| /* | 
 |  *  CFQ, or complete fairness queueing, disk scheduler. | 
 |  * | 
 |  *  Based on ideas from a previously unfinished io | 
 |  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. | 
 |  * | 
 |  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/elevator.h> | 
 | #include <linux/ktime.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/ioprio.h> | 
 | #include <linux/blktrace_api.h> | 
 | #include <linux/blk-cgroup.h> | 
 | #include "blk.h" | 
 |  | 
 | /* | 
 |  * tunables | 
 |  */ | 
 | /* max queue in one round of service */ | 
 | static const int cfq_quantum = 8; | 
 | static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; | 
 | /* maximum backwards seek, in KiB */ | 
 | static const int cfq_back_max = 16 * 1024; | 
 | /* penalty of a backwards seek */ | 
 | static const int cfq_back_penalty = 2; | 
 | static const u64 cfq_slice_sync = NSEC_PER_SEC / 10; | 
 | static u64 cfq_slice_async = NSEC_PER_SEC / 25; | 
 | static const int cfq_slice_async_rq = 2; | 
 | static u64 cfq_slice_idle = NSEC_PER_SEC / 125; | 
 | static u64 cfq_group_idle = NSEC_PER_SEC / 125; | 
 | static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */ | 
 | static const int cfq_hist_divisor = 4; | 
 |  | 
 | /* | 
 |  * offset from end of service tree | 
 |  */ | 
 | #define CFQ_IDLE_DELAY		(NSEC_PER_SEC / 5) | 
 |  | 
 | /* | 
 |  * below this threshold, we consider thinktime immediate | 
 |  */ | 
 | #define CFQ_MIN_TT		(2 * NSEC_PER_SEC / HZ) | 
 |  | 
 | #define CFQ_SLICE_SCALE		(5) | 
 | #define CFQ_HW_QUEUE_MIN	(5) | 
 | #define CFQ_SERVICE_SHIFT       12 | 
 |  | 
 | #define CFQQ_SEEK_THR		(sector_t)(8 * 100) | 
 | #define CFQQ_CLOSE_THR		(sector_t)(8 * 1024) | 
 | #define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32) | 
 | #define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8) | 
 |  | 
 | #define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq) | 
 | #define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0]) | 
 | #define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1]) | 
 |  | 
 | static struct kmem_cache *cfq_pool; | 
 |  | 
 | #define CFQ_PRIO_LISTS		IOPRIO_BE_NR | 
 | #define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE) | 
 | #define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT) | 
 |  | 
 | #define sample_valid(samples)	((samples) > 80) | 
 | #define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node) | 
 |  | 
 | /* blkio-related constants */ | 
 | #define CFQ_WEIGHT_LEGACY_MIN	10 | 
 | #define CFQ_WEIGHT_LEGACY_DFL	500 | 
 | #define CFQ_WEIGHT_LEGACY_MAX	1000 | 
 |  | 
 | struct cfq_ttime { | 
 | 	u64 last_end_request; | 
 |  | 
 | 	u64 ttime_total; | 
 | 	u64 ttime_mean; | 
 | 	unsigned long ttime_samples; | 
 | }; | 
 |  | 
 | /* | 
 |  * Most of our rbtree usage is for sorting with min extraction, so | 
 |  * if we cache the leftmost node we don't have to walk down the tree | 
 |  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should | 
 |  * move this into the elevator for the rq sorting as well. | 
 |  */ | 
 | struct cfq_rb_root { | 
 | 	struct rb_root rb; | 
 | 	struct rb_node *left; | 
 | 	unsigned count; | 
 | 	u64 min_vdisktime; | 
 | 	struct cfq_ttime ttime; | 
 | }; | 
 | #define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \ | 
 | 			.ttime = {.last_end_request = ktime_get_ns(),},} | 
 |  | 
 | /* | 
 |  * Per process-grouping structure | 
 |  */ | 
 | struct cfq_queue { | 
 | 	/* reference count */ | 
 | 	int ref; | 
 | 	/* various state flags, see below */ | 
 | 	unsigned int flags; | 
 | 	/* parent cfq_data */ | 
 | 	struct cfq_data *cfqd; | 
 | 	/* service_tree member */ | 
 | 	struct rb_node rb_node; | 
 | 	/* service_tree key */ | 
 | 	u64 rb_key; | 
 | 	/* prio tree member */ | 
 | 	struct rb_node p_node; | 
 | 	/* prio tree root we belong to, if any */ | 
 | 	struct rb_root *p_root; | 
 | 	/* sorted list of pending requests */ | 
 | 	struct rb_root sort_list; | 
 | 	/* if fifo isn't expired, next request to serve */ | 
 | 	struct request *next_rq; | 
 | 	/* requests queued in sort_list */ | 
 | 	int queued[2]; | 
 | 	/* currently allocated requests */ | 
 | 	int allocated[2]; | 
 | 	/* fifo list of requests in sort_list */ | 
 | 	struct list_head fifo; | 
 |  | 
 | 	/* time when queue got scheduled in to dispatch first request. */ | 
 | 	u64 dispatch_start; | 
 | 	u64 allocated_slice; | 
 | 	u64 slice_dispatch; | 
 | 	/* time when first request from queue completed and slice started. */ | 
 | 	u64 slice_start; | 
 | 	u64 slice_end; | 
 | 	s64 slice_resid; | 
 |  | 
 | 	/* pending priority requests */ | 
 | 	int prio_pending; | 
 | 	/* number of requests that are on the dispatch list or inside driver */ | 
 | 	int dispatched; | 
 |  | 
 | 	/* io prio of this group */ | 
 | 	unsigned short ioprio, org_ioprio; | 
 | 	unsigned short ioprio_class, org_ioprio_class; | 
 |  | 
 | 	pid_t pid; | 
 |  | 
 | 	u32 seek_history; | 
 | 	sector_t last_request_pos; | 
 |  | 
 | 	struct cfq_rb_root *service_tree; | 
 | 	struct cfq_queue *new_cfqq; | 
 | 	struct cfq_group *cfqg; | 
 | 	/* Number of sectors dispatched from queue in single dispatch round */ | 
 | 	unsigned long nr_sectors; | 
 | }; | 
 |  | 
 | /* | 
 |  * First index in the service_trees. | 
 |  * IDLE is handled separately, so it has negative index | 
 |  */ | 
 | enum wl_class_t { | 
 | 	BE_WORKLOAD = 0, | 
 | 	RT_WORKLOAD = 1, | 
 | 	IDLE_WORKLOAD = 2, | 
 | 	CFQ_PRIO_NR, | 
 | }; | 
 |  | 
 | /* | 
 |  * Second index in the service_trees. | 
 |  */ | 
 | enum wl_type_t { | 
 | 	ASYNC_WORKLOAD = 0, | 
 | 	SYNC_NOIDLE_WORKLOAD = 1, | 
 | 	SYNC_WORKLOAD = 2 | 
 | }; | 
 |  | 
 | struct cfqg_stats { | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 | 	/* number of ios merged */ | 
 | 	struct blkg_rwstat		merged; | 
 | 	/* total time spent on device in ns, may not be accurate w/ queueing */ | 
 | 	struct blkg_rwstat		service_time; | 
 | 	/* total time spent waiting in scheduler queue in ns */ | 
 | 	struct blkg_rwstat		wait_time; | 
 | 	/* number of IOs queued up */ | 
 | 	struct blkg_rwstat		queued; | 
 | 	/* total disk time and nr sectors dispatched by this group */ | 
 | 	struct blkg_stat		time; | 
 | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
 | 	/* time not charged to this cgroup */ | 
 | 	struct blkg_stat		unaccounted_time; | 
 | 	/* sum of number of ios queued across all samples */ | 
 | 	struct blkg_stat		avg_queue_size_sum; | 
 | 	/* count of samples taken for average */ | 
 | 	struct blkg_stat		avg_queue_size_samples; | 
 | 	/* how many times this group has been removed from service tree */ | 
 | 	struct blkg_stat		dequeue; | 
 | 	/* total time spent waiting for it to be assigned a timeslice. */ | 
 | 	struct blkg_stat		group_wait_time; | 
 | 	/* time spent idling for this blkcg_gq */ | 
 | 	struct blkg_stat		idle_time; | 
 | 	/* total time with empty current active q with other requests queued */ | 
 | 	struct blkg_stat		empty_time; | 
 | 	/* fields after this shouldn't be cleared on stat reset */ | 
 | 	uint64_t			start_group_wait_time; | 
 | 	uint64_t			start_idle_time; | 
 | 	uint64_t			start_empty_time; | 
 | 	uint16_t			flags; | 
 | #endif	/* CONFIG_DEBUG_BLK_CGROUP */ | 
 | #endif	/* CONFIG_CFQ_GROUP_IOSCHED */ | 
 | }; | 
 |  | 
 | /* Per-cgroup data */ | 
 | struct cfq_group_data { | 
 | 	/* must be the first member */ | 
 | 	struct blkcg_policy_data cpd; | 
 |  | 
 | 	unsigned int weight; | 
 | 	unsigned int leaf_weight; | 
 | }; | 
 |  | 
 | /* This is per cgroup per device grouping structure */ | 
 | struct cfq_group { | 
 | 	/* must be the first member */ | 
 | 	struct blkg_policy_data pd; | 
 |  | 
 | 	/* group service_tree member */ | 
 | 	struct rb_node rb_node; | 
 |  | 
 | 	/* group service_tree key */ | 
 | 	u64 vdisktime; | 
 |  | 
 | 	/* | 
 | 	 * The number of active cfqgs and sum of their weights under this | 
 | 	 * cfqg.  This covers this cfqg's leaf_weight and all children's | 
 | 	 * weights, but does not cover weights of further descendants. | 
 | 	 * | 
 | 	 * If a cfqg is on the service tree, it's active.  An active cfqg | 
 | 	 * also activates its parent and contributes to the children_weight | 
 | 	 * of the parent. | 
 | 	 */ | 
 | 	int nr_active; | 
 | 	unsigned int children_weight; | 
 |  | 
 | 	/* | 
 | 	 * vfraction is the fraction of vdisktime that the tasks in this | 
 | 	 * cfqg are entitled to.  This is determined by compounding the | 
 | 	 * ratios walking up from this cfqg to the root. | 
 | 	 * | 
 | 	 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all | 
 | 	 * vfractions on a service tree is approximately 1.  The sum may | 
 | 	 * deviate a bit due to rounding errors and fluctuations caused by | 
 | 	 * cfqgs entering and leaving the service tree. | 
 | 	 */ | 
 | 	unsigned int vfraction; | 
 |  | 
 | 	/* | 
 | 	 * There are two weights - (internal) weight is the weight of this | 
 | 	 * cfqg against the sibling cfqgs.  leaf_weight is the wight of | 
 | 	 * this cfqg against the child cfqgs.  For the root cfqg, both | 
 | 	 * weights are kept in sync for backward compatibility. | 
 | 	 */ | 
 | 	unsigned int weight; | 
 | 	unsigned int new_weight; | 
 | 	unsigned int dev_weight; | 
 |  | 
 | 	unsigned int leaf_weight; | 
 | 	unsigned int new_leaf_weight; | 
 | 	unsigned int dev_leaf_weight; | 
 |  | 
 | 	/* number of cfqq currently on this group */ | 
 | 	int nr_cfqq; | 
 |  | 
 | 	/* | 
 | 	 * Per group busy queues average. Useful for workload slice calc. We | 
 | 	 * create the array for each prio class but at run time it is used | 
 | 	 * only for RT and BE class and slot for IDLE class remains unused. | 
 | 	 * This is primarily done to avoid confusion and a gcc warning. | 
 | 	 */ | 
 | 	unsigned int busy_queues_avg[CFQ_PRIO_NR]; | 
 | 	/* | 
 | 	 * rr lists of queues with requests. We maintain service trees for | 
 | 	 * RT and BE classes. These trees are subdivided in subclasses | 
 | 	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE | 
 | 	 * class there is no subclassification and all the cfq queues go on | 
 | 	 * a single tree service_tree_idle. | 
 | 	 * Counts are embedded in the cfq_rb_root | 
 | 	 */ | 
 | 	struct cfq_rb_root service_trees[2][3]; | 
 | 	struct cfq_rb_root service_tree_idle; | 
 |  | 
 | 	u64 saved_wl_slice; | 
 | 	enum wl_type_t saved_wl_type; | 
 | 	enum wl_class_t saved_wl_class; | 
 |  | 
 | 	/* number of requests that are on the dispatch list or inside driver */ | 
 | 	int dispatched; | 
 | 	struct cfq_ttime ttime; | 
 | 	struct cfqg_stats stats;	/* stats for this cfqg */ | 
 |  | 
 | 	/* async queue for each priority case */ | 
 | 	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR]; | 
 | 	struct cfq_queue *async_idle_cfqq; | 
 |  | 
 | }; | 
 |  | 
 | struct cfq_io_cq { | 
 | 	struct io_cq		icq;		/* must be the first member */ | 
 | 	struct cfq_queue	*cfqq[2]; | 
 | 	struct cfq_ttime	ttime; | 
 | 	int			ioprio;		/* the current ioprio */ | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 | 	uint64_t		blkcg_serial_nr; /* the current blkcg serial */ | 
 | #endif | 
 | }; | 
 |  | 
 | /* | 
 |  * Per block device queue structure | 
 |  */ | 
 | struct cfq_data { | 
 | 	struct request_queue *queue; | 
 | 	/* Root service tree for cfq_groups */ | 
 | 	struct cfq_rb_root grp_service_tree; | 
 | 	struct cfq_group *root_group; | 
 |  | 
 | 	/* | 
 | 	 * The priority currently being served | 
 | 	 */ | 
 | 	enum wl_class_t serving_wl_class; | 
 | 	enum wl_type_t serving_wl_type; | 
 | 	u64 workload_expires; | 
 | 	struct cfq_group *serving_group; | 
 |  | 
 | 	/* | 
 | 	 * Each priority tree is sorted by next_request position.  These | 
 | 	 * trees are used when determining if two or more queues are | 
 | 	 * interleaving requests (see cfq_close_cooperator). | 
 | 	 */ | 
 | 	struct rb_root prio_trees[CFQ_PRIO_LISTS]; | 
 |  | 
 | 	unsigned int busy_queues; | 
 | 	unsigned int busy_sync_queues; | 
 |  | 
 | 	int rq_in_driver; | 
 | 	int rq_in_flight[2]; | 
 |  | 
 | 	/* | 
 | 	 * queue-depth detection | 
 | 	 */ | 
 | 	int rq_queued; | 
 | 	int hw_tag; | 
 | 	/* | 
 | 	 * hw_tag can be | 
 | 	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection) | 
 | 	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth) | 
 | 	 *  0 => no NCQ | 
 | 	 */ | 
 | 	int hw_tag_est_depth; | 
 | 	unsigned int hw_tag_samples; | 
 |  | 
 | 	/* | 
 | 	 * idle window management | 
 | 	 */ | 
 | 	struct hrtimer idle_slice_timer; | 
 | 	struct work_struct unplug_work; | 
 |  | 
 | 	struct cfq_queue *active_queue; | 
 | 	struct cfq_io_cq *active_cic; | 
 |  | 
 | 	sector_t last_position; | 
 |  | 
 | 	/* | 
 | 	 * tunables, see top of file | 
 | 	 */ | 
 | 	unsigned int cfq_quantum; | 
 | 	unsigned int cfq_back_penalty; | 
 | 	unsigned int cfq_back_max; | 
 | 	unsigned int cfq_slice_async_rq; | 
 | 	unsigned int cfq_latency; | 
 | 	u64 cfq_fifo_expire[2]; | 
 | 	u64 cfq_slice[2]; | 
 | 	u64 cfq_slice_idle; | 
 | 	u64 cfq_group_idle; | 
 | 	u64 cfq_target_latency; | 
 |  | 
 | 	/* | 
 | 	 * Fallback dummy cfqq for extreme OOM conditions | 
 | 	 */ | 
 | 	struct cfq_queue oom_cfqq; | 
 |  | 
 | 	u64 last_delayed_sync; | 
 | }; | 
 |  | 
 | static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd); | 
 | static void cfq_put_queue(struct cfq_queue *cfqq); | 
 |  | 
 | static struct cfq_rb_root *st_for(struct cfq_group *cfqg, | 
 | 					    enum wl_class_t class, | 
 | 					    enum wl_type_t type) | 
 | { | 
 | 	if (!cfqg) | 
 | 		return NULL; | 
 |  | 
 | 	if (class == IDLE_WORKLOAD) | 
 | 		return &cfqg->service_tree_idle; | 
 |  | 
 | 	return &cfqg->service_trees[class][type]; | 
 | } | 
 |  | 
 | enum cfqq_state_flags { | 
 | 	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */ | 
 | 	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */ | 
 | 	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */ | 
 | 	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */ | 
 | 	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */ | 
 | 	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */ | 
 | 	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */ | 
 | 	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */ | 
 | 	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */ | 
 | 	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */ | 
 | 	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */ | 
 | 	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */ | 
 | 	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */ | 
 | }; | 
 |  | 
 | #define CFQ_CFQQ_FNS(name)						\ | 
 | static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\ | 
 | {									\ | 
 | 	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\ | 
 | }									\ | 
 | static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\ | 
 | {									\ | 
 | 	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\ | 
 | }									\ | 
 | static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\ | 
 | {									\ | 
 | 	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\ | 
 | } | 
 |  | 
 | CFQ_CFQQ_FNS(on_rr); | 
 | CFQ_CFQQ_FNS(wait_request); | 
 | CFQ_CFQQ_FNS(must_dispatch); | 
 | CFQ_CFQQ_FNS(must_alloc_slice); | 
 | CFQ_CFQQ_FNS(fifo_expire); | 
 | CFQ_CFQQ_FNS(idle_window); | 
 | CFQ_CFQQ_FNS(prio_changed); | 
 | CFQ_CFQQ_FNS(slice_new); | 
 | CFQ_CFQQ_FNS(sync); | 
 | CFQ_CFQQ_FNS(coop); | 
 | CFQ_CFQQ_FNS(split_coop); | 
 | CFQ_CFQQ_FNS(deep); | 
 | CFQ_CFQQ_FNS(wait_busy); | 
 | #undef CFQ_CFQQ_FNS | 
 |  | 
 | #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP) | 
 |  | 
 | /* cfqg stats flags */ | 
 | enum cfqg_stats_flags { | 
 | 	CFQG_stats_waiting = 0, | 
 | 	CFQG_stats_idling, | 
 | 	CFQG_stats_empty, | 
 | }; | 
 |  | 
 | #define CFQG_FLAG_FNS(name)						\ | 
 | static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\ | 
 | {									\ | 
 | 	stats->flags |= (1 << CFQG_stats_##name);			\ | 
 | }									\ | 
 | static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\ | 
 | {									\ | 
 | 	stats->flags &= ~(1 << CFQG_stats_##name);			\ | 
 | }									\ | 
 | static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\ | 
 | {									\ | 
 | 	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\ | 
 | }									\ | 
 |  | 
 | CFQG_FLAG_FNS(waiting) | 
 | CFQG_FLAG_FNS(idling) | 
 | CFQG_FLAG_FNS(empty) | 
 | #undef CFQG_FLAG_FNS | 
 |  | 
 | /* This should be called with the queue_lock held. */ | 
 | static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats) | 
 | { | 
 | 	unsigned long long now; | 
 |  | 
 | 	if (!cfqg_stats_waiting(stats)) | 
 | 		return; | 
 |  | 
 | 	now = sched_clock(); | 
 | 	if (time_after64(now, stats->start_group_wait_time)) | 
 | 		blkg_stat_add(&stats->group_wait_time, | 
 | 			      now - stats->start_group_wait_time); | 
 | 	cfqg_stats_clear_waiting(stats); | 
 | } | 
 |  | 
 | /* This should be called with the queue_lock held. */ | 
 | static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, | 
 | 						 struct cfq_group *curr_cfqg) | 
 | { | 
 | 	struct cfqg_stats *stats = &cfqg->stats; | 
 |  | 
 | 	if (cfqg_stats_waiting(stats)) | 
 | 		return; | 
 | 	if (cfqg == curr_cfqg) | 
 | 		return; | 
 | 	stats->start_group_wait_time = sched_clock(); | 
 | 	cfqg_stats_mark_waiting(stats); | 
 | } | 
 |  | 
 | /* This should be called with the queue_lock held. */ | 
 | static void cfqg_stats_end_empty_time(struct cfqg_stats *stats) | 
 | { | 
 | 	unsigned long long now; | 
 |  | 
 | 	if (!cfqg_stats_empty(stats)) | 
 | 		return; | 
 |  | 
 | 	now = sched_clock(); | 
 | 	if (time_after64(now, stats->start_empty_time)) | 
 | 		blkg_stat_add(&stats->empty_time, | 
 | 			      now - stats->start_empty_time); | 
 | 	cfqg_stats_clear_empty(stats); | 
 | } | 
 |  | 
 | static void cfqg_stats_update_dequeue(struct cfq_group *cfqg) | 
 | { | 
 | 	blkg_stat_add(&cfqg->stats.dequeue, 1); | 
 | } | 
 |  | 
 | static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) | 
 | { | 
 | 	struct cfqg_stats *stats = &cfqg->stats; | 
 |  | 
 | 	if (blkg_rwstat_total(&stats->queued)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * group is already marked empty. This can happen if cfqq got new | 
 | 	 * request in parent group and moved to this group while being added | 
 | 	 * to service tree. Just ignore the event and move on. | 
 | 	 */ | 
 | 	if (cfqg_stats_empty(stats)) | 
 | 		return; | 
 |  | 
 | 	stats->start_empty_time = sched_clock(); | 
 | 	cfqg_stats_mark_empty(stats); | 
 | } | 
 |  | 
 | static void cfqg_stats_update_idle_time(struct cfq_group *cfqg) | 
 | { | 
 | 	struct cfqg_stats *stats = &cfqg->stats; | 
 |  | 
 | 	if (cfqg_stats_idling(stats)) { | 
 | 		unsigned long long now = sched_clock(); | 
 |  | 
 | 		if (time_after64(now, stats->start_idle_time)) | 
 | 			blkg_stat_add(&stats->idle_time, | 
 | 				      now - stats->start_idle_time); | 
 | 		cfqg_stats_clear_idling(stats); | 
 | 	} | 
 | } | 
 |  | 
 | static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) | 
 | { | 
 | 	struct cfqg_stats *stats = &cfqg->stats; | 
 |  | 
 | 	BUG_ON(cfqg_stats_idling(stats)); | 
 |  | 
 | 	stats->start_idle_time = sched_clock(); | 
 | 	cfqg_stats_mark_idling(stats); | 
 | } | 
 |  | 
 | static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) | 
 | { | 
 | 	struct cfqg_stats *stats = &cfqg->stats; | 
 |  | 
 | 	blkg_stat_add(&stats->avg_queue_size_sum, | 
 | 		      blkg_rwstat_total(&stats->queued)); | 
 | 	blkg_stat_add(&stats->avg_queue_size_samples, 1); | 
 | 	cfqg_stats_update_group_wait_time(stats); | 
 | } | 
 |  | 
 | #else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */ | 
 |  | 
 | static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { } | 
 | static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { } | 
 | static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { } | 
 | static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { } | 
 | static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { } | 
 | static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { } | 
 | static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { } | 
 |  | 
 | #endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */ | 
 |  | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 |  | 
 | static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd) | 
 | { | 
 | 	return pd ? container_of(pd, struct cfq_group, pd) : NULL; | 
 | } | 
 |  | 
 | static struct cfq_group_data | 
 | *cpd_to_cfqgd(struct blkcg_policy_data *cpd) | 
 | { | 
 | 	return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL; | 
 | } | 
 |  | 
 | static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg) | 
 | { | 
 | 	return pd_to_blkg(&cfqg->pd); | 
 | } | 
 |  | 
 | static struct blkcg_policy blkcg_policy_cfq; | 
 |  | 
 | static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg) | 
 | { | 
 | 	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq)); | 
 | } | 
 |  | 
 | static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg) | 
 | { | 
 | 	return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq)); | 
 | } | 
 |  | 
 | static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) | 
 | { | 
 | 	struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent; | 
 |  | 
 | 	return pblkg ? blkg_to_cfqg(pblkg) : NULL; | 
 | } | 
 |  | 
 | static inline bool cfqg_is_descendant(struct cfq_group *cfqg, | 
 | 				      struct cfq_group *ancestor) | 
 | { | 
 | 	return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup, | 
 | 				    cfqg_to_blkg(ancestor)->blkcg->css.cgroup); | 
 | } | 
 |  | 
 | static inline void cfqg_get(struct cfq_group *cfqg) | 
 | { | 
 | 	return blkg_get(cfqg_to_blkg(cfqg)); | 
 | } | 
 |  | 
 | static inline void cfqg_put(struct cfq_group *cfqg) | 
 | { | 
 | 	return blkg_put(cfqg_to_blkg(cfqg)); | 
 | } | 
 |  | 
 | #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\ | 
 | 	char __pbuf[128];						\ | 
 | 									\ | 
 | 	blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));	\ | 
 | 	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \ | 
 | 			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\ | 
 | 			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\ | 
 | 			  __pbuf, ##args);				\ | 
 | } while (0) | 
 |  | 
 | #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\ | 
 | 	char __pbuf[128];						\ | 
 | 									\ | 
 | 	blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));		\ | 
 | 	blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);	\ | 
 | } while (0) | 
 |  | 
 | static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg, | 
 | 					    struct cfq_group *curr_cfqg, int op, | 
 | 					    int op_flags) | 
 | { | 
 | 	blkg_rwstat_add(&cfqg->stats.queued, op, op_flags, 1); | 
 | 	cfqg_stats_end_empty_time(&cfqg->stats); | 
 | 	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg); | 
 | } | 
 |  | 
 | static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg, | 
 | 			uint64_t time, unsigned long unaccounted_time) | 
 | { | 
 | 	blkg_stat_add(&cfqg->stats.time, time); | 
 | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
 | 	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int op, | 
 | 					       int op_flags) | 
 | { | 
 | 	blkg_rwstat_add(&cfqg->stats.queued, op, op_flags, -1); | 
 | } | 
 |  | 
 | static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int op, | 
 | 					       int op_flags) | 
 | { | 
 | 	blkg_rwstat_add(&cfqg->stats.merged, op, op_flags, 1); | 
 | } | 
 |  | 
 | static inline void cfqg_stats_update_completion(struct cfq_group *cfqg, | 
 | 			uint64_t start_time, uint64_t io_start_time, int op, | 
 | 			int op_flags) | 
 | { | 
 | 	struct cfqg_stats *stats = &cfqg->stats; | 
 | 	unsigned long long now = sched_clock(); | 
 |  | 
 | 	if (time_after64(now, io_start_time)) | 
 | 		blkg_rwstat_add(&stats->service_time, op, op_flags, | 
 | 				now - io_start_time); | 
 | 	if (time_after64(io_start_time, start_time)) | 
 | 		blkg_rwstat_add(&stats->wait_time, op, op_flags, | 
 | 				io_start_time - start_time); | 
 | } | 
 |  | 
 | /* @stats = 0 */ | 
 | static void cfqg_stats_reset(struct cfqg_stats *stats) | 
 | { | 
 | 	/* queued stats shouldn't be cleared */ | 
 | 	blkg_rwstat_reset(&stats->merged); | 
 | 	blkg_rwstat_reset(&stats->service_time); | 
 | 	blkg_rwstat_reset(&stats->wait_time); | 
 | 	blkg_stat_reset(&stats->time); | 
 | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
 | 	blkg_stat_reset(&stats->unaccounted_time); | 
 | 	blkg_stat_reset(&stats->avg_queue_size_sum); | 
 | 	blkg_stat_reset(&stats->avg_queue_size_samples); | 
 | 	blkg_stat_reset(&stats->dequeue); | 
 | 	blkg_stat_reset(&stats->group_wait_time); | 
 | 	blkg_stat_reset(&stats->idle_time); | 
 | 	blkg_stat_reset(&stats->empty_time); | 
 | #endif | 
 | } | 
 |  | 
 | /* @to += @from */ | 
 | static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from) | 
 | { | 
 | 	/* queued stats shouldn't be cleared */ | 
 | 	blkg_rwstat_add_aux(&to->merged, &from->merged); | 
 | 	blkg_rwstat_add_aux(&to->service_time, &from->service_time); | 
 | 	blkg_rwstat_add_aux(&to->wait_time, &from->wait_time); | 
 | 	blkg_stat_add_aux(&from->time, &from->time); | 
 | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
 | 	blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time); | 
 | 	blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum); | 
 | 	blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples); | 
 | 	blkg_stat_add_aux(&to->dequeue, &from->dequeue); | 
 | 	blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time); | 
 | 	blkg_stat_add_aux(&to->idle_time, &from->idle_time); | 
 | 	blkg_stat_add_aux(&to->empty_time, &from->empty_time); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Transfer @cfqg's stats to its parent's aux counts so that the ancestors' | 
 |  * recursive stats can still account for the amount used by this cfqg after | 
 |  * it's gone. | 
 |  */ | 
 | static void cfqg_stats_xfer_dead(struct cfq_group *cfqg) | 
 | { | 
 | 	struct cfq_group *parent = cfqg_parent(cfqg); | 
 |  | 
 | 	lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock); | 
 |  | 
 | 	if (unlikely(!parent)) | 
 | 		return; | 
 |  | 
 | 	cfqg_stats_add_aux(&parent->stats, &cfqg->stats); | 
 | 	cfqg_stats_reset(&cfqg->stats); | 
 | } | 
 |  | 
 | #else	/* CONFIG_CFQ_GROUP_IOSCHED */ | 
 |  | 
 | static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; } | 
 | static inline bool cfqg_is_descendant(struct cfq_group *cfqg, | 
 | 				      struct cfq_group *ancestor) | 
 | { | 
 | 	return true; | 
 | } | 
 | static inline void cfqg_get(struct cfq_group *cfqg) { } | 
 | static inline void cfqg_put(struct cfq_group *cfqg) { } | 
 |  | 
 | #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\ | 
 | 	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid,	\ | 
 | 			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\ | 
 | 			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\ | 
 | 				##args) | 
 | #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0) | 
 |  | 
 | static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg, | 
 | 			struct cfq_group *curr_cfqg, int op, int op_flags) { } | 
 | static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg, | 
 | 			uint64_t time, unsigned long unaccounted_time) { } | 
 | static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int op, | 
 | 			int op_flags) { } | 
 | static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int op, | 
 | 			int op_flags) { } | 
 | static inline void cfqg_stats_update_completion(struct cfq_group *cfqg, | 
 | 			uint64_t start_time, uint64_t io_start_time, int op, | 
 | 			int op_flags) { } | 
 |  | 
 | #endif	/* CONFIG_CFQ_GROUP_IOSCHED */ | 
 |  | 
 | #define cfq_log(cfqd, fmt, args...)	\ | 
 | 	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args) | 
 |  | 
 | /* Traverses through cfq group service trees */ | 
 | #define for_each_cfqg_st(cfqg, i, j, st) \ | 
 | 	for (i = 0; i <= IDLE_WORKLOAD; i++) \ | 
 | 		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\ | 
 | 			: &cfqg->service_tree_idle; \ | 
 | 			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \ | 
 | 			(i == IDLE_WORKLOAD && j == 0); \ | 
 | 			j++, st = i < IDLE_WORKLOAD ? \ | 
 | 			&cfqg->service_trees[i][j]: NULL) \ | 
 |  | 
 | static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd, | 
 | 	struct cfq_ttime *ttime, bool group_idle) | 
 | { | 
 | 	u64 slice; | 
 | 	if (!sample_valid(ttime->ttime_samples)) | 
 | 		return false; | 
 | 	if (group_idle) | 
 | 		slice = cfqd->cfq_group_idle; | 
 | 	else | 
 | 		slice = cfqd->cfq_slice_idle; | 
 | 	return ttime->ttime_mean > slice; | 
 | } | 
 |  | 
 | static inline bool iops_mode(struct cfq_data *cfqd) | 
 | { | 
 | 	/* | 
 | 	 * If we are not idling on queues and it is a NCQ drive, parallel | 
 | 	 * execution of requests is on and measuring time is not possible | 
 | 	 * in most of the cases until and unless we drive shallower queue | 
 | 	 * depths and that becomes a performance bottleneck. In such cases | 
 | 	 * switch to start providing fairness in terms of number of IOs. | 
 | 	 */ | 
 | 	if (!cfqd->cfq_slice_idle && cfqd->hw_tag) | 
 | 		return true; | 
 | 	else | 
 | 		return false; | 
 | } | 
 |  | 
 | static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq) | 
 | { | 
 | 	if (cfq_class_idle(cfqq)) | 
 | 		return IDLE_WORKLOAD; | 
 | 	if (cfq_class_rt(cfqq)) | 
 | 		return RT_WORKLOAD; | 
 | 	return BE_WORKLOAD; | 
 | } | 
 |  | 
 |  | 
 | static enum wl_type_t cfqq_type(struct cfq_queue *cfqq) | 
 | { | 
 | 	if (!cfq_cfqq_sync(cfqq)) | 
 | 		return ASYNC_WORKLOAD; | 
 | 	if (!cfq_cfqq_idle_window(cfqq)) | 
 | 		return SYNC_NOIDLE_WORKLOAD; | 
 | 	return SYNC_WORKLOAD; | 
 | } | 
 |  | 
 | static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class, | 
 | 					struct cfq_data *cfqd, | 
 | 					struct cfq_group *cfqg) | 
 | { | 
 | 	if (wl_class == IDLE_WORKLOAD) | 
 | 		return cfqg->service_tree_idle.count; | 
 |  | 
 | 	return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count + | 
 | 		cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count + | 
 | 		cfqg->service_trees[wl_class][SYNC_WORKLOAD].count; | 
 | } | 
 |  | 
 | static inline int cfqg_busy_async_queues(struct cfq_data *cfqd, | 
 | 					struct cfq_group *cfqg) | 
 | { | 
 | 	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count + | 
 | 		cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count; | 
 | } | 
 |  | 
 | static void cfq_dispatch_insert(struct request_queue *, struct request *); | 
 | static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync, | 
 | 				       struct cfq_io_cq *cic, struct bio *bio); | 
 |  | 
 | static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq) | 
 | { | 
 | 	/* cic->icq is the first member, %NULL will convert to %NULL */ | 
 | 	return container_of(icq, struct cfq_io_cq, icq); | 
 | } | 
 |  | 
 | static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd, | 
 | 					       struct io_context *ioc) | 
 | { | 
 | 	if (ioc) | 
 | 		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue)); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync) | 
 | { | 
 | 	return cic->cfqq[is_sync]; | 
 | } | 
 |  | 
 | static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq, | 
 | 				bool is_sync) | 
 | { | 
 | 	cic->cfqq[is_sync] = cfqq; | 
 | } | 
 |  | 
 | static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic) | 
 | { | 
 | 	return cic->icq.q->elevator->elevator_data; | 
 | } | 
 |  | 
 | /* | 
 |  * We regard a request as SYNC, if it's either a read or has the SYNC bit | 
 |  * set (in which case it could also be direct WRITE). | 
 |  */ | 
 | static inline bool cfq_bio_sync(struct bio *bio) | 
 | { | 
 | 	return bio_data_dir(bio) == READ || (bio->bi_opf & REQ_SYNC); | 
 | } | 
 |  | 
 | /* | 
 |  * scheduler run of queue, if there are requests pending and no one in the | 
 |  * driver that will restart queueing | 
 |  */ | 
 | static inline void cfq_schedule_dispatch(struct cfq_data *cfqd) | 
 | { | 
 | 	if (cfqd->busy_queues) { | 
 | 		cfq_log(cfqd, "schedule dispatch"); | 
 | 		kblockd_schedule_work(&cfqd->unplug_work); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Scale schedule slice based on io priority. Use the sync time slice only | 
 |  * if a queue is marked sync and has sync io queued. A sync queue with async | 
 |  * io only, should not get full sync slice length. | 
 |  */ | 
 | static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync, | 
 | 				 unsigned short prio) | 
 | { | 
 | 	u64 base_slice = cfqd->cfq_slice[sync]; | 
 | 	u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE); | 
 |  | 
 | 	WARN_ON(prio >= IOPRIO_BE_NR); | 
 |  | 
 | 	return base_slice + (slice * (4 - prio)); | 
 | } | 
 |  | 
 | static inline u64 | 
 | cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio); | 
 | } | 
 |  | 
 | /** | 
 |  * cfqg_scale_charge - scale disk time charge according to cfqg weight | 
 |  * @charge: disk time being charged | 
 |  * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT | 
 |  * | 
 |  * Scale @charge according to @vfraction, which is in range (0, 1].  The | 
 |  * scaling is inversely proportional. | 
 |  * | 
 |  * scaled = charge / vfraction | 
 |  * | 
 |  * The result is also in fixed point w/ CFQ_SERVICE_SHIFT. | 
 |  */ | 
 | static inline u64 cfqg_scale_charge(u64 charge, | 
 | 				    unsigned int vfraction) | 
 | { | 
 | 	u64 c = charge << CFQ_SERVICE_SHIFT;	/* make it fixed point */ | 
 |  | 
 | 	/* charge / vfraction */ | 
 | 	c <<= CFQ_SERVICE_SHIFT; | 
 | 	return div_u64(c, vfraction); | 
 | } | 
 |  | 
 | static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime) | 
 | { | 
 | 	s64 delta = (s64)(vdisktime - min_vdisktime); | 
 | 	if (delta > 0) | 
 | 		min_vdisktime = vdisktime; | 
 |  | 
 | 	return min_vdisktime; | 
 | } | 
 |  | 
 | static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime) | 
 | { | 
 | 	s64 delta = (s64)(vdisktime - min_vdisktime); | 
 | 	if (delta < 0) | 
 | 		min_vdisktime = vdisktime; | 
 |  | 
 | 	return min_vdisktime; | 
 | } | 
 |  | 
 | static void update_min_vdisktime(struct cfq_rb_root *st) | 
 | { | 
 | 	struct cfq_group *cfqg; | 
 |  | 
 | 	if (st->left) { | 
 | 		cfqg = rb_entry_cfqg(st->left); | 
 | 		st->min_vdisktime = max_vdisktime(st->min_vdisktime, | 
 | 						  cfqg->vdisktime); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * get averaged number of queues of RT/BE priority. | 
 |  * average is updated, with a formula that gives more weight to higher numbers, | 
 |  * to quickly follows sudden increases and decrease slowly | 
 |  */ | 
 |  | 
 | static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd, | 
 | 					struct cfq_group *cfqg, bool rt) | 
 | { | 
 | 	unsigned min_q, max_q; | 
 | 	unsigned mult  = cfq_hist_divisor - 1; | 
 | 	unsigned round = cfq_hist_divisor / 2; | 
 | 	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg); | 
 |  | 
 | 	min_q = min(cfqg->busy_queues_avg[rt], busy); | 
 | 	max_q = max(cfqg->busy_queues_avg[rt], busy); | 
 | 	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) / | 
 | 		cfq_hist_divisor; | 
 | 	return cfqg->busy_queues_avg[rt]; | 
 | } | 
 |  | 
 | static inline u64 | 
 | cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg) | 
 | { | 
 | 	return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT; | 
 | } | 
 |  | 
 | static inline u64 | 
 | cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	u64 slice = cfq_prio_to_slice(cfqd, cfqq); | 
 | 	if (cfqd->cfq_latency) { | 
 | 		/* | 
 | 		 * interested queues (we consider only the ones with the same | 
 | 		 * priority class in the cfq group) | 
 | 		 */ | 
 | 		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg, | 
 | 						cfq_class_rt(cfqq)); | 
 | 		u64 sync_slice = cfqd->cfq_slice[1]; | 
 | 		u64 expect_latency = sync_slice * iq; | 
 | 		u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg); | 
 |  | 
 | 		if (expect_latency > group_slice) { | 
 | 			u64 base_low_slice = 2 * cfqd->cfq_slice_idle; | 
 | 			u64 low_slice; | 
 |  | 
 | 			/* scale low_slice according to IO priority | 
 | 			 * and sync vs async */ | 
 | 			low_slice = div64_u64(base_low_slice*slice, sync_slice); | 
 | 			low_slice = min(slice, low_slice); | 
 | 			/* the adapted slice value is scaled to fit all iqs | 
 | 			 * into the target latency */ | 
 | 			slice = div64_u64(slice*group_slice, expect_latency); | 
 | 			slice = max(slice, low_slice); | 
 | 		} | 
 | 	} | 
 | 	return slice; | 
 | } | 
 |  | 
 | static inline void | 
 | cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq); | 
 | 	u64 now = ktime_get_ns(); | 
 |  | 
 | 	cfqq->slice_start = now; | 
 | 	cfqq->slice_end = now + slice; | 
 | 	cfqq->allocated_slice = slice; | 
 | 	cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now); | 
 | } | 
 |  | 
 | /* | 
 |  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end | 
 |  * isn't valid until the first request from the dispatch is activated | 
 |  * and the slice time set. | 
 |  */ | 
 | static inline bool cfq_slice_used(struct cfq_queue *cfqq) | 
 | { | 
 | 	if (cfq_cfqq_slice_new(cfqq)) | 
 | 		return false; | 
 | 	if (ktime_get_ns() < cfqq->slice_end) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Lifted from AS - choose which of rq1 and rq2 that is best served now. | 
 |  * We choose the request that is closest to the head right now. Distance | 
 |  * behind the head is penalized and only allowed to a certain extent. | 
 |  */ | 
 | static struct request * | 
 | cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last) | 
 | { | 
 | 	sector_t s1, s2, d1 = 0, d2 = 0; | 
 | 	unsigned long back_max; | 
 | #define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */ | 
 | #define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */ | 
 | 	unsigned wrap = 0; /* bit mask: requests behind the disk head? */ | 
 |  | 
 | 	if (rq1 == NULL || rq1 == rq2) | 
 | 		return rq2; | 
 | 	if (rq2 == NULL) | 
 | 		return rq1; | 
 |  | 
 | 	if (rq_is_sync(rq1) != rq_is_sync(rq2)) | 
 | 		return rq_is_sync(rq1) ? rq1 : rq2; | 
 |  | 
 | 	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO) | 
 | 		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2; | 
 |  | 
 | 	s1 = blk_rq_pos(rq1); | 
 | 	s2 = blk_rq_pos(rq2); | 
 |  | 
 | 	/* | 
 | 	 * by definition, 1KiB is 2 sectors | 
 | 	 */ | 
 | 	back_max = cfqd->cfq_back_max * 2; | 
 |  | 
 | 	/* | 
 | 	 * Strict one way elevator _except_ in the case where we allow | 
 | 	 * short backward seeks which are biased as twice the cost of a | 
 | 	 * similar forward seek. | 
 | 	 */ | 
 | 	if (s1 >= last) | 
 | 		d1 = s1 - last; | 
 | 	else if (s1 + back_max >= last) | 
 | 		d1 = (last - s1) * cfqd->cfq_back_penalty; | 
 | 	else | 
 | 		wrap |= CFQ_RQ1_WRAP; | 
 |  | 
 | 	if (s2 >= last) | 
 | 		d2 = s2 - last; | 
 | 	else if (s2 + back_max >= last) | 
 | 		d2 = (last - s2) * cfqd->cfq_back_penalty; | 
 | 	else | 
 | 		wrap |= CFQ_RQ2_WRAP; | 
 |  | 
 | 	/* Found required data */ | 
 |  | 
 | 	/* | 
 | 	 * By doing switch() on the bit mask "wrap" we avoid having to | 
 | 	 * check two variables for all permutations: --> faster! | 
 | 	 */ | 
 | 	switch (wrap) { | 
 | 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ | 
 | 		if (d1 < d2) | 
 | 			return rq1; | 
 | 		else if (d2 < d1) | 
 | 			return rq2; | 
 | 		else { | 
 | 			if (s1 >= s2) | 
 | 				return rq1; | 
 | 			else | 
 | 				return rq2; | 
 | 		} | 
 |  | 
 | 	case CFQ_RQ2_WRAP: | 
 | 		return rq1; | 
 | 	case CFQ_RQ1_WRAP: | 
 | 		return rq2; | 
 | 	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */ | 
 | 	default: | 
 | 		/* | 
 | 		 * Since both rqs are wrapped, | 
 | 		 * start with the one that's further behind head | 
 | 		 * (--> only *one* back seek required), | 
 | 		 * since back seek takes more time than forward. | 
 | 		 */ | 
 | 		if (s1 <= s2) | 
 | 			return rq1; | 
 | 		else | 
 | 			return rq2; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The below is leftmost cache rbtree addon | 
 |  */ | 
 | static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root) | 
 | { | 
 | 	/* Service tree is empty */ | 
 | 	if (!root->count) | 
 | 		return NULL; | 
 |  | 
 | 	if (!root->left) | 
 | 		root->left = rb_first(&root->rb); | 
 |  | 
 | 	if (root->left) | 
 | 		return rb_entry(root->left, struct cfq_queue, rb_node); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root) | 
 | { | 
 | 	if (!root->left) | 
 | 		root->left = rb_first(&root->rb); | 
 |  | 
 | 	if (root->left) | 
 | 		return rb_entry_cfqg(root->left); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void rb_erase_init(struct rb_node *n, struct rb_root *root) | 
 | { | 
 | 	rb_erase(n, root); | 
 | 	RB_CLEAR_NODE(n); | 
 | } | 
 |  | 
 | static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root) | 
 | { | 
 | 	if (root->left == n) | 
 | 		root->left = NULL; | 
 | 	rb_erase_init(n, &root->rb); | 
 | 	--root->count; | 
 | } | 
 |  | 
 | /* | 
 |  * would be nice to take fifo expire time into account as well | 
 |  */ | 
 | static struct request * | 
 | cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 		  struct request *last) | 
 | { | 
 | 	struct rb_node *rbnext = rb_next(&last->rb_node); | 
 | 	struct rb_node *rbprev = rb_prev(&last->rb_node); | 
 | 	struct request *next = NULL, *prev = NULL; | 
 |  | 
 | 	BUG_ON(RB_EMPTY_NODE(&last->rb_node)); | 
 |  | 
 | 	if (rbprev) | 
 | 		prev = rb_entry_rq(rbprev); | 
 |  | 
 | 	if (rbnext) | 
 | 		next = rb_entry_rq(rbnext); | 
 | 	else { | 
 | 		rbnext = rb_first(&cfqq->sort_list); | 
 | 		if (rbnext && rbnext != &last->rb_node) | 
 | 			next = rb_entry_rq(rbnext); | 
 | 	} | 
 |  | 
 | 	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last)); | 
 | } | 
 |  | 
 | static u64 cfq_slice_offset(struct cfq_data *cfqd, | 
 | 			    struct cfq_queue *cfqq) | 
 | { | 
 | 	/* | 
 | 	 * just an approximation, should be ok. | 
 | 	 */ | 
 | 	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) - | 
 | 		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio)); | 
 | } | 
 |  | 
 | static inline s64 | 
 | cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg) | 
 | { | 
 | 	return cfqg->vdisktime - st->min_vdisktime; | 
 | } | 
 |  | 
 | static void | 
 | __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg) | 
 | { | 
 | 	struct rb_node **node = &st->rb.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct cfq_group *__cfqg; | 
 | 	s64 key = cfqg_key(st, cfqg); | 
 | 	int left = 1; | 
 |  | 
 | 	while (*node != NULL) { | 
 | 		parent = *node; | 
 | 		__cfqg = rb_entry_cfqg(parent); | 
 |  | 
 | 		if (key < cfqg_key(st, __cfqg)) | 
 | 			node = &parent->rb_left; | 
 | 		else { | 
 | 			node = &parent->rb_right; | 
 | 			left = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (left) | 
 | 		st->left = &cfqg->rb_node; | 
 |  | 
 | 	rb_link_node(&cfqg->rb_node, parent, node); | 
 | 	rb_insert_color(&cfqg->rb_node, &st->rb); | 
 | } | 
 |  | 
 | /* | 
 |  * This has to be called only on activation of cfqg | 
 |  */ | 
 | static void | 
 | cfq_update_group_weight(struct cfq_group *cfqg) | 
 | { | 
 | 	if (cfqg->new_weight) { | 
 | 		cfqg->weight = cfqg->new_weight; | 
 | 		cfqg->new_weight = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | cfq_update_group_leaf_weight(struct cfq_group *cfqg) | 
 | { | 
 | 	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node)); | 
 |  | 
 | 	if (cfqg->new_leaf_weight) { | 
 | 		cfqg->leaf_weight = cfqg->new_leaf_weight; | 
 | 		cfqg->new_leaf_weight = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg) | 
 | { | 
 | 	unsigned int vfr = 1 << CFQ_SERVICE_SHIFT;	/* start with 1 */ | 
 | 	struct cfq_group *pos = cfqg; | 
 | 	struct cfq_group *parent; | 
 | 	bool propagate; | 
 |  | 
 | 	/* add to the service tree */ | 
 | 	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node)); | 
 |  | 
 | 	/* | 
 | 	 * Update leaf_weight.  We cannot update weight at this point | 
 | 	 * because cfqg might already have been activated and is | 
 | 	 * contributing its current weight to the parent's child_weight. | 
 | 	 */ | 
 | 	cfq_update_group_leaf_weight(cfqg); | 
 | 	__cfq_group_service_tree_add(st, cfqg); | 
 |  | 
 | 	/* | 
 | 	 * Activate @cfqg and calculate the portion of vfraction @cfqg is | 
 | 	 * entitled to.  vfraction is calculated by walking the tree | 
 | 	 * towards the root calculating the fraction it has at each level. | 
 | 	 * The compounded ratio is how much vfraction @cfqg owns. | 
 | 	 * | 
 | 	 * Start with the proportion tasks in this cfqg has against active | 
 | 	 * children cfqgs - its leaf_weight against children_weight. | 
 | 	 */ | 
 | 	propagate = !pos->nr_active++; | 
 | 	pos->children_weight += pos->leaf_weight; | 
 | 	vfr = vfr * pos->leaf_weight / pos->children_weight; | 
 |  | 
 | 	/* | 
 | 	 * Compound ->weight walking up the tree.  Both activation and | 
 | 	 * vfraction calculation are done in the same loop.  Propagation | 
 | 	 * stops once an already activated node is met.  vfraction | 
 | 	 * calculation should always continue to the root. | 
 | 	 */ | 
 | 	while ((parent = cfqg_parent(pos))) { | 
 | 		if (propagate) { | 
 | 			cfq_update_group_weight(pos); | 
 | 			propagate = !parent->nr_active++; | 
 | 			parent->children_weight += pos->weight; | 
 | 		} | 
 | 		vfr = vfr * pos->weight / parent->children_weight; | 
 | 		pos = parent; | 
 | 	} | 
 |  | 
 | 	cfqg->vfraction = max_t(unsigned, vfr, 1); | 
 | } | 
 |  | 
 | static void | 
 | cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg) | 
 | { | 
 | 	struct cfq_rb_root *st = &cfqd->grp_service_tree; | 
 | 	struct cfq_group *__cfqg; | 
 | 	struct rb_node *n; | 
 |  | 
 | 	cfqg->nr_cfqq++; | 
 | 	if (!RB_EMPTY_NODE(&cfqg->rb_node)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Currently put the group at the end. Later implement something | 
 | 	 * so that groups get lesser vtime based on their weights, so that | 
 | 	 * if group does not loose all if it was not continuously backlogged. | 
 | 	 */ | 
 | 	n = rb_last(&st->rb); | 
 | 	if (n) { | 
 | 		__cfqg = rb_entry_cfqg(n); | 
 | 		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY; | 
 | 	} else | 
 | 		cfqg->vdisktime = st->min_vdisktime; | 
 | 	cfq_group_service_tree_add(st, cfqg); | 
 | } | 
 |  | 
 | static void | 
 | cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg) | 
 | { | 
 | 	struct cfq_group *pos = cfqg; | 
 | 	bool propagate; | 
 |  | 
 | 	/* | 
 | 	 * Undo activation from cfq_group_service_tree_add().  Deactivate | 
 | 	 * @cfqg and propagate deactivation upwards. | 
 | 	 */ | 
 | 	propagate = !--pos->nr_active; | 
 | 	pos->children_weight -= pos->leaf_weight; | 
 |  | 
 | 	while (propagate) { | 
 | 		struct cfq_group *parent = cfqg_parent(pos); | 
 |  | 
 | 		/* @pos has 0 nr_active at this point */ | 
 | 		WARN_ON_ONCE(pos->children_weight); | 
 | 		pos->vfraction = 0; | 
 |  | 
 | 		if (!parent) | 
 | 			break; | 
 |  | 
 | 		propagate = !--parent->nr_active; | 
 | 		parent->children_weight -= pos->weight; | 
 | 		pos = parent; | 
 | 	} | 
 |  | 
 | 	/* remove from the service tree */ | 
 | 	if (!RB_EMPTY_NODE(&cfqg->rb_node)) | 
 | 		cfq_rb_erase(&cfqg->rb_node, st); | 
 | } | 
 |  | 
 | static void | 
 | cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg) | 
 | { | 
 | 	struct cfq_rb_root *st = &cfqd->grp_service_tree; | 
 |  | 
 | 	BUG_ON(cfqg->nr_cfqq < 1); | 
 | 	cfqg->nr_cfqq--; | 
 |  | 
 | 	/* If there are other cfq queues under this group, don't delete it */ | 
 | 	if (cfqg->nr_cfqq) | 
 | 		return; | 
 |  | 
 | 	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group"); | 
 | 	cfq_group_service_tree_del(st, cfqg); | 
 | 	cfqg->saved_wl_slice = 0; | 
 | 	cfqg_stats_update_dequeue(cfqg); | 
 | } | 
 |  | 
 | static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq, | 
 | 				       u64 *unaccounted_time) | 
 | { | 
 | 	u64 slice_used; | 
 | 	u64 now = ktime_get_ns(); | 
 |  | 
 | 	/* | 
 | 	 * Queue got expired before even a single request completed or | 
 | 	 * got expired immediately after first request completion. | 
 | 	 */ | 
 | 	if (!cfqq->slice_start || cfqq->slice_start == now) { | 
 | 		/* | 
 | 		 * Also charge the seek time incurred to the group, otherwise | 
 | 		 * if there are mutiple queues in the group, each can dispatch | 
 | 		 * a single request on seeky media and cause lots of seek time | 
 | 		 * and group will never know it. | 
 | 		 */ | 
 | 		slice_used = max_t(u64, (now - cfqq->dispatch_start), | 
 | 					jiffies_to_nsecs(1)); | 
 | 	} else { | 
 | 		slice_used = now - cfqq->slice_start; | 
 | 		if (slice_used > cfqq->allocated_slice) { | 
 | 			*unaccounted_time = slice_used - cfqq->allocated_slice; | 
 | 			slice_used = cfqq->allocated_slice; | 
 | 		} | 
 | 		if (cfqq->slice_start > cfqq->dispatch_start) | 
 | 			*unaccounted_time += cfqq->slice_start - | 
 | 					cfqq->dispatch_start; | 
 | 	} | 
 |  | 
 | 	return slice_used; | 
 | } | 
 |  | 
 | static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg, | 
 | 				struct cfq_queue *cfqq) | 
 | { | 
 | 	struct cfq_rb_root *st = &cfqd->grp_service_tree; | 
 | 	u64 used_sl, charge, unaccounted_sl = 0; | 
 | 	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg) | 
 | 			- cfqg->service_tree_idle.count; | 
 | 	unsigned int vfr; | 
 | 	u64 now = ktime_get_ns(); | 
 |  | 
 | 	BUG_ON(nr_sync < 0); | 
 | 	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl); | 
 |  | 
 | 	if (iops_mode(cfqd)) | 
 | 		charge = cfqq->slice_dispatch; | 
 | 	else if (!cfq_cfqq_sync(cfqq) && !nr_sync) | 
 | 		charge = cfqq->allocated_slice; | 
 |  | 
 | 	/* | 
 | 	 * Can't update vdisktime while on service tree and cfqg->vfraction | 
 | 	 * is valid only while on it.  Cache vfr, leave the service tree, | 
 | 	 * update vdisktime and go back on.  The re-addition to the tree | 
 | 	 * will also update the weights as necessary. | 
 | 	 */ | 
 | 	vfr = cfqg->vfraction; | 
 | 	cfq_group_service_tree_del(st, cfqg); | 
 | 	cfqg->vdisktime += cfqg_scale_charge(charge, vfr); | 
 | 	cfq_group_service_tree_add(st, cfqg); | 
 |  | 
 | 	/* This group is being expired. Save the context */ | 
 | 	if (cfqd->workload_expires > now) { | 
 | 		cfqg->saved_wl_slice = cfqd->workload_expires - now; | 
 | 		cfqg->saved_wl_type = cfqd->serving_wl_type; | 
 | 		cfqg->saved_wl_class = cfqd->serving_wl_class; | 
 | 	} else | 
 | 		cfqg->saved_wl_slice = 0; | 
 |  | 
 | 	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime, | 
 | 					st->min_vdisktime); | 
 | 	cfq_log_cfqq(cfqq->cfqd, cfqq, | 
 | 		     "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu", | 
 | 		     used_sl, cfqq->slice_dispatch, charge, | 
 | 		     iops_mode(cfqd), cfqq->nr_sectors); | 
 | 	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl); | 
 | 	cfqg_stats_set_start_empty_time(cfqg); | 
 | } | 
 |  | 
 | /** | 
 |  * cfq_init_cfqg_base - initialize base part of a cfq_group | 
 |  * @cfqg: cfq_group to initialize | 
 |  * | 
 |  * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED | 
 |  * is enabled or not. | 
 |  */ | 
 | static void cfq_init_cfqg_base(struct cfq_group *cfqg) | 
 | { | 
 | 	struct cfq_rb_root *st; | 
 | 	int i, j; | 
 |  | 
 | 	for_each_cfqg_st(cfqg, i, j, st) | 
 | 		*st = CFQ_RB_ROOT; | 
 | 	RB_CLEAR_NODE(&cfqg->rb_node); | 
 |  | 
 | 	cfqg->ttime.last_end_request = ktime_get_ns(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 | static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val, | 
 | 			    bool on_dfl, bool reset_dev, bool is_leaf_weight); | 
 |  | 
 | static void cfqg_stats_exit(struct cfqg_stats *stats) | 
 | { | 
 | 	blkg_rwstat_exit(&stats->merged); | 
 | 	blkg_rwstat_exit(&stats->service_time); | 
 | 	blkg_rwstat_exit(&stats->wait_time); | 
 | 	blkg_rwstat_exit(&stats->queued); | 
 | 	blkg_stat_exit(&stats->time); | 
 | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
 | 	blkg_stat_exit(&stats->unaccounted_time); | 
 | 	blkg_stat_exit(&stats->avg_queue_size_sum); | 
 | 	blkg_stat_exit(&stats->avg_queue_size_samples); | 
 | 	blkg_stat_exit(&stats->dequeue); | 
 | 	blkg_stat_exit(&stats->group_wait_time); | 
 | 	blkg_stat_exit(&stats->idle_time); | 
 | 	blkg_stat_exit(&stats->empty_time); | 
 | #endif | 
 | } | 
 |  | 
 | static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp) | 
 | { | 
 | 	if (blkg_rwstat_init(&stats->merged, gfp) || | 
 | 	    blkg_rwstat_init(&stats->service_time, gfp) || | 
 | 	    blkg_rwstat_init(&stats->wait_time, gfp) || | 
 | 	    blkg_rwstat_init(&stats->queued, gfp) || | 
 | 	    blkg_stat_init(&stats->time, gfp)) | 
 | 		goto err; | 
 |  | 
 | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
 | 	if (blkg_stat_init(&stats->unaccounted_time, gfp) || | 
 | 	    blkg_stat_init(&stats->avg_queue_size_sum, gfp) || | 
 | 	    blkg_stat_init(&stats->avg_queue_size_samples, gfp) || | 
 | 	    blkg_stat_init(&stats->dequeue, gfp) || | 
 | 	    blkg_stat_init(&stats->group_wait_time, gfp) || | 
 | 	    blkg_stat_init(&stats->idle_time, gfp) || | 
 | 	    blkg_stat_init(&stats->empty_time, gfp)) | 
 | 		goto err; | 
 | #endif | 
 | 	return 0; | 
 | err: | 
 | 	cfqg_stats_exit(stats); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp) | 
 | { | 
 | 	struct cfq_group_data *cgd; | 
 |  | 
 | 	cgd = kzalloc(sizeof(*cgd), GFP_KERNEL); | 
 | 	if (!cgd) | 
 | 		return NULL; | 
 | 	return &cgd->cpd; | 
 | } | 
 |  | 
 | static void cfq_cpd_init(struct blkcg_policy_data *cpd) | 
 | { | 
 | 	struct cfq_group_data *cgd = cpd_to_cfqgd(cpd); | 
 | 	unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ? | 
 | 			      CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL; | 
 |  | 
 | 	if (cpd_to_blkcg(cpd) == &blkcg_root) | 
 | 		weight *= 2; | 
 |  | 
 | 	cgd->weight = weight; | 
 | 	cgd->leaf_weight = weight; | 
 | } | 
 |  | 
 | static void cfq_cpd_free(struct blkcg_policy_data *cpd) | 
 | { | 
 | 	kfree(cpd_to_cfqgd(cpd)); | 
 | } | 
 |  | 
 | static void cfq_cpd_bind(struct blkcg_policy_data *cpd) | 
 | { | 
 | 	struct blkcg *blkcg = cpd_to_blkcg(cpd); | 
 | 	bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys); | 
 | 	unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL; | 
 |  | 
 | 	if (blkcg == &blkcg_root) | 
 | 		weight *= 2; | 
 |  | 
 | 	WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false)); | 
 | 	WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true)); | 
 | } | 
 |  | 
 | static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node) | 
 | { | 
 | 	struct cfq_group *cfqg; | 
 |  | 
 | 	cfqg = kzalloc_node(sizeof(*cfqg), gfp, node); | 
 | 	if (!cfqg) | 
 | 		return NULL; | 
 |  | 
 | 	cfq_init_cfqg_base(cfqg); | 
 | 	if (cfqg_stats_init(&cfqg->stats, gfp)) { | 
 | 		kfree(cfqg); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return &cfqg->pd; | 
 | } | 
 |  | 
 | static void cfq_pd_init(struct blkg_policy_data *pd) | 
 | { | 
 | 	struct cfq_group *cfqg = pd_to_cfqg(pd); | 
 | 	struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg); | 
 |  | 
 | 	cfqg->weight = cgd->weight; | 
 | 	cfqg->leaf_weight = cgd->leaf_weight; | 
 | } | 
 |  | 
 | static void cfq_pd_offline(struct blkg_policy_data *pd) | 
 | { | 
 | 	struct cfq_group *cfqg = pd_to_cfqg(pd); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < IOPRIO_BE_NR; i++) { | 
 | 		if (cfqg->async_cfqq[0][i]) | 
 | 			cfq_put_queue(cfqg->async_cfqq[0][i]); | 
 | 		if (cfqg->async_cfqq[1][i]) | 
 | 			cfq_put_queue(cfqg->async_cfqq[1][i]); | 
 | 	} | 
 |  | 
 | 	if (cfqg->async_idle_cfqq) | 
 | 		cfq_put_queue(cfqg->async_idle_cfqq); | 
 |  | 
 | 	/* | 
 | 	 * @blkg is going offline and will be ignored by | 
 | 	 * blkg_[rw]stat_recursive_sum().  Transfer stats to the parent so | 
 | 	 * that they don't get lost.  If IOs complete after this point, the | 
 | 	 * stats for them will be lost.  Oh well... | 
 | 	 */ | 
 | 	cfqg_stats_xfer_dead(cfqg); | 
 | } | 
 |  | 
 | static void cfq_pd_free(struct blkg_policy_data *pd) | 
 | { | 
 | 	struct cfq_group *cfqg = pd_to_cfqg(pd); | 
 |  | 
 | 	cfqg_stats_exit(&cfqg->stats); | 
 | 	return kfree(cfqg); | 
 | } | 
 |  | 
 | static void cfq_pd_reset_stats(struct blkg_policy_data *pd) | 
 | { | 
 | 	struct cfq_group *cfqg = pd_to_cfqg(pd); | 
 |  | 
 | 	cfqg_stats_reset(&cfqg->stats); | 
 | } | 
 |  | 
 | static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd, | 
 | 					 struct blkcg *blkcg) | 
 | { | 
 | 	struct blkcg_gq *blkg; | 
 |  | 
 | 	blkg = blkg_lookup(blkcg, cfqd->queue); | 
 | 	if (likely(blkg)) | 
 | 		return blkg_to_cfqg(blkg); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) | 
 | { | 
 | 	cfqq->cfqg = cfqg; | 
 | 	/* cfqq reference on cfqg */ | 
 | 	cfqg_get(cfqg); | 
 | } | 
 |  | 
 | static u64 cfqg_prfill_weight_device(struct seq_file *sf, | 
 | 				     struct blkg_policy_data *pd, int off) | 
 | { | 
 | 	struct cfq_group *cfqg = pd_to_cfqg(pd); | 
 |  | 
 | 	if (!cfqg->dev_weight) | 
 | 		return 0; | 
 | 	return __blkg_prfill_u64(sf, pd, cfqg->dev_weight); | 
 | } | 
 |  | 
 | static int cfqg_print_weight_device(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
 | 			  cfqg_prfill_weight_device, &blkcg_policy_cfq, | 
 | 			  0, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf, | 
 | 					  struct blkg_policy_data *pd, int off) | 
 | { | 
 | 	struct cfq_group *cfqg = pd_to_cfqg(pd); | 
 |  | 
 | 	if (!cfqg->dev_leaf_weight) | 
 | 		return 0; | 
 | 	return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight); | 
 | } | 
 |  | 
 | static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
 | 			  cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, | 
 | 			  0, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cfq_print_weight(struct seq_file *sf, void *v) | 
 | { | 
 | 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); | 
 | 	struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); | 
 | 	unsigned int val = 0; | 
 |  | 
 | 	if (cgd) | 
 | 		val = cgd->weight; | 
 |  | 
 | 	seq_printf(sf, "%u\n", val); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cfq_print_leaf_weight(struct seq_file *sf, void *v) | 
 | { | 
 | 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); | 
 | 	struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); | 
 | 	unsigned int val = 0; | 
 |  | 
 | 	if (cgd) | 
 | 		val = cgd->leaf_weight; | 
 |  | 
 | 	seq_printf(sf, "%u\n", val); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of, | 
 | 					char *buf, size_t nbytes, loff_t off, | 
 | 					bool on_dfl, bool is_leaf_weight) | 
 | { | 
 | 	unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN; | 
 | 	unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX; | 
 | 	struct blkcg *blkcg = css_to_blkcg(of_css(of)); | 
 | 	struct blkg_conf_ctx ctx; | 
 | 	struct cfq_group *cfqg; | 
 | 	struct cfq_group_data *cfqgd; | 
 | 	int ret; | 
 | 	u64 v; | 
 |  | 
 | 	ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (sscanf(ctx.body, "%llu", &v) == 1) { | 
 | 		/* require "default" on dfl */ | 
 | 		ret = -ERANGE; | 
 | 		if (!v && on_dfl) | 
 | 			goto out_finish; | 
 | 	} else if (!strcmp(strim(ctx.body), "default")) { | 
 | 		v = 0; | 
 | 	} else { | 
 | 		ret = -EINVAL; | 
 | 		goto out_finish; | 
 | 	} | 
 |  | 
 | 	cfqg = blkg_to_cfqg(ctx.blkg); | 
 | 	cfqgd = blkcg_to_cfqgd(blkcg); | 
 |  | 
 | 	ret = -ERANGE; | 
 | 	if (!v || (v >= min && v <= max)) { | 
 | 		if (!is_leaf_weight) { | 
 | 			cfqg->dev_weight = v; | 
 | 			cfqg->new_weight = v ?: cfqgd->weight; | 
 | 		} else { | 
 | 			cfqg->dev_leaf_weight = v; | 
 | 			cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight; | 
 | 		} | 
 | 		ret = 0; | 
 | 	} | 
 | out_finish: | 
 | 	blkg_conf_finish(&ctx); | 
 | 	return ret ?: nbytes; | 
 | } | 
 |  | 
 | static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of, | 
 | 				      char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	return __cfqg_set_weight_device(of, buf, nbytes, off, false, false); | 
 | } | 
 |  | 
 | static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of, | 
 | 					   char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	return __cfqg_set_weight_device(of, buf, nbytes, off, false, true); | 
 | } | 
 |  | 
 | static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val, | 
 | 			    bool on_dfl, bool reset_dev, bool is_leaf_weight) | 
 | { | 
 | 	unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN; | 
 | 	unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX; | 
 | 	struct blkcg *blkcg = css_to_blkcg(css); | 
 | 	struct blkcg_gq *blkg; | 
 | 	struct cfq_group_data *cfqgd; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (val < min || val > max) | 
 | 		return -ERANGE; | 
 |  | 
 | 	spin_lock_irq(&blkcg->lock); | 
 | 	cfqgd = blkcg_to_cfqgd(blkcg); | 
 | 	if (!cfqgd) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!is_leaf_weight) | 
 | 		cfqgd->weight = val; | 
 | 	else | 
 | 		cfqgd->leaf_weight = val; | 
 |  | 
 | 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { | 
 | 		struct cfq_group *cfqg = blkg_to_cfqg(blkg); | 
 |  | 
 | 		if (!cfqg) | 
 | 			continue; | 
 |  | 
 | 		if (!is_leaf_weight) { | 
 | 			if (reset_dev) | 
 | 				cfqg->dev_weight = 0; | 
 | 			if (!cfqg->dev_weight) | 
 | 				cfqg->new_weight = cfqgd->weight; | 
 | 		} else { | 
 | 			if (reset_dev) | 
 | 				cfqg->dev_leaf_weight = 0; | 
 | 			if (!cfqg->dev_leaf_weight) | 
 | 				cfqg->new_leaf_weight = cfqgd->leaf_weight; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	spin_unlock_irq(&blkcg->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft, | 
 | 			  u64 val) | 
 | { | 
 | 	return __cfq_set_weight(css, val, false, false, false); | 
 | } | 
 |  | 
 | static int cfq_set_leaf_weight(struct cgroup_subsys_state *css, | 
 | 			       struct cftype *cft, u64 val) | 
 | { | 
 | 	return __cfq_set_weight(css, val, false, false, true); | 
 | } | 
 |  | 
 | static int cfqg_print_stat(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat, | 
 | 			  &blkcg_policy_cfq, seq_cft(sf)->private, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cfqg_print_rwstat(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat, | 
 | 			  &blkcg_policy_cfq, seq_cft(sf)->private, true); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 cfqg_prfill_stat_recursive(struct seq_file *sf, | 
 | 				      struct blkg_policy_data *pd, int off) | 
 | { | 
 | 	u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd), | 
 | 					  &blkcg_policy_cfq, off); | 
 | 	return __blkg_prfill_u64(sf, pd, sum); | 
 | } | 
 |  | 
 | static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf, | 
 | 					struct blkg_policy_data *pd, int off) | 
 | { | 
 | 	struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd), | 
 | 							&blkcg_policy_cfq, off); | 
 | 	return __blkg_prfill_rwstat(sf, pd, &sum); | 
 | } | 
 |  | 
 | static int cfqg_print_stat_recursive(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
 | 			  cfqg_prfill_stat_recursive, &blkcg_policy_cfq, | 
 | 			  seq_cft(sf)->private, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
 | 			  cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq, | 
 | 			  seq_cft(sf)->private, true); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd, | 
 | 			       int off) | 
 | { | 
 | 	u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes); | 
 |  | 
 | 	return __blkg_prfill_u64(sf, pd, sum >> 9); | 
 | } | 
 |  | 
 | static int cfqg_print_stat_sectors(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
 | 			  cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf, | 
 | 					 struct blkg_policy_data *pd, int off) | 
 | { | 
 | 	struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL, | 
 | 					offsetof(struct blkcg_gq, stat_bytes)); | 
 | 	u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) + | 
 | 		atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]); | 
 |  | 
 | 	return __blkg_prfill_u64(sf, pd, sum >> 9); | 
 | } | 
 |  | 
 | static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
 | 			  cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0, | 
 | 			  false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
 | static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf, | 
 | 				      struct blkg_policy_data *pd, int off) | 
 | { | 
 | 	struct cfq_group *cfqg = pd_to_cfqg(pd); | 
 | 	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples); | 
 | 	u64 v = 0; | 
 |  | 
 | 	if (samples) { | 
 | 		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum); | 
 | 		v = div64_u64(v, samples); | 
 | 	} | 
 | 	__blkg_prfill_u64(sf, pd, v); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* print avg_queue_size */ | 
 | static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v) | 
 | { | 
 | 	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
 | 			  cfqg_prfill_avg_queue_size, &blkcg_policy_cfq, | 
 | 			  0, false); | 
 | 	return 0; | 
 | } | 
 | #endif	/* CONFIG_DEBUG_BLK_CGROUP */ | 
 |  | 
 | static struct cftype cfq_blkcg_legacy_files[] = { | 
 | 	/* on root, weight is mapped to leaf_weight */ | 
 | 	{ | 
 | 		.name = "weight_device", | 
 | 		.flags = CFTYPE_ONLY_ON_ROOT, | 
 | 		.seq_show = cfqg_print_leaf_weight_device, | 
 | 		.write = cfqg_set_leaf_weight_device, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "weight", | 
 | 		.flags = CFTYPE_ONLY_ON_ROOT, | 
 | 		.seq_show = cfq_print_leaf_weight, | 
 | 		.write_u64 = cfq_set_leaf_weight, | 
 | 	}, | 
 |  | 
 | 	/* no such mapping necessary for !roots */ | 
 | 	{ | 
 | 		.name = "weight_device", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.seq_show = cfqg_print_weight_device, | 
 | 		.write = cfqg_set_weight_device, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "weight", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.seq_show = cfq_print_weight, | 
 | 		.write_u64 = cfq_set_weight, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "leaf_weight_device", | 
 | 		.seq_show = cfqg_print_leaf_weight_device, | 
 | 		.write = cfqg_set_leaf_weight_device, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "leaf_weight", | 
 | 		.seq_show = cfq_print_leaf_weight, | 
 | 		.write_u64 = cfq_set_leaf_weight, | 
 | 	}, | 
 |  | 
 | 	/* statistics, covers only the tasks in the cfqg */ | 
 | 	{ | 
 | 		.name = "time", | 
 | 		.private = offsetof(struct cfq_group, stats.time), | 
 | 		.seq_show = cfqg_print_stat, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "sectors", | 
 | 		.seq_show = cfqg_print_stat_sectors, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "io_service_bytes", | 
 | 		.private = (unsigned long)&blkcg_policy_cfq, | 
 | 		.seq_show = blkg_print_stat_bytes, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "io_serviced", | 
 | 		.private = (unsigned long)&blkcg_policy_cfq, | 
 | 		.seq_show = blkg_print_stat_ios, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "io_service_time", | 
 | 		.private = offsetof(struct cfq_group, stats.service_time), | 
 | 		.seq_show = cfqg_print_rwstat, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "io_wait_time", | 
 | 		.private = offsetof(struct cfq_group, stats.wait_time), | 
 | 		.seq_show = cfqg_print_rwstat, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "io_merged", | 
 | 		.private = offsetof(struct cfq_group, stats.merged), | 
 | 		.seq_show = cfqg_print_rwstat, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "io_queued", | 
 | 		.private = offsetof(struct cfq_group, stats.queued), | 
 | 		.seq_show = cfqg_print_rwstat, | 
 | 	}, | 
 |  | 
 | 	/* the same statictics which cover the cfqg and its descendants */ | 
 | 	{ | 
 | 		.name = "time_recursive", | 
 | 		.private = offsetof(struct cfq_group, stats.time), | 
 | 		.seq_show = cfqg_print_stat_recursive, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "sectors_recursive", | 
 | 		.seq_show = cfqg_print_stat_sectors_recursive, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "io_service_bytes_recursive", | 
 | 		.private = (unsigned long)&blkcg_policy_cfq, | 
 | 		.seq_show = blkg_print_stat_bytes_recursive, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "io_serviced_recursive", | 
 | 		.private = (unsigned long)&blkcg_policy_cfq, | 
 | 		.seq_show = blkg_print_stat_ios_recursive, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "io_service_time_recursive", | 
 | 		.private = offsetof(struct cfq_group, stats.service_time), | 
 | 		.seq_show = cfqg_print_rwstat_recursive, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "io_wait_time_recursive", | 
 | 		.private = offsetof(struct cfq_group, stats.wait_time), | 
 | 		.seq_show = cfqg_print_rwstat_recursive, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "io_merged_recursive", | 
 | 		.private = offsetof(struct cfq_group, stats.merged), | 
 | 		.seq_show = cfqg_print_rwstat_recursive, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "io_queued_recursive", | 
 | 		.private = offsetof(struct cfq_group, stats.queued), | 
 | 		.seq_show = cfqg_print_rwstat_recursive, | 
 | 	}, | 
 | #ifdef CONFIG_DEBUG_BLK_CGROUP | 
 | 	{ | 
 | 		.name = "avg_queue_size", | 
 | 		.seq_show = cfqg_print_avg_queue_size, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "group_wait_time", | 
 | 		.private = offsetof(struct cfq_group, stats.group_wait_time), | 
 | 		.seq_show = cfqg_print_stat, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "idle_time", | 
 | 		.private = offsetof(struct cfq_group, stats.idle_time), | 
 | 		.seq_show = cfqg_print_stat, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "empty_time", | 
 | 		.private = offsetof(struct cfq_group, stats.empty_time), | 
 | 		.seq_show = cfqg_print_stat, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "dequeue", | 
 | 		.private = offsetof(struct cfq_group, stats.dequeue), | 
 | 		.seq_show = cfqg_print_stat, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "unaccounted_time", | 
 | 		.private = offsetof(struct cfq_group, stats.unaccounted_time), | 
 | 		.seq_show = cfqg_print_stat, | 
 | 	}, | 
 | #endif	/* CONFIG_DEBUG_BLK_CGROUP */ | 
 | 	{ }	/* terminate */ | 
 | }; | 
 |  | 
 | static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v) | 
 | { | 
 | 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); | 
 | 	struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg); | 
 |  | 
 | 	seq_printf(sf, "default %u\n", cgd->weight); | 
 | 	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device, | 
 | 			  &blkcg_policy_cfq, 0, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of, | 
 | 				     char *buf, size_t nbytes, loff_t off) | 
 | { | 
 | 	char *endp; | 
 | 	int ret; | 
 | 	u64 v; | 
 |  | 
 | 	buf = strim(buf); | 
 |  | 
 | 	/* "WEIGHT" or "default WEIGHT" sets the default weight */ | 
 | 	v = simple_strtoull(buf, &endp, 0); | 
 | 	if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) { | 
 | 		ret = __cfq_set_weight(of_css(of), v, true, false, false); | 
 | 		return ret ?: nbytes; | 
 | 	} | 
 |  | 
 | 	/* "MAJ:MIN WEIGHT" */ | 
 | 	return __cfqg_set_weight_device(of, buf, nbytes, off, true, false); | 
 | } | 
 |  | 
 | static struct cftype cfq_blkcg_files[] = { | 
 | 	{ | 
 | 		.name = "weight", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.seq_show = cfq_print_weight_on_dfl, | 
 | 		.write = cfq_set_weight_on_dfl, | 
 | 	}, | 
 | 	{ }	/* terminate */ | 
 | }; | 
 |  | 
 | #else /* GROUP_IOSCHED */ | 
 | static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd, | 
 | 					 struct blkcg *blkcg) | 
 | { | 
 | 	return cfqd->root_group; | 
 | } | 
 |  | 
 | static inline void | 
 | cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) { | 
 | 	cfqq->cfqg = cfqg; | 
 | } | 
 |  | 
 | #endif /* GROUP_IOSCHED */ | 
 |  | 
 | /* | 
 |  * The cfqd->service_trees holds all pending cfq_queue's that have | 
 |  * requests waiting to be processed. It is sorted in the order that | 
 |  * we will service the queues. | 
 |  */ | 
 | static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 				 bool add_front) | 
 | { | 
 | 	struct rb_node **p, *parent; | 
 | 	struct cfq_queue *__cfqq; | 
 | 	u64 rb_key; | 
 | 	struct cfq_rb_root *st; | 
 | 	int left; | 
 | 	int new_cfqq = 1; | 
 | 	u64 now = ktime_get_ns(); | 
 |  | 
 | 	st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq)); | 
 | 	if (cfq_class_idle(cfqq)) { | 
 | 		rb_key = CFQ_IDLE_DELAY; | 
 | 		parent = rb_last(&st->rb); | 
 | 		if (parent && parent != &cfqq->rb_node) { | 
 | 			__cfqq = rb_entry(parent, struct cfq_queue, rb_node); | 
 | 			rb_key += __cfqq->rb_key; | 
 | 		} else | 
 | 			rb_key += now; | 
 | 	} else if (!add_front) { | 
 | 		/* | 
 | 		 * Get our rb key offset. Subtract any residual slice | 
 | 		 * value carried from last service. A negative resid | 
 | 		 * count indicates slice overrun, and this should position | 
 | 		 * the next service time further away in the tree. | 
 | 		 */ | 
 | 		rb_key = cfq_slice_offset(cfqd, cfqq) + now; | 
 | 		rb_key -= cfqq->slice_resid; | 
 | 		cfqq->slice_resid = 0; | 
 | 	} else { | 
 | 		rb_key = -NSEC_PER_SEC; | 
 | 		__cfqq = cfq_rb_first(st); | 
 | 		rb_key += __cfqq ? __cfqq->rb_key : now; | 
 | 	} | 
 |  | 
 | 	if (!RB_EMPTY_NODE(&cfqq->rb_node)) { | 
 | 		new_cfqq = 0; | 
 | 		/* | 
 | 		 * same position, nothing more to do | 
 | 		 */ | 
 | 		if (rb_key == cfqq->rb_key && cfqq->service_tree == st) | 
 | 			return; | 
 |  | 
 | 		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree); | 
 | 		cfqq->service_tree = NULL; | 
 | 	} | 
 |  | 
 | 	left = 1; | 
 | 	parent = NULL; | 
 | 	cfqq->service_tree = st; | 
 | 	p = &st->rb.rb_node; | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		__cfqq = rb_entry(parent, struct cfq_queue, rb_node); | 
 |  | 
 | 		/* | 
 | 		 * sort by key, that represents service time. | 
 | 		 */ | 
 | 		if (rb_key < __cfqq->rb_key) | 
 | 			p = &parent->rb_left; | 
 | 		else { | 
 | 			p = &parent->rb_right; | 
 | 			left = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (left) | 
 | 		st->left = &cfqq->rb_node; | 
 |  | 
 | 	cfqq->rb_key = rb_key; | 
 | 	rb_link_node(&cfqq->rb_node, parent, p); | 
 | 	rb_insert_color(&cfqq->rb_node, &st->rb); | 
 | 	st->count++; | 
 | 	if (add_front || !new_cfqq) | 
 | 		return; | 
 | 	cfq_group_notify_queue_add(cfqd, cfqq->cfqg); | 
 | } | 
 |  | 
 | static struct cfq_queue * | 
 | cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root, | 
 | 		     sector_t sector, struct rb_node **ret_parent, | 
 | 		     struct rb_node ***rb_link) | 
 | { | 
 | 	struct rb_node **p, *parent; | 
 | 	struct cfq_queue *cfqq = NULL; | 
 |  | 
 | 	parent = NULL; | 
 | 	p = &root->rb_node; | 
 | 	while (*p) { | 
 | 		struct rb_node **n; | 
 |  | 
 | 		parent = *p; | 
 | 		cfqq = rb_entry(parent, struct cfq_queue, p_node); | 
 |  | 
 | 		/* | 
 | 		 * Sort strictly based on sector.  Smallest to the left, | 
 | 		 * largest to the right. | 
 | 		 */ | 
 | 		if (sector > blk_rq_pos(cfqq->next_rq)) | 
 | 			n = &(*p)->rb_right; | 
 | 		else if (sector < blk_rq_pos(cfqq->next_rq)) | 
 | 			n = &(*p)->rb_left; | 
 | 		else | 
 | 			break; | 
 | 		p = n; | 
 | 		cfqq = NULL; | 
 | 	} | 
 |  | 
 | 	*ret_parent = parent; | 
 | 	if (rb_link) | 
 | 		*rb_link = p; | 
 | 	return cfqq; | 
 | } | 
 |  | 
 | static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	struct rb_node **p, *parent; | 
 | 	struct cfq_queue *__cfqq; | 
 |  | 
 | 	if (cfqq->p_root) { | 
 | 		rb_erase(&cfqq->p_node, cfqq->p_root); | 
 | 		cfqq->p_root = NULL; | 
 | 	} | 
 |  | 
 | 	if (cfq_class_idle(cfqq)) | 
 | 		return; | 
 | 	if (!cfqq->next_rq) | 
 | 		return; | 
 |  | 
 | 	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio]; | 
 | 	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root, | 
 | 				      blk_rq_pos(cfqq->next_rq), &parent, &p); | 
 | 	if (!__cfqq) { | 
 | 		rb_link_node(&cfqq->p_node, parent, p); | 
 | 		rb_insert_color(&cfqq->p_node, cfqq->p_root); | 
 | 	} else | 
 | 		cfqq->p_root = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Update cfqq's position in the service tree. | 
 |  */ | 
 | static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	/* | 
 | 	 * Resorting requires the cfqq to be on the RR list already. | 
 | 	 */ | 
 | 	if (cfq_cfqq_on_rr(cfqq)) { | 
 | 		cfq_service_tree_add(cfqd, cfqq, 0); | 
 | 		cfq_prio_tree_add(cfqd, cfqq); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * add to busy list of queues for service, trying to be fair in ordering | 
 |  * the pending list according to last request service | 
 |  */ | 
 | static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	cfq_log_cfqq(cfqd, cfqq, "add_to_rr"); | 
 | 	BUG_ON(cfq_cfqq_on_rr(cfqq)); | 
 | 	cfq_mark_cfqq_on_rr(cfqq); | 
 | 	cfqd->busy_queues++; | 
 | 	if (cfq_cfqq_sync(cfqq)) | 
 | 		cfqd->busy_sync_queues++; | 
 |  | 
 | 	cfq_resort_rr_list(cfqd, cfqq); | 
 | } | 
 |  | 
 | /* | 
 |  * Called when the cfqq no longer has requests pending, remove it from | 
 |  * the service tree. | 
 |  */ | 
 | static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	cfq_log_cfqq(cfqd, cfqq, "del_from_rr"); | 
 | 	BUG_ON(!cfq_cfqq_on_rr(cfqq)); | 
 | 	cfq_clear_cfqq_on_rr(cfqq); | 
 |  | 
 | 	if (!RB_EMPTY_NODE(&cfqq->rb_node)) { | 
 | 		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree); | 
 | 		cfqq->service_tree = NULL; | 
 | 	} | 
 | 	if (cfqq->p_root) { | 
 | 		rb_erase(&cfqq->p_node, cfqq->p_root); | 
 | 		cfqq->p_root = NULL; | 
 | 	} | 
 |  | 
 | 	cfq_group_notify_queue_del(cfqd, cfqq->cfqg); | 
 | 	BUG_ON(!cfqd->busy_queues); | 
 | 	cfqd->busy_queues--; | 
 | 	if (cfq_cfqq_sync(cfqq)) | 
 | 		cfqd->busy_sync_queues--; | 
 | } | 
 |  | 
 | /* | 
 |  * rb tree support functions | 
 |  */ | 
 | static void cfq_del_rq_rb(struct request *rq) | 
 | { | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 | 	const int sync = rq_is_sync(rq); | 
 |  | 
 | 	BUG_ON(!cfqq->queued[sync]); | 
 | 	cfqq->queued[sync]--; | 
 |  | 
 | 	elv_rb_del(&cfqq->sort_list, rq); | 
 |  | 
 | 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) { | 
 | 		/* | 
 | 		 * Queue will be deleted from service tree when we actually | 
 | 		 * expire it later. Right now just remove it from prio tree | 
 | 		 * as it is empty. | 
 | 		 */ | 
 | 		if (cfqq->p_root) { | 
 | 			rb_erase(&cfqq->p_node, cfqq->p_root); | 
 | 			cfqq->p_root = NULL; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void cfq_add_rq_rb(struct request *rq) | 
 | { | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 | 	struct cfq_data *cfqd = cfqq->cfqd; | 
 | 	struct request *prev; | 
 |  | 
 | 	cfqq->queued[rq_is_sync(rq)]++; | 
 |  | 
 | 	elv_rb_add(&cfqq->sort_list, rq); | 
 |  | 
 | 	if (!cfq_cfqq_on_rr(cfqq)) | 
 | 		cfq_add_cfqq_rr(cfqd, cfqq); | 
 |  | 
 | 	/* | 
 | 	 * check if this request is a better next-serve candidate | 
 | 	 */ | 
 | 	prev = cfqq->next_rq; | 
 | 	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position); | 
 |  | 
 | 	/* | 
 | 	 * adjust priority tree position, if ->next_rq changes | 
 | 	 */ | 
 | 	if (prev != cfqq->next_rq) | 
 | 		cfq_prio_tree_add(cfqd, cfqq); | 
 |  | 
 | 	BUG_ON(!cfqq->next_rq); | 
 | } | 
 |  | 
 | static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq) | 
 | { | 
 | 	elv_rb_del(&cfqq->sort_list, rq); | 
 | 	cfqq->queued[rq_is_sync(rq)]--; | 
 | 	cfqg_stats_update_io_remove(RQ_CFQG(rq), req_op(rq), rq->cmd_flags); | 
 | 	cfq_add_rq_rb(rq); | 
 | 	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group, | 
 | 				 req_op(rq), rq->cmd_flags); | 
 | } | 
 |  | 
 | static struct request * | 
 | cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	struct cfq_io_cq *cic; | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	cic = cfq_cic_lookup(cfqd, tsk->io_context); | 
 | 	if (!cic) | 
 | 		return NULL; | 
 |  | 
 | 	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio)); | 
 | 	if (cfqq) | 
 | 		return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio)); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void cfq_activate_request(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 |  | 
 | 	cfqd->rq_in_driver++; | 
 | 	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d", | 
 | 						cfqd->rq_in_driver); | 
 |  | 
 | 	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); | 
 | } | 
 |  | 
 | static void cfq_deactivate_request(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 |  | 
 | 	WARN_ON(!cfqd->rq_in_driver); | 
 | 	cfqd->rq_in_driver--; | 
 | 	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d", | 
 | 						cfqd->rq_in_driver); | 
 | } | 
 |  | 
 | static void cfq_remove_request(struct request *rq) | 
 | { | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 |  | 
 | 	if (cfqq->next_rq == rq) | 
 | 		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq); | 
 |  | 
 | 	list_del_init(&rq->queuelist); | 
 | 	cfq_del_rq_rb(rq); | 
 |  | 
 | 	cfqq->cfqd->rq_queued--; | 
 | 	cfqg_stats_update_io_remove(RQ_CFQG(rq), req_op(rq), rq->cmd_flags); | 
 | 	if (rq->cmd_flags & REQ_PRIO) { | 
 | 		WARN_ON(!cfqq->prio_pending); | 
 | 		cfqq->prio_pending--; | 
 | 	} | 
 | } | 
 |  | 
 | static int cfq_merge(struct request_queue *q, struct request **req, | 
 | 		     struct bio *bio) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct request *__rq; | 
 |  | 
 | 	__rq = cfq_find_rq_fmerge(cfqd, bio); | 
 | 	if (__rq && elv_bio_merge_ok(__rq, bio)) { | 
 | 		*req = __rq; | 
 | 		return ELEVATOR_FRONT_MERGE; | 
 | 	} | 
 |  | 
 | 	return ELEVATOR_NO_MERGE; | 
 | } | 
 |  | 
 | static void cfq_merged_request(struct request_queue *q, struct request *req, | 
 | 			       int type) | 
 | { | 
 | 	if (type == ELEVATOR_FRONT_MERGE) { | 
 | 		struct cfq_queue *cfqq = RQ_CFQQ(req); | 
 |  | 
 | 		cfq_reposition_rq_rb(cfqq, req); | 
 | 	} | 
 | } | 
 |  | 
 | static void cfq_bio_merged(struct request_queue *q, struct request *req, | 
 | 				struct bio *bio) | 
 | { | 
 | 	cfqg_stats_update_io_merged(RQ_CFQG(req), bio_op(bio), bio->bi_opf); | 
 | } | 
 |  | 
 | static void | 
 | cfq_merged_requests(struct request_queue *q, struct request *rq, | 
 | 		    struct request *next) | 
 | { | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 |  | 
 | 	/* | 
 | 	 * reposition in fifo if next is older than rq | 
 | 	 */ | 
 | 	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && | 
 | 	    next->fifo_time < rq->fifo_time && | 
 | 	    cfqq == RQ_CFQQ(next)) { | 
 | 		list_move(&rq->queuelist, &next->queuelist); | 
 | 		rq->fifo_time = next->fifo_time; | 
 | 	} | 
 |  | 
 | 	if (cfqq->next_rq == next) | 
 | 		cfqq->next_rq = rq; | 
 | 	cfq_remove_request(next); | 
 | 	cfqg_stats_update_io_merged(RQ_CFQG(rq), req_op(next), next->cmd_flags); | 
 |  | 
 | 	cfqq = RQ_CFQQ(next); | 
 | 	/* | 
 | 	 * all requests of this queue are merged to other queues, delete it | 
 | 	 * from the service tree. If it's the active_queue, | 
 | 	 * cfq_dispatch_requests() will choose to expire it or do idle | 
 | 	 */ | 
 | 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) && | 
 | 	    cfqq != cfqd->active_queue) | 
 | 		cfq_del_cfqq_rr(cfqd, cfqq); | 
 | } | 
 |  | 
 | static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq, | 
 | 			       struct bio *bio) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct cfq_io_cq *cic; | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	/* | 
 | 	 * Disallow merge of a sync bio into an async request. | 
 | 	 */ | 
 | 	if (cfq_bio_sync(bio) && !rq_is_sync(rq)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Lookup the cfqq that this bio will be queued with and allow | 
 | 	 * merge only if rq is queued there. | 
 | 	 */ | 
 | 	cic = cfq_cic_lookup(cfqd, current->io_context); | 
 | 	if (!cic) | 
 | 		return false; | 
 |  | 
 | 	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio)); | 
 | 	return cfqq == RQ_CFQQ(rq); | 
 | } | 
 |  | 
 | static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq, | 
 | 			      struct request *next) | 
 | { | 
 | 	return RQ_CFQQ(rq) == RQ_CFQQ(next); | 
 | } | 
 |  | 
 | static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	hrtimer_try_to_cancel(&cfqd->idle_slice_timer); | 
 | 	cfqg_stats_update_idle_time(cfqq->cfqg); | 
 | } | 
 |  | 
 | static void __cfq_set_active_queue(struct cfq_data *cfqd, | 
 | 				   struct cfq_queue *cfqq) | 
 | { | 
 | 	if (cfqq) { | 
 | 		cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d", | 
 | 				cfqd->serving_wl_class, cfqd->serving_wl_type); | 
 | 		cfqg_stats_update_avg_queue_size(cfqq->cfqg); | 
 | 		cfqq->slice_start = 0; | 
 | 		cfqq->dispatch_start = ktime_get_ns(); | 
 | 		cfqq->allocated_slice = 0; | 
 | 		cfqq->slice_end = 0; | 
 | 		cfqq->slice_dispatch = 0; | 
 | 		cfqq->nr_sectors = 0; | 
 |  | 
 | 		cfq_clear_cfqq_wait_request(cfqq); | 
 | 		cfq_clear_cfqq_must_dispatch(cfqq); | 
 | 		cfq_clear_cfqq_must_alloc_slice(cfqq); | 
 | 		cfq_clear_cfqq_fifo_expire(cfqq); | 
 | 		cfq_mark_cfqq_slice_new(cfqq); | 
 |  | 
 | 		cfq_del_timer(cfqd, cfqq); | 
 | 	} | 
 |  | 
 | 	cfqd->active_queue = cfqq; | 
 | } | 
 |  | 
 | /* | 
 |  * current cfqq expired its slice (or was too idle), select new one | 
 |  */ | 
 | static void | 
 | __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 		    bool timed_out) | 
 | { | 
 | 	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out); | 
 |  | 
 | 	if (cfq_cfqq_wait_request(cfqq)) | 
 | 		cfq_del_timer(cfqd, cfqq); | 
 |  | 
 | 	cfq_clear_cfqq_wait_request(cfqq); | 
 | 	cfq_clear_cfqq_wait_busy(cfqq); | 
 |  | 
 | 	/* | 
 | 	 * If this cfqq is shared between multiple processes, check to | 
 | 	 * make sure that those processes are still issuing I/Os within | 
 | 	 * the mean seek distance.  If not, it may be time to break the | 
 | 	 * queues apart again. | 
 | 	 */ | 
 | 	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq)) | 
 | 		cfq_mark_cfqq_split_coop(cfqq); | 
 |  | 
 | 	/* | 
 | 	 * store what was left of this slice, if the queue idled/timed out | 
 | 	 */ | 
 | 	if (timed_out) { | 
 | 		if (cfq_cfqq_slice_new(cfqq)) | 
 | 			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq); | 
 | 		else | 
 | 			cfqq->slice_resid = cfqq->slice_end - ktime_get_ns(); | 
 | 		cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid); | 
 | 	} | 
 |  | 
 | 	cfq_group_served(cfqd, cfqq->cfqg, cfqq); | 
 |  | 
 | 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) | 
 | 		cfq_del_cfqq_rr(cfqd, cfqq); | 
 |  | 
 | 	cfq_resort_rr_list(cfqd, cfqq); | 
 |  | 
 | 	if (cfqq == cfqd->active_queue) | 
 | 		cfqd->active_queue = NULL; | 
 |  | 
 | 	if (cfqd->active_cic) { | 
 | 		put_io_context(cfqd->active_cic->icq.ioc); | 
 | 		cfqd->active_cic = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out) | 
 | { | 
 | 	struct cfq_queue *cfqq = cfqd->active_queue; | 
 |  | 
 | 	if (cfqq) | 
 | 		__cfq_slice_expired(cfqd, cfqq, timed_out); | 
 | } | 
 |  | 
 | /* | 
 |  * Get next queue for service. Unless we have a queue preemption, | 
 |  * we'll simply select the first cfqq in the service tree. | 
 |  */ | 
 | static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd) | 
 | { | 
 | 	struct cfq_rb_root *st = st_for(cfqd->serving_group, | 
 | 			cfqd->serving_wl_class, cfqd->serving_wl_type); | 
 |  | 
 | 	if (!cfqd->rq_queued) | 
 | 		return NULL; | 
 |  | 
 | 	/* There is nothing to dispatch */ | 
 | 	if (!st) | 
 | 		return NULL; | 
 | 	if (RB_EMPTY_ROOT(&st->rb)) | 
 | 		return NULL; | 
 | 	return cfq_rb_first(st); | 
 | } | 
 |  | 
 | static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd) | 
 | { | 
 | 	struct cfq_group *cfqg; | 
 | 	struct cfq_queue *cfqq; | 
 | 	int i, j; | 
 | 	struct cfq_rb_root *st; | 
 |  | 
 | 	if (!cfqd->rq_queued) | 
 | 		return NULL; | 
 |  | 
 | 	cfqg = cfq_get_next_cfqg(cfqd); | 
 | 	if (!cfqg) | 
 | 		return NULL; | 
 |  | 
 | 	for_each_cfqg_st(cfqg, i, j, st) | 
 | 		if ((cfqq = cfq_rb_first(st)) != NULL) | 
 | 			return cfqq; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Get and set a new active queue for service. | 
 |  */ | 
 | static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd, | 
 | 					      struct cfq_queue *cfqq) | 
 | { | 
 | 	if (!cfqq) | 
 | 		cfqq = cfq_get_next_queue(cfqd); | 
 |  | 
 | 	__cfq_set_active_queue(cfqd, cfqq); | 
 | 	return cfqq; | 
 | } | 
 |  | 
 | static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd, | 
 | 					  struct request *rq) | 
 | { | 
 | 	if (blk_rq_pos(rq) >= cfqd->last_position) | 
 | 		return blk_rq_pos(rq) - cfqd->last_position; | 
 | 	else | 
 | 		return cfqd->last_position - blk_rq_pos(rq); | 
 | } | 
 |  | 
 | static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 			       struct request *rq) | 
 | { | 
 | 	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR; | 
 | } | 
 |  | 
 | static struct cfq_queue *cfqq_close(struct cfq_data *cfqd, | 
 | 				    struct cfq_queue *cur_cfqq) | 
 | { | 
 | 	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio]; | 
 | 	struct rb_node *parent, *node; | 
 | 	struct cfq_queue *__cfqq; | 
 | 	sector_t sector = cfqd->last_position; | 
 |  | 
 | 	if (RB_EMPTY_ROOT(root)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * First, if we find a request starting at the end of the last | 
 | 	 * request, choose it. | 
 | 	 */ | 
 | 	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL); | 
 | 	if (__cfqq) | 
 | 		return __cfqq; | 
 |  | 
 | 	/* | 
 | 	 * If the exact sector wasn't found, the parent of the NULL leaf | 
 | 	 * will contain the closest sector. | 
 | 	 */ | 
 | 	__cfqq = rb_entry(parent, struct cfq_queue, p_node); | 
 | 	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq)) | 
 | 		return __cfqq; | 
 |  | 
 | 	if (blk_rq_pos(__cfqq->next_rq) < sector) | 
 | 		node = rb_next(&__cfqq->p_node); | 
 | 	else | 
 | 		node = rb_prev(&__cfqq->p_node); | 
 | 	if (!node) | 
 | 		return NULL; | 
 |  | 
 | 	__cfqq = rb_entry(node, struct cfq_queue, p_node); | 
 | 	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq)) | 
 | 		return __cfqq; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * cfqd - obvious | 
 |  * cur_cfqq - passed in so that we don't decide that the current queue is | 
 |  * 	      closely cooperating with itself. | 
 |  * | 
 |  * So, basically we're assuming that that cur_cfqq has dispatched at least | 
 |  * one request, and that cfqd->last_position reflects a position on the disk | 
 |  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid | 
 |  * assumption. | 
 |  */ | 
 | static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd, | 
 | 					      struct cfq_queue *cur_cfqq) | 
 | { | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	if (cfq_class_idle(cur_cfqq)) | 
 | 		return NULL; | 
 | 	if (!cfq_cfqq_sync(cur_cfqq)) | 
 | 		return NULL; | 
 | 	if (CFQQ_SEEKY(cur_cfqq)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Don't search priority tree if it's the only queue in the group. | 
 | 	 */ | 
 | 	if (cur_cfqq->cfqg->nr_cfqq == 1) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * We should notice if some of the queues are cooperating, eg | 
 | 	 * working closely on the same area of the disk. In that case, | 
 | 	 * we can group them together and don't waste time idling. | 
 | 	 */ | 
 | 	cfqq = cfqq_close(cfqd, cur_cfqq); | 
 | 	if (!cfqq) | 
 | 		return NULL; | 
 |  | 
 | 	/* If new queue belongs to different cfq_group, don't choose it */ | 
 | 	if (cur_cfqq->cfqg != cfqq->cfqg) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * It only makes sense to merge sync queues. | 
 | 	 */ | 
 | 	if (!cfq_cfqq_sync(cfqq)) | 
 | 		return NULL; | 
 | 	if (CFQQ_SEEKY(cfqq)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Do not merge queues of different priority classes | 
 | 	 */ | 
 | 	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq)) | 
 | 		return NULL; | 
 |  | 
 | 	return cfqq; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine whether we should enforce idle window for this queue. | 
 |  */ | 
 |  | 
 | static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	enum wl_class_t wl_class = cfqq_class(cfqq); | 
 | 	struct cfq_rb_root *st = cfqq->service_tree; | 
 |  | 
 | 	BUG_ON(!st); | 
 | 	BUG_ON(!st->count); | 
 |  | 
 | 	if (!cfqd->cfq_slice_idle) | 
 | 		return false; | 
 |  | 
 | 	/* We never do for idle class queues. */ | 
 | 	if (wl_class == IDLE_WORKLOAD) | 
 | 		return false; | 
 |  | 
 | 	/* We do for queues that were marked with idle window flag. */ | 
 | 	if (cfq_cfqq_idle_window(cfqq) && | 
 | 	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Otherwise, we do only if they are the last ones | 
 | 	 * in their service tree. | 
 | 	 */ | 
 | 	if (st->count == 1 && cfq_cfqq_sync(cfqq) && | 
 | 	   !cfq_io_thinktime_big(cfqd, &st->ttime, false)) | 
 | 		return true; | 
 | 	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count); | 
 | 	return false; | 
 | } | 
 |  | 
 | static void cfq_arm_slice_timer(struct cfq_data *cfqd) | 
 | { | 
 | 	struct cfq_queue *cfqq = cfqd->active_queue; | 
 | 	struct cfq_rb_root *st = cfqq->service_tree; | 
 | 	struct cfq_io_cq *cic; | 
 | 	u64 sl, group_idle = 0; | 
 | 	u64 now = ktime_get_ns(); | 
 |  | 
 | 	/* | 
 | 	 * SSD device without seek penalty, disable idling. But only do so | 
 | 	 * for devices that support queuing, otherwise we still have a problem | 
 | 	 * with sync vs async workloads. | 
 | 	 */ | 
 | 	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag) | 
 | 		return; | 
 |  | 
 | 	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list)); | 
 | 	WARN_ON(cfq_cfqq_slice_new(cfqq)); | 
 |  | 
 | 	/* | 
 | 	 * idle is disabled, either manually or by past process history | 
 | 	 */ | 
 | 	if (!cfq_should_idle(cfqd, cfqq)) { | 
 | 		/* no queue idling. Check for group idling */ | 
 | 		if (cfqd->cfq_group_idle) | 
 | 			group_idle = cfqd->cfq_group_idle; | 
 | 		else | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * still active requests from this queue, don't idle | 
 | 	 */ | 
 | 	if (cfqq->dispatched) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * task has exited, don't wait | 
 | 	 */ | 
 | 	cic = cfqd->active_cic; | 
 | 	if (!cic || !atomic_read(&cic->icq.ioc->active_ref)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If our average think time is larger than the remaining time | 
 | 	 * slice, then don't idle. This avoids overrunning the allotted | 
 | 	 * time slice. | 
 | 	 */ | 
 | 	if (sample_valid(cic->ttime.ttime_samples) && | 
 | 	    (cfqq->slice_end - now < cic->ttime.ttime_mean)) { | 
 | 		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu", | 
 | 			     cic->ttime.ttime_mean); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * There are other queues in the group or this is the only group and | 
 | 	 * it has too big thinktime, don't do group idle. | 
 | 	 */ | 
 | 	if (group_idle && | 
 | 	    (cfqq->cfqg->nr_cfqq > 1 || | 
 | 	     cfq_io_thinktime_big(cfqd, &st->ttime, true))) | 
 | 		return; | 
 |  | 
 | 	cfq_mark_cfqq_wait_request(cfqq); | 
 |  | 
 | 	if (group_idle) | 
 | 		sl = cfqd->cfq_group_idle; | 
 | 	else | 
 | 		sl = cfqd->cfq_slice_idle; | 
 |  | 
 | 	hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl), | 
 | 		      HRTIMER_MODE_REL); | 
 | 	cfqg_stats_set_start_idle_time(cfqq->cfqg); | 
 | 	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl, | 
 | 			group_idle ? 1 : 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Move request from internal lists to the request queue dispatch list. | 
 |  */ | 
 | static void cfq_dispatch_insert(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 |  | 
 | 	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert"); | 
 |  | 
 | 	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq); | 
 | 	cfq_remove_request(rq); | 
 | 	cfqq->dispatched++; | 
 | 	(RQ_CFQG(rq))->dispatched++; | 
 | 	elv_dispatch_sort(q, rq); | 
 |  | 
 | 	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++; | 
 | 	cfqq->nr_sectors += blk_rq_sectors(rq); | 
 | } | 
 |  | 
 | /* | 
 |  * return expired entry, or NULL to just start from scratch in rbtree | 
 |  */ | 
 | static struct request *cfq_check_fifo(struct cfq_queue *cfqq) | 
 | { | 
 | 	struct request *rq = NULL; | 
 |  | 
 | 	if (cfq_cfqq_fifo_expire(cfqq)) | 
 | 		return NULL; | 
 |  | 
 | 	cfq_mark_cfqq_fifo_expire(cfqq); | 
 |  | 
 | 	if (list_empty(&cfqq->fifo)) | 
 | 		return NULL; | 
 |  | 
 | 	rq = rq_entry_fifo(cfqq->fifo.next); | 
 | 	if (ktime_get_ns() < rq->fifo_time) | 
 | 		rq = NULL; | 
 |  | 
 | 	return rq; | 
 | } | 
 |  | 
 | static inline int | 
 | cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	const int base_rq = cfqd->cfq_slice_async_rq; | 
 |  | 
 | 	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR); | 
 |  | 
 | 	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio); | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called with the queue_lock held. | 
 |  */ | 
 | static int cfqq_process_refs(struct cfq_queue *cfqq) | 
 | { | 
 | 	int process_refs, io_refs; | 
 |  | 
 | 	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE]; | 
 | 	process_refs = cfqq->ref - io_refs; | 
 | 	BUG_ON(process_refs < 0); | 
 | 	return process_refs; | 
 | } | 
 |  | 
 | static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq) | 
 | { | 
 | 	int process_refs, new_process_refs; | 
 | 	struct cfq_queue *__cfqq; | 
 |  | 
 | 	/* | 
 | 	 * If there are no process references on the new_cfqq, then it is | 
 | 	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the | 
 | 	 * chain may have dropped their last reference (not just their | 
 | 	 * last process reference). | 
 | 	 */ | 
 | 	if (!cfqq_process_refs(new_cfqq)) | 
 | 		return; | 
 |  | 
 | 	/* Avoid a circular list and skip interim queue merges */ | 
 | 	while ((__cfqq = new_cfqq->new_cfqq)) { | 
 | 		if (__cfqq == cfqq) | 
 | 			return; | 
 | 		new_cfqq = __cfqq; | 
 | 	} | 
 |  | 
 | 	process_refs = cfqq_process_refs(cfqq); | 
 | 	new_process_refs = cfqq_process_refs(new_cfqq); | 
 | 	/* | 
 | 	 * If the process for the cfqq has gone away, there is no | 
 | 	 * sense in merging the queues. | 
 | 	 */ | 
 | 	if (process_refs == 0 || new_process_refs == 0) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Merge in the direction of the lesser amount of work. | 
 | 	 */ | 
 | 	if (new_process_refs >= process_refs) { | 
 | 		cfqq->new_cfqq = new_cfqq; | 
 | 		new_cfqq->ref += process_refs; | 
 | 	} else { | 
 | 		new_cfqq->new_cfqq = cfqq; | 
 | 		cfqq->ref += new_process_refs; | 
 | 	} | 
 | } | 
 |  | 
 | static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd, | 
 | 			struct cfq_group *cfqg, enum wl_class_t wl_class) | 
 | { | 
 | 	struct cfq_queue *queue; | 
 | 	int i; | 
 | 	bool key_valid = false; | 
 | 	u64 lowest_key = 0; | 
 | 	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD; | 
 |  | 
 | 	for (i = 0; i <= SYNC_WORKLOAD; ++i) { | 
 | 		/* select the one with lowest rb_key */ | 
 | 		queue = cfq_rb_first(st_for(cfqg, wl_class, i)); | 
 | 		if (queue && | 
 | 		    (!key_valid || queue->rb_key < lowest_key)) { | 
 | 			lowest_key = queue->rb_key; | 
 | 			cur_best = i; | 
 | 			key_valid = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return cur_best; | 
 | } | 
 |  | 
 | static void | 
 | choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg) | 
 | { | 
 | 	u64 slice; | 
 | 	unsigned count; | 
 | 	struct cfq_rb_root *st; | 
 | 	u64 group_slice; | 
 | 	enum wl_class_t original_class = cfqd->serving_wl_class; | 
 | 	u64 now = ktime_get_ns(); | 
 |  | 
 | 	/* Choose next priority. RT > BE > IDLE */ | 
 | 	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg)) | 
 | 		cfqd->serving_wl_class = RT_WORKLOAD; | 
 | 	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg)) | 
 | 		cfqd->serving_wl_class = BE_WORKLOAD; | 
 | 	else { | 
 | 		cfqd->serving_wl_class = IDLE_WORKLOAD; | 
 | 		cfqd->workload_expires = now + jiffies_to_nsecs(1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (original_class != cfqd->serving_wl_class) | 
 | 		goto new_workload; | 
 |  | 
 | 	/* | 
 | 	 * For RT and BE, we have to choose also the type | 
 | 	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload | 
 | 	 * expiration time | 
 | 	 */ | 
 | 	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type); | 
 | 	count = st->count; | 
 |  | 
 | 	/* | 
 | 	 * check workload expiration, and that we still have other queues ready | 
 | 	 */ | 
 | 	if (count && !(now > cfqd->workload_expires)) | 
 | 		return; | 
 |  | 
 | new_workload: | 
 | 	/* otherwise select new workload type */ | 
 | 	cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg, | 
 | 					cfqd->serving_wl_class); | 
 | 	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type); | 
 | 	count = st->count; | 
 |  | 
 | 	/* | 
 | 	 * the workload slice is computed as a fraction of target latency | 
 | 	 * proportional to the number of queues in that workload, over | 
 | 	 * all the queues in the same priority class | 
 | 	 */ | 
 | 	group_slice = cfq_group_slice(cfqd, cfqg); | 
 |  | 
 | 	slice = div_u64(group_slice * count, | 
 | 		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class], | 
 | 		      cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd, | 
 | 					cfqg))); | 
 |  | 
 | 	if (cfqd->serving_wl_type == ASYNC_WORKLOAD) { | 
 | 		u64 tmp; | 
 |  | 
 | 		/* | 
 | 		 * Async queues are currently system wide. Just taking | 
 | 		 * proportion of queues with-in same group will lead to higher | 
 | 		 * async ratio system wide as generally root group is going | 
 | 		 * to have higher weight. A more accurate thing would be to | 
 | 		 * calculate system wide asnc/sync ratio. | 
 | 		 */ | 
 | 		tmp = cfqd->cfq_target_latency * | 
 | 			cfqg_busy_async_queues(cfqd, cfqg); | 
 | 		tmp = div_u64(tmp, cfqd->busy_queues); | 
 | 		slice = min_t(u64, slice, tmp); | 
 |  | 
 | 		/* async workload slice is scaled down according to | 
 | 		 * the sync/async slice ratio. */ | 
 | 		slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]); | 
 | 	} else | 
 | 		/* sync workload slice is at least 2 * cfq_slice_idle */ | 
 | 		slice = max(slice, 2 * cfqd->cfq_slice_idle); | 
 |  | 
 | 	slice = max_t(u64, slice, CFQ_MIN_TT); | 
 | 	cfq_log(cfqd, "workload slice:%llu", slice); | 
 | 	cfqd->workload_expires = now + slice; | 
 | } | 
 |  | 
 | static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd) | 
 | { | 
 | 	struct cfq_rb_root *st = &cfqd->grp_service_tree; | 
 | 	struct cfq_group *cfqg; | 
 |  | 
 | 	if (RB_EMPTY_ROOT(&st->rb)) | 
 | 		return NULL; | 
 | 	cfqg = cfq_rb_first_group(st); | 
 | 	update_min_vdisktime(st); | 
 | 	return cfqg; | 
 | } | 
 |  | 
 | static void cfq_choose_cfqg(struct cfq_data *cfqd) | 
 | { | 
 | 	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd); | 
 | 	u64 now = ktime_get_ns(); | 
 |  | 
 | 	cfqd->serving_group = cfqg; | 
 |  | 
 | 	/* Restore the workload type data */ | 
 | 	if (cfqg->saved_wl_slice) { | 
 | 		cfqd->workload_expires = now + cfqg->saved_wl_slice; | 
 | 		cfqd->serving_wl_type = cfqg->saved_wl_type; | 
 | 		cfqd->serving_wl_class = cfqg->saved_wl_class; | 
 | 	} else | 
 | 		cfqd->workload_expires = now - 1; | 
 |  | 
 | 	choose_wl_class_and_type(cfqd, cfqg); | 
 | } | 
 |  | 
 | /* | 
 |  * Select a queue for service. If we have a current active queue, | 
 |  * check whether to continue servicing it, or retrieve and set a new one. | 
 |  */ | 
 | static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd) | 
 | { | 
 | 	struct cfq_queue *cfqq, *new_cfqq = NULL; | 
 | 	u64 now = ktime_get_ns(); | 
 |  | 
 | 	cfqq = cfqd->active_queue; | 
 | 	if (!cfqq) | 
 | 		goto new_queue; | 
 |  | 
 | 	if (!cfqd->rq_queued) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * We were waiting for group to get backlogged. Expire the queue | 
 | 	 */ | 
 | 	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list)) | 
 | 		goto expire; | 
 |  | 
 | 	/* | 
 | 	 * The active queue has run out of time, expire it and select new. | 
 | 	 */ | 
 | 	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) { | 
 | 		/* | 
 | 		 * If slice had not expired at the completion of last request | 
 | 		 * we might not have turned on wait_busy flag. Don't expire | 
 | 		 * the queue yet. Allow the group to get backlogged. | 
 | 		 * | 
 | 		 * The very fact that we have used the slice, that means we | 
 | 		 * have been idling all along on this queue and it should be | 
 | 		 * ok to wait for this request to complete. | 
 | 		 */ | 
 | 		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list) | 
 | 		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) { | 
 | 			cfqq = NULL; | 
 | 			goto keep_queue; | 
 | 		} else | 
 | 			goto check_group_idle; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The active queue has requests and isn't expired, allow it to | 
 | 	 * dispatch. | 
 | 	 */ | 
 | 	if (!RB_EMPTY_ROOT(&cfqq->sort_list)) | 
 | 		goto keep_queue; | 
 |  | 
 | 	/* | 
 | 	 * If another queue has a request waiting within our mean seek | 
 | 	 * distance, let it run.  The expire code will check for close | 
 | 	 * cooperators and put the close queue at the front of the service | 
 | 	 * tree.  If possible, merge the expiring queue with the new cfqq. | 
 | 	 */ | 
 | 	new_cfqq = cfq_close_cooperator(cfqd, cfqq); | 
 | 	if (new_cfqq) { | 
 | 		if (!cfqq->new_cfqq) | 
 | 			cfq_setup_merge(cfqq, new_cfqq); | 
 | 		goto expire; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * No requests pending. If the active queue still has requests in | 
 | 	 * flight or is idling for a new request, allow either of these | 
 | 	 * conditions to happen (or time out) before selecting a new queue. | 
 | 	 */ | 
 | 	if (hrtimer_active(&cfqd->idle_slice_timer)) { | 
 | 		cfqq = NULL; | 
 | 		goto keep_queue; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * This is a deep seek queue, but the device is much faster than | 
 | 	 * the queue can deliver, don't idle | 
 | 	 **/ | 
 | 	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) && | 
 | 	    (cfq_cfqq_slice_new(cfqq) || | 
 | 	    (cfqq->slice_end - now > now - cfqq->slice_start))) { | 
 | 		cfq_clear_cfqq_deep(cfqq); | 
 | 		cfq_clear_cfqq_idle_window(cfqq); | 
 | 	} | 
 |  | 
 | 	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) { | 
 | 		cfqq = NULL; | 
 | 		goto keep_queue; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If group idle is enabled and there are requests dispatched from | 
 | 	 * this group, wait for requests to complete. | 
 | 	 */ | 
 | check_group_idle: | 
 | 	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 && | 
 | 	    cfqq->cfqg->dispatched && | 
 | 	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) { | 
 | 		cfqq = NULL; | 
 | 		goto keep_queue; | 
 | 	} | 
 |  | 
 | expire: | 
 | 	cfq_slice_expired(cfqd, 0); | 
 | new_queue: | 
 | 	/* | 
 | 	 * Current queue expired. Check if we have to switch to a new | 
 | 	 * service tree | 
 | 	 */ | 
 | 	if (!new_cfqq) | 
 | 		cfq_choose_cfqg(cfqd); | 
 |  | 
 | 	cfqq = cfq_set_active_queue(cfqd, new_cfqq); | 
 | keep_queue: | 
 | 	return cfqq; | 
 | } | 
 |  | 
 | static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq) | 
 | { | 
 | 	int dispatched = 0; | 
 |  | 
 | 	while (cfqq->next_rq) { | 
 | 		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq); | 
 | 		dispatched++; | 
 | 	} | 
 |  | 
 | 	BUG_ON(!list_empty(&cfqq->fifo)); | 
 |  | 
 | 	/* By default cfqq is not expired if it is empty. Do it explicitly */ | 
 | 	__cfq_slice_expired(cfqq->cfqd, cfqq, 0); | 
 | 	return dispatched; | 
 | } | 
 |  | 
 | /* | 
 |  * Drain our current requests. Used for barriers and when switching | 
 |  * io schedulers on-the-fly. | 
 |  */ | 
 | static int cfq_forced_dispatch(struct cfq_data *cfqd) | 
 | { | 
 | 	struct cfq_queue *cfqq; | 
 | 	int dispatched = 0; | 
 |  | 
 | 	/* Expire the timeslice of the current active queue first */ | 
 | 	cfq_slice_expired(cfqd, 0); | 
 | 	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) { | 
 | 		__cfq_set_active_queue(cfqd, cfqq); | 
 | 		dispatched += __cfq_forced_dispatch_cfqq(cfqq); | 
 | 	} | 
 |  | 
 | 	BUG_ON(cfqd->busy_queues); | 
 |  | 
 | 	cfq_log(cfqd, "forced_dispatch=%d", dispatched); | 
 | 	return dispatched; | 
 | } | 
 |  | 
 | static inline bool cfq_slice_used_soon(struct cfq_data *cfqd, | 
 | 	struct cfq_queue *cfqq) | 
 | { | 
 | 	u64 now = ktime_get_ns(); | 
 |  | 
 | 	/* the queue hasn't finished any request, can't estimate */ | 
 | 	if (cfq_cfqq_slice_new(cfqq)) | 
 | 		return true; | 
 | 	if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	unsigned int max_dispatch; | 
 |  | 
 | 	if (cfq_cfqq_must_dispatch(cfqq)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Drain async requests before we start sync IO | 
 | 	 */ | 
 | 	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC]) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * If this is an async queue and we have sync IO in flight, let it wait | 
 | 	 */ | 
 | 	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq)) | 
 | 		return false; | 
 |  | 
 | 	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1); | 
 | 	if (cfq_class_idle(cfqq)) | 
 | 		max_dispatch = 1; | 
 |  | 
 | 	/* | 
 | 	 * Does this cfqq already have too much IO in flight? | 
 | 	 */ | 
 | 	if (cfqq->dispatched >= max_dispatch) { | 
 | 		bool promote_sync = false; | 
 | 		/* | 
 | 		 * idle queue must always only have a single IO in flight | 
 | 		 */ | 
 | 		if (cfq_class_idle(cfqq)) | 
 | 			return false; | 
 |  | 
 | 		/* | 
 | 		 * If there is only one sync queue | 
 | 		 * we can ignore async queue here and give the sync | 
 | 		 * queue no dispatch limit. The reason is a sync queue can | 
 | 		 * preempt async queue, limiting the sync queue doesn't make | 
 | 		 * sense. This is useful for aiostress test. | 
 | 		 */ | 
 | 		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1) | 
 | 			promote_sync = true; | 
 |  | 
 | 		/* | 
 | 		 * We have other queues, don't allow more IO from this one | 
 | 		 */ | 
 | 		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) && | 
 | 				!promote_sync) | 
 | 			return false; | 
 |  | 
 | 		/* | 
 | 		 * Sole queue user, no limit | 
 | 		 */ | 
 | 		if (cfqd->busy_queues == 1 || promote_sync) | 
 | 			max_dispatch = -1; | 
 | 		else | 
 | 			/* | 
 | 			 * Normally we start throttling cfqq when cfq_quantum/2 | 
 | 			 * requests have been dispatched. But we can drive | 
 | 			 * deeper queue depths at the beginning of slice | 
 | 			 * subjected to upper limit of cfq_quantum. | 
 | 			 * */ | 
 | 			max_dispatch = cfqd->cfq_quantum; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Async queues must wait a bit before being allowed dispatch. | 
 | 	 * We also ramp up the dispatch depth gradually for async IO, | 
 | 	 * based on the last sync IO we serviced | 
 | 	 */ | 
 | 	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) { | 
 | 		u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync; | 
 | 		unsigned int depth; | 
 |  | 
 | 		depth = div64_u64(last_sync, cfqd->cfq_slice[1]); | 
 | 		if (!depth && !cfqq->dispatched) | 
 | 			depth = 1; | 
 | 		if (depth < max_dispatch) | 
 | 			max_dispatch = depth; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we're below the current max, allow a dispatch | 
 | 	 */ | 
 | 	return cfqq->dispatched < max_dispatch; | 
 | } | 
 |  | 
 | /* | 
 |  * Dispatch a request from cfqq, moving them to the request queue | 
 |  * dispatch list. | 
 |  */ | 
 | static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	struct request *rq; | 
 |  | 
 | 	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list)); | 
 |  | 
 | 	rq = cfq_check_fifo(cfqq); | 
 | 	if (rq) | 
 | 		cfq_mark_cfqq_must_dispatch(cfqq); | 
 |  | 
 | 	if (!cfq_may_dispatch(cfqd, cfqq)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * follow expired path, else get first next available | 
 | 	 */ | 
 | 	if (!rq) | 
 | 		rq = cfqq->next_rq; | 
 | 	else | 
 | 		cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq); | 
 |  | 
 | 	/* | 
 | 	 * insert request into driver dispatch list | 
 | 	 */ | 
 | 	cfq_dispatch_insert(cfqd->queue, rq); | 
 |  | 
 | 	if (!cfqd->active_cic) { | 
 | 		struct cfq_io_cq *cic = RQ_CIC(rq); | 
 |  | 
 | 		atomic_long_inc(&cic->icq.ioc->refcount); | 
 | 		cfqd->active_cic = cic; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the cfqq that we need to service and move a request from that to the | 
 |  * dispatch list | 
 |  */ | 
 | static int cfq_dispatch_requests(struct request_queue *q, int force) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	if (!cfqd->busy_queues) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(force)) | 
 | 		return cfq_forced_dispatch(cfqd); | 
 |  | 
 | 	cfqq = cfq_select_queue(cfqd); | 
 | 	if (!cfqq) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Dispatch a request from this cfqq, if it is allowed | 
 | 	 */ | 
 | 	if (!cfq_dispatch_request(cfqd, cfqq)) | 
 | 		return 0; | 
 |  | 
 | 	cfqq->slice_dispatch++; | 
 | 	cfq_clear_cfqq_must_dispatch(cfqq); | 
 |  | 
 | 	/* | 
 | 	 * expire an async queue immediately if it has used up its slice. idle | 
 | 	 * queue always expire after 1 dispatch round. | 
 | 	 */ | 
 | 	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) && | 
 | 	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) || | 
 | 	    cfq_class_idle(cfqq))) { | 
 | 		cfqq->slice_end = ktime_get_ns() + 1; | 
 | 		cfq_slice_expired(cfqd, 0); | 
 | 	} | 
 |  | 
 | 	cfq_log_cfqq(cfqd, cfqq, "dispatched a request"); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * task holds one reference to the queue, dropped when task exits. each rq | 
 |  * in-flight on this queue also holds a reference, dropped when rq is freed. | 
 |  * | 
 |  * Each cfq queue took a reference on the parent group. Drop it now. | 
 |  * queue lock must be held here. | 
 |  */ | 
 | static void cfq_put_queue(struct cfq_queue *cfqq) | 
 | { | 
 | 	struct cfq_data *cfqd = cfqq->cfqd; | 
 | 	struct cfq_group *cfqg; | 
 |  | 
 | 	BUG_ON(cfqq->ref <= 0); | 
 |  | 
 | 	cfqq->ref--; | 
 | 	if (cfqq->ref) | 
 | 		return; | 
 |  | 
 | 	cfq_log_cfqq(cfqd, cfqq, "put_queue"); | 
 | 	BUG_ON(rb_first(&cfqq->sort_list)); | 
 | 	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]); | 
 | 	cfqg = cfqq->cfqg; | 
 |  | 
 | 	if (unlikely(cfqd->active_queue == cfqq)) { | 
 | 		__cfq_slice_expired(cfqd, cfqq, 0); | 
 | 		cfq_schedule_dispatch(cfqd); | 
 | 	} | 
 |  | 
 | 	BUG_ON(cfq_cfqq_on_rr(cfqq)); | 
 | 	kmem_cache_free(cfq_pool, cfqq); | 
 | 	cfqg_put(cfqg); | 
 | } | 
 |  | 
 | static void cfq_put_cooperator(struct cfq_queue *cfqq) | 
 | { | 
 | 	struct cfq_queue *__cfqq, *next; | 
 |  | 
 | 	/* | 
 | 	 * If this queue was scheduled to merge with another queue, be | 
 | 	 * sure to drop the reference taken on that queue (and others in | 
 | 	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs. | 
 | 	 */ | 
 | 	__cfqq = cfqq->new_cfqq; | 
 | 	while (__cfqq) { | 
 | 		if (__cfqq == cfqq) { | 
 | 			WARN(1, "cfqq->new_cfqq loop detected\n"); | 
 | 			break; | 
 | 		} | 
 | 		next = __cfqq->new_cfqq; | 
 | 		cfq_put_queue(__cfqq); | 
 | 		__cfqq = next; | 
 | 	} | 
 | } | 
 |  | 
 | static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	if (unlikely(cfqq == cfqd->active_queue)) { | 
 | 		__cfq_slice_expired(cfqd, cfqq, 0); | 
 | 		cfq_schedule_dispatch(cfqd); | 
 | 	} | 
 |  | 
 | 	cfq_put_cooperator(cfqq); | 
 |  | 
 | 	cfq_put_queue(cfqq); | 
 | } | 
 |  | 
 | static void cfq_init_icq(struct io_cq *icq) | 
 | { | 
 | 	struct cfq_io_cq *cic = icq_to_cic(icq); | 
 |  | 
 | 	cic->ttime.last_end_request = ktime_get_ns(); | 
 | } | 
 |  | 
 | static void cfq_exit_icq(struct io_cq *icq) | 
 | { | 
 | 	struct cfq_io_cq *cic = icq_to_cic(icq); | 
 | 	struct cfq_data *cfqd = cic_to_cfqd(cic); | 
 |  | 
 | 	if (cic_to_cfqq(cic, false)) { | 
 | 		cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false)); | 
 | 		cic_set_cfqq(cic, NULL, false); | 
 | 	} | 
 |  | 
 | 	if (cic_to_cfqq(cic, true)) { | 
 | 		cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true)); | 
 | 		cic_set_cfqq(cic, NULL, true); | 
 | 	} | 
 | } | 
 |  | 
 | static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	int ioprio_class; | 
 |  | 
 | 	if (!cfq_cfqq_prio_changed(cfqq)) | 
 | 		return; | 
 |  | 
 | 	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio); | 
 | 	switch (ioprio_class) { | 
 | 	default: | 
 | 		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class); | 
 | 	case IOPRIO_CLASS_NONE: | 
 | 		/* | 
 | 		 * no prio set, inherit CPU scheduling settings | 
 | 		 */ | 
 | 		cfqq->ioprio = task_nice_ioprio(tsk); | 
 | 		cfqq->ioprio_class = task_nice_ioclass(tsk); | 
 | 		break; | 
 | 	case IOPRIO_CLASS_RT: | 
 | 		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio); | 
 | 		cfqq->ioprio_class = IOPRIO_CLASS_RT; | 
 | 		break; | 
 | 	case IOPRIO_CLASS_BE: | 
 | 		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio); | 
 | 		cfqq->ioprio_class = IOPRIO_CLASS_BE; | 
 | 		break; | 
 | 	case IOPRIO_CLASS_IDLE: | 
 | 		cfqq->ioprio_class = IOPRIO_CLASS_IDLE; | 
 | 		cfqq->ioprio = 7; | 
 | 		cfq_clear_cfqq_idle_window(cfqq); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * keep track of original prio settings in case we have to temporarily | 
 | 	 * elevate the priority of this queue | 
 | 	 */ | 
 | 	cfqq->org_ioprio = cfqq->ioprio; | 
 | 	cfqq->org_ioprio_class = cfqq->ioprio_class; | 
 | 	cfq_clear_cfqq_prio_changed(cfqq); | 
 | } | 
 |  | 
 | static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio) | 
 | { | 
 | 	int ioprio = cic->icq.ioc->ioprio; | 
 | 	struct cfq_data *cfqd = cic_to_cfqd(cic); | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	/* | 
 | 	 * Check whether ioprio has changed.  The condition may trigger | 
 | 	 * spuriously on a newly created cic but there's no harm. | 
 | 	 */ | 
 | 	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio)) | 
 | 		return; | 
 |  | 
 | 	cfqq = cic_to_cfqq(cic, false); | 
 | 	if (cfqq) { | 
 | 		cfq_put_queue(cfqq); | 
 | 		cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio); | 
 | 		cic_set_cfqq(cic, cfqq, false); | 
 | 	} | 
 |  | 
 | 	cfqq = cic_to_cfqq(cic, true); | 
 | 	if (cfqq) | 
 | 		cfq_mark_cfqq_prio_changed(cfqq); | 
 |  | 
 | 	cic->ioprio = ioprio; | 
 | } | 
 |  | 
 | static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 			  pid_t pid, bool is_sync) | 
 | { | 
 | 	RB_CLEAR_NODE(&cfqq->rb_node); | 
 | 	RB_CLEAR_NODE(&cfqq->p_node); | 
 | 	INIT_LIST_HEAD(&cfqq->fifo); | 
 |  | 
 | 	cfqq->ref = 0; | 
 | 	cfqq->cfqd = cfqd; | 
 |  | 
 | 	cfq_mark_cfqq_prio_changed(cfqq); | 
 |  | 
 | 	if (is_sync) { | 
 | 		if (!cfq_class_idle(cfqq)) | 
 | 			cfq_mark_cfqq_idle_window(cfqq); | 
 | 		cfq_mark_cfqq_sync(cfqq); | 
 | 	} | 
 | 	cfqq->pid = pid; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 | static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) | 
 | { | 
 | 	struct cfq_data *cfqd = cic_to_cfqd(cic); | 
 | 	struct cfq_queue *cfqq; | 
 | 	uint64_t serial_nr; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	serial_nr = bio_blkcg(bio)->css.serial_nr; | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * Check whether blkcg has changed.  The condition may trigger | 
 | 	 * spuriously on a newly created cic but there's no harm. | 
 | 	 */ | 
 | 	if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Drop reference to queues.  New queues will be assigned in new | 
 | 	 * group upon arrival of fresh requests. | 
 | 	 */ | 
 | 	cfqq = cic_to_cfqq(cic, false); | 
 | 	if (cfqq) { | 
 | 		cfq_log_cfqq(cfqd, cfqq, "changed cgroup"); | 
 | 		cic_set_cfqq(cic, NULL, false); | 
 | 		cfq_put_queue(cfqq); | 
 | 	} | 
 |  | 
 | 	cfqq = cic_to_cfqq(cic, true); | 
 | 	if (cfqq) { | 
 | 		cfq_log_cfqq(cfqd, cfqq, "changed cgroup"); | 
 | 		cic_set_cfqq(cic, NULL, true); | 
 | 		cfq_put_queue(cfqq); | 
 | 	} | 
 |  | 
 | 	cic->blkcg_serial_nr = serial_nr; | 
 | } | 
 | #else | 
 | static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { } | 
 | #endif  /* CONFIG_CFQ_GROUP_IOSCHED */ | 
 |  | 
 | static struct cfq_queue ** | 
 | cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio) | 
 | { | 
 | 	switch (ioprio_class) { | 
 | 	case IOPRIO_CLASS_RT: | 
 | 		return &cfqg->async_cfqq[0][ioprio]; | 
 | 	case IOPRIO_CLASS_NONE: | 
 | 		ioprio = IOPRIO_NORM; | 
 | 		/* fall through */ | 
 | 	case IOPRIO_CLASS_BE: | 
 | 		return &cfqg->async_cfqq[1][ioprio]; | 
 | 	case IOPRIO_CLASS_IDLE: | 
 | 		return &cfqg->async_idle_cfqq; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static struct cfq_queue * | 
 | cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic, | 
 | 	      struct bio *bio) | 
 | { | 
 | 	int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio); | 
 | 	int ioprio = IOPRIO_PRIO_DATA(cic->ioprio); | 
 | 	struct cfq_queue **async_cfqq = NULL; | 
 | 	struct cfq_queue *cfqq; | 
 | 	struct cfq_group *cfqg; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio)); | 
 | 	if (!cfqg) { | 
 | 		cfqq = &cfqd->oom_cfqq; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!is_sync) { | 
 | 		if (!ioprio_valid(cic->ioprio)) { | 
 | 			struct task_struct *tsk = current; | 
 | 			ioprio = task_nice_ioprio(tsk); | 
 | 			ioprio_class = task_nice_ioclass(tsk); | 
 | 		} | 
 | 		async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio); | 
 | 		cfqq = *async_cfqq; | 
 | 		if (cfqq) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO, | 
 | 				     cfqd->queue->node); | 
 | 	if (!cfqq) { | 
 | 		cfqq = &cfqd->oom_cfqq; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync); | 
 | 	cfq_init_prio_data(cfqq, cic); | 
 | 	cfq_link_cfqq_cfqg(cfqq, cfqg); | 
 | 	cfq_log_cfqq(cfqd, cfqq, "alloced"); | 
 |  | 
 | 	if (async_cfqq) { | 
 | 		/* a new async queue is created, pin and remember */ | 
 | 		cfqq->ref++; | 
 | 		*async_cfqq = cfqq; | 
 | 	} | 
 | out: | 
 | 	cfqq->ref++; | 
 | 	rcu_read_unlock(); | 
 | 	return cfqq; | 
 | } | 
 |  | 
 | static void | 
 | __cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle) | 
 | { | 
 | 	u64 elapsed = ktime_get_ns() - ttime->last_end_request; | 
 | 	elapsed = min(elapsed, 2UL * slice_idle); | 
 |  | 
 | 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8; | 
 | 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8); | 
 | 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, | 
 | 				     ttime->ttime_samples); | 
 | } | 
 |  | 
 | static void | 
 | cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 			struct cfq_io_cq *cic) | 
 | { | 
 | 	if (cfq_cfqq_sync(cfqq)) { | 
 | 		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle); | 
 | 		__cfq_update_io_thinktime(&cfqq->service_tree->ttime, | 
 | 			cfqd->cfq_slice_idle); | 
 | 	} | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 | 	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle); | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 		       struct request *rq) | 
 | { | 
 | 	sector_t sdist = 0; | 
 | 	sector_t n_sec = blk_rq_sectors(rq); | 
 | 	if (cfqq->last_request_pos) { | 
 | 		if (cfqq->last_request_pos < blk_rq_pos(rq)) | 
 | 			sdist = blk_rq_pos(rq) - cfqq->last_request_pos; | 
 | 		else | 
 | 			sdist = cfqq->last_request_pos - blk_rq_pos(rq); | 
 | 	} | 
 |  | 
 | 	cfqq->seek_history <<= 1; | 
 | 	if (blk_queue_nonrot(cfqd->queue)) | 
 | 		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT); | 
 | 	else | 
 | 		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR); | 
 | } | 
 |  | 
 | /* | 
 |  * Disable idle window if the process thinks too long or seeks so much that | 
 |  * it doesn't matter | 
 |  */ | 
 | static void | 
 | cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 		       struct cfq_io_cq *cic) | 
 | { | 
 | 	int old_idle, enable_idle; | 
 |  | 
 | 	/* | 
 | 	 * Don't idle for async or idle io prio class | 
 | 	 */ | 
 | 	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq)) | 
 | 		return; | 
 |  | 
 | 	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq); | 
 |  | 
 | 	if (cfqq->queued[0] + cfqq->queued[1] >= 4) | 
 | 		cfq_mark_cfqq_deep(cfqq); | 
 |  | 
 | 	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE)) | 
 | 		enable_idle = 0; | 
 | 	else if (!atomic_read(&cic->icq.ioc->active_ref) || | 
 | 		 !cfqd->cfq_slice_idle || | 
 | 		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq))) | 
 | 		enable_idle = 0; | 
 | 	else if (sample_valid(cic->ttime.ttime_samples)) { | 
 | 		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle) | 
 | 			enable_idle = 0; | 
 | 		else | 
 | 			enable_idle = 1; | 
 | 	} | 
 |  | 
 | 	if (old_idle != enable_idle) { | 
 | 		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle); | 
 | 		if (enable_idle) | 
 | 			cfq_mark_cfqq_idle_window(cfqq); | 
 | 		else | 
 | 			cfq_clear_cfqq_idle_window(cfqq); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Check if new_cfqq should preempt the currently active queue. Return 0 for | 
 |  * no or if we aren't sure, a 1 will cause a preempt. | 
 |  */ | 
 | static bool | 
 | cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq, | 
 | 		   struct request *rq) | 
 | { | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	cfqq = cfqd->active_queue; | 
 | 	if (!cfqq) | 
 | 		return false; | 
 |  | 
 | 	if (cfq_class_idle(new_cfqq)) | 
 | 		return false; | 
 |  | 
 | 	if (cfq_class_idle(cfqq)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice. | 
 | 	 */ | 
 | 	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * if the new request is sync, but the currently running queue is | 
 | 	 * not, let the sync request have priority. | 
 | 	 */ | 
 | 	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Treat ancestors of current cgroup the same way as current cgroup. | 
 | 	 * For anybody else we disallow preemption to guarantee service | 
 | 	 * fairness among cgroups. | 
 | 	 */ | 
 | 	if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg)) | 
 | 		return false; | 
 |  | 
 | 	if (cfq_slice_used(cfqq)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice. | 
 | 	 */ | 
 | 	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq)) | 
 | 		return true; | 
 |  | 
 | 	WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class); | 
 | 	/* Allow preemption only if we are idling on sync-noidle tree */ | 
 | 	if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD && | 
 | 	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD && | 
 | 	    RB_EMPTY_ROOT(&cfqq->sort_list)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * So both queues are sync. Let the new request get disk time if | 
 | 	 * it's a metadata request and the current queue is doing regular IO. | 
 | 	 */ | 
 | 	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending) | 
 | 		return true; | 
 |  | 
 | 	/* An idle queue should not be idle now for some reason */ | 
 | 	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq)) | 
 | 		return true; | 
 |  | 
 | 	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * if this request is as-good as one we would expect from the | 
 | 	 * current cfqq, let it preempt | 
 | 	 */ | 
 | 	if (cfq_rq_close(cfqd, cfqq, rq)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * cfqq preempts the active queue. if we allowed preempt with no slice left, | 
 |  * let it have half of its nominal slice. | 
 |  */ | 
 | static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	enum wl_type_t old_type = cfqq_type(cfqd->active_queue); | 
 |  | 
 | 	cfq_log_cfqq(cfqd, cfqq, "preempt"); | 
 | 	cfq_slice_expired(cfqd, 1); | 
 |  | 
 | 	/* | 
 | 	 * workload type is changed, don't save slice, otherwise preempt | 
 | 	 * doesn't happen | 
 | 	 */ | 
 | 	if (old_type != cfqq_type(cfqq)) | 
 | 		cfqq->cfqg->saved_wl_slice = 0; | 
 |  | 
 | 	/* | 
 | 	 * Put the new queue at the front of the of the current list, | 
 | 	 * so we know that it will be selected next. | 
 | 	 */ | 
 | 	BUG_ON(!cfq_cfqq_on_rr(cfqq)); | 
 |  | 
 | 	cfq_service_tree_add(cfqd, cfqq, 1); | 
 |  | 
 | 	cfqq->slice_end = 0; | 
 | 	cfq_mark_cfqq_slice_new(cfqq); | 
 | } | 
 |  | 
 | /* | 
 |  * Called when a new fs request (rq) is added (to cfqq). Check if there's | 
 |  * something we should do about it | 
 |  */ | 
 | static void | 
 | cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 		struct request *rq) | 
 | { | 
 | 	struct cfq_io_cq *cic = RQ_CIC(rq); | 
 |  | 
 | 	cfqd->rq_queued++; | 
 | 	if (rq->cmd_flags & REQ_PRIO) | 
 | 		cfqq->prio_pending++; | 
 |  | 
 | 	cfq_update_io_thinktime(cfqd, cfqq, cic); | 
 | 	cfq_update_io_seektime(cfqd, cfqq, rq); | 
 | 	cfq_update_idle_window(cfqd, cfqq, cic); | 
 |  | 
 | 	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); | 
 |  | 
 | 	if (cfqq == cfqd->active_queue) { | 
 | 		/* | 
 | 		 * Remember that we saw a request from this process, but | 
 | 		 * don't start queuing just yet. Otherwise we risk seeing lots | 
 | 		 * of tiny requests, because we disrupt the normal plugging | 
 | 		 * and merging. If the request is already larger than a single | 
 | 		 * page, let it rip immediately. For that case we assume that | 
 | 		 * merging is already done. Ditto for a busy system that | 
 | 		 * has other work pending, don't risk delaying until the | 
 | 		 * idle timer unplug to continue working. | 
 | 		 */ | 
 | 		if (cfq_cfqq_wait_request(cfqq)) { | 
 | 			if (blk_rq_bytes(rq) > PAGE_SIZE || | 
 | 			    cfqd->busy_queues > 1) { | 
 | 				cfq_del_timer(cfqd, cfqq); | 
 | 				cfq_clear_cfqq_wait_request(cfqq); | 
 | 				__blk_run_queue(cfqd->queue); | 
 | 			} else { | 
 | 				cfqg_stats_update_idle_time(cfqq->cfqg); | 
 | 				cfq_mark_cfqq_must_dispatch(cfqq); | 
 | 			} | 
 | 		} | 
 | 	} else if (cfq_should_preempt(cfqd, cfqq, rq)) { | 
 | 		/* | 
 | 		 * not the active queue - expire current slice if it is | 
 | 		 * idle and has expired it's mean thinktime or this new queue | 
 | 		 * has some old slice time left and is of higher priority or | 
 | 		 * this new queue is RT and the current one is BE | 
 | 		 */ | 
 | 		cfq_preempt_queue(cfqd, cfqq); | 
 | 		__blk_run_queue(cfqd->queue); | 
 | 	} | 
 | } | 
 |  | 
 | static void cfq_insert_request(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 |  | 
 | 	cfq_log_cfqq(cfqd, cfqq, "insert_request"); | 
 | 	cfq_init_prio_data(cfqq, RQ_CIC(rq)); | 
 |  | 
 | 	rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)]; | 
 | 	list_add_tail(&rq->queuelist, &cfqq->fifo); | 
 | 	cfq_add_rq_rb(rq); | 
 | 	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group, req_op(rq), | 
 | 				 rq->cmd_flags); | 
 | 	cfq_rq_enqueued(cfqd, cfqq, rq); | 
 | } | 
 |  | 
 | /* | 
 |  * Update hw_tag based on peak queue depth over 50 samples under | 
 |  * sufficient load. | 
 |  */ | 
 | static void cfq_update_hw_tag(struct cfq_data *cfqd) | 
 | { | 
 | 	struct cfq_queue *cfqq = cfqd->active_queue; | 
 |  | 
 | 	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth) | 
 | 		cfqd->hw_tag_est_depth = cfqd->rq_in_driver; | 
 |  | 
 | 	if (cfqd->hw_tag == 1) | 
 | 		return; | 
 |  | 
 | 	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN && | 
 | 	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If active queue hasn't enough requests and can idle, cfq might not | 
 | 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this | 
 | 	 * case | 
 | 	 */ | 
 | 	if (cfqq && cfq_cfqq_idle_window(cfqq) && | 
 | 	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] < | 
 | 	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN) | 
 | 		return; | 
 |  | 
 | 	if (cfqd->hw_tag_samples++ < 50) | 
 | 		return; | 
 |  | 
 | 	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN) | 
 | 		cfqd->hw_tag = 1; | 
 | 	else | 
 | 		cfqd->hw_tag = 0; | 
 | } | 
 |  | 
 | static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	struct cfq_io_cq *cic = cfqd->active_cic; | 
 | 	u64 now = ktime_get_ns(); | 
 |  | 
 | 	/* If the queue already has requests, don't wait */ | 
 | 	if (!RB_EMPTY_ROOT(&cfqq->sort_list)) | 
 | 		return false; | 
 |  | 
 | 	/* If there are other queues in the group, don't wait */ | 
 | 	if (cfqq->cfqg->nr_cfqq > 1) | 
 | 		return false; | 
 |  | 
 | 	/* the only queue in the group, but think time is big */ | 
 | 	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) | 
 | 		return false; | 
 |  | 
 | 	if (cfq_slice_used(cfqq)) | 
 | 		return true; | 
 |  | 
 | 	/* if slice left is less than think time, wait busy */ | 
 | 	if (cic && sample_valid(cic->ttime.ttime_samples) | 
 | 	    && (cfqq->slice_end - now < cic->ttime.ttime_mean)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * If think times is less than a jiffy than ttime_mean=0 and above | 
 | 	 * will not be true. It might happen that slice has not expired yet | 
 | 	 * but will expire soon (4-5 ns) during select_queue(). To cover the | 
 | 	 * case where think time is less than a jiffy, mark the queue wait | 
 | 	 * busy if only 1 jiffy is left in the slice. | 
 | 	 */ | 
 | 	if (cfqq->slice_end - now <= jiffies_to_nsecs(1)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void cfq_completed_request(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 | 	struct cfq_data *cfqd = cfqq->cfqd; | 
 | 	const int sync = rq_is_sync(rq); | 
 | 	u64 now = ktime_get_ns(); | 
 |  | 
 | 	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", | 
 | 		     !!(rq->cmd_flags & REQ_NOIDLE)); | 
 |  | 
 | 	cfq_update_hw_tag(cfqd); | 
 |  | 
 | 	WARN_ON(!cfqd->rq_in_driver); | 
 | 	WARN_ON(!cfqq->dispatched); | 
 | 	cfqd->rq_in_driver--; | 
 | 	cfqq->dispatched--; | 
 | 	(RQ_CFQG(rq))->dispatched--; | 
 | 	cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq), | 
 | 				     rq_io_start_time_ns(rq), req_op(rq), | 
 | 				     rq->cmd_flags); | 
 |  | 
 | 	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--; | 
 |  | 
 | 	if (sync) { | 
 | 		struct cfq_rb_root *st; | 
 |  | 
 | 		RQ_CIC(rq)->ttime.last_end_request = now; | 
 |  | 
 | 		if (cfq_cfqq_on_rr(cfqq)) | 
 | 			st = cfqq->service_tree; | 
 | 		else | 
 | 			st = st_for(cfqq->cfqg, cfqq_class(cfqq), | 
 | 					cfqq_type(cfqq)); | 
 |  | 
 | 		st->ttime.last_end_request = now; | 
 | 		/* | 
 | 		 * We have to do this check in jiffies since start_time is in | 
 | 		 * jiffies and it is not trivial to convert to ns. If | 
 | 		 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test | 
 | 		 * will become problematic but so far we are fine (the default | 
 | 		 * is 128 ms). | 
 | 		 */ | 
 | 		if (!time_after(rq->start_time + | 
 | 				  nsecs_to_jiffies(cfqd->cfq_fifo_expire[1]), | 
 | 				jiffies)) | 
 | 			cfqd->last_delayed_sync = now; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 | 	cfqq->cfqg->ttime.last_end_request = now; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * If this is the active queue, check if it needs to be expired, | 
 | 	 * or if we want to idle in case it has no pending requests. | 
 | 	 */ | 
 | 	if (cfqd->active_queue == cfqq) { | 
 | 		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list); | 
 |  | 
 | 		if (cfq_cfqq_slice_new(cfqq)) { | 
 | 			cfq_set_prio_slice(cfqd, cfqq); | 
 | 			cfq_clear_cfqq_slice_new(cfqq); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Should we wait for next request to come in before we expire | 
 | 		 * the queue. | 
 | 		 */ | 
 | 		if (cfq_should_wait_busy(cfqd, cfqq)) { | 
 | 			u64 extend_sl = cfqd->cfq_slice_idle; | 
 | 			if (!cfqd->cfq_slice_idle) | 
 | 				extend_sl = cfqd->cfq_group_idle; | 
 | 			cfqq->slice_end = now + extend_sl; | 
 | 			cfq_mark_cfqq_wait_busy(cfqq); | 
 | 			cfq_log_cfqq(cfqd, cfqq, "will busy wait"); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Idling is not enabled on: | 
 | 		 * - expired queues | 
 | 		 * - idle-priority queues | 
 | 		 * - async queues | 
 | 		 * - queues with still some requests queued | 
 | 		 * - when there is a close cooperator | 
 | 		 */ | 
 | 		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq)) | 
 | 			cfq_slice_expired(cfqd, 1); | 
 | 		else if (sync && cfqq_empty && | 
 | 			 !cfq_close_cooperator(cfqd, cfqq)) { | 
 | 			cfq_arm_slice_timer(cfqd); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!cfqd->rq_in_driver) | 
 | 		cfq_schedule_dispatch(cfqd); | 
 | } | 
 |  | 
 | static void cfqq_boost_on_prio(struct cfq_queue *cfqq, int op_flags) | 
 | { | 
 | 	/* | 
 | 	 * If REQ_PRIO is set, boost class and prio level, if it's below | 
 | 	 * BE/NORM. If prio is not set, restore the potentially boosted | 
 | 	 * class/prio level. | 
 | 	 */ | 
 | 	if (!(op_flags & REQ_PRIO)) { | 
 | 		cfqq->ioprio_class = cfqq->org_ioprio_class; | 
 | 		cfqq->ioprio = cfqq->org_ioprio; | 
 | 	} else { | 
 | 		if (cfq_class_idle(cfqq)) | 
 | 			cfqq->ioprio_class = IOPRIO_CLASS_BE; | 
 | 		if (cfqq->ioprio > IOPRIO_NORM) | 
 | 			cfqq->ioprio = IOPRIO_NORM; | 
 | 	} | 
 | } | 
 |  | 
 | static inline int __cfq_may_queue(struct cfq_queue *cfqq) | 
 | { | 
 | 	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) { | 
 | 		cfq_mark_cfqq_must_alloc_slice(cfqq); | 
 | 		return ELV_MQUEUE_MUST; | 
 | 	} | 
 |  | 
 | 	return ELV_MQUEUE_MAY; | 
 | } | 
 |  | 
 | static int cfq_may_queue(struct request_queue *q, int op, int op_flags) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct task_struct *tsk = current; | 
 | 	struct cfq_io_cq *cic; | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	/* | 
 | 	 * don't force setup of a queue from here, as a call to may_queue | 
 | 	 * does not necessarily imply that a request actually will be queued. | 
 | 	 * so just lookup a possibly existing queue, or return 'may queue' | 
 | 	 * if that fails | 
 | 	 */ | 
 | 	cic = cfq_cic_lookup(cfqd, tsk->io_context); | 
 | 	if (!cic) | 
 | 		return ELV_MQUEUE_MAY; | 
 |  | 
 | 	cfqq = cic_to_cfqq(cic, rw_is_sync(op, op_flags)); | 
 | 	if (cfqq) { | 
 | 		cfq_init_prio_data(cfqq, cic); | 
 | 		cfqq_boost_on_prio(cfqq, op_flags); | 
 |  | 
 | 		return __cfq_may_queue(cfqq); | 
 | 	} | 
 |  | 
 | 	return ELV_MQUEUE_MAY; | 
 | } | 
 |  | 
 | /* | 
 |  * queue lock held here | 
 |  */ | 
 | static void cfq_put_request(struct request *rq) | 
 | { | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 |  | 
 | 	if (cfqq) { | 
 | 		const int rw = rq_data_dir(rq); | 
 |  | 
 | 		BUG_ON(!cfqq->allocated[rw]); | 
 | 		cfqq->allocated[rw]--; | 
 |  | 
 | 		/* Put down rq reference on cfqg */ | 
 | 		cfqg_put(RQ_CFQG(rq)); | 
 | 		rq->elv.priv[0] = NULL; | 
 | 		rq->elv.priv[1] = NULL; | 
 |  | 
 | 		cfq_put_queue(cfqq); | 
 | 	} | 
 | } | 
 |  | 
 | static struct cfq_queue * | 
 | cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic, | 
 | 		struct cfq_queue *cfqq) | 
 | { | 
 | 	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq); | 
 | 	cic_set_cfqq(cic, cfqq->new_cfqq, 1); | 
 | 	cfq_mark_cfqq_coop(cfqq->new_cfqq); | 
 | 	cfq_put_queue(cfqq); | 
 | 	return cic_to_cfqq(cic, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this | 
 |  * was the last process referring to said cfqq. | 
 |  */ | 
 | static struct cfq_queue * | 
 | split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq) | 
 | { | 
 | 	if (cfqq_process_refs(cfqq) == 1) { | 
 | 		cfqq->pid = current->pid; | 
 | 		cfq_clear_cfqq_coop(cfqq); | 
 | 		cfq_clear_cfqq_split_coop(cfqq); | 
 | 		return cfqq; | 
 | 	} | 
 |  | 
 | 	cic_set_cfqq(cic, NULL, 1); | 
 |  | 
 | 	cfq_put_cooperator(cfqq); | 
 |  | 
 | 	cfq_put_queue(cfqq); | 
 | 	return NULL; | 
 | } | 
 | /* | 
 |  * Allocate cfq data structures associated with this request. | 
 |  */ | 
 | static int | 
 | cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio, | 
 | 		gfp_t gfp_mask) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq); | 
 | 	const int rw = rq_data_dir(rq); | 
 | 	const bool is_sync = rq_is_sync(rq); | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	spin_lock_irq(q->queue_lock); | 
 |  | 
 | 	check_ioprio_changed(cic, bio); | 
 | 	check_blkcg_changed(cic, bio); | 
 | new_queue: | 
 | 	cfqq = cic_to_cfqq(cic, is_sync); | 
 | 	if (!cfqq || cfqq == &cfqd->oom_cfqq) { | 
 | 		if (cfqq) | 
 | 			cfq_put_queue(cfqq); | 
 | 		cfqq = cfq_get_queue(cfqd, is_sync, cic, bio); | 
 | 		cic_set_cfqq(cic, cfqq, is_sync); | 
 | 	} else { | 
 | 		/* | 
 | 		 * If the queue was seeky for too long, break it apart. | 
 | 		 */ | 
 | 		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) { | 
 | 			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq"); | 
 | 			cfqq = split_cfqq(cic, cfqq); | 
 | 			if (!cfqq) | 
 | 				goto new_queue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check to see if this queue is scheduled to merge with | 
 | 		 * another, closely cooperating queue.  The merging of | 
 | 		 * queues happens here as it must be done in process context. | 
 | 		 * The reference on new_cfqq was taken in merge_cfqqs. | 
 | 		 */ | 
 | 		if (cfqq->new_cfqq) | 
 | 			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq); | 
 | 	} | 
 |  | 
 | 	cfqq->allocated[rw]++; | 
 |  | 
 | 	cfqq->ref++; | 
 | 	cfqg_get(cfqq->cfqg); | 
 | 	rq->elv.priv[0] = cfqq; | 
 | 	rq->elv.priv[1] = cfqq->cfqg; | 
 | 	spin_unlock_irq(q->queue_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cfq_kick_queue(struct work_struct *work) | 
 | { | 
 | 	struct cfq_data *cfqd = | 
 | 		container_of(work, struct cfq_data, unplug_work); | 
 | 	struct request_queue *q = cfqd->queue; | 
 |  | 
 | 	spin_lock_irq(q->queue_lock); | 
 | 	__blk_run_queue(cfqd->queue); | 
 | 	spin_unlock_irq(q->queue_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Timer running if the active_queue is currently idling inside its time slice | 
 |  */ | 
 | static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer) | 
 | { | 
 | 	struct cfq_data *cfqd = container_of(timer, struct cfq_data, | 
 | 					     idle_slice_timer); | 
 | 	struct cfq_queue *cfqq; | 
 | 	unsigned long flags; | 
 | 	int timed_out = 1; | 
 |  | 
 | 	cfq_log(cfqd, "idle timer fired"); | 
 |  | 
 | 	spin_lock_irqsave(cfqd->queue->queue_lock, flags); | 
 |  | 
 | 	cfqq = cfqd->active_queue; | 
 | 	if (cfqq) { | 
 | 		timed_out = 0; | 
 |  | 
 | 		/* | 
 | 		 * We saw a request before the queue expired, let it through | 
 | 		 */ | 
 | 		if (cfq_cfqq_must_dispatch(cfqq)) | 
 | 			goto out_kick; | 
 |  | 
 | 		/* | 
 | 		 * expired | 
 | 		 */ | 
 | 		if (cfq_slice_used(cfqq)) | 
 | 			goto expire; | 
 |  | 
 | 		/* | 
 | 		 * only expire and reinvoke request handler, if there are | 
 | 		 * other queues with pending requests | 
 | 		 */ | 
 | 		if (!cfqd->busy_queues) | 
 | 			goto out_cont; | 
 |  | 
 | 		/* | 
 | 		 * not expired and it has a request pending, let it dispatch | 
 | 		 */ | 
 | 		if (!RB_EMPTY_ROOT(&cfqq->sort_list)) | 
 | 			goto out_kick; | 
 |  | 
 | 		/* | 
 | 		 * Queue depth flag is reset only when the idle didn't succeed | 
 | 		 */ | 
 | 		cfq_clear_cfqq_deep(cfqq); | 
 | 	} | 
 | expire: | 
 | 	cfq_slice_expired(cfqd, timed_out); | 
 | out_kick: | 
 | 	cfq_schedule_dispatch(cfqd); | 
 | out_cont: | 
 | 	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); | 
 | 	return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | static void cfq_shutdown_timer_wq(struct cfq_data *cfqd) | 
 | { | 
 | 	hrtimer_cancel(&cfqd->idle_slice_timer); | 
 | 	cancel_work_sync(&cfqd->unplug_work); | 
 | } | 
 |  | 
 | static void cfq_exit_queue(struct elevator_queue *e) | 
 | { | 
 | 	struct cfq_data *cfqd = e->elevator_data; | 
 | 	struct request_queue *q = cfqd->queue; | 
 |  | 
 | 	cfq_shutdown_timer_wq(cfqd); | 
 |  | 
 | 	spin_lock_irq(q->queue_lock); | 
 |  | 
 | 	if (cfqd->active_queue) | 
 | 		__cfq_slice_expired(cfqd, cfqd->active_queue, 0); | 
 |  | 
 | 	spin_unlock_irq(q->queue_lock); | 
 |  | 
 | 	cfq_shutdown_timer_wq(cfqd); | 
 |  | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 | 	blkcg_deactivate_policy(q, &blkcg_policy_cfq); | 
 | #else | 
 | 	kfree(cfqd->root_group); | 
 | #endif | 
 | 	kfree(cfqd); | 
 | } | 
 |  | 
 | static int cfq_init_queue(struct request_queue *q, struct elevator_type *e) | 
 | { | 
 | 	struct cfq_data *cfqd; | 
 | 	struct blkcg_gq *blkg __maybe_unused; | 
 | 	int i, ret; | 
 | 	struct elevator_queue *eq; | 
 |  | 
 | 	eq = elevator_alloc(q, e); | 
 | 	if (!eq) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node); | 
 | 	if (!cfqd) { | 
 | 		kobject_put(&eq->kobj); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	eq->elevator_data = cfqd; | 
 |  | 
 | 	cfqd->queue = q; | 
 | 	spin_lock_irq(q->queue_lock); | 
 | 	q->elevator = eq; | 
 | 	spin_unlock_irq(q->queue_lock); | 
 |  | 
 | 	/* Init root service tree */ | 
 | 	cfqd->grp_service_tree = CFQ_RB_ROOT; | 
 |  | 
 | 	/* Init root group and prefer root group over other groups by default */ | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 | 	ret = blkcg_activate_policy(q, &blkcg_policy_cfq); | 
 | 	if (ret) | 
 | 		goto out_free; | 
 |  | 
 | 	cfqd->root_group = blkg_to_cfqg(q->root_blkg); | 
 | #else | 
 | 	ret = -ENOMEM; | 
 | 	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group), | 
 | 					GFP_KERNEL, cfqd->queue->node); | 
 | 	if (!cfqd->root_group) | 
 | 		goto out_free; | 
 |  | 
 | 	cfq_init_cfqg_base(cfqd->root_group); | 
 | 	cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL; | 
 | 	cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Not strictly needed (since RB_ROOT just clears the node and we | 
 | 	 * zeroed cfqd on alloc), but better be safe in case someone decides | 
 | 	 * to add magic to the rb code | 
 | 	 */ | 
 | 	for (i = 0; i < CFQ_PRIO_LISTS; i++) | 
 | 		cfqd->prio_trees[i] = RB_ROOT; | 
 |  | 
 | 	/* | 
 | 	 * Our fallback cfqq if cfq_get_queue() runs into OOM issues. | 
 | 	 * Grab a permanent reference to it, so that the normal code flow | 
 | 	 * will not attempt to free it.  oom_cfqq is linked to root_group | 
 | 	 * but shouldn't hold a reference as it'll never be unlinked.  Lose | 
 | 	 * the reference from linking right away. | 
 | 	 */ | 
 | 	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0); | 
 | 	cfqd->oom_cfqq.ref++; | 
 |  | 
 | 	spin_lock_irq(q->queue_lock); | 
 | 	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group); | 
 | 	cfqg_put(cfqd->root_group); | 
 | 	spin_unlock_irq(q->queue_lock); | 
 |  | 
 | 	hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC, | 
 | 		     HRTIMER_MODE_REL); | 
 | 	cfqd->idle_slice_timer.function = cfq_idle_slice_timer; | 
 |  | 
 | 	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue); | 
 |  | 
 | 	cfqd->cfq_quantum = cfq_quantum; | 
 | 	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0]; | 
 | 	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1]; | 
 | 	cfqd->cfq_back_max = cfq_back_max; | 
 | 	cfqd->cfq_back_penalty = cfq_back_penalty; | 
 | 	cfqd->cfq_slice[0] = cfq_slice_async; | 
 | 	cfqd->cfq_slice[1] = cfq_slice_sync; | 
 | 	cfqd->cfq_target_latency = cfq_target_latency; | 
 | 	cfqd->cfq_slice_async_rq = cfq_slice_async_rq; | 
 | 	cfqd->cfq_slice_idle = cfq_slice_idle; | 
 | 	cfqd->cfq_group_idle = cfq_group_idle; | 
 | 	cfqd->cfq_latency = 1; | 
 | 	cfqd->hw_tag = -1; | 
 | 	/* | 
 | 	 * we optimistically start assuming sync ops weren't delayed in last | 
 | 	 * second, in order to have larger depth for async operations. | 
 | 	 */ | 
 | 	cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC; | 
 | 	return 0; | 
 |  | 
 | out_free: | 
 | 	kfree(cfqd); | 
 | 	kobject_put(&eq->kobj); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void cfq_registered_queue(struct request_queue *q) | 
 | { | 
 | 	struct elevator_queue *e = q->elevator; | 
 | 	struct cfq_data *cfqd = e->elevator_data; | 
 |  | 
 | 	/* | 
 | 	 * Default to IOPS mode with no idling for SSDs | 
 | 	 */ | 
 | 	if (blk_queue_nonrot(q)) | 
 | 		cfqd->cfq_slice_idle = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * sysfs parts below --> | 
 |  */ | 
 | static ssize_t | 
 | cfq_var_show(unsigned int var, char *page) | 
 | { | 
 | 	return sprintf(page, "%u\n", var); | 
 | } | 
 |  | 
 | static ssize_t | 
 | cfq_var_store(unsigned int *var, const char *page, size_t count) | 
 | { | 
 | 	char *p = (char *) page; | 
 |  | 
 | 	*var = simple_strtoul(p, &p, 10); | 
 | 	return count; | 
 | } | 
 |  | 
 | #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\ | 
 | static ssize_t __FUNC(struct elevator_queue *e, char *page)		\ | 
 | {									\ | 
 | 	struct cfq_data *cfqd = e->elevator_data;			\ | 
 | 	u64 __data = __VAR;						\ | 
 | 	if (__CONV)							\ | 
 | 		__data = div_u64(__data, NSEC_PER_MSEC);			\ | 
 | 	return cfq_var_show(__data, (page));				\ | 
 | } | 
 | SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0); | 
 | SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1); | 
 | SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1); | 
 | SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0); | 
 | SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0); | 
 | SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1); | 
 | SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1); | 
 | SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1); | 
 | SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1); | 
 | SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0); | 
 | SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0); | 
 | SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1); | 
 | #undef SHOW_FUNCTION | 
 |  | 
 | #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\ | 
 | static ssize_t __FUNC(struct elevator_queue *e, char *page)		\ | 
 | {									\ | 
 | 	struct cfq_data *cfqd = e->elevator_data;			\ | 
 | 	u64 __data = __VAR;						\ | 
 | 	__data = div_u64(__data, NSEC_PER_USEC);			\ | 
 | 	return cfq_var_show(__data, (page));				\ | 
 | } | 
 | USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle); | 
 | USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle); | 
 | USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]); | 
 | USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]); | 
 | USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency); | 
 | #undef USEC_SHOW_FUNCTION | 
 |  | 
 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\ | 
 | static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\ | 
 | {									\ | 
 | 	struct cfq_data *cfqd = e->elevator_data;			\ | 
 | 	unsigned int __data;						\ | 
 | 	int ret = cfq_var_store(&__data, (page), count);		\ | 
 | 	if (__data < (MIN))						\ | 
 | 		__data = (MIN);						\ | 
 | 	else if (__data > (MAX))					\ | 
 | 		__data = (MAX);						\ | 
 | 	if (__CONV)							\ | 
 | 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\ | 
 | 	else								\ | 
 | 		*(__PTR) = __data;					\ | 
 | 	return ret;							\ | 
 | } | 
 | STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0); | 
 | STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, | 
 | 		UINT_MAX, 1); | 
 | STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, | 
 | 		UINT_MAX, 1); | 
 | STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0); | 
 | STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, | 
 | 		UINT_MAX, 0); | 
 | STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1); | 
 | STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1); | 
 | STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1); | 
 | STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1); | 
 | STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, | 
 | 		UINT_MAX, 0); | 
 | STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0); | 
 | STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1); | 
 | #undef STORE_FUNCTION | 
 |  | 
 | #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\ | 
 | static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\ | 
 | {									\ | 
 | 	struct cfq_data *cfqd = e->elevator_data;			\ | 
 | 	unsigned int __data;						\ | 
 | 	int ret = cfq_var_store(&__data, (page), count);		\ | 
 | 	if (__data < (MIN))						\ | 
 | 		__data = (MIN);						\ | 
 | 	else if (__data > (MAX))					\ | 
 | 		__data = (MAX);						\ | 
 | 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\ | 
 | 	return ret;							\ | 
 | } | 
 | USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX); | 
 | USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX); | 
 | USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX); | 
 | USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX); | 
 | USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX); | 
 | #undef USEC_STORE_FUNCTION | 
 |  | 
 | #define CFQ_ATTR(name) \ | 
 | 	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store) | 
 |  | 
 | static struct elv_fs_entry cfq_attrs[] = { | 
 | 	CFQ_ATTR(quantum), | 
 | 	CFQ_ATTR(fifo_expire_sync), | 
 | 	CFQ_ATTR(fifo_expire_async), | 
 | 	CFQ_ATTR(back_seek_max), | 
 | 	CFQ_ATTR(back_seek_penalty), | 
 | 	CFQ_ATTR(slice_sync), | 
 | 	CFQ_ATTR(slice_sync_us), | 
 | 	CFQ_ATTR(slice_async), | 
 | 	CFQ_ATTR(slice_async_us), | 
 | 	CFQ_ATTR(slice_async_rq), | 
 | 	CFQ_ATTR(slice_idle), | 
 | 	CFQ_ATTR(slice_idle_us), | 
 | 	CFQ_ATTR(group_idle), | 
 | 	CFQ_ATTR(group_idle_us), | 
 | 	CFQ_ATTR(low_latency), | 
 | 	CFQ_ATTR(target_latency), | 
 | 	CFQ_ATTR(target_latency_us), | 
 | 	__ATTR_NULL | 
 | }; | 
 |  | 
 | static struct elevator_type iosched_cfq = { | 
 | 	.ops = { | 
 | 		.elevator_merge_fn = 		cfq_merge, | 
 | 		.elevator_merged_fn =		cfq_merged_request, | 
 | 		.elevator_merge_req_fn =	cfq_merged_requests, | 
 | 		.elevator_allow_bio_merge_fn =	cfq_allow_bio_merge, | 
 | 		.elevator_allow_rq_merge_fn =	cfq_allow_rq_merge, | 
 | 		.elevator_bio_merged_fn =	cfq_bio_merged, | 
 | 		.elevator_dispatch_fn =		cfq_dispatch_requests, | 
 | 		.elevator_add_req_fn =		cfq_insert_request, | 
 | 		.elevator_activate_req_fn =	cfq_activate_request, | 
 | 		.elevator_deactivate_req_fn =	cfq_deactivate_request, | 
 | 		.elevator_completed_req_fn =	cfq_completed_request, | 
 | 		.elevator_former_req_fn =	elv_rb_former_request, | 
 | 		.elevator_latter_req_fn =	elv_rb_latter_request, | 
 | 		.elevator_init_icq_fn =		cfq_init_icq, | 
 | 		.elevator_exit_icq_fn =		cfq_exit_icq, | 
 | 		.elevator_set_req_fn =		cfq_set_request, | 
 | 		.elevator_put_req_fn =		cfq_put_request, | 
 | 		.elevator_may_queue_fn =	cfq_may_queue, | 
 | 		.elevator_init_fn =		cfq_init_queue, | 
 | 		.elevator_exit_fn =		cfq_exit_queue, | 
 | 		.elevator_registered_fn =	cfq_registered_queue, | 
 | 	}, | 
 | 	.icq_size	=	sizeof(struct cfq_io_cq), | 
 | 	.icq_align	=	__alignof__(struct cfq_io_cq), | 
 | 	.elevator_attrs =	cfq_attrs, | 
 | 	.elevator_name	=	"cfq", | 
 | 	.elevator_owner =	THIS_MODULE, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 | static struct blkcg_policy blkcg_policy_cfq = { | 
 | 	.dfl_cftypes		= cfq_blkcg_files, | 
 | 	.legacy_cftypes		= cfq_blkcg_legacy_files, | 
 |  | 
 | 	.cpd_alloc_fn		= cfq_cpd_alloc, | 
 | 	.cpd_init_fn		= cfq_cpd_init, | 
 | 	.cpd_free_fn		= cfq_cpd_free, | 
 | 	.cpd_bind_fn		= cfq_cpd_bind, | 
 |  | 
 | 	.pd_alloc_fn		= cfq_pd_alloc, | 
 | 	.pd_init_fn		= cfq_pd_init, | 
 | 	.pd_offline_fn		= cfq_pd_offline, | 
 | 	.pd_free_fn		= cfq_pd_free, | 
 | 	.pd_reset_stats_fn	= cfq_pd_reset_stats, | 
 | }; | 
 | #endif | 
 |  | 
 | static int __init cfq_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 | 	ret = blkcg_policy_register(&blkcg_policy_cfq); | 
 | 	if (ret) | 
 | 		return ret; | 
 | #else | 
 | 	cfq_group_idle = 0; | 
 | #endif | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	cfq_pool = KMEM_CACHE(cfq_queue, 0); | 
 | 	if (!cfq_pool) | 
 | 		goto err_pol_unreg; | 
 |  | 
 | 	ret = elv_register(&iosched_cfq); | 
 | 	if (ret) | 
 | 		goto err_free_pool; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_free_pool: | 
 | 	kmem_cache_destroy(cfq_pool); | 
 | err_pol_unreg: | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 | 	blkcg_policy_unregister(&blkcg_policy_cfq); | 
 | #endif | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __exit cfq_exit(void) | 
 | { | 
 | #ifdef CONFIG_CFQ_GROUP_IOSCHED | 
 | 	blkcg_policy_unregister(&blkcg_policy_cfq); | 
 | #endif | 
 | 	elv_unregister(&iosched_cfq); | 
 | 	kmem_cache_destroy(cfq_pool); | 
 | } | 
 |  | 
 | module_init(cfq_init); | 
 | module_exit(cfq_exit); | 
 |  | 
 | MODULE_AUTHOR("Jens Axboe"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler"); |