types are 'kcs'," |
| " 'smic', and 'bt'. For example si_type=kcs,bt will set" |
| " the first interface to kcs and the second to bt"); |
| module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0); |
| MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" |
| " addresses separated by commas. Only use if an interface" |
| " is in memory. Otherwise, set it to zero or leave" |
| " it blank."); |
| module_param_hw_array(ports, uint, ioport, &num_ports, 0); |
| MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" |
| " addresses separated by commas. Only use if an interface" |
| " is a port. Otherwise, set it to zero or leave" |
| " it blank."); |
| module_param_hw_array(irqs, int, irq, &num_irqs, 0); |
| MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" |
| " addresses separated by commas. Only use if an interface" |
| " has an interrupt. Otherwise, set it to zero or leave" |
| " it blank."); |
| module_param_hw_array(regspacings, int, other, &num_regspacings, 0); |
| MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" |
| " and each successive register used by the interface. For" |
| " instance, if the start address is 0xca2 and the spacing" |
| " is 2, then the second address is at 0xca4. Defaults" |
| " to 1."); |
| module_param_hw_array(regsizes, int, other, &num_regsizes, 0); |
| MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." |
| " This should generally be 1, 2, 4, or 8 for an 8-bit," |
| " 16-bit, 32-bit, or 64-bit register. Use this if you" |
| " the 8-bit IPMI register has to be read from a larger" |
| " register."); |
| module_param_hw_array(regshifts, int, other, &num_regshifts, 0); |
| MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." |
| " IPMI register, in bits. For instance, if the data" |
| " is read from a 32-bit word and the IPMI data is in" |
| " bit 8-15, then the shift would be 8"); |
| module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0); |
| MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" |
| " the controller. Normally this is 0x20, but can be" |
| " overridden by this parm. This is an array indexed" |
| " by interface number."); |
| module_param_array(force_kipmid, int, &num_force_kipmid, 0); |
| MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" |
| " disabled(0). Normally the IPMI driver auto-detects" |
| " this, but the value may be overridden by this parm."); |
| module_param(unload_when_empty, bool, 0); |
| MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" |
| " specified or found, default is 1. Setting to 0" |
| " is useful for hot add of devices using hotmod."); |
| module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); |
| MODULE_PARM_DESC(kipmid_max_busy_us, |
| "Max time (in microseconds) to busy-wait for IPMI data before" |
| " sleeping. 0 (default) means to wait forever. Set to 100-500" |
| " if kipmid is using up a lot of CPU time."); |
| |
| |
| static void std_irq_cleanup(struct smi_info *info) |
| { |
| if (info->si_type == SI_BT) |
| /* Disable the interrupt in the BT interface. */ |
| info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); |
| free_irq(info->irq, info); |
| } |
| |
| static int std_irq_setup(struct smi_info *info) |
| { |
| int rv; |
| |
| if (!info->irq) |
| return 0; |
| |
| if (info->si_type == SI_BT) { |
| rv = request_irq(info->irq, |
| si_bt_irq_handler, |
| IRQF_SHARED, |
| DEVICE_NAME, |
| info); |
| if (!rv) |
| /* Enable the interrupt in the BT interface. */ |
| info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, |
| IPMI_BT_INTMASK_ENABLE_IRQ_BIT); |
| } else |
| rv = request_irq(info->irq, |
| si_irq_handler, |
| IRQF_SHARED, |
| DEVICE_NAME, |
| info); |
| if (rv) { |
| dev_warn(info->dev, "%s unable to claim interrupt %d," |
| " running polled\n", |
| DEVICE_NAME, info->irq); |
| info->irq = 0; |
| } else { |
| info->irq_cleanup = std_irq_cleanup; |
| dev_info(info->dev, "Using irq %d\n", info->irq); |
| } |
| |
| return rv; |
| } |
| |
| static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset) |
| { |
| unsigned int addr = io->addr_data; |
| |
| return inb(addr + (offset * io->regspacing)); |
| } |
| |
| static void port_outb(const struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| unsigned int addr = io->addr_data; |
| |
| outb(b, addr + (offset * io->regspacing)); |
| } |
| |
| static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset) |
| { |
| unsigned int addr = io->addr_data; |
| |
| return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; |
| } |
| |
| static void port_outw(const struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| unsigned int addr = io->addr_data; |
| |
| outw(b << io->regshift, addr + (offset * io->regspacing)); |
| } |
| |
| static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset) |
| { |
| unsigned int addr = io->addr_data; |
| |
| return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; |
| } |
| |
| static void port_outl(const struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| unsigned int addr = io->addr_data; |
| |
| outl(b << io->regshift, addr+(offset * io->regspacing)); |
| } |
| |
| static void port_cleanup(struct smi_info *info) |
| { |
| unsigned int addr = info->io.addr_data; |
| int idx; |
| |
| if (addr) { |
| for (idx = 0; idx < info->io_size; idx++) |
| release_region(addr + idx * info->io.regspacing, |
| info->io.regsize); |
| } |
| } |
| |
| static int port_setup(struct smi_info *info) |
| { |
| unsigned int addr = info->io.addr_data; |
| int idx; |
| |
| if (!addr) |
| return -ENODEV; |
| |
| info->io_cleanup = port_cleanup; |
| |
| /* |
| * Figure out the actual inb/inw/inl/etc routine to use based |
| * upon the register size. |
| */ |
| switch (info->io.regsize) { |
| case 1: |
| info->io.inputb = port_inb; |
| info->io.outputb = port_outb; |
| break; |
| case 2: |
| info->io.inputb = port_inw; |
| info->io.outputb = port_outw; |
| break; |
| case 4: |
| info->io.inputb = port_inl; |
| info->io.outputb = port_outl; |
| break; |
| default: |
| dev_warn(info->dev, "Invalid register size: %d\n", |
| info->io.regsize); |
| return -EINVAL; |
| } |
| |
| /* |
| * Some BIOSes reserve disjoint I/O regions in their ACPI |
| * tables. This causes problems when trying to register the |
| * entire I/O region. Therefore we must register each I/O |
| * port separately. |
| */ |
| for (idx = 0; idx < info->io_size; idx++) { |
| if (request_region(addr + idx * info->io.regspacing, |
| info->io.regsize, DEVICE_NAME) == NULL) { |
| /* Undo allocations */ |
| while (idx--) |
| release_region(addr + idx * info->io.regspacing, |
| info->io.regsize); |
| return -EIO; |
| } |
| } |
| return 0; |
| } |
| |
| static unsigned char intf_mem_inb(const struct si_sm_io *io, |
| unsigned int offset) |
| { |
| return readb((io->addr)+(offset * io->regspacing)); |
| } |
| |
| static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| writeb(b, (io->addr)+(offset * io->regspacing)); |
| } |
| |
| static unsigned char intf_mem_inw(const struct si_sm_io *io, |
| unsigned int offset) |
| { |
| return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) |
| & 0xff; |
| } |
| |
| static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); |
| } |
| |
| static unsigned char intf_mem_inl(const struct si_sm_io *io, |
| unsigned int offset) |
| { |
| return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) |
| & 0xff; |
| } |
| |
| static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); |
| } |
| |
| #ifdef readq |
| static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset) |
| { |
| return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) |
| & 0xff; |
| } |
| |
| static void mem_outq(const struct si_sm_io *io, unsigned int offset, |
| unsigned char b) |
| { |
| writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); |
| } |
| #endif |
| |
| static void mem_region_cleanup(struct smi_info *info, int num) |
| { |
| unsigned long addr = info->io.addr_data; |
| int idx; |
| |
| for (idx = 0; idx < num; idx++) |
| release_mem_region(addr + idx * info->io.regspacing, |
| info->io.regsize); |
| } |
| |
| static void mem_cleanup(struct smi_info *info) |
| { |
| if (info->io.addr) { |
| iounmap(info->io.addr); |
| mem_region_cleanup(info, info->io_size); |
| } |
| } |
| |
| static int mem_setup(struct smi_info *info) |
| { |
| unsigned long addr = info->io.addr_data; |
| int mapsize, idx; |
| |
| if (!addr) |
| return -ENODEV; |
| |
| info->io_cleanup = mem_cleanup; |
| |
| /* |
| * Figure out the actual readb/readw/readl/etc routine to use based |
| * upon the register size. |
| */ |
| switch (info->io.regsize) { |
| case 1: |
| info->io.inputb = intf_mem_inb; |
| info->io.outputb = intf_mem_outb; |
| break; |
| case 2: |
| info->io.inputb = intf_mem_inw; |
| info->io.outputb = intf_mem_outw; |
| break; |
| case 4: |
| info->io.inputb = intf_mem_inl; |
| info->io.outputb = intf_mem_outl; |
| break; |
| #ifdef readq |
| case 8: |
| info->io.inputb = mem_inq; |
| info->io.outputb = mem_outq; |
| break; |
| #endif |
| default: |
| dev_warn(info->dev, "Invalid register size: %d\n", |
| info->io.regsize); |
| return -EINVAL; |
| } |
| |
| /* |
| * Some BIOSes reserve disjoint memory regions in their ACPI |
| * tables. This causes problems when trying to request the |
| * entire region. Therefore we must request each register |
| * separately. |
| */ |
| for (idx = 0; idx < info->io_size; idx++) { |
| if (request_mem_region(addr + idx * info->io.regspacing, |
| info->io.regsize, DEVICE_NAME) == NULL) { |
| /* Undo allocations */ |
| mem_region_cleanup(info, idx); |
| return -EIO; |
| } |
| } |
| |
| /* |
| * Calculate the total amount of memory to claim. This is an |
| * unusual looking calculation, but it avoids claiming any |
| * more memory than it has to. It will claim everything |
| * between the first address to the end of the last full |
| * register. |
| */ |
| mapsize = ((info->io_size * info->io.regspacing) |
| - (info->io.regspacing - info->io.regsize)); |
| info->io.addr = ioremap(addr, mapsize); |
| if (info->io.addr == NULL) { |
| mem_region_cleanup(info, info->io_size); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| /* |
| * Parms come in as <op1>[:op2[:op3...]]. ops are: |
| * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] |
| * Options are: |
| * rsp=<regspacing> |
| * rsi=<regsize> |
| * rsh=<regshift> |
| * irq=<irq> |
| * ipmb=<ipmb addr> |
| */ |
| enum hotmod_op { HM_ADD, HM_REMOVE }; |
| struct hotmod_vals { |
| const char *name; |
| const int val; |
| }; |
| |
| static const struct hotmod_vals hotmod_ops[] = { |
| { "add", HM_ADD }, |
| { "remove", HM_REMOVE }, |
| { NULL } |
| }; |
| |
| static const struct hotmod_vals hotmod_si[] = { |
| { "kcs", SI_KCS }, |
| { "smic", SI_SMIC }, |
| { "bt", SI_BT }, |
| { NULL } |
| }; |
| |
| static const struct hotmod_vals hotmod_as[] = { |
| { "mem", IPMI_MEM_ADDR_SPACE }, |
| { "i/o", IPMI_IO_ADDR_SPACE }, |
| { NULL } |
| }; |
| |
| static int parse_str(const struct hotmod_vals *v, int *val, char *name, |
| char **curr) |
| { |
| char *s; |
| int i; |
| |
| s = strchr(*curr, ','); |
| if (!s) { |
| pr_warn(PFX "No hotmod %s given.\n", name); |
| return -EINVAL; |
| } |
| *s = '\0'; |
| s++; |
| for (i = 0; v[i].name; i++) { |
| if (strcmp(*curr, v[i].name) == 0) { |
| *val = v[i].val; |
| *curr = s; |
| return 0; |
| } |
| } |
| |
| pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr); |
| return -EINVAL; |
| } |
| |
| static int check_hotmod_int_op(const char *curr, const char *option, |
| const char *name, int *val) |
| { |
| char *n; |
| |
| if (strcmp(curr, name) == 0) { |
| if (!option) { |
| pr_warn(PFX "No option given for '%s'\n", curr); |
| return -EINVAL; |
| } |
| *val = simple_strtoul(option, &n, 0); |
| if ((*n != '\0') || (*option == '\0')) { |
| pr_warn(PFX "Bad option given for '%s'\n", curr); |
| return -EINVAL; |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| static struct smi_info *smi_info_alloc(void) |
| { |
| struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); |
| |
| if (info) |
| spin_lock_init(&info->si_lock); |
| return info; |
| } |
| |
| static int hotmod_handler(const char *val, struct kernel_param *kp) |
| { |
| char *str = kstrdup(val, GFP_KERNEL); |
| int rv; |
| char *next, *curr, *s, *n, *o; |
| enum hotmod_op op; |
| enum si_type si_type; |
| int addr_space; |
| unsigned long addr; |
| int regspacing; |
| int regsize; |
| int regshift; |
| int irq; |
| int ipmb; |
| int ival; |
| int len; |
| struct smi_info *info; |
| |
| if (!str) |
| return -ENOMEM; |
| |
| /* Kill any trailing spaces, as we can get a "\n" from echo. */ |
| len = strlen(str); |
| ival = len - 1; |
| while ((ival >= 0) && isspace(str[ival])) { |
| str[ival] = '\0'; |
| ival--; |
| } |
| |
| for (curr = str; curr; curr = next) { |
| regspacing = 1; |
| regsize = 1; |
| regshift = 0; |
| irq = 0; |
| ipmb = 0; /* Choose the default if not specified */ |
| |
| next = strchr(curr, ':'); |
| if (next) { |
| *next = '\0'; |
| next++; |
| } |
| |
| rv = parse_str(hotmod_ops, &ival, "operation", &curr); |
| if (rv) |
| break; |
| op = ival; |
| |
| rv = parse_str(hotmod_si, &ival, "interface type", &curr); |
| if (rv) |
| break; |
| si_type = ival; |
| |
| rv = parse_str(hotmod_as, &addr_space, "address space", &curr); |
| if (rv) |
| break; |
| |
| s = strchr(curr, ','); |
| if (s) { |
| *s = '\0'; |
| s++; |
| } |
| addr = simple_strtoul(curr, &n, 0); |
| if ((*n != '\0') || (*curr == '\0')) { |
| pr_warn(PFX "Invalid hotmod address '%s'\n", curr); |
| break; |
| } |
| |
| while (s) { |
| curr = s; |
| s = strchr(curr, ','); |
| if (s) { |
| *s = '\0'; |
| s++; |
| } |
| o = strchr(curr, '='); |
| if (o) { |
| *o = '\0'; |
| o++; |
| } |
| rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); |
| if (rv < 0) |
| goto out; |
| else if (rv) |
| continue; |
| rv = check_hotmod_int_op(curr, o, "rsi", ®size); |
| if (rv < 0) |
| goto out; |
| else if (rv) |
| continue; |
| rv = check_hotmod_int_op(curr, o, "rsh", ®shift); |
| if (rv < 0) |
| goto out; |
| else if (rv) |
| continue; |
| rv = check_hotmod_int_op(curr, o, "irq", &irq); |
| if (rv < 0) |
| goto out; |
| else if (rv) |
| continue; |
| rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); |
| if (rv < 0) |
| goto out; |
| else if (rv) |
| continue; |
| |
| rv = -EINVAL; |
| pr_warn(PFX "Invalid hotmod option '%s'\n", curr); |
| goto out; |
| } |
| |
| if (op == HM_ADD) { |
| info = smi_info_alloc(); |
| if (!info) { |
| rv = -ENOMEM; |
| goto out; |
| } |
| |
| info->addr_source = SI_HOTMOD; |
| info->si_type = si_type; |
| info->io.addr_data = addr; |
| info->io.addr_type = addr_space; |
| if (addr_space == IPMI_MEM_ADDR_SPACE) |
| info->io_setup = mem_setup; |
| else |
| info->io_setup = port_setup; |
| |
| info->io.addr = NULL; |
| info->io.regspacing = regspacing; |
| if (!info->io.regspacing) |
| info->io.regspacing = DEFAULT_REGSPACING; |
| info->io.regsize = regsize; |
| if (!info->io.regsize) |
| info->io.regsize = DEFAULT_REGSPACING; |
| info->io.regshift = regshift; |
| info->irq = irq; |
| if (info->irq) |
| info->irq_setup = std_irq_setup; |
| info->slave_addr = ipmb; |
| |
| rv = add_smi(info); |
| if (rv) { |
| kfree(info); |
| goto out; |
| } |
| rv = try_smi_init(info); |
| if (rv) { |
| cleanup_one_si(info); |
| goto out; |
| } |
| } else { |
| /* remove */ |
| struct smi_info *e, *tmp_e; |
| |
| mutex_lock(&smi_infos_lock); |
| list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { |
| if (e->io.addr_type != addr_space) |
| continue; |
| if (e->si_type != si_type) |
| continue; |
| if (e->io.addr_data == addr) |
| cleanup_one_si(e); |
| } |
| mutex_unlock(&smi_infos_lock); |
| } |
| } |
| rv = len; |
| out: |
| kfree(str); |
| return rv; |
| } |
| |
| static int hardcode_find_bmc(void) |
| { |
| int ret = -ENODEV; |
| int i; |
| struct smi_info *info; |
| |
| for (i = 0; i < SI_MAX_PARMS; i++) { |
| if (!ports[i] && !addrs[i]) |
| continue; |
| |
| info = smi_info_alloc(); |
| if (!info) |
| return -ENOMEM; |
| |
| info->addr_source = SI_HARDCODED; |
| pr_info(PFX "probing via hardcoded address\n"); |
| |
| if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { |
| info->si_type = SI_KCS; |
| } else if (strcmp(si_type[i], "smic") == 0) { |
| info->si_type = SI_SMIC; |
| } else if (strcmp(si_type[i], "bt") == 0) { |
| info->si_type = SI_BT; |
| } else { |
| pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n", |
| i, si_type[i]); |
| kfree(info); |
| continue; |
| } |
| |
| if (ports[i]) { |
| /* An I/O port */ |
| info->io_setup = port_setup; |
| info->io.addr_data = ports[i]; |
| info->io.addr_type = IPMI_IO_ADDR_SPACE; |
| } else if (addrs[i]) { |
| /* A memory port */ |
| info->io_setup = mem_setup; |
| info->io.addr_data = addrs[i]; |
| info->io.addr_type = IPMI_MEM_ADDR_SPACE; |
| } else { |
| pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n", |
| i); |
| kfree(info); |
| continue; |
| } |
| |
| info->io.addr = NULL; |
| info->io.regspacing = regspacings[i]; |
| if (!info->io.regspacing) |
| info->io.regspacing = DEFAULT_REGSPACING; |
| info->io.regsize = regsizes[i]; |
| if (!info->io.regsize) |
| info->io.regsize = DEFAULT_REGSPACING; |
| info->io.regshift = regshifts[i]; |
| info->irq = irqs[i]; |
| if (info->irq) |
| info->irq_setup = std_irq_setup; |
| info->slave_addr = slave_addrs[i]; |
| |
| if (!add_smi(info)) { |
| if (try_smi_init(info)) |
| cleanup_one_si(info); |
| ret = 0; |
| } else { |
| kfree(info); |
| } |
| } |
| return ret; |
| } |
| |
| #ifdef CONFIG_ACPI |
| |
| /* |
| * Once we get an ACPI failure, we don't try any more, because we go |
| * through the tables sequentially. Once we don't find a table, there |
| * are no more. |
| */ |
| static int acpi_failure; |
| |
| /* For GPE-type interrupts. */ |
| static u32 ipmi_acpi_gpe(acpi_handle gpe_device, |
| u32 gpe_number, void *context) |
| { |
| struct smi_info *smi_info = context; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&(smi_info->si_lock), flags); |
| |
| smi_inc_stat(smi_info, interrupts); |
| |
| debug_timestamp("ACPI_GPE"); |
| |
| smi_event_handler(smi_info, 0); |
| spin_unlock_irqrestore(&(smi_info->si_lock), flags); |
| |
| return ACPI_INTERRUPT_HANDLED; |
| } |
| |
| static void acpi_gpe_irq_cleanup(struct smi_info *info) |
| { |
| if (!info->irq) |
| return; |
| |
| acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); |
| } |
| |
| static int acpi_gpe_irq_setup(struct smi_info *info) |
| { |
| acpi_status status; |
| |
| if (!info->irq) |
| return 0; |
| |
| status = acpi_install_gpe_handler(NULL, |
| info->irq, |
| ACPI_GPE_LEVEL_TRIGGERED, |
| &ipmi_acpi_gpe, |
| info); |
| if (status != AE_OK) { |
| dev_warn(info->dev, "%s unable to claim ACPI GPE %d," |
| " running polled\n", DEVICE_NAME, info->irq); |
| info->irq = 0; |
| return -EINVAL; |
| } else { |
| info->irq_cleanup = acpi_gpe_irq_cleanup; |
| dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); |
| return 0; |
| } |
| } |
| |
| /* |
| * Defined at |
| * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf |
| */ |
| struct SPMITable { |
| s8 Signature[4]; |
| u32 Length; |
| u8 Revision; |
| u8 Checksum; |
| s8 OEMID[6]; |
| s8 OEMTableID[8]; |
| s8 OEMRevision[4]; |
| s8 CreatorID[4]; |
| s8 CreatorRevision[4]; |
| u8 InterfaceType; |
| u8 IPMIlegacy; |
| s16 SpecificationRevision; |
| |
| /* |
| * Bit 0 - SCI interrupt supported |
| * Bit 1 - I/O APIC/SAPIC |
| */ |
| u8 InterruptType; |
| |
| /* |
| * If bit 0 of InterruptType is set, then this is the SCI |
| * interrupt in the GPEx_STS register. |
| */ |
| u8 GPE; |
| |
| s16 Reserved; |
| |
| /* |
| * If bit 1 of InterruptType is set, then this is the I/O |
| * APIC/SAPIC interrupt. |
| */ |
| u32 GlobalSystemInterrupt; |
| |
| /* The actual register address. */ |
| struct acpi_generic_address addr; |
| |
| u8 UID[4]; |
| |
| s8 spmi_id[1]; /* A '\0' terminated array starts here. */ |
| }; |
| |
| static int try_init_spmi(struct SPMITable *spmi) |
| { |
| struct smi_info *info; |
| int rv; |
| |
| if (spmi->IPMIlegacy != 1) { |
| pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); |
| return -ENODEV; |
| } |
| |
| info = smi_info_alloc(); |
| if (!info) { |
| pr_err(PFX "Could not allocate SI data (3)\n"); |
| return -ENOMEM; |
| } |
| |
| info->addr_source = SI_SPMI; |
| pr_info(PFX "probing via SPMI\n"); |
| |
| /* Figure out the interface type. */ |
| switch (spmi->InterfaceType) { |
| case 1: /* KCS */ |
| info->si_type = SI_KCS; |
| break; |
| case 2: /* SMIC */ |
| info->si_type = SI_SMIC; |
| break; |
| case 3: /* BT */ |
| info->si_type = SI_BT; |
| break; |
| case 4: /* SSIF, just ignore */ |
| kfree(info); |
| return -EIO; |
| default: |
| pr_info(PFX "Unknown ACPI/SPMI SI type %d\n", |
| spmi->InterfaceType); |
| kfree(info); |
| return -EIO; |
| } |
| |
| if (spmi->InterruptType & 1) { |
| /* We've got a GPE interrupt. */ |
| info->irq = spmi->GPE; |
| info->irq_setup = acpi_gpe_irq_setup; |
| } else if (spmi->InterruptType & 2) { |
| /* We've got an APIC/SAPIC interrupt. */ |
| info->irq = spmi->GlobalSystemInterrupt; |
| info->irq_setup = std_irq_setup; |
| } else { |
| /* Use the default interrupt setting. */ |
| info->irq = 0; |
| info->irq_setup = NULL; |
| } |
| |
| if (spmi->addr.bit_width) { |
| /* A (hopefully) properly formed register bit width. */ |
| info->io.regspacing = spmi->addr.bit_width / 8; |
| } else { |
| info->io.regspacing = DEFAULT_REGSPACING; |
| } |
| info->io.regsize = info->io.regspacing; |
| info->io.regshift = spmi->addr.bit_offset; |
| |
| if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { |
| info->io_setup = mem_setup; |
| info->io.addr_type = IPMI_MEM_ADDR_SPACE; |
| } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { |
| info->io_setup = port_setup; |
| info->io.addr_type = IPMI_IO_ADDR_SPACE; |
| } else { |
| kfree(info); |
| pr_warn(PFX "Unknown ACPI I/O Address type\n"); |
| return -EIO; |
| } |
| info->io.addr_data = spmi->addr.address; |
| |
| pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", |
| (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", |
| info->io.addr_data, info->io.regsize, info->io.regspacing, |
| info->irq); |
| |
| rv = add_smi(info); |
| if (rv) |
| kfree(info); |
| |
| return rv; |
| } |
| |
| static void spmi_find_bmc(void) |
| { |
| acpi_status status; |
| struct SPMITable *spmi; |
| int i; |
| |
| if (acpi_disabled) |
| return; |
| |
| if (acpi_failure) |
| return; |
| |
| for (i = 0; ; i++) { |
| status = acpi_get_table(ACPI_SIG_SPMI, i+1, |
| (struct acpi_table_header **)&spmi); |
| if (status != AE_OK) |
| return; |
| |
| try_init_spmi(spmi); |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_DMI |
| struct dmi_ipmi_data { |
| u8 type; |
| u8 addr_space; |
| unsigned long base_addr; |
| u8 irq; |
| u8 offset; |
| u8 slave_addr; |
| }; |
| |
| static int decode_dmi(const struct dmi_header *dm, |
| struct dmi_ipmi_data *dmi) |
| { |
| const u8 *data = (const u8 *)dm; |
| unsigned long base_addr; |
| u8 reg_spacing; |
| u8 len = dm->length; |
| |
| dmi->type = data[4]; |
| |
| memcpy(&base_addr, data+8, sizeof(unsigned long)); |
| if (len >= 0x11) { |
| if (base_addr & 1) { |
| /* I/O */ |
| base_addr &= 0xFFFE; |
| dmi->addr_space = IPMI_IO_ADDR_SPACE; |
| } else |
| /* Memory */ |
| dmi->addr_space = IPMI_MEM_ADDR_SPACE; |
| |
| /* If bit 4 of byte 0x10 is set, then the lsb for the address |
| is odd. */ |
| dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); |
| |
| dmi->irq = data[0x11]; |
| |
| /* The top two bits of byte 0x10 hold the register spacing. */ |
| reg_spacing = (data[0x10] & 0xC0) >> 6; |
| switch (reg_spacing) { |
| case 0x00: /* Byte boundaries */ |
| dmi->offset = 1; |
| break; |
| case 0x01: /* 32-bit boundaries */ |
| dmi->offset = 4; |
| break; |
| case 0x02: /* 16-byte boundaries */ |
| dmi->offset = 16; |
| break; |
| default: |
| /* Some other interface, just ignore it. */ |
| return -EIO; |
| } |
| } else { |
| /* Old DMI spec. */ |
| /* |
| * Note that technically, the lower bit of the base |
| * address should be 1 if the address is I/O and 0 if |
| * the address is in memory. So many systems get that |
| * wrong (and all that I have seen are I/O) so we just |
| * ignore that bit and assume I/O. Systems that use |
| * memory should use the newer spec, anyway. |
| */ |
| dmi->base_addr = base_addr & 0xfffe; |
| dmi->addr_space = IPMI_IO_ADDR_SPACE; |
| dmi->offset = 1; |
| } |
| |
| dmi->slave_addr = data[6]; |
| |
| return 0; |
| } |
| |
| static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) |
| { |
| struct smi_info *info; |
| |
| info = smi_info_alloc(); |
| if (!info) { |
| pr_err(PFX "Could not allocate SI data\n"); |
| return; |
| } |
| |
| info->addr_source = SI_SMBIOS; |
| pr_info(PFX "probing via SMBIOS\n"); |
| |
| switch (ipmi_data->type) { |
| case 0x01: /* KCS */ |
| info->si_type = SI_KCS; |
| break; |
| case 0x02: /* SMIC */ |
| info->si_type = SI_SMIC; |
| break; |
| case 0x03: /* BT */ |
| info->si_type = SI_BT; |
| break; |
| default: |
| kfree(info); |
| return; |
| } |
| |
| switch (ipmi_data->addr_space) { |
| case IPMI_MEM_ADDR_SPACE: |
| info->io_setup = mem_setup; |
| info->io.addr_type = IPMI_MEM_ADDR_SPACE; |
| break; |
| |
| case IPMI_IO_ADDR_SPACE: |
| info->io_setup = port_setup; |
| info->io.addr_type = IPMI_IO_ADDR_SPACE; |
| break; |
| |
| default: |
| kfree(info); |
| pr_warn(PFX "Unknown SMBIOS I/O Address type: %d\n", |
| ipmi_data->addr_space); |
| return; |
| } |
| info->io.addr_data = ipmi_data->base_addr; |
| |
| info->io.regspacing = ipmi_data->offset; |
| if (!info->io.regspacing) |
| info->io.regspacing = DEFAULT_REGSPACING; |
| info->io.regsize = DEFAULT_REGSPACING; |
| info->io.regshift = 0; |
| |
| info->slave_addr = ipmi_data->slave_addr; |
| |
| info->irq = ipmi_data->irq; |
| if (info->irq) |
| info->irq_setup = std_irq_setup; |
| |
| pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", |
| (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", |
| info->io.addr_data, info->io.regsize, info->io.regspacing, |
| info->irq); |
| |
| if (add_smi(info)) |
| kfree(info); |
| } |
| |
| static void dmi_find_bmc(void) |
| { |
| const struct dmi_device *dev = NULL; |
| struct dmi_ipmi_data data; |
| int rv; |
| |
| while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { |
| memset(&data, 0, sizeof(data)); |
| rv = decode_dmi((const struct dmi_header *) dev->device_data, |
| &data); |
| if (!rv) |
| try_init_dmi(&data); |
| } |
| } |
| #endif /* CONFIG_DMI */ |
| |
| #ifdef CONFIG_PCI |
| |
| #define PCI_ERMC_CLASSCODE 0x0C0700 |
| #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 |
| #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff |
| #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 |
| #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 |
| #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 |
| |
| #define PCI_HP_VENDOR_ID 0x103C |
| #define PCI_MMC_DEVICE_ID 0x121A |
| #define PCI_MMC_ADDR_CW 0x10 |
| |
| static void ipmi_pci_cleanup(struct smi_info *info) |
| { |
| struct pci_dev *pdev = info->addr_source_data; |
| |
| pci_disable_device(pdev); |
| } |
| |
| static int ipmi_pci_probe_regspacing(struct smi_info *info) |
| { |
| if (info->si_type == SI_KCS) { |
| unsigned char status; |
| int regspacing; |
| |
| info->io.regsize = DEFAULT_REGSIZE; |
| info->io.regshift = 0; |
| info->io_size = 2; |
| info->handlers = &kcs_smi_handlers; |
| |
| /* detect 1, 4, 16byte spacing */ |
| for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { |
| info->io.regspacing = regspacing; |
| if (info->io_setup(info)) { |
| dev_err(info->dev, |
| "Could not setup I/O space\n"); |
| return DEFAULT_REGSPACING; |
| } |
| /* write invalid cmd */ |
| info->io.outputb(&info->io, 1, 0x10); |
| /* read status back */ |
| status = info->io.inputb(&info->io, 1); |
| info->io_cleanup(info); |
| if (status) |
| return regspacing; |
| regspacing *= 4; |
| } |
| } |
| return DEFAULT_REGSPACING; |
| } |
| |
| static int ipmi_pci_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| int rv; |
| int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; |
| struct smi_info *info; |
| |
| info = smi_info_alloc(); |
| if (!info) |
| return -ENOMEM; |
| |
| info->addr_source = SI_PCI; |
| dev_info(&pdev->dev, "probing via PCI"); |
| |
| switch (class_type) { |
| case PCI_ERMC_CLASSCODE_TYPE_SMIC: |
| info->si_type = SI_SMIC; |
| break; |
| |
| case PCI_ERMC_CLASSCODE_TYPE_KCS: |
| info->si_type = SI_KCS; |
| break; |
| |
| case PCI_ERMC_CLASSCODE_TYPE_BT: |
| info->si_type = SI_BT; |
| break; |
| |
| default: |
| kfree(info); |
| dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); |
| return -ENOMEM; |
| } |
| |
| rv = pci_enable_device(pdev); |
| if (rv) { |
| dev_err(&pdev->dev, "couldn't enable PCI device\n"); |
| kfree(info); |
| return rv; |
| } |
| |
| info->addr_source_cleanup = ipmi_pci_cleanup; |
| info->addr_source_data = pdev; |
| |
| if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { |
| info->io_setup = port_setup; |
| info->io.addr_type = IPMI_IO_ADDR_SPACE; |
| } else { |
| info->io_setup = mem_setup; |
| info->io.addr_type = IPMI_MEM_ADDR_SPACE; |
| } |
| info->io.addr_data = pci_resource_start(pdev, 0); |
| |
| info->io.regspacing = ipmi_pci_probe_regspacing(info); |
| info->io.regsize = DEFAULT_REGSIZE; |
| info->io.regshift = 0; |
| |
| info->irq = pdev->irq; |
| if (info->irq) |
| info->irq_setup = std_irq_setup; |
| |
| info->dev = &pdev->dev; |
| pci_set_drvdata(pdev, info); |
| |
| dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", |
| &pdev->resource[0], info->io.regsize, info->io.regspacing, |
| info->irq); |
| |
| rv = add_smi(info); |
| if (rv) { |
| kfree(info); |
| pci_disable_device(pdev); |
| } |
| |
| return rv; |
| } |
| |
| static void ipmi_pci_remove(struct pci_dev *pdev) |
| { |
| struct smi_info *info = pci_get_drvdata(pdev); |
| cleanup_one_si(info); |
| } |
| |
| static const struct pci_device_id ipmi_pci_devices[] = { |
| { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, |
| { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, |
| { 0, } |
| }; |
| MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); |
| |
| static struct pci_driver ipmi_pci_driver = { |
| .name = DEVICE_NAME, |
| .id_table = ipmi_pci_devices, |
| .probe = ipmi_pci_probe, |
| .remove = ipmi_pci_remove, |
| }; |
| #endif /* CONFIG_PCI */ |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id of_ipmi_match[] = { |
| { .type = "ipmi", .compatible = "ipmi-kcs", |
| .data = (void *)(unsigned long) SI_KCS }, |
| { .type = "ipmi", .compatible = "ipmi-smic", |
| .data = (void *)(unsigned long) SI_SMIC }, |
| { .type = "ipmi", .compatible = "ipmi-bt", |
| .data = (void *)(unsigned long) SI_BT }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, of_ipmi_match); |
| |
| static int of_ipmi_probe(struct platform_device *dev) |
| { |
| const struct of_device_id *match; |
| struct smi_info *info; |
| struct resource resource; |
| const __be32 *regsize, *regspacing, *regshift; |
| struct device_node *np = dev->dev.of_node; |
| int ret; |
| int proplen; |
| |
| dev_info(&dev->dev, "probing via device tree\n"); |
| |
| match = of_match_device(of_ipmi_match, &dev->dev); |
| if (!match) |
| return -ENODEV; |
| |
| if (!of_device_is_available(np)) |
| return -EINVAL; |
| |
| ret = of_address_to_resource(np, 0, &resource); |
| if (ret) { |
| dev_warn(&dev->dev, PFX "invalid address from OF\n"); |
| return ret; |
| } |
| |
| regsize = of_get_property(np, "reg-size", &proplen); |
| if (regsize && proplen != 4) { |
| dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); |
| return -EINVAL; |
| } |
| |
| regspacing = of_get_property(np, "reg-spacing", &proplen); |
| if (regspacing && proplen != 4) { |
| dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); |
| return -EINVAL; |
| } |
| |
| regshift = of_get_property(np, "reg-shift", &proplen); |
| if (regshift && proplen != 4) { |
| dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); |
| return -EINVAL; |
| } |
| |
| info = smi_info_alloc(); |
| |
| if (!info) { |
| dev_err(&dev->dev, |
| "could not allocate memory for OF probe\n"); |
| return -ENOMEM; |
| } |
| |
| info->si_type = (enum si_type) match->data; |
| info->addr_source = SI_DEVICETREE; |
| info->irq_setup = std_irq_setup; |
| |
| if (resource.flags & IORESOURCE_IO) { |
| info->io_setup = port_setup; |
| info->io.addr_type = IPMI_IO_ADDR_SPACE; |
| } else { |
| info->io_setup = mem_setup; |
| info->io.addr_type = IPMI_MEM_ADDR_SPACE; |
| } |
| |
| info->io.addr_data = resource.start; |
| |
| info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; |
| info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; |
| info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; |
| |
| info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); |
| info->dev = &dev->dev; |
| |
| dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", |
| info->io.addr_data, info->io.regsize, info->io.regspacing, |
| info->irq); |
| |
| dev_set_drvdata(&dev->dev, info); |
| |
| ret = add_smi(info); |
| if (ret) { |
| kfree(info); |
| return ret; |
| } |
| return 0; |
| } |
| #else |
| #define of_ipmi_match NULL |
| static int of_ipmi_probe(struct platform_device *dev) |
| { |
| return -ENODEV; |
| } |
| #endif |
| |
| #ifdef CONFIG_ACPI |
| static int acpi_ipmi_probe(struct platform_device *dev) |
| { |
| struct smi_info *info; |
| struct resource *res, *res_second; |
| acpi_handle handle; |
| acpi_status status; |
| unsigned long long tmp; |
| int rv = -EINVAL; |
| |
| if (!si_tryacpi) |
| return 0; |
| |
| handle = ACPI_HANDLE(&dev->dev); |
| if (!handle) |
| return -ENODEV; |
| |
| info = smi_info_alloc(); |
| if (!info) |
| return -ENOMEM; |
| |
| info->addr_source = SI_ACPI; |
| dev_info(&dev->dev, PFX "probing via ACPI\n"); |
| |
| info->addr_info.acpi_info.acpi_handle = handle; |
| |
| /* _IFT tells us the interface type: KCS, BT, etc */ |
| status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); |
| if (ACPI_FAILURE(status)) { |
| dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n"); |
| goto err_free; |
| } |
| |
| switch (tmp) { |
| case 1: |
| info->si_type = SI_KCS; |
| break; |
| case 2: |
| info->si_type = SI_SMIC; |
| break; |
| case 3: |
| info->si_type = SI_BT; |
| break; |
| case 4: /* SSIF, just ignore */ |
| rv = -ENODEV; |
| goto err_free; |
| default: |
| dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); |
| goto err_free; |
| } |
| |
| res = platform_get_resource(dev, IORESOURCE_IO, 0); |
| if (res) { |
| info->io_setup = port_setup; |
| info->io.addr_type = IPMI_IO_ADDR_SPACE; |
| } else { |
| res = platform_get_resource(dev, IORESOURCE_MEM, 0); |
| if (res) { |
| info->io_setup = mem_setup; |
| info->io.addr_type = IPMI_MEM_ADDR_SPACE; |
| } |
| } |
| if (!res) { |
| dev_err(&dev->dev, "no I/O or memory address\n"); |
| goto err_free; |
| } |
| info->io.addr_data = res->start; |
| |
| info->io.regspacing = DEFAULT_REGSPACING; |
| res_second = platform_get_resource(dev, |
| (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? |
| IORESOURCE_IO : IORESOURCE_MEM, |
| 1); |
| if (res_second) { |
| if (res_second->start > info->io.addr_data) |
| info->io.regspacing = |
| res_second->start - info->io.addr_data; |
| } |
| info->io.regsize = DEFAULT_REGSPACING; |
| info->io.regshift = 0; |
| |
| /* If _GPE exists, use it; otherwise use standard interrupts */ |
| status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); |
| if (ACPI_SUCCESS(status)) { |
| info->irq = tmp; |
| info->irq_setup = acpi_gpe_irq_setup; |
| } else { |
| int irq = platform_get_irq(dev, 0); |
| |
| if (irq > 0) { |
| info->irq = irq; |
| info->irq_setup = std_irq_setup; |
| } |
| } |
| |
| info->dev = &dev->dev; |
| platform_set_drvdata(dev, info); |
| |
| dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", |
| res, info->io.regsize, info->io.regspacing, |
| info->irq); |
| |
| rv = add_smi(info); |
| if (rv) |
| kfree(info); |
| |
| return rv; |
| |
| err_free: |
| kfree(info); |
| return rv; |
| } |
| |
| static const struct acpi_device_id acpi_ipmi_match[] = { |
| { "IPI0001", 0 }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match); |
| #else |
| static int acpi_ipmi_probe(struct platform_device *dev) |
| { |
| return -ENODEV; |
| } |
| #endif |
| |
| static int ipmi_probe(struct platform_device *dev) |
| { |
| if (of_ipmi_probe(dev) == 0) |
| return 0; |
| |
| return acpi_ipmi_probe(dev); |
| } |
| |
| static int ipmi_remove(struct platform_device *dev) |
| { |
| struct smi_info *info = dev_get_drvdata(&dev->dev); |
| |
| cleanup_one_si(info); |
| return 0; |
| } |
| |
| static struct platform_driver ipmi_driver = { |
| .driver = { |
| .name = DEVICE_NAME, |
| .of_match_table = of_ipmi_match, |
| .acpi_match_table = ACPI_PTR(acpi_ipmi_match), |
| }, |
| .probe = ipmi_probe, |
| .remove = ipmi_remove, |
| }; |
| |
| #ifdef CONFIG_PARISC |
| static int ipmi_parisc_probe(struct parisc_device *dev) |
| { |
| struct smi_info *info; |
| int rv; |
| |
| info = smi_info_alloc(); |
| |
| if (!info) { |
| dev_err(&dev->dev, |
| "could not allocate memory for PARISC probe\n"); |
| return -ENOMEM; |
| } |
| |
| info->si_type = SI_KCS; |
| info->addr_source = SI_DEVICETREE; |
| info->io_setup = mem_setup; |
| info->io.addr_type = IPMI_MEM_ADDR_SPACE; |
| info->io.addr_data = dev->hpa.start; |
| info->io.regsize = 1; |
| info->io.regspacing = 1; |
| info->io.regshift = 0; |
| info->irq = 0; /* no interrupt */ |
| info->irq_setup = NULL; |
| info->dev = &dev->dev; |
| |
| dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data); |
| |
| dev_set_drvdata(&dev->dev, info); |
| |
| rv = add_smi(info); |
| if (rv) { |
| kfree(info); |
| return rv; |
| } |
| |
| return 0; |
| } |
| |
| static int ipmi_parisc_remove(struct parisc_device *dev) |
| { |
| cleanup_one_si(dev_get_drvdata(&dev->dev)); |
| return 0; |
| } |
| |
| static const struct parisc_device_id ipmi_parisc_tbl[] = { |
| { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 }, |
| { 0, } |
| }; |
| |
| static struct parisc_driver ipmi_parisc_driver = { |
| .name = "ipmi", |
| .id_table = ipmi_parisc_tbl, |
| .probe = ipmi_parisc_probe, |
| .remove = ipmi_parisc_remove, |
| }; |
| #endif /* CONFIG_PARISC */ |
| |
| static int wait_for_msg_done(struct smi_info *smi_info) |
| { |
| enum si_sm_result smi_result; |
| |
| smi_result = smi_info->handlers->event(smi_info->si_sm, 0); |
| for (;;) { |
| if (smi_result == SI_SM_CALL_WITH_DELAY || |
| smi_result == SI_SM_CALL_WITH_TICK_DELAY) { |
| schedule_timeout_uninterruptible(1); |
| smi_result = smi_info->handlers->event( |
| smi_info->si_sm, jiffies_to_usecs(1)); |
| } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { |
| smi_result = smi_info->handlers->event( |
| smi_info->si_sm, 0); |
| } else |
| break; |
| } |
| if (smi_result == SI_SM_HOSED) |
| /* |
| * We couldn't get the state machine to run, so whatever's at |
| * the port is probably not an IPMI SMI interface. |
| */ |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| static int try_get_dev_id(struct smi_info *smi_info) |
| { |
| unsigned char msg[2]; |
| unsigned char *resp; |
| unsigned long resp_len; |
| int rv = 0; |
| |
| resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); |
| if (!resp) |
| return -ENOMEM; |
| |
| /* |
| * Do a Get Device ID command, since it comes back with some |
| * useful info. |
| */ |
| msg[0] = IPMI_NETFN_APP_REQUEST << 2; |
| msg[1] = IPMI_GET_DEVICE_ID_CMD; |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); |
| |
| rv = wait_for_msg_done(smi_info); |
| if (rv) |
| goto out; |
| |
| resp_len = smi_info->handlers->get_result(smi_info->si_sm, |
| resp, IPMI_MAX_MSG_LENGTH); |
| |
| /* Check and record info from the get device id, in case we need it. */ |
| rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); |
| |
| out: |
| kfree(resp); |
| return rv; |
| } |
| |
| static int get_global_enables(struct smi_info *smi_info, u8 *enables) |
| { |
| unsigned char msg[3]; |
| unsigned char *resp; |
| unsigned long resp_len; |
| int rv; |
| |
| resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); |
| if (!resp) |
| return -ENOMEM; |
| |
| msg[0] = IPMI_NETFN_APP_REQUEST << 2; |
| msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); |
| |
| rv = wait_for_msg_done(smi_info); |
| if (rv) { |
| dev_warn(smi_info->dev, |
| "Error getting response from get global enables command: %d\n", |
| rv); |
| goto out; |
| } |
| |
| resp_len = smi_info->handlers->get_result(smi_info->si_sm, |
| resp, IPMI_MAX_MSG_LENGTH); |
| |
| if (resp_len < 4 || |
| resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || |
| resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || |
| resp[2] != 0) { |
| dev_warn(smi_info->dev, |
| "Invalid return from get global enables command: %ld %x %x %x\n", |
| resp_len, resp[0], resp[1], resp[2]); |
| rv = -EINVAL; |
| goto out; |
| } else { |
| *enables = resp[3]; |
| } |
| |
| out: |
| kfree(resp); |
| return rv; |
| } |
| |
| /* |
| * Returns 1 if it gets an error from the command. |
| */ |
| static int set_global_enables(struct smi_info *smi_info, u8 enables) |
| { |
| unsigned char msg[3]; |
| unsigned char *resp; |
| unsigned long resp_len; |
| int rv; |
| |
| resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); |
| if (!resp) |
| return -ENOMEM; |
| |
| msg[0] = IPMI_NETFN_APP_REQUEST << 2; |
| msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; |
| msg[2] = enables; |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); |
| |
| rv = wait_for_msg_done(smi_info); |
| if (rv) { |
| dev_warn(smi_info->dev, |
| "Error getting response from set global enables command: %d\n", |
| rv); |
| goto out; |
| } |
| |
| resp_len = smi_info->handlers->get_result(smi_info->si_sm, |
| resp, IPMI_MAX_MSG_LENGTH); |
| |
| if (resp_len < 3 || |
| resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || |
| resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { |
| dev_warn(smi_info->dev, |
| "Invalid return from set global enables command: %ld %x %x\n", |
| resp_len, resp[0], resp[1]); |
| rv = -EINVAL; |
| goto out; |
| } |
| |
| if (resp[2] != 0) |
| rv = 1; |
| |
| out: |
| kfree(resp); |
| return rv; |
| } |
| |
| /* |
| * Some BMCs do not support clearing the receive irq bit in the global |
| * enables (even if they don't support interrupts on the BMC). Check |
| * for this and handle it properly. |
| */ |
| static void check_clr_rcv_irq(struct smi_info *smi_info) |
| { |
| u8 enables = 0; |
| int rv; |
| |
| rv = get_global_enables(smi_info, &enables); |
| if (!rv) { |
| if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) |
| /* Already clear, should work ok. */ |
| return; |
| |
| enables &= ~IPMI_BMC_RCV_MSG_INTR; |
| rv = set_global_enables(smi_info, enables); |
| } |
| |
| if (rv < 0) { |
| dev_err(smi_info->dev, |
| "Cannot check clearing the rcv irq: %d\n", rv); |
| return; |
| } |
| |
| if (rv) { |
| /* |
| * An error when setting the event buffer bit means |
| * clearing the bit is not supported. |
| */ |
| dev_warn(smi_info->dev, |
| "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); |
| smi_info->cannot_disable_irq = true; |
| } |
| } |
| |
| /* |
| * Some BMCs do not support setting the interrupt bits in the global |
| * enables even if they support interrupts. Clearly bad, but we can |
| * compensate. |
| */ |
| static void check_set_rcv_irq(struct smi_info *smi_info) |
| { |
| u8 enables = 0; |
| int rv; |
| |
| if (!smi_info->irq) |
| return; |
| |
| rv = get_global_enables(smi_info, &enables); |
| if (!rv) { |
| enables |= IPMI_BMC_RCV_MSG_INTR; |
| rv = set_global_enables(smi_info, enables); |
| } |
| |
| if (rv < 0) { |
| dev_err(smi_info->dev, |
| "Cannot check setting the rcv irq: %d\n", rv); |
| return; |
| } |
| |
| if (rv) { |
| /* |
| * An error when setting the event buffer bit means |
| * setting the bit is not supported. |
| */ |
| dev_warn(smi_info->dev, |
| "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); |
| smi_info->cannot_disable_irq = true; |
| smi_info->irq_enable_broken = true; |
| } |
| } |
| |
| static int try_enable_event_buffer(struct smi_info *smi_info) |
| { |
| unsigned char msg[3]; |
| unsigned char *resp; |
| unsigned long resp_len; |
| int rv = 0; |
| |
| resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); |
| if (!resp) |
| return -ENOMEM; |
| |
| msg[0] = IPMI_NETFN_APP_REQUEST << 2; |
| msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); |
| |
| rv = wait_for_msg_done(smi_info); |
| if (rv) { |
| pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n"); |
| goto out; |
| } |
| |
| resp_len = smi_info->handlers->get_result(smi_info->si_sm, |
| resp, IPMI_MAX_MSG_LENGTH); |
| |
| if (resp_len < 4 || |
| resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || |
| resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || |
| resp[2] != 0) { |
| pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n"); |
| rv = -EINVAL; |
| goto out; |
| } |
| |
| if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { |
| /* buffer is already enabled, nothing to do. */ |
| smi_info->supports_event_msg_buff = true; |
| goto out; |
| } |
| |
| msg[0] = IPMI_NETFN_APP_REQUEST << 2; |
| msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; |
| msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; |
| smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); |
| |
| rv = wait_for_msg_done(smi_info); |
| if (rv) { |
| pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n"); |
| goto out; |
| } |
| |
| resp_len = smi_info->handlers->get_result(smi_info->si_sm, |
| resp, IPMI_MAX_MSG_LENGTH); |
| |
| if (resp_len < 3 || |
| resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || |
| resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { |
| pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n"); |
| rv = -EINVAL; |
| goto out; |
| } |
| |
| if (resp[2] != 0) |
| /* |
| * An error when setting the event buffer bit means |
| * that the event buffer is not supported. |
| */ |
| rv = -ENOENT; |
| else |
| smi_info->supports_event_msg_buff = true; |
| |
| out: |
| kfree(resp); |
| return rv; |
| } |
| |
| static int smi_type_proc_show(struct seq_file *m, void *v) |
| { |
| struct smi_info *smi = m->private; |
| |
| seq_printf(m, "%s\n", si_to_str[smi->si_type]); |
| |
| return 0; |
| } |
| |
| static int smi_type_proc_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, smi_type_proc_show, PDE_DATA(inode)); |
| } |
| |
| static const struct file_operations smi_type_proc_ops = { |
| .open = smi_type_proc_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int smi_si_stats_proc_show(struct seq_file *m, void *v) |
| { |
| struct smi_info *smi = m->private; |
| |
| seq_printf(m, "interrupts_enabled: %d\n", |
| smi->irq && !smi->interrupt_disabled); |
| seq_printf(m, "short_timeouts: %u\n", |
| smi_get_stat(smi, short_timeouts)); |
| seq_printf(m, "long_timeouts: %u\n", |
| smi_get_stat(smi, long_timeouts)); |
| seq_printf(m, "idles: %u\n", |
| smi_get_stat(smi, idles)); |
| seq_printf(m, "interrupts: %u\n", |
| smi_get_stat(smi, interrupts)); |
| seq_printf(m, "attentions: %u\n", |
| smi_get_stat(smi, attentions)); |
| seq_printf(m, "flag_fetches: %u\n", |
| smi_get_stat(smi, flag_fetches)); |
| seq_printf(m, "hosed_count: %u\n", |
| smi_get_stat(smi, hosed_count)); |
| seq_printf(m, "complete_transactions: %u\n", |
| smi_get_stat(smi, complete_transactions)); |
| seq_printf(m, "events: %u\n", |
| smi_get_stat(smi, events)); |
| seq_printf(m, "watchdog_pretimeouts: %u\n", |
| smi_get_stat(smi, watchdog_pretimeouts)); |
| seq_printf(m, "incoming_messages: %u\n", |
| smi_get_stat(smi, incoming_messages)); |
| return 0; |
| } |
| |
| static int smi_si_stats_proc_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); |
| } |
| |
| static const struct file_operations smi_si_stats_proc_ops = { |
| .open = smi_si_stats_proc_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int smi_params_proc_show(struct seq_file *m, void *v) |
| { |
| struct smi_info *smi = m->private; |
| |
| seq_printf(m, |
| "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", |
| si_to_str[smi->si_type], |
| addr_space_to_str[smi->io.addr_type], |
| smi->io.addr_data, |
| smi->io.regspacing, |
| smi->io.regsize, |
| smi->io.regshift, |
| smi->irq, |
| smi->slave_addr); |
| |
| return 0; |
| } |
| |
| static int smi_params_proc_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, smi_params_proc_show, PDE_DATA(inode)); |
| } |
| |
| static const struct file_operations smi_params_proc_ops = { |
| .open = smi_params_proc_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| /* |
| * oem_data_avail_to_receive_msg_avail |
| * @info - smi_info structure with msg_flags set |
| * |
| * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL |
| * Returns 1 indicating need to re-run handle_flags(). |
| */ |
| static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) |
| { |
| smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | |
| RECEIVE_MSG_AVAIL); |
| return 1; |
| } |
| |
| /* |
| * setup_dell_poweredge_oem_data_handler |
| * @info - smi_info.device_id must be populated |
| * |
| * Systems that match, but have firmware version < 1.40 may assert |
| * OEM0_DATA_AVAIL on their own, without being told via Set Flags that |
| * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL |
| * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags |
| * as RECEIVE_MSG_AVAIL instead. |
| * |
| * As Dell has no plans to release IPMI 1.5 firmware that *ever* |
| * assert the OEM[012] bits, and if it did, the driver would have to |
| * change to handle that properly, we don't actually check for the |
| * firmware version. |
| * Device ID = 0x20 BMC on PowerEdge 8G servers |
| * Device Revision = 0x80 |
| * Firmware Revision1 = 0x01 BMC version 1.40 |
| * Firmware Revision2 = 0x40 BCD encoded |
| * IPMI Version = 0x51 IPMI 1.5 |
| * Manufacturer ID = A2 02 00 Dell IANA |
| * |
| * Additionally, PowerEdge systems with IPMI < 1.5 may also assert |
| * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. |
| * |
| */ |
| #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 |
| #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 |
| #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 |
| #define DELL_IANA_MFR_ID 0x0002a2 |
| static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) |
| { |
| struct ipmi_device_id *id = &smi_info->device_id; |
| if (id->manufacturer_id == DELL_IANA_MFR_ID) { |
| if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && |
| id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && |
| id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { |
| smi_info->oem_data_avail_handler = |
| oem_data_avail_to_receive_msg_avail; |
| } else if (ipmi_version_major(id) < 1 || |
| (ipmi_version_major(id) == 1 && |
| ipmi_version_minor(id) < 5)) { |
| smi_info->oem_data_avail_handler = |
| oem_data_avail_to_receive_msg_avail; |
| } |
| } |
| } |
| |
| #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA |
| static void return_hosed_msg_badsize(struct smi_info *smi_info) |
| { |
| struct ipmi_smi_msg *msg = smi_info->curr_msg; |
| |
| /* Make it a response */ |
| msg->rsp[0] = msg->data[0] | 4; |
| msg->rsp[1] = msg->data[1]; |
| msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; |
| msg->rsp_size = 3; |
| smi_info->curr_msg = NULL; |
| deliver_recv_msg(smi_info, msg); |
| } |
| |
| /* |
| * dell_poweredge_bt_xaction_handler |
| * @info - smi_info.device_id must be populated |
| * |
| * Dell PowerEdge servers with the BT interface (x6xx and 1750) will |
| * not respond to a Get SDR command if the length of the data |
| * requested is exactly 0x3A, which leads to command timeouts and no |
| * data returned. This intercepts such commands, and causes userspace |
| * callers to try again with a different-sized buffer, which succeeds. |
| */ |
| |
| #define STORAGE_NETFN 0x0A |
| #define STORAGE_CMD_GET_SDR 0x23 |
| static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, |
| unsigned long unused, |
| void *in) |
| { |
| struct smi_info *smi_info = in; |
| unsigned char *data = smi_info->curr_msg->data; |
| unsigned int size = smi_info->curr_msg->data_size; |
| if (size >= 8 && |
| (data[0]>>2) == STORAGE_NETFN && |
| data[1] == STORAGE_CMD_GET_SDR && |
| data[7] == 0x3A) { |
| return_hosed_msg_badsize(smi_info); |
| return NOTIFY_STOP; |
| } |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block dell_poweredge_bt_xaction_notifier = { |
| .notifier_call = dell_poweredge_bt_xaction_handler, |
| }; |
| |
| /* |
| * setup_dell_poweredge_bt_xaction_handler |
| * @info - smi_info.device_id must be filled in already |
| * |
| * Fills in smi_info.device_id.start_transaction_pre_hook |
| * when we know what function to use there. |
| */ |
| static void |
| setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) |
| { |
| struct ipmi_device_id *id = &smi_info->device_id; |
| if (id->manufacturer_id == DELL_IANA_MFR_ID && |
| smi_info->si_type == SI_BT) |
| register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); |
| } |
| |
| /* |
| * setup_oem_data_handler |
| * @info - smi_info.device_id must be filled in already |
| * |
| * Fills in smi_info.device_id.oem_data_available_handler |
| * when we know what function to use there. |
| */ |
| |
| static void setup_oem_data_handler(struct smi_info *smi_info) |
| { |
| setup_dell_poweredge_oem_data_handler(smi_info); |
| } |
| |
| static void setup_xaction_handlers(struct smi_info *smi_info) |
| { |
| setup_dell_poweredge_bt_xaction_handler(smi_info); |
| } |
| |
| static void check_for_broken_irqs(struct smi_info *smi_info) |
| { |
| check_clr_rcv_irq(smi_info); |
| check_set_rcv_irq(smi_info); |
| } |
| |
| static inline void wait_for_timer_and_thread(struct smi_info *smi_info) |
| { |
| if (smi_info->thread != NULL) |
| kthread_stop(smi_info->thread); |
| if (smi_info->timer_running) |
| del_timer_sync(&smi_info->si_timer); |
| } |
| |
| static int is_new_interface(struct smi_info *info) |
| { |
| struct smi_info *e; |
| |
| list_for_each_entry(e, &smi_infos, link) { |
| if (e->io.addr_type != info->io.addr_type) |
| continue; |
| if (e->io.addr_data == info->io.addr_data) { |
| /* |
| * This is a cheap hack, ACPI doesn't have a defined |
| * slave address but SMBIOS does. Pick it up from |
| * any source that has it available. |
| */ |
| if (info->slave_addr && !e->slave_addr) |
| e->slave_addr = info->slave_addr; |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int add_smi(struct smi_info *new_smi) |
| { |
| int rv = 0; |
| |
| mutex_lock(&smi_infos_lock); |
| if (!is_new_interface(new_smi)) { |
| pr_info(PFX "%s-specified %s state machine: duplicate\n", |
| ipmi_addr_src_to_str(new_smi->addr_source), |
| si_to_str[new_smi->si_type]); |
| rv = -EBUSY; |
| goto out_err; |
| } |
| |
| pr_info(PFX "Adding %s-specified %s state machine\n", |
| ipmi_addr_src_to_str(new_smi->addr_source), |
| si_to_str[new_smi->si_type]); |
| |
| /* So we know not to free it unless we have allocated one. */ |
| new_smi->intf = NULL; |
| new_smi->si_sm = NULL; |
| new_smi->handlers = NULL; |
| |
| list_add_tail(&new_smi->link, &smi_infos); |
| |
| out_err: |
| mutex_unlock(&smi_infos_lock); |
| return rv; |
| } |
| |
| static int try_smi_init(struct smi_info *new_smi) |
| { |
| int rv = 0; |
| int i; |
| char *init_name = NULL; |
| |
| pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n", |
| ipmi_addr_src_to_str(new_smi->addr_source), |
| si_to_str[new_smi->si_type], |
| addr_space_to_str[new_smi->io.addr_type], |
| new_smi->io.addr_data, |
| new_smi->slave_addr, new_smi->irq); |
| |
| switch (new_smi->si_type) { |
| case SI_KCS: |
| new_smi->handlers = &kcs_smi_handlers; |
| break; |
| |
| case SI_SMIC: |
| new_smi->handlers = &smic_smi_handlers; |
| break; |
| |
| case SI_BT: |
| new_smi->handlers = &bt_smi_handlers; |
| break; |
| |
| default: |
| /* No support for anything else yet. */ |
| rv = -EIO; |
| goto out_err; |
| } |
| |
| /* Do this early so it's available for logs. */ |
| if (!new_smi->dev) { |
| init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d", 0); |
| |
| /* |
| * If we don't already have a device from something |
| * else (like PCI), then register a new one. |
| */ |
| new_smi->pdev = platform_device_alloc("ipmi_si", |
| new_smi->intf_num); |
| if (!new_smi->pdev) { |
| pr_err(PFX "Unable to allocate platform device\n"); |
| goto out_err; |
| } |
| new_smi->dev = &new_smi->pdev->dev; |
| new_smi->dev->driver = &ipmi_driver.driver; |
| /* Nulled by device_add() */ |
| new_smi->dev->init_name = init_name; |
| } |
| |
| /* Allocate the state machine's data and initialize it. */ |
| new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); |
| if (!new_smi->si_sm) { |
| pr_err(PFX "Could not allocate state machine memory\n"); |
| rv = -ENOMEM; |
| goto out_err; |
| } |
| new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, |
| &new_smi->io); |
| |
| /* Now that we know the I/O size, we can set up the I/O. */ |
| rv = new_smi->io_setup(new_smi); |
| if (rv) { |
| dev_err(new_smi->dev, "Could not set up I/O space\n"); |
| goto out_err; |
| } |
| |
| /* Do low-level detection first. */ |
| if (new_smi->handlers->detect(new_smi->si_sm)) { |
| if (new_smi->addr_source) |
| dev_err(new_smi->dev, "Interface detection failed\n"); |
| rv = -ENODEV; |
| goto out_err; |
| } |
| |
| /* |
| * Attempt a get device id command. If it fails, we probably |
| * don't have a BMC here. |
| */ |
| rv = try_get_dev_id(new_smi); |
| if (rv) { |
| if (new_smi->addr_source) |
| dev_err(new_smi->dev, "There appears to be no BMC at this location\n"); |
| goto out_err; |
| } |
| |
| setup_oem_data_handler(new_smi); |
| setup_xaction_handlers(new_smi); |
| check_for_broken_irqs(new_smi); |
| |
| new_smi->waiting_msg = NULL; |
| new_smi->curr_msg = NULL; |
| atomic_set(&new_smi->req_events, 0); |
| new_smi->run_to_completion = false; |
| for (i = 0; i < SI_NUM_STATS; i++) |
| atomic_set(&new_smi->stats[i], 0); |
| |
| new_smi->interrupt_disabled = true; |
| atomic_set(&new_smi->need_watch, 0); |
| new_smi->intf_num = smi_num; |
| smi_num++; |
| |
| rv = try_enable_event_buffer(new_smi); |
| if (rv == 0) |
| new_smi->has_event_buffer = true; |
| |
| /* |
| * Start clearing the flags before we enable interrupts or the |
| * timer to avoid racing with the timer. |
| */ |
| start_clear_flags(new_smi, false); |
| |
| /* |
| * IRQ is defined to be set when non-zero. req_events will |
| * cause a global flags check that will enable interrupts. |
| */ |
| if (new_smi->irq) { |
| new_smi->interrupt_disabled = false; |
| atomic_set(&new_smi->req_events, 1); |
| } |
| |
| if (new_smi->pdev) { |
| rv = platform_device_add(new_smi->pdev); |
| if (rv) { |
| dev_err(new_smi->dev, |
| "Unable to register system interface device: %d\n", |
| rv); |
| goto out_err; |
| } |
| new_smi->dev_registered = true; |
| } |
| |
| rv = ipmi_register_smi(&handlers, |
| new_smi, |
| &new_smi->device_id, |
| new_smi->dev, |
| new_smi->slave_addr); |
| if (rv) { |
| dev_err(new_smi->dev, "Unable to register device: error %d\n", |
| rv); |
| goto out_err_stop_timer; |
| } |
| |
| rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", |
| &smi_type_proc_ops, |
| new_smi); |
| if (rv) { |
| dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); |
| goto out_err_stop_timer; |
| } |
| |
| rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", |
| &smi_si_stats_proc_ops, |
| new_smi); |
| if (rv) { |
| dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); |
| goto out_err_stop_timer; |
| } |
| |
| rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", |
| &smi_params_proc_ops, |
| new_smi); |
| if (rv) { |
| dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); |
| goto out_err_stop_timer; |
| } |
| |
| dev_info(new_smi->dev, "IPMI %s interface initialized\n", |
| si_to_str[new_smi->si_type]); |
| |
| WARN_ON(new_smi->dev->init_name != NULL); |
| kfree(init_name); |
| |
| return 0; |
| |
| out_err_stop_timer: |
| wait_for_timer_and_thread(new_smi); |
| |
| out_err: |
| new_smi->interrupt_disabled = true; |
| |
| if (new_smi->intf) { |
| ipmi_smi_t intf = new_smi->intf; |
| new_smi->intf = NULL; |
| ipmi_unregister_smi(intf); |
| } |
| |
| if (new_smi->irq_cleanup) { |
| new_smi->irq_cleanup(new_smi); |
| new_smi->irq_cleanup = NULL; |
| } |
| |
| /* |
| * Wait until we know that we are out of any interrupt |
| * handlers might have been running before we freed the |
| * interrupt. |
| */ |
| synchronize_sched(); |
| |
| if (new_smi->si_sm) { |
| if (new_smi->handlers) |
| new_smi->handlers->cleanup(new_smi->si_sm); |
| kfree(new_smi->si_sm); |
| new_smi->si_sm = NULL; |
| } |
| if (new_smi->addr_source_cleanup) { |
| new_smi->addr_source_cleanup(new_smi); |
| new_smi->addr_source_cleanup = NULL; |
| } |
| if (new_smi->io_cleanup) { |
| new_smi->io_cleanup(new_smi); |
| new_smi->io_cleanup = NULL; |
| } |
| |
| if (new_smi->dev_registered) { |
| platform_device_unregister(new_smi->pdev); |
| new_smi->dev_registered = false; |
| new_smi->pdev = NULL; |
| } else if (new_smi->pdev) { |
| platform_device_put(new_smi->pdev); |
| new_smi->pdev = NULL; |
| } |
| |
| kfree(init_name); |
| |
| return rv; |
| } |
| |
| static int init_ipmi_si(void) |
| { |
| int i; |
| char *str; |
| int rv; |
| struct smi_info *e; |
| enum ipmi_addr_src type = SI_INVALID; |
| |
| if (initialized) |
| return 0; |
| initialized = 1; |
| |
| if (si_tryplatform) { |
| rv = platform_driver_register(&ipmi_driver); |
| if (rv) { |
| pr_err(PFX "Unable to register driver: %d\n", rv); |
| return rv; |
| } |
| } |
| |
| /* Parse out the si_type string into its components. */ |
| str = si_type_str; |
| if (*str != '\0') { |
| for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { |
| si_type[i] = str; |
| str = strchr(str, ','); |
| if (str) { |
| *str = '\0'; |
| str++; |
| } else { |
| break; |
| } |
| } |
| } |
| |
| pr_info("IPMI System Interface driver.\n"); |
| |
| /* If the user gave us a device, they presumably want us to use it */ |
| if (!hardcode_find_bmc()) |
| return 0; |
| |
| #ifdef CONFIG_PCI |
| if (si_trypci) { |
| rv = pci_register_driver(&ipmi_pci_driver); |
| if (rv) |
| pr_err(PFX "Unable to register PCI driver: %d\n", rv); |
| else |
| pci_registered = true; |
| } |
| #endif |
| |
| #ifdef CONFIG_DMI |
| if (si_trydmi) |
| dmi_find_bmc(); |
| #endif |
| |
| #ifdef CONFIG_ACPI |
| if (si_tryacpi) |
| spmi_find_bmc(); |
| #endif |
| |
| #ifdef CONFIG_PARISC |
| register_parisc_driver(&ipmi_parisc_driver); |
| parisc_registered = true; |
| #endif |
| |
| /* We prefer devices with interrupts, but in the case of a machine |
| with multiple BMCs we assume that there will be several instances |
| of a given type so if we succeed in registering a type then also |
| try to register everything else of the same type */ |
| |
| mutex_lock(&smi_infos_lock); |
| list_for_each_entry(e, &smi_infos, link) { |
| /* Try to register a device if it has an IRQ and we either |
| haven't successfully registered a device yet or this |
| device has the same type as one we successfully registered */ |
| if (e->irq && (!type || e->addr_source == type)) { |
| if (!try_smi_init(e)) { |
| type = e->addr_source; |
| } |
| } |
| } |
| |
| /* type will only have been set if we successfully registered an si */ |
| if (type) { |
| mutex_unlock(&smi_infos_lock); |
| return 0; |
| } |
| |
| /* Fall back to the preferred device */ |
| |
| list_for_each_entry(e, &smi_infos, link) { |
| if (!e->irq && (!type || e->addr_source == type)) { |
| if (!try_smi_init(e)) { |
| type = e->addr_source; |
| } |
| } |
| } |
| mutex_unlock(&smi_infos_lock); |
| |
| if (type) |
| return 0; |
| |
| mutex_lock(&smi_infos_lock); |
| if (unload_when_empty && list_empty(&smi_infos)) { |
| mutex_unlock(&smi_infos_lock); |
| cleanup_ipmi_si(); |
| pr_warn(PFX "Unable to find any System Interface(s)\n"); |
| return -ENODEV; |
| } else { |
| mutex_unlock(&smi_infos_lock); |
| return 0; |
| } |
| } |
| module_init(init_ipmi_si); |
| |
| static void cleanup_one_si(struct smi_info *to_clean) |
| { |
| int rv = 0; |
| |
| if (!to_clean) |
| return; |
| |
| if (to_clean->intf) { |
| ipmi_smi_t intf = to_clean->intf; |
| |
| to_clean->intf = NULL; |
| rv = ipmi_unregister_smi(intf); |
| if (rv) { |
| pr_err(PFX "Unable to unregister device: errno=%d\n", |
| rv); |
| } |
| } |
| |
| if (to_clean->dev) |
| dev_set_drvdata(to_clean->dev, NULL); |
| |
| list_del(&to_clean->link); |
| |
| /* |
| * Make sure that interrupts, the timer and the thread are |
| * stopped and will not run again. |
| */ |
| if (to_clean->irq_cleanup) |
| to_clean->irq_cleanup(to_clean); |
| wait_for_timer_and_thread(to_clean); |
| |
| /* |
| * Timeouts are stopped, now make sure the interrupts are off |
| * in the BMC. Note that timers and CPU interrupts are off, |
| * so no need for locks. |
| */ |
| while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { |
| poll(to_clean); |
| schedule_timeout_uninterruptible(1); |
| } |
| disable_si_irq(to_clean, false); |
| while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { |
| poll(to_clean); |
| schedule_timeout_uninterruptible(1); |
| } |
| |
| if (to_clean->handlers) |
| to_clean->handlers->cleanup(to_clean->si_sm); |
| |
| kfree(to_clean->si_sm); |
| |
| if (to_clean->addr_source_cleanup) |
| to_clean->addr_source_cleanup(to_clean); |
| if (to_clean->io_cleanup) |
| to_clean->io_cleanup(to_clean); |
| |
| if (to_clean->dev_registered) |
| platform_device_unregister(to_clean->pdev); |
| |
| kfree(to_clean); |
| } |
| |
| static void cleanup_ipmi_si(void) |
| { |
| struct smi_info *e, *tmp_e; |
| |
| if (!initialized) |
| return; |
| |
| #ifdef CONFIG_PCI |
| if (pci_registered) |
| pci_unregister_driver(&ipmi_pci_driver); |
| #endif |
| #ifdef CONFIG_PARISC |
| if (parisc_registered) |
| unregister_parisc_driver(&ipmi_parisc_driver); |
| #endif |
| |
| platform_driver_unregister(&ipmi_driver); |
| |
| mutex_lock(&smi_infos_lock); |
| list_for_each_entry_safe(e, tmp_e, &smi_infos, link) |
| cleanup_one_si(e); |
| mutex_unlock(&smi_infos_lock); |
| } |
| module_exit(cleanup_ipmi_si); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); |
| MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" |
| " system interfaces."); |