| /* |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * The IP fragmentation functionality. |
| * |
| * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> |
| * Alan Cox <alan@lxorguk.ukuu.org.uk> |
| * |
| * Fixes: |
| * Alan Cox : Split from ip.c , see ip_input.c for history. |
| * David S. Miller : Begin massive cleanup... |
| * Andi Kleen : Add sysctls. |
| * xxxx : Overlapfrag bug. |
| * Ultima : ip_expire() kernel panic. |
| * Bill Hawes : Frag accounting and evictor fixes. |
| * John McDonald : 0 length frag bug. |
| * Alexey Kuznetsov: SMP races, threading, cleanup. |
| * Patrick McHardy : LRU queue of frag heads for evictor. |
| */ |
| |
| #define pr_fmt(fmt) "IPv4: " fmt |
| |
| #include <linux/compiler.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/jiffies.h> |
| #include <linux/skbuff.h> |
| #include <linux/list.h> |
| #include <linux/ip.h> |
| #include <linux/icmp.h> |
| #include <linux/netdevice.h> |
| #include <linux/jhash.h> |
| #include <linux/random.h> |
| #include <linux/slab.h> |
| #include <net/route.h> |
| #include <net/dst.h> |
| #include <net/sock.h> |
| #include <net/ip.h> |
| #include <net/icmp.h> |
| #include <net/checksum.h> |
| #include <net/inetpeer.h> |
| #include <net/inet_frag.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/inet.h> |
| #include <linux/netfilter_ipv4.h> |
| #include <net/inet_ecn.h> |
| |
| /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 |
| * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c |
| * as well. Or notify me, at least. --ANK |
| */ |
| |
| static int sysctl_ipfrag_max_dist __read_mostly = 64; |
| |
| struct ipfrag_skb_cb |
| { |
| struct inet_skb_parm h; |
| int offset; |
| }; |
| |
| #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) |
| |
| /* Describe an entry in the "incomplete datagrams" queue. */ |
| struct ipq { |
| struct inet_frag_queue q; |
| |
| u32 user; |
| __be32 saddr; |
| __be32 daddr; |
| __be16 id; |
| u8 protocol; |
| u8 ecn; /* RFC3168 support */ |
| int iif; |
| unsigned int rid; |
| struct inet_peer *peer; |
| }; |
| |
| /* RFC 3168 support : |
| * We want to check ECN values of all fragments, do detect invalid combinations. |
| * In ipq->ecn, we store the OR value of each ip4_frag_ecn() fragment value. |
| */ |
| #define IPFRAG_ECN_NOT_ECT 0x01 /* one frag had ECN_NOT_ECT */ |
| #define IPFRAG_ECN_ECT_1 0x02 /* one frag had ECN_ECT_1 */ |
| #define IPFRAG_ECN_ECT_0 0x04 /* one frag had ECN_ECT_0 */ |
| #define IPFRAG_ECN_CE 0x08 /* one frag had ECN_CE */ |
| |
| static inline u8 ip4_frag_ecn(u8 tos) |
| { |
| return 1 << (tos & INET_ECN_MASK); |
| } |
| |
| /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements |
| * Value : 0xff if frame should be dropped. |
| * 0 or INET_ECN_CE value, to be ORed in to final iph->tos field |
| */ |
| static const u8 ip4_frag_ecn_table[16] = { |
| /* at least one fragment had CE, and others ECT_0 or ECT_1 */ |
| [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE, |
| [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE, |
| [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE, |
| |
| /* invalid combinations : drop frame */ |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff, |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff, |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff, |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff, |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff, |
| [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, |
| }; |
| |
| static struct inet_frags ip4_frags; |
| |
| int ip_frag_nqueues(struct net *net) |
| { |
| return net->ipv4.frags.nqueues; |
| } |
| |
| int ip_frag_mem(struct net *net) |
| { |
| return atomic_read(&net->ipv4.frags.mem); |
| } |
| |
| static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, |
| struct net_device *dev); |
| |
| struct ip4_create_arg { |
| struct iphdr *iph; |
| u32 user; |
| }; |
| |
| static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot) |
| { |
| return jhash_3words((__force u32)id << 16 | prot, |
| (__force u32)saddr, (__force u32)daddr, |
| ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1); |
| } |
| |
| static unsigned int ip4_hashfn(struct inet_frag_queue *q) |
| { |
| struct ipq *ipq; |
| |
| ipq = container_of(q, struct ipq, q); |
| return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol); |
| } |
| |
| static int ip4_frag_match(struct inet_frag_queue *q, void *a) |
| { |
| struct ipq *qp; |
| struct ip4_create_arg *arg = a; |
| |
| qp = container_of(q, struct ipq, q); |
| return qp->id == arg->iph->id && |
| qp->saddr == arg->iph->saddr && |
| qp->daddr == arg->iph->daddr && |
| qp->protocol == arg->iph->protocol && |
| qp->user == arg->user; |
| } |
| |
| /* Memory Tracking Functions. */ |
| static void frag_kfree_skb(struct netns_frags *nf, struct sk_buff *skb) |
| { |
| atomic_sub(skb->truesize, &nf->mem); |
| kfree_skb(skb); |
| } |
| |
| static void ip4_frag_init(struct inet_frag_queue *q, void *a) |
| { |
| struct ipq *qp = container_of(q, struct ipq, q); |
| struct ip4_create_arg *arg = a; |
| |
| qp->protocol = arg->iph->protocol; |
| qp->id = arg->iph->id; |
| qp->ecn = ip4_frag_ecn(arg->iph->tos); |
| qp->saddr = arg->iph->saddr; |
| qp->daddr = arg->iph->daddr; |
| qp->user = arg->user; |
| qp->peer = sysctl_ipfrag_max_dist ? |
| inet_getpeer_v4(arg->iph->saddr, 1) : NULL; |
| } |
| |
| static __inline__ void ip4_frag_free(struct inet_frag_queue *q) |
| { |
| struct ipq *qp; |
| |
| qp = container_of(q, struct ipq, q); |
| if (qp->peer) |
| inet_putpeer(qp->peer); |
| } |
| |
| |
| /* Destruction primitives. */ |
| |
| static __inline__ void ipq_put(struct ipq *ipq) |
| { |
| inet_frag_put(&ipq->q, &ip4_frags); |
| } |
| |
| /* Kill ipq entry. It is not destroyed immediately, |
| * because caller (and someone more) holds reference count. |
| */ |
| static void ipq_kill(struct ipq *ipq) |
| { |
| inet_frag_kill(&ipq->q, &ip4_frags); |
| } |
| |
| /* Memory limiting on fragments. Evictor trashes the oldest |
| * fragment queue until we are back under the threshold. |
| */ |
| static void ip_evictor(struct net *net) |
| { |
| int evicted; |
| |
| evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags); |
| if (evicted) |
| IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted); |
| } |
| |
| /* |
| * Oops, a fragment queue timed out. Kill it and send an ICMP reply. |
| */ |
| static void ip_expire(unsigned long arg) |
| { |
| struct ipq *qp; |
| struct net *net; |
| |
| qp = container_of((struct inet_frag_queue *) arg, struct ipq, q); |
| net = container_of(qp->q.net, struct net, ipv4.frags); |
| |
| spin_lock(&qp->q.lock); |
| |
| if (qp->q.last_in & INET_FRAG_COMPLETE) |
| goto out; |
| |
| ipq_kill(qp); |
| |
| IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT); |
| IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); |
| |
| if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) { |
| struct sk_buff *head = qp->q.fragments; |
| const struct iphdr *iph; |
| int err; |
| |
| rcu_read_lock(); |
| head->dev = dev_get_by_index_rcu(net, qp->iif); |
| if (!head->dev) |
| goto out_rcu_unlock; |
| |
| /* skb dst is stale, drop it, and perform route lookup again */ |
| skb_dst_drop(head); |
| iph = ip_hdr(head); |
| err = ip_route_input_noref(head, iph->daddr, iph->saddr, |
| iph->tos, head->dev); |
| if (err) |
| goto out_rcu_unlock; |
| |
| /* |
| * Only an end host needs to send an ICMP |
| * "Fragment Reassembly Timeout" message, per RFC792. |
| */ |
| if (qp->user == IP_DEFRAG_AF_PACKET || |
| (qp->user == IP_DEFRAG_CONNTRACK_IN && |
| skb_rtable(head)->rt_type != RTN_LOCAL)) |
| goto out_rcu_unlock; |
| |
| |
| /* Send an ICMP "Fragment Reassembly Timeout" message. */ |
| icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); |
| out_rcu_unlock: |
| rcu_read_unlock(); |
| } |
| out: |
| spin_unlock(&qp->q.lock); |
| ipq_put(qp); |
| } |
| |
| /* Find the correct entry in the "incomplete datagrams" queue for |
| * this IP datagram, and create new one, if nothing is found. |
| */ |
| static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user) |
| { |
| struct inet_frag_queue *q; |
| struct ip4_create_arg arg; |
| unsigned int hash; |
| |
| arg.iph = iph; |
| arg.user = user; |
| |
| read_lock(&ip4_frags.lock); |
| hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol); |
| |
| q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash); |
| if (q == NULL) |
| goto out_nomem; |
| |
| return container_of(q, struct ipq, q); |
| |
| out_nomem: |
| LIMIT_NETDEBUG(KERN_ERR pr_fmt("ip_frag_create: no memory left !\n")); |
| return NULL; |
| } |
| |
| /* Is the fragment too far ahead to be part of ipq? */ |
| static inline int ip_frag_too_far(struct ipq *qp) |
| { |
| struct inet_peer *peer = qp->peer; |
| unsigned int max = sysctl_ipfrag_max_dist; |
| unsigned int start, end; |
| |
| int rc; |
| |
| if (!peer || !max) |
| return 0; |
| |
| start = qp->rid; |
| end = atomic_inc_return(&peer->rid); |
| qp->rid = end; |
| |
| rc = qp->q.fragments && (end - start) > max; |
| |
| if (rc) { |
| struct net *net; |
| |
| net = container_of(qp->q.net, struct net, ipv4.frags); |
| IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); |
| } |
| |
| return rc; |
| } |
| |
| static int ip_frag_reinit(struct ipq *qp) |
| { |
| struct sk_buff *fp; |
| |
| if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) { |
| atomic_inc(&qp->q.refcnt); |
| return -ETIMEDOUT; |
| } |
| |
| fp = qp->q.fragments; |
| do { |
| struct sk_buff *xp = fp->next; |
| frag_kfree_skb(qp->q.net, fp); |
| fp = xp; |
| } while (fp); |
| |
| qp->q.last_in = 0; |
| qp->q.len = 0; |
| qp->q.meat = 0; |
| qp->q.fragments = NULL; |
| qp->q.fragments_tail = NULL; |
| qp->iif = 0; |
| qp->ecn = 0; |
| |
| return 0; |
| } |
| |
| /* Add new segment to existing queue. */ |
| static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) |
| { |
| struct sk_buff *prev, *next; |
| struct net_device *dev; |
| int flags, offset; |
| int ihl, end; |
| int err = -ENOENT; |
| u8 ecn; |
| |
| if (qp->q.last_in & INET_FRAG_COMPLETE) |
| goto err; |
| |
| if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && |
| unlikely(ip_frag_too_far(qp)) && |
| unlikely(err = ip_frag_reinit(qp))) { |
| ipq_kill(qp); |
| goto err; |
| } |
| |
| ecn = ip4_frag_ecn(ip_hdr(skb)->tos); |
| offset = ntohs(ip_hdr(skb)->frag_off); |
| flags = offset & ~IP_OFFSET; |
| offset &= IP_OFFSET; |
| offset <<= 3; /* offset is in 8-byte chunks */ |
| ihl = ip_hdrlen(skb); |
| |
| /* Determine the position of this fragment. */ |
| end = offset + skb->len - ihl; |
| err = -EINVAL; |
| |
| /* Is this the final fragment? */ |
| if ((flags & IP_MF) == 0) { |
| /* If we already have some bits beyond end |
| * or have different end, the segment is corrupted. |
| */ |
| if (end < qp->q.len || |
| ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len)) |
| goto err; |
| qp->q.last_in |= INET_FRAG_LAST_IN; |
| qp->q.len = end; |
| } else { |
| if (end&7) { |
| end &= ~7; |
| if (skb->ip_summed != CHECKSUM_UNNECESSARY) |
| skb->ip_summed = CHECKSUM_NONE; |
| } |
| if (end > qp->q.len) { |
| /* Some bits beyond end -> corruption. */ |
| if (qp->q.last_in & INET_FRAG_LAST_IN) |
| goto err; |
| qp->q.len = end; |
| } |
| } |
| if (end == offset) |
| goto err; |
| |
| err = -ENOMEM; |
| if (pskb_pull(skb, ihl) == NULL) |
| goto err; |
| |
| err = pskb_trim_rcsum(skb, end - offset); |
| if (err) |
| goto err; |
| |
| /* Find out which fragments are in front and at the back of us |
| * in the chain of fragments so far. We must know where to put |
| * this fragment, right? |
| */ |
| prev = qp->q.fragments_tail; |
| if (!prev || FRAG_CB(prev)->offset < offset) { |
| next = NULL; |
| goto found; |
| } |
| prev = NULL; |
| for (next = qp->q.fragments; next != NULL; next = next->next) { |
| if (FRAG_CB(next)->offset >= offset) |
| break; /* bingo! */ |
| prev = next; |
| } |
| |
| found: |
| /* We found where to put this one. Check for overlap with |
| * preceding fragment, and, if needed, align things so that |
| * any overlaps are eliminated. |
| */ |
| if (prev) { |
| int i = (FRAG_CB(prev)->offset + prev->len) - offset; |
| |
| if (i > 0) { |
| offset += i; |
| err = -EINVAL; |
| if (end <= offset) |
| goto err; |
| err = -ENOMEM; |
| if (!pskb_pull(skb, i)) |
| goto err; |
| if (skb->ip_summed != CHECKSUM_UNNECESSARY) |
| skb->ip_summed = CHECKSUM_NONE; |
| } |
| } |
| |
| err = -ENOMEM; |
| |
| while (next && FRAG_CB(next)->offset < end) { |
| int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */ |
| |
| if (i < next->len) { |
| /* Eat head of the next overlapped fragment |
| * and leave the loop. The next ones cannot overlap. |
| */ |
| if (!pskb_pull(next, i)) |
| goto err; |
| FRAG_CB(next)->offset += i; |
| qp->q.meat -= i; |
| if (next->ip_summed != CHECKSUM_UNNECESSARY) |
| next->ip_summed = CHECKSUM_NONE; |
| break; |
| } else { |
| struct sk_buff *free_it = next; |
| |
| /* Old fragment is completely overridden with |
| * new one drop it. |
| */ |
| next = next->next; |
| |
| if (prev) |
| prev->next = next; |
| else |
| qp->q.fragments = next; |
| |
| qp->q.meat -= free_it->len; |
| frag_kfree_skb(qp->q.net, free_it); |
| } |
| } |
| |
| FRAG_CB(skb)->offset = offset; |
| |
| /* Insert this fragment in the chain of fragments. */ |
| skb->next = next; |
| if (!next) |
| qp->q.fragments_tail = skb; |
| if (prev) |
| prev->next = skb; |
| else |
| qp->q.fragments = skb; |
| |
| dev = skb->dev; |
| if (dev) { |
| qp->iif = dev->ifindex; |
| skb->dev = NULL; |
| } |
| qp->q.stamp = skb->tstamp; |
| qp->q.meat += skb->len; |
| qp->ecn |= ecn; |
| atomic_add(skb->truesize, &qp->q.net->mem); |
| if (offset == 0) |
| qp->q.last_in |= INET_FRAG_FIRST_IN; |
| |
| if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && |
| qp->q.meat == qp->q.len) |
| return ip_frag_reasm(qp, prev, dev); |
| |
| write_lock(&ip4_frags.lock); |
| list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list); |
| write_unlock(&ip4_frags.lock); |
| return -EINPROGRESS; |
| |
| err: |
| kfree_skb(skb); |
| return err; |
| } |
| |
| |
| /* Build a new IP datagram from all its fragments. */ |
| |
| static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, |
| struct net_device *dev) |
| { |
| struct net *net = container_of(qp->q.net, struct net, ipv4.frags); |
| struct iphdr *iph; |
| struct sk_buff *fp, *head = qp->q.fragments; |
| int len; |
| int ihlen; |
| int err; |
| u8 ecn; |
| |
| ipq_kill(qp); |
| |
| ecn = ip4_frag_ecn_table[qp->ecn]; |
| if (unlikely(ecn == 0xff)) { |
| err = -EINVAL; |
| goto out_fail; |
| } |
| /* Make the one we just received the head. */ |
| if (prev) { |
| head = prev->next; |
| fp = skb_clone(head, GFP_ATOMIC); |
| if (!fp) |
| goto out_nomem; |
| |
| fp->next = head->next; |
| if (!fp->next) |
| qp->q.fragments_tail = fp; |
| prev->next = fp; |
| |
| skb_morph(head, qp->q.fragments); |
| head->next = qp->q.fragments->next; |
| |
| kfree_skb(qp->q.fragments); |
| qp->q.fragments = head; |
| } |
| |
| WARN_ON(head == NULL); |
| WARN_ON(FRAG_CB(head)->offset != 0); |
| |
| /* Allocate a new buffer for the datagram. */ |
| ihlen = ip_hdrlen(head); |
| len = ihlen + qp->q.len; |
| |
| err = -E2BIG; |
| if (len > 65535) |
| goto out_oversize; |
| |
| /* Head of list must not be cloned. */ |
| if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) |
| goto out_nomem; |
| |
| /* If the first fragment is fragmented itself, we split |
| * it to two chunks: the first with data and paged part |
| * and the second, holding only fragments. */ |
| if (skb_has_frag_list(head)) { |
| struct sk_buff *clone; |
| int i, plen = 0; |
| |
| if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) |
| goto out_nomem; |
| clone->next = head->next; |
| head->next = clone; |
| skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; |
| skb_frag_list_init(head); |
| for (i = 0; i < skb_shinfo(head)->nr_frags; i++) |
| plen += skb_frag_size(&skb_shinfo(head)->frags[i]); |
| clone->len = clone->data_len = head->data_len - plen; |
| head->data_len -= clone->len; |
| head->len -= clone->len; |
| clone->csum = 0; |
| clone->ip_summed = head->ip_summed; |
| atomic_add(clone->truesize, &qp->q.net->mem); |
| } |
| |
| skb_shinfo(head)->frag_list = head->next; |
| skb_push(head, head->data - skb_network_header(head)); |
| |
| for (fp=head->next; fp; fp = fp->next) { |
| head->data_len += fp->len; |
| head->len += fp->len; |
| if (head->ip_summed != fp->ip_summed) |
| head->ip_summed = CHECKSUM_NONE; |
| else if (head->ip_summed == CHECKSUM_COMPLETE) |
| head->csum = csum_add(head->csum, fp->csum); |
| head->truesize += fp->truesize; |
| } |
| atomic_sub(head->truesize, &qp->q.net->mem); |
| |
| head->next = NULL; |
| head->dev = dev; |
| head->tstamp = qp->q.stamp; |
| |
| iph = ip_hdr(head); |
| iph->frag_off = 0; |
| iph->tot_len = htons(len); |
| iph->tos |= ecn; |
| IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS); |
| qp->q.fragments = NULL; |
| qp->q.fragments_tail = NULL; |
| return 0; |
| |
| out_nomem: |
| LIMIT_NETDEBUG(KERN_ERR pr_fmt("queue_glue: no memory for gluing queue %p\n"), |
| qp); |
| err = -ENOMEM; |
| goto out_fail; |
| out_oversize: |
| if (net_ratelimit()) |
| pr_info("Oversized IP packet from %pI4\n", &qp->saddr); |
| out_fail: |
| IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); |
| return err; |
| } |
| |
| /* Process an incoming IP datagram fragment. */ |
| int ip_defrag(struct sk_buff *skb, u32 user) |
| { |
| struct ipq *qp; |
| struct net *net; |
| |
| net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev); |
| IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS); |
| |
| /* Start by cleaning up the memory. */ |
| if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh) |
| ip_evictor(net); |
| |
| /* Lookup (or create) queue header */ |
| if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) { |
| int ret; |
| |
| spin_lock(&qp->q.lock); |
| |
| ret = ip_frag_queue(qp, skb); |
| |
| spin_unlock(&qp->q.lock); |
| ipq_put(qp); |
| return ret; |
| } |
| |
| IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); |
| kfree_skb(skb); |
| return -ENOMEM; |
| } |
| EXPORT_SYMBOL(ip_defrag); |
| |
| struct sk_buff *ip_check_defrag(struct sk_buff *skb, u32 user) |
| { |
| const struct iphdr *iph; |
| u32 len; |
| |
| if (skb->protocol != htons(ETH_P_IP)) |
| return skb; |
| |
| if (!pskb_may_pull(skb, sizeof(struct iphdr))) |
| return skb; |
| |
| iph = ip_hdr(skb); |
| if (iph->ihl < 5 || iph->version != 4) |
| return skb; |
| if (!pskb_may_pull(skb, iph->ihl*4)) |
| return skb; |
| iph = ip_hdr(skb); |
| len = ntohs(iph->tot_len); |
| if (skb->len < len || len < (iph->ihl * 4)) |
| return skb; |
| |
| if (ip_is_fragment(ip_hdr(skb))) { |
| skb = skb_share_check(skb, GFP_ATOMIC); |
| if (skb) { |
| if (pskb_trim_rcsum(skb, len)) |
| return skb; |
| memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); |
| if (ip_defrag(skb, user)) |
| return NULL; |
| skb->rxhash = 0; |
| } |
| } |
| return skb; |
| } |
| EXPORT_SYMBOL(ip_check_defrag); |
| |
| #ifdef CONFIG_SYSCTL |
| static int zero; |
| |
| static struct ctl_table ip4_frags_ns_ctl_table[] = { |
| { |
| .procname = "ipfrag_high_thresh", |
| .data = &init_net.ipv4.frags.high_thresh, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec |
| }, |
| { |
| .procname = "ipfrag_low_thresh", |
| .data = &init_net.ipv4.frags.low_thresh, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec |
| }, |
| { |
| .procname = "ipfrag_time", |
| .data = &init_net.ipv4.frags.timeout, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_jiffies, |
| }, |
| { } |
| }; |
| |
| static struct ctl_table ip4_frags_ctl_table[] = { |
| { |
| .procname = "ipfrag_secret_interval", |
| .data = &ip4_frags.secret_interval, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_jiffies, |
| }, |
| { |
| .procname = "ipfrag_max_dist", |
| .data = &sysctl_ipfrag_max_dist, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_minmax, |
| .extra1 = &zero |
| }, |
| { } |
| }; |
| |
| static int __net_init ip4_frags_ns_ctl_register(struct net *net) |
| { |
| struct ctl_table *table; |
| struct ctl_table_header *hdr; |
| |
| table = ip4_frags_ns_ctl_table; |
| if (!net_eq(net, &init_net)) { |
| table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL); |
| if (table == NULL) |
| goto err_alloc; |
| |
| table[0].data = &net->ipv4.frags.high_thresh; |
| table[1].data = &net->ipv4.frags.low_thresh; |
| table[2].data = &net->ipv4.frags.timeout; |
| } |
| |
| hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table); |
| if (hdr == NULL) |
| goto err_reg; |
| |
| net->ipv4.frags_hdr = hdr; |
| return 0; |
| |
| err_reg: |
| if (!net_eq(net, &init_net)) |
| kfree(table); |
| err_alloc: |
| return -ENOMEM; |
| } |
| |
| static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net) |
| { |
| struct ctl_table *table; |
| |
| table = net->ipv4.frags_hdr->ctl_table_arg; |
| unregister_net_sysctl_table(net->ipv4.frags_hdr); |
| kfree(table); |
| } |
| |
| static void ip4_frags_ctl_register(void) |
| { |
| register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table); |
| } |
| #else |
| static inline int ip4_frags_ns_ctl_register(struct net *net) |
| { |
| return 0; |
| } |
| |
| static inline void ip4_frags_ns_ctl_unregister(struct net *net) |
| { |
| } |
| |
| static inline void ip4_frags_ctl_register(void) |
| { |
| } |
| #endif |
| |
| static int __net_init ipv4_frags_init_net(struct net *net) |
| { |
| /* |
| * Fragment cache limits. We will commit 256K at one time. Should we |
| * cross that limit we will prune down to 192K. This should cope with |
| * even the most extreme cases without allowing an attacker to |
| * measurably harm machine performance. |
| */ |
| net->ipv4.frags.high_thresh = 256 * 1024; |
| net->ipv4.frags.low_thresh = 192 * 1024; |
| /* |
| * Important NOTE! Fragment queue must be destroyed before MSL expires. |
| * RFC791 is wrong proposing to prolongate timer each fragment arrival |
| * by TTL. |
| */ |
| net->ipv4.frags.timeout = IP_FRAG_TIME; |
| |
| inet_frags_init_net(&net->ipv4.frags); |
| |
| return ip4_frags_ns_ctl_register(net); |
| } |
| |
| static void __net_exit ipv4_frags_exit_net(struct net *net) |
| { |
| ip4_frags_ns_ctl_unregister(net); |
| inet_frags_exit_net(&net->ipv4.frags, &ip4_frags); |
| } |
| |
| static struct pernet_operations ip4_frags_ops = { |
| .init = ipv4_frags_init_net, |
| .exit = ipv4_frags_exit_net, |
| }; |
| |
| void __init ipfrag_init(void) |
| { |
| ip4_frags_ctl_register(); |
| register_pernet_subsys(&ip4_frags_ops); |
| ip4_frags.hashfn = ip4_hashfn; |
| ip4_frags.constructor = ip4_frag_init; |
| ip4_frags.destructor = ip4_frag_free; |
| ip4_frags.skb_free = NULL; |
| ip4_frags.qsize = sizeof(struct ipq); |
| ip4_frags.match = ip4_frag_match; |
| ip4_frags.frag_expire = ip_expire; |
| ip4_frags.secret_interval = 10 * 60 * HZ; |
| inet_frags_init(&ip4_frags); |
| } |