| /****************************************************************************** |
| ** Device driver for the PCI-SCSI NCR538XX controller family. |
| ** |
| ** Copyright (C) 1994 Wolfgang Stanglmeier |
| ** |
| ** This program is free software; you can redistribute it and/or modify |
| ** it under the terms of the GNU General Public License as published by |
| ** the Free Software Foundation; either version 2 of the License, or |
| ** (at your option) any later version. |
| ** |
| ** This program is distributed in the hope that it will be useful, |
| ** but WITHOUT ANY WARRANTY; without even the implied warranty of |
| ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| ** GNU General Public License for more details. |
| ** |
| ** You should have received a copy of the GNU General Public License |
| ** along with this program; if not, write to the Free Software |
| ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| ** |
| **----------------------------------------------------------------------------- |
| ** |
| ** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver |
| ** and is currently maintained by |
| ** |
| ** Gerard Roudier <groudier@free.fr> |
| ** |
| ** Being given that this driver originates from the FreeBSD version, and |
| ** in order to keep synergy on both, any suggested enhancements and corrections |
| ** received on Linux are automatically a potential candidate for the FreeBSD |
| ** version. |
| ** |
| ** The original driver has been written for 386bsd and FreeBSD by |
| ** Wolfgang Stanglmeier <wolf@cologne.de> |
| ** Stefan Esser <se@mi.Uni-Koeln.de> |
| ** |
| ** And has been ported to NetBSD by |
| ** Charles M. Hannum <mycroft@gnu.ai.mit.edu> |
| ** |
| **----------------------------------------------------------------------------- |
| ** |
| ** Brief history |
| ** |
| ** December 10 1995 by Gerard Roudier: |
| ** Initial port to Linux. |
| ** |
| ** June 23 1996 by Gerard Roudier: |
| ** Support for 64 bits architectures (Alpha). |
| ** |
| ** November 30 1996 by Gerard Roudier: |
| ** Support for Fast-20 scsi. |
| ** Support for large DMA fifo and 128 dwords bursting. |
| ** |
| ** February 27 1997 by Gerard Roudier: |
| ** Support for Fast-40 scsi. |
| ** Support for on-Board RAM. |
| ** |
| ** May 3 1997 by Gerard Roudier: |
| ** Full support for scsi scripts instructions pre-fetching. |
| ** |
| ** May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>: |
| ** Support for NvRAM detection and reading. |
| ** |
| ** August 18 1997 by Cort <cort@cs.nmt.edu>: |
| ** Support for Power/PC (Big Endian). |
| ** |
| ** June 20 1998 by Gerard Roudier |
| ** Support for up to 64 tags per lun. |
| ** O(1) everywhere (C and SCRIPTS) for normal cases. |
| ** Low PCI traffic for command handling when on-chip RAM is present. |
| ** Aggressive SCSI SCRIPTS optimizations. |
| ** |
| ** 2005 by Matthew Wilcox and James Bottomley |
| ** PCI-ectomy. This driver now supports only the 720 chip (see the |
| ** NCR_Q720 and zalon drivers for the bus probe logic). |
| ** |
| ******************************************************************************* |
| */ |
| |
| /* |
| ** Supported SCSI-II features: |
| ** Synchronous negotiation |
| ** Wide negotiation (depends on the NCR Chip) |
| ** Enable disconnection |
| ** Tagged command queuing |
| ** Parity checking |
| ** Etc... |
| ** |
| ** Supported NCR/SYMBIOS chips: |
| ** 53C720 (Wide, Fast SCSI-2, intfly problems) |
| */ |
| |
| /* Name and version of the driver */ |
| #define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g" |
| |
| #define SCSI_NCR_DEBUG_FLAGS (0) |
| |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/ioport.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/signal.h> |
| #include <linux/spinlock.h> |
| #include <linux/stat.h> |
| #include <linux/string.h> |
| #include <linux/time.h> |
| #include <linux/timer.h> |
| #include <linux/types.h> |
| |
| #include <asm/dma.h> |
| #include <asm/io.h> |
| #include <asm/system.h> |
| |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_dbg.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_tcq.h> |
| #include <scsi/scsi_transport.h> |
| #include <scsi/scsi_transport_spi.h> |
| |
| #include "ncr53c8xx.h" |
| |
| #define NAME53C8XX "ncr53c8xx" |
| |
| /*========================================================== |
| ** |
| ** Debugging tags |
| ** |
| **========================================================== |
| */ |
| |
| #define DEBUG_ALLOC (0x0001) |
| #define DEBUG_PHASE (0x0002) |
| #define DEBUG_QUEUE (0x0008) |
| #define DEBUG_RESULT (0x0010) |
| #define DEBUG_POINTER (0x0020) |
| #define DEBUG_SCRIPT (0x0040) |
| #define DEBUG_TINY (0x0080) |
| #define DEBUG_TIMING (0x0100) |
| #define DEBUG_NEGO (0x0200) |
| #define DEBUG_TAGS (0x0400) |
| #define DEBUG_SCATTER (0x0800) |
| #define DEBUG_IC (0x1000) |
| |
| /* |
| ** Enable/Disable debug messages. |
| ** Can be changed at runtime too. |
| */ |
| |
| #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT |
| static int ncr_debug = SCSI_NCR_DEBUG_FLAGS; |
| #define DEBUG_FLAGS ncr_debug |
| #else |
| #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS |
| #endif |
| |
| static inline struct list_head *ncr_list_pop(struct list_head *head) |
| { |
| if (!list_empty(head)) { |
| struct list_head *elem = head->next; |
| |
| list_del(elem); |
| return elem; |
| } |
| |
| return NULL; |
| } |
| |
| /*========================================================== |
| ** |
| ** Simple power of two buddy-like allocator. |
| ** |
| ** This simple code is not intended to be fast, but to |
| ** provide power of 2 aligned memory allocations. |
| ** Since the SCRIPTS processor only supplies 8 bit |
| ** arithmetic, this allocator allows simple and fast |
| ** address calculations from the SCRIPTS code. |
| ** In addition, cache line alignment is guaranteed for |
| ** power of 2 cache line size. |
| ** Enhanced in linux-2.3.44 to provide a memory pool |
| ** per pcidev to support dynamic dma mapping. (I would |
| ** have preferred a real bus abstraction, btw). |
| ** |
| **========================================================== |
| */ |
| |
| #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ |
| #if PAGE_SIZE >= 8192 |
| #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ |
| #else |
| #define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */ |
| #endif |
| #define MEMO_FREE_UNUSED /* Free unused pages immediately */ |
| #define MEMO_WARN 1 |
| #define MEMO_GFP_FLAGS GFP_ATOMIC |
| #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) |
| #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) |
| #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) |
| |
| typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ |
| typedef struct device *m_bush_t; /* Something that addresses DMAable */ |
| |
| typedef struct m_link { /* Link between free memory chunks */ |
| struct m_link *next; |
| } m_link_s; |
| |
| typedef struct m_vtob { /* Virtual to Bus address translation */ |
| struct m_vtob *next; |
| m_addr_t vaddr; |
| m_addr_t baddr; |
| } m_vtob_s; |
| #define VTOB_HASH_SHIFT 5 |
| #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) |
| #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) |
| #define VTOB_HASH_CODE(m) \ |
| ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) |
| |
| typedef struct m_pool { /* Memory pool of a given kind */ |
| m_bush_t bush; |
| m_addr_t (*getp)(struct m_pool *); |
| void (*freep)(struct m_pool *, m_addr_t); |
| int nump; |
| m_vtob_s *(vtob[VTOB_HASH_SIZE]); |
| struct m_pool *next; |
| struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1]; |
| } m_pool_s; |
| |
| static void *___m_alloc(m_pool_s *mp, int size) |
| { |
| int i = 0; |
| int s = (1 << MEMO_SHIFT); |
| int j; |
| m_addr_t a; |
| m_link_s *h = mp->h; |
| |
| if (size > (PAGE_SIZE << MEMO_PAGE_ORDER)) |
| return NULL; |
| |
| while (size > s) { |
| s <<= 1; |
| ++i; |
| } |
| |
| j = i; |
| while (!h[j].next) { |
| if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { |
| h[j].next = (m_link_s *)mp->getp(mp); |
| if (h[j].next) |
| h[j].next->next = NULL; |
| break; |
| } |
| ++j; |
| s <<= 1; |
| } |
| a = (m_addr_t) h[j].next; |
| if (a) { |
| h[j].next = h[j].next->next; |
| while (j > i) { |
| j -= 1; |
| s >>= 1; |
| h[j].next = (m_link_s *) (a+s); |
| h[j].next->next = NULL; |
| } |
| } |
| #ifdef DEBUG |
| printk("___m_alloc(%d) = %p\n", size, (void *) a); |
| #endif |
| return (void *) a; |
| } |
| |
| static void ___m_free(m_pool_s *mp, void *ptr, int size) |
| { |
| int i = 0; |
| int s = (1 << MEMO_SHIFT); |
| m_link_s *q; |
| m_addr_t a, b; |
| m_link_s *h = mp->h; |
| |
| #ifdef DEBUG |
| printk("___m_free(%p, %d)\n", ptr, size); |
| #endif |
| |
| if (size > (PAGE_SIZE << MEMO_PAGE_ORDER)) |
| return; |
| |
| while (size > s) { |
| s <<= 1; |
| ++i; |
| } |
| |
| a = (m_addr_t) ptr; |
| |
| while (1) { |
| #ifdef MEMO_FREE_UNUSED |
| if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { |
| mp->freep(mp, a); |
| break; |
| } |
| #endif |
| b = a ^ s; |
| q = &h[i]; |
| while (q->next && q->next != (m_link_s *) b) { |
| q = q->next; |
| } |
| if (!q->next) { |
| ((m_link_s *) a)->next = h[i].next; |
| h[i].next = (m_link_s *) a; |
| break; |
| } |
| q->next = q->next->next; |
| a = a & b; |
| s <<= 1; |
| ++i; |
| } |
| } |
| |
| static DEFINE_SPINLOCK(ncr53c8xx_lock); |
| |
| static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags) |
| { |
| void *p; |
| |
| p = ___m_alloc(mp, size); |
| |
| if (DEBUG_FLAGS & DEBUG_ALLOC) |
| printk ("new %-10s[%4d] @%p.\n", name, size, p); |
| |
| if (p) |
| memset(p, 0, size); |
| else if (uflags & MEMO_WARN) |
| printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size); |
| |
| return p; |
| } |
| |
| #define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN) |
| |
| static void __m_free(m_pool_s *mp, void *ptr, int size, char *name) |
| { |
| if (DEBUG_FLAGS & DEBUG_ALLOC) |
| printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr); |
| |
| ___m_free(mp, ptr, size); |
| |
| } |
| |
| /* |
| * With pci bus iommu support, we use a default pool of unmapped memory |
| * for memory we donnot need to DMA from/to and one pool per pcidev for |
| * memory accessed by the PCI chip. `mp0' is the default not DMAable pool. |
| */ |
| |
| static m_addr_t ___mp0_getp(m_pool_s *mp) |
| { |
| m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER); |
| if (m) |
| ++mp->nump; |
| return m; |
| } |
| |
| static void ___mp0_freep(m_pool_s *mp, m_addr_t m) |
| { |
| free_pages(m, MEMO_PAGE_ORDER); |
| --mp->nump; |
| } |
| |
| static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep}; |
| |
| /* |
| * DMAable pools. |
| */ |
| |
| /* |
| * With pci bus iommu support, we maintain one pool per pcidev and a |
| * hashed reverse table for virtual to bus physical address translations. |
| */ |
| static m_addr_t ___dma_getp(m_pool_s *mp) |
| { |
| m_addr_t vp; |
| m_vtob_s *vbp; |
| |
| vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB"); |
| if (vbp) { |
| dma_addr_t daddr; |
| vp = (m_addr_t) dma_alloc_coherent(mp->bush, |
| PAGE_SIZE<<MEMO_PAGE_ORDER, |
| &daddr, GFP_ATOMIC); |
| if (vp) { |
| int hc = VTOB_HASH_CODE(vp); |
| vbp->vaddr = vp; |
| vbp->baddr = daddr; |
| vbp->next = mp->vtob[hc]; |
| mp->vtob[hc] = vbp; |
| ++mp->nump; |
| return vp; |
| } |
| } |
| if (vbp) |
| __m_free(&mp0, vbp, sizeof(*vbp), "VTOB"); |
| return 0; |
| } |
| |
| static void ___dma_freep(m_pool_s *mp, m_addr_t m) |
| { |
| m_vtob_s **vbpp, *vbp; |
| int hc = VTOB_HASH_CODE(m); |
| |
| vbpp = &mp->vtob[hc]; |
| while (*vbpp && (*vbpp)->vaddr != m) |
| vbpp = &(*vbpp)->next; |
| if (*vbpp) { |
| vbp = *vbpp; |
| *vbpp = (*vbpp)->next; |
| dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER, |
| (void *)vbp->vaddr, (dma_addr_t)vbp->baddr); |
| __m_free(&mp0, vbp, sizeof(*vbp), "VTOB"); |
| --mp->nump; |
| } |
| } |
| |
| static inline m_pool_s *___get_dma_pool(m_bush_t bush) |
| { |
| m_pool_s *mp; |
| for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next); |
| return mp; |
| } |
| |
| static m_pool_s *___cre_dma_pool(m_bush_t bush) |
| { |
| m_pool_s *mp; |
| mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL"); |
| if (mp) { |
| memset(mp, 0, sizeof(*mp)); |
| mp->bush = bush; |
| mp->getp = ___dma_getp; |
| mp->freep = ___dma_freep; |
| mp->next = mp0.next; |
| mp0.next = mp; |
| } |
| return mp; |
| } |
| |
| static void ___del_dma_pool(m_pool_s *p) |
| { |
| struct m_pool **pp = &mp0.next; |
| |
| while (*pp && *pp != p) |
| pp = &(*pp)->next; |
| if (*pp) { |
| *pp = (*pp)->next; |
| __m_free(&mp0, p, sizeof(*p), "MPOOL"); |
| } |
| } |
| |
| static void *__m_calloc_dma(m_bush_t bush, int size, char *name) |
| { |
| u_long flags; |
| struct m_pool *mp; |
| void *m = NULL; |
| |
| spin_lock_irqsave(&ncr53c8xx_lock, flags); |
| mp = ___get_dma_pool(bush); |
| if (!mp) |
| mp = ___cre_dma_pool(bush); |
| if (mp) |
| m = __m_calloc(mp, size, name); |
| if (mp && !mp->nump) |
| ___del_dma_pool(mp); |
| spin_unlock_irqrestore(&ncr53c8xx_lock, flags); |
| |
| return m; |
| } |
| |
| static void __m_free_dma(m_bush_t bush, void *m, int size, char *name) |
| { |
| u_long flags; |
| struct m_pool *mp; |
| |
| spin_lock_irqsave(&ncr53c8xx_lock, flags); |
| mp = ___get_dma_pool(bush); |
| if (mp) |
| __m_free(mp, m, size, name); |
| if (mp && !mp->nump) |
| ___del_dma_pool(mp); |
| spin_unlock_irqrestore(&ncr53c8xx_lock, flags); |
| } |
| |
| static m_addr_t __vtobus(m_bush_t bush, void *m) |
| { |
| u_long flags; |
| m_pool_s *mp; |
| int hc = VTOB_HASH_CODE(m); |
| m_vtob_s *vp = NULL; |
| m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; |
| |
| spin_lock_irqsave(&ncr53c8xx_lock, flags); |
| mp = ___get_dma_pool(bush); |
| if (mp) { |
| vp = mp->vtob[hc]; |
| while (vp && (m_addr_t) vp->vaddr != a) |
| vp = vp->next; |
| } |
| spin_unlock_irqrestore(&ncr53c8xx_lock, flags); |
| return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; |
| } |
| |
| #define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n) |
| #define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n) |
| #define m_calloc_dma(s, n) _m_calloc_dma(np, s, n) |
| #define m_free_dma(p, s, n) _m_free_dma(np, p, s, n) |
| #define _vtobus(np, p) __vtobus(np->dev, p) |
| #define vtobus(p) _vtobus(np, p) |
| |
| /* |
| * Deal with DMA mapping/unmapping. |
| */ |
| |
| /* To keep track of the dma mapping (sg/single) that has been set */ |
| #define __data_mapped SCp.phase |
| #define __data_mapping SCp.have_data_in |
| |
| static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd) |
| { |
| switch(cmd->__data_mapped) { |
| case 2: |
| scsi_dma_unmap(cmd); |
| break; |
| } |
| cmd->__data_mapped = 0; |
| } |
| |
| static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd) |
| { |
| int use_sg; |
| |
| use_sg = scsi_dma_map(cmd); |
| if (!use_sg) |
| return 0; |
| |
| cmd->__data_mapped = 2; |
| cmd->__data_mapping = use_sg; |
| |
| return use_sg; |
| } |
| |
| #define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd) |
| #define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd) |
| |
| /*========================================================== |
| ** |
| ** Driver setup. |
| ** |
| ** This structure is initialized from linux config |
| ** options. It can be overridden at boot-up by the boot |
| ** command line. |
| ** |
| **========================================================== |
| */ |
| static struct ncr_driver_setup |
| driver_setup = SCSI_NCR_DRIVER_SETUP; |
| |
| #ifndef MODULE |
| #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT |
| static struct ncr_driver_setup |
| driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP; |
| #endif |
| #endif /* !MODULE */ |
| |
| #define initverbose (driver_setup.verbose) |
| #define bootverbose (np->verbose) |
| |
| |
| /*=================================================================== |
| ** |
| ** Driver setup from the boot command line |
| ** |
| **=================================================================== |
| */ |
| |
| #ifdef MODULE |
| #define ARG_SEP ' ' |
| #else |
| #define ARG_SEP ',' |
| #endif |
| |
| #define OPT_TAGS 1 |
| #define OPT_MASTER_PARITY 2 |
| #define OPT_SCSI_PARITY 3 |
| #define OPT_DISCONNECTION 4 |
| #define OPT_SPECIAL_FEATURES 5 |
| #define OPT_UNUSED_1 6 |
| #define OPT_FORCE_SYNC_NEGO 7 |
| #define OPT_REVERSE_PROBE 8 |
| #define OPT_DEFAULT_SYNC 9 |
| #define OPT_VERBOSE 10 |
| #define OPT_DEBUG 11 |
| #define OPT_BURST_MAX 12 |
| #define OPT_LED_PIN 13 |
| #define OPT_MAX_WIDE 14 |
| #define OPT_SETTLE_DELAY 15 |
| #define OPT_DIFF_SUPPORT 16 |
| #define OPT_IRQM 17 |
| #define OPT_PCI_FIX_UP 18 |
| #define OPT_BUS_CHECK 19 |
| #define OPT_OPTIMIZE 20 |
| #define OPT_RECOVERY 21 |
| #define OPT_SAFE_SETUP 22 |
| #define OPT_USE_NVRAM 23 |
| #define OPT_EXCLUDE 24 |
| #define OPT_HOST_ID 25 |
| |
| #ifdef SCSI_NCR_IARB_SUPPORT |
| #define OPT_IARB 26 |
| #endif |
| |
| #ifdef MODULE |
| #define ARG_SEP ' ' |
| #else |
| #define ARG_SEP ',' |
| #endif |
| |
| #ifndef MODULE |
| static char setup_token[] __initdata = |
| "tags:" "mpar:" |
| "spar:" "disc:" |
| "specf:" "ultra:" |
| "fsn:" "revprob:" |
| "sync:" "verb:" |
| "debug:" "burst:" |
| "led:" "wide:" |
| "settle:" "diff:" |
| "irqm:" "pcifix:" |
| "buschk:" "optim:" |
| "recovery:" |
| "safe:" "nvram:" |
| "excl:" "hostid:" |
| #ifdef SCSI_NCR_IARB_SUPPORT |
| "iarb:" |
| #endif |
| ; /* DONNOT REMOVE THIS ';' */ |
| |
| static int __init get_setup_token(char *p) |
| { |
| char *cur = setup_token; |
| char *pc; |
| int i = 0; |
| |
| while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { |
| ++pc; |
| ++i; |
| if (!strncmp(p, cur, pc - cur)) |
| return i; |
| cur = pc; |
| } |
| return 0; |
| } |
| |
| static int __init sym53c8xx__setup(char *str) |
| { |
| #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT |
| char *cur = str; |
| char *pc, *pv; |
| int i, val, c; |
| int xi = 0; |
| |
| while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { |
| char *pe; |
| |
| val = 0; |
| pv = pc; |
| c = *++pv; |
| |
| if (c == 'n') |
| val = 0; |
| else if (c == 'y') |
| val = 1; |
| else |
| val = (int) simple_strtoul(pv, &pe, 0); |
| |
| switch (get_setup_token(cur)) { |
| case OPT_TAGS: |
| driver_setup.default_tags = val; |
| if (pe && *pe == '/') { |
| i = 0; |
| while (*pe && *pe != ARG_SEP && |
| i < sizeof(driver_setup.tag_ctrl)-1) { |
| driver_setup.tag_ctrl[i++] = *pe++; |
| } |
| driver_setup.tag_ctrl[i] = '\0'; |
| } |
| break; |
| case OPT_MASTER_PARITY: |
| driver_setup.master_parity = val; |
| break; |
| case OPT_SCSI_PARITY: |
| driver_setup.scsi_parity = val; |
| break; |
| case OPT_DISCONNECTION: |
| driver_setup.disconnection = val; |
| break; |
| case OPT_SPECIAL_FEATURES: |
| driver_setup.special_features = val; |
| break; |
| case OPT_FORCE_SYNC_NEGO: |
| driver_setup.force_sync_nego = val; |
| break; |
| case OPT_REVERSE_PROBE: |
| driver_setup.reverse_probe = val; |
| break; |
| case OPT_DEFAULT_SYNC: |
| driver_setup.default_sync = val; |
| break; |
| case OPT_VERBOSE: |
| driver_setup.verbose = val; |
| break; |
| case OPT_DEBUG: |
| driver_setup.debug = val; |
| break; |
| case OPT_BURST_MAX: |
| driver_setup.burst_max = val; |
| break; |
| case OPT_LED_PIN: |
| driver_setup.led_pin = val; |
| break; |
| case OPT_MAX_WIDE: |
| driver_setup.max_wide = val? 1:0; |
| break; |
| case OPT_SETTLE_DELAY: |
| driver_setup.settle_delay = val; |
| break; |
| case OPT_DIFF_SUPPORT: |
| driver_setup.diff_support = val; |
| break; |
| case OPT_IRQM: |
| driver_setup.irqm = val; |
| break; |
| case OPT_PCI_FIX_UP: |
| driver_setup.pci_fix_up = val; |
| break; |
| case OPT_BUS_CHECK: |
| driver_setup.bus_check = val; |
| break; |
| case OPT_OPTIMIZE: |
| driver_setup.optimize = val; |
| break; |
| case OPT_RECOVERY: |
| driver_setup.recovery = val; |
| break; |
| case OPT_USE_NVRAM: |
| driver_setup.use_nvram = val; |
| break; |
| case OPT_SAFE_SETUP: |
| memcpy(&driver_setup, &driver_safe_setup, |
| sizeof(driver_setup)); |
| break; |
| case OPT_EXCLUDE: |
| if (xi < SCSI_NCR_MAX_EXCLUDES) |
| driver_setup.excludes[xi++] = val; |
| break; |
| case OPT_HOST_ID: |
| driver_setup.host_id = val; |
| break; |
| #ifdef SCSI_NCR_IARB_SUPPORT |
| case OPT_IARB: |
| driver_setup.iarb = val; |
| break; |
| #endif |
| default: |
| printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur); |
| break; |
| } |
| |
| if ((cur = strchr(cur, ARG_SEP)) != NULL) |
| ++cur; |
| } |
| #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */ |
| return 1; |
| } |
| #endif /* !MODULE */ |
| |
| /*=================================================================== |
| ** |
| ** Get device queue depth from boot command line. |
| ** |
| **=================================================================== |
| */ |
| #define DEF_DEPTH (driver_setup.default_tags) |
| #define ALL_TARGETS -2 |
| #define NO_TARGET -1 |
| #define ALL_LUNS -2 |
| #define NO_LUN -1 |
| |
| static int device_queue_depth(int unit, int target, int lun) |
| { |
| int c, h, t, u, v; |
| char *p = driver_setup.tag_ctrl; |
| char *ep; |
| |
| h = -1; |
| t = NO_TARGET; |
| u = NO_LUN; |
| while ((c = *p++) != 0) { |
| v = simple_strtoul(p, &ep, 0); |
| switch(c) { |
| case '/': |
| ++h; |
| t = ALL_TARGETS; |
| u = ALL_LUNS; |
| break; |
| case 't': |
| if (t != target) |
| t = (target == v) ? v : NO_TARGET; |
| u = ALL_LUNS; |
| break; |
| case 'u': |
| if (u != lun) |
| u = (lun == v) ? v : NO_LUN; |
| break; |
| case 'q': |
| if (h == unit && |
| (t == ALL_TARGETS || t == target) && |
| (u == ALL_LUNS || u == lun)) |
| return v; |
| break; |
| case '-': |
| t = ALL_TARGETS; |
| u = ALL_LUNS; |
| break; |
| default: |
| break; |
| } |
| p = ep; |
| } |
| return DEF_DEPTH; |
| } |
| |
| |
| /*========================================================== |
| ** |
| ** The CCB done queue uses an array of CCB virtual |
| ** addresses. Empty entries are flagged using the bogus |
| ** virtual address 0xffffffff. |
| ** |
| ** Since PCI ensures that only aligned DWORDs are accessed |
| ** atomically, 64 bit little-endian architecture requires |
| ** to test the high order DWORD of the entry to determine |
| ** if it is empty or valid. |
| ** |
| ** BTW, I will make things differently as soon as I will |
| ** have a better idea, but this is simple and should work. |
| ** |
| **========================================================== |
| */ |
| |
| #define SCSI_NCR_CCB_DONE_SUPPORT |
| #ifdef SCSI_NCR_CCB_DONE_SUPPORT |
| |
| #define MAX_DONE 24 |
| #define CCB_DONE_EMPTY 0xffffffffUL |
| |
| /* All 32 bit architectures */ |
| #if BITS_PER_LONG == 32 |
| #define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY) |
| |
| /* All > 32 bit (64 bit) architectures regardless endian-ness */ |
| #else |
| #define CCB_DONE_VALID(cp) \ |
| ((((u_long) cp) & 0xffffffff00000000ul) && \ |
| (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY) |
| #endif |
| |
| #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ |
| |
| /*========================================================== |
| ** |
| ** Configuration and Debugging |
| ** |
| **========================================================== |
| */ |
| |
| /* |
| ** SCSI address of this device. |
| ** The boot routines should have set it. |
| ** If not, use this. |
| */ |
| |
| #ifndef SCSI_NCR_MYADDR |
| #define SCSI_NCR_MYADDR (7) |
| #endif |
| |
| /* |
| ** The maximum number of tags per logic unit. |
| ** Used only for disk devices that support tags. |
| */ |
| |
| #ifndef SCSI_NCR_MAX_TAGS |
| #define SCSI_NCR_MAX_TAGS (8) |
| #endif |
| |
| /* |
| ** TAGS are actually limited to 64 tags/lun. |
| ** We need to deal with power of 2, for alignment constraints. |
| */ |
| #if SCSI_NCR_MAX_TAGS > 64 |
| #define MAX_TAGS (64) |
| #else |
| #define MAX_TAGS SCSI_NCR_MAX_TAGS |
| #endif |
| |
| #define NO_TAG (255) |
| |
| /* |
| ** Choose appropriate type for tag bitmap. |
| */ |
| #if MAX_TAGS > 32 |
| typedef u64 tagmap_t; |
| #else |
| typedef u32 tagmap_t; |
| #endif |
| |
| /* |
| ** Number of targets supported by the driver. |
| ** n permits target numbers 0..n-1. |
| ** Default is 16, meaning targets #0..#15. |
| ** #7 .. is myself. |
| */ |
| |
| #ifdef SCSI_NCR_MAX_TARGET |
| #define MAX_TARGET (SCSI_NCR_MAX_TARGET) |
| #else |
| #define MAX_TARGET (16) |
| #endif |
| |
| /* |
| ** Number of logic units supported by the driver. |
| ** n enables logic unit numbers 0..n-1. |
| ** The common SCSI devices require only |
| ** one lun, so take 1 as the default. |
| */ |
| |
| #ifdef SCSI_NCR_MAX_LUN |
| #define MAX_LUN SCSI_NCR_MAX_LUN |
| #else |
| #define MAX_LUN (1) |
| #endif |
| |
| /* |
| ** Asynchronous pre-scaler (ns). Shall be 40 |
| */ |
| |
| #ifndef SCSI_NCR_MIN_ASYNC |
| #define SCSI_NCR_MIN_ASYNC (40) |
| #endif |
| |
| /* |
| ** The maximum number of jobs scheduled for starting. |
| ** There should be one slot per target, and one slot |
| ** for each tag of each target in use. |
| ** The calculation below is actually quite silly ... |
| */ |
| |
| #ifdef SCSI_NCR_CAN_QUEUE |
| #define MAX_START (SCSI_NCR_CAN_QUEUE + 4) |
| #else |
| #define MAX_START (MAX_TARGET + 7 * MAX_TAGS) |
| #endif |
| |
| /* |
| ** We limit the max number of pending IO to 250. |
| ** since we donnot want to allocate more than 1 |
| ** PAGE for 'scripth'. |
| */ |
| #if MAX_START > 250 |
| #undef MAX_START |
| #define MAX_START 250 |
| #endif |
| |
| /* |
| ** The maximum number of segments a transfer is split into. |
| ** We support up to 127 segments for both read and write. |
| ** The data scripts are broken into 2 sub-scripts. |
| ** 80 (MAX_SCATTERL) segments are moved from a sub-script |
| ** in on-chip RAM. This makes data transfers shorter than |
| ** 80k (assuming 1k fs) as fast as possible. |
| */ |
| |
| #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER) |
| |
| #if (MAX_SCATTER > 80) |
| #define MAX_SCATTERL 80 |
| #define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL) |
| #else |
| #define MAX_SCATTERL (MAX_SCATTER-1) |
| #define MAX_SCATTERH 1 |
| #endif |
| |
| /* |
| ** other |
| */ |
| |
| #define NCR_SNOOP_TIMEOUT (1000000) |
| |
| /* |
| ** Other definitions |
| */ |
| |
| #define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f)) |
| |
| #define initverbose (driver_setup.verbose) |
| #define bootverbose (np->verbose) |
| |
| /*========================================================== |
| ** |
| ** Command control block states. |
| ** |
| **========================================================== |
| */ |
| |
| #define HS_IDLE (0) |
| #define HS_BUSY (1) |
| #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ |
| #define HS_DISCONNECT (3) /* Disconnected by target */ |
| |
| #define HS_DONEMASK (0x80) |
| #define HS_COMPLETE (4|HS_DONEMASK) |
| #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ |
| #define HS_RESET (6|HS_DONEMASK) /* SCSI reset */ |
| #define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */ |
| #define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */ |
| #define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */ |
| #define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */ |
| |
| /* |
| ** Invalid host status values used by the SCRIPTS processor |
| ** when the nexus is not fully identified. |
| ** Shall never appear in a CCB. |
| */ |
| |
| #define HS_INVALMASK (0x40) |
| #define HS_SELECTING (0|HS_INVALMASK) |
| #define HS_IN_RESELECT (1|HS_INVALMASK) |
| #define HS_STARTING (2|HS_INVALMASK) |
| |
| /* |
| ** Flags set by the SCRIPT processor for commands |
| ** that have been skipped. |
| */ |
| #define HS_SKIPMASK (0x20) |
| |
| /*========================================================== |
| ** |
| ** Software Interrupt Codes |
| ** |
| **========================================================== |
| */ |
| |
| #define SIR_BAD_STATUS (1) |
| #define SIR_XXXXXXXXXX (2) |
| #define SIR_NEGO_SYNC (3) |
| #define SIR_NEGO_WIDE (4) |
| #define SIR_NEGO_FAILED (5) |
| #define SIR_NEGO_PROTO (6) |
| #define SIR_REJECT_RECEIVED (7) |
| #define SIR_REJECT_SENT (8) |
| #define SIR_IGN_RESIDUE (9) |
| #define SIR_MISSING_SAVE (10) |
| #define SIR_RESEL_NO_MSG_IN (11) |
| #define SIR_RESEL_NO_IDENTIFY (12) |
| #define SIR_RESEL_BAD_LUN (13) |
| #define SIR_RESEL_BAD_TARGET (14) |
| #define SIR_RESEL_BAD_I_T_L (15) |
| #define SIR_RESEL_BAD_I_T_L_Q (16) |
| #define SIR_DONE_OVERFLOW (17) |
| #define SIR_INTFLY (18) |
| #define SIR_MAX (18) |
| |
| /*========================================================== |
| ** |
| ** Extended error codes. |
| ** xerr_status field of struct ccb. |
| ** |
| **========================================================== |
| */ |
| |
| #define XE_OK (0) |
| #define XE_EXTRA_DATA (1) /* unexpected data phase */ |
| #define XE_BAD_PHASE (2) /* illegal phase (4/5) */ |
| |
| /*========================================================== |
| ** |
| ** Negotiation status. |
| ** nego_status field of struct ccb. |
| ** |
| **========================================================== |
| */ |
| |
| #define NS_NOCHANGE (0) |
| #define NS_SYNC (1) |
| #define NS_WIDE (2) |
| #define NS_PPR (4) |
| |
| /*========================================================== |
| ** |
| ** Misc. |
| ** |
| **========================================================== |
| */ |
| |
| #define CCB_MAGIC (0xf2691ad2) |
| |
| /*========================================================== |
| ** |
| ** Declaration of structs. |
| ** |
| **========================================================== |
| */ |
| |
| static struct scsi_transport_template *ncr53c8xx_transport_template = NULL; |
| |
| struct tcb; |
| struct lcb; |
| struct ccb; |
| struct ncb; |
| struct script; |
| |
| struct link { |
| ncrcmd l_cmd; |
| ncrcmd l_paddr; |
| }; |
| |
| struct usrcmd { |
| u_long target; |
| u_long lun; |
| u_long data; |
| u_long cmd; |
| }; |
| |
| #define UC_SETSYNC 10 |
| #define UC_SETTAGS 11 |
| #define UC_SETDEBUG 12 |
| #define UC_SETORDER 13 |
| #define UC_SETWIDE 14 |
| #define UC_SETFLAG 15 |
| #define UC_SETVERBOSE 17 |
| |
| #define UF_TRACE (0x01) |
| #define UF_NODISC (0x02) |
| #define UF_NOSCAN (0x04) |
| |
| /*======================================================================== |
| ** |
| ** Declaration of structs: target control block |
| ** |
| **======================================================================== |
| */ |
| struct tcb { |
| /*---------------------------------------------------------------- |
| ** During reselection the ncr jumps to this point with SFBR |
| ** set to the encoded target number with bit 7 set. |
| ** if it's not this target, jump to the next. |
| ** |
| ** JUMP IF (SFBR != #target#), @(next tcb) |
| **---------------------------------------------------------------- |
| */ |
| struct link jump_tcb; |
| |
| /*---------------------------------------------------------------- |
| ** Load the actual values for the sxfer and the scntl3 |
| ** register (sync/wide mode). |
| ** |
| ** SCR_COPY (1), @(sval field of this tcb), @(sxfer register) |
| ** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register) |
| **---------------------------------------------------------------- |
| */ |
| ncrcmd getscr[6]; |
| |
| /*---------------------------------------------------------------- |
| ** Get the IDENTIFY message and load the LUN to SFBR. |
| ** |
| ** CALL, <RESEL_LUN> |
| **---------------------------------------------------------------- |
| */ |
| struct link call_lun; |
| |
| /*---------------------------------------------------------------- |
| ** Now look for the right lun. |
| ** |
| ** For i = 0 to 3 |
| ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i) |
| ** |
| ** Recent chips will prefetch the 4 JUMPS using only 1 burst. |
| ** It is kind of hashcoding. |
| **---------------------------------------------------------------- |
| */ |
| struct link jump_lcb[4]; /* JUMPs for reselection */ |
| struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */ |
| |
| /*---------------------------------------------------------------- |
| ** Pointer to the ccb used for negotiation. |
| ** Prevent from starting a negotiation for all queued commands |
| ** when tagged command queuing is enabled. |
| **---------------------------------------------------------------- |
| */ |
| struct ccb * nego_cp; |
| |
| /*---------------------------------------------------------------- |
| ** statistical data |
| **---------------------------------------------------------------- |
| */ |
| u_long transfers; |
| u_long bytes; |
| |
| /*---------------------------------------------------------------- |
| ** negotiation of wide and synch transfer and device quirks. |
| **---------------------------------------------------------------- |
| */ |
| #ifdef SCSI_NCR_BIG_ENDIAN |
| /*0*/ u16 period; |
| /*2*/ u_char sval; |
| /*3*/ u_char minsync; |
| /*0*/ u_char wval; |
| /*1*/ u_char widedone; |
| /*2*/ u_char quirks; |
| /*3*/ u_char maxoffs; |
| #else |
| /*0*/ u_char minsync; |
| /*1*/ u_char sval; |
| /*2*/ u16 period; |
| /*0*/ u_char maxoffs; |
| /*1*/ u_char quirks; |
| /*2*/ u_char widedone; |
| /*3*/ u_char wval; |
| #endif |
| |
| /* User settable limits and options. */ |
| u_char usrsync; |
| u_char usrwide; |
| u_char usrtags; |
| u_char usrflag; |
| struct scsi_target *starget; |
| }; |
| |
| /*======================================================================== |
| ** |
| ** Declaration of structs: lun control block |
| ** |
| **======================================================================== |
| */ |
| struct lcb { |
| /*---------------------------------------------------------------- |
| ** During reselection the ncr jumps to this point |
| ** with SFBR set to the "Identify" message. |
| ** if it's not this lun, jump to the next. |
| ** |
| ** JUMP IF (SFBR != #lun#), @(next lcb of this target) |
| ** |
| ** It is this lun. Load TEMP with the nexus jumps table |
| ** address and jump to RESEL_TAG (or RESEL_NOTAG). |
| ** |
| ** SCR_COPY (4), p_jump_ccb, TEMP, |
| ** SCR_JUMP, <RESEL_TAG> |
| **---------------------------------------------------------------- |
| */ |
| struct link jump_lcb; |
| ncrcmd load_jump_ccb[3]; |
| struct link jump_tag; |
| ncrcmd p_jump_ccb; /* Jump table bus address */ |
| |
| /*---------------------------------------------------------------- |
| ** Jump table used by the script processor to directly jump |
| ** to the CCB corresponding to the reselected nexus. |
| ** Address is allocated on 256 bytes boundary in order to |
| ** allow 8 bit calculation of the tag jump entry for up to |
| ** 64 possible tags. |
| **---------------------------------------------------------------- |
| */ |
| u32 jump_ccb_0; /* Default table if no tags */ |
| u32 *jump_ccb; /* Virtual address */ |
| |
| /*---------------------------------------------------------------- |
| ** CCB queue management. |
| **---------------------------------------------------------------- |
| */ |
| struct list_head free_ccbq; /* Queue of available CCBs */ |
| struct list_head busy_ccbq; /* Queue of busy CCBs */ |
| struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */ |
| struct list_head skip_ccbq; /* Queue of skipped CCBs */ |
| u_char actccbs; /* Number of allocated CCBs */ |
| u_char busyccbs; /* CCBs busy for this lun */ |
| u_char queuedccbs; /* CCBs queued to the controller*/ |
| u_char queuedepth; /* Queue depth for this lun */ |
| u_char scdev_depth; /* SCSI device queue depth */ |
| u_char maxnxs; /* Max possible nexuses */ |
| |
| /*---------------------------------------------------------------- |
| ** Control of tagged command queuing. |
| ** Tags allocation is performed using a circular buffer. |
| ** This avoids using a loop for tag allocation. |
| **---------------------------------------------------------------- |
| */ |
| u_char ia_tag; /* Allocation index */ |
| u_char if_tag; /* Freeing index */ |
| u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */ |
| u_char usetags; /* Command queuing is active */ |
| u_char maxtags; /* Max nr of tags asked by user */ |
| u_char numtags; /* Current number of tags */ |
| |
| /*---------------------------------------------------------------- |
| ** QUEUE FULL control and ORDERED tag control. |
| **---------------------------------------------------------------- |
| */ |
| /*---------------------------------------------------------------- |
| ** QUEUE FULL and ORDERED tag control. |
| **---------------------------------------------------------------- |
| */ |
| u16 num_good; /* Nr of GOOD since QUEUE FULL */ |
| tagmap_t tags_umap; /* Used tags bitmap */ |
| tagmap_t tags_smap; /* Tags in use at 'tag_stime' */ |
| u_long tags_stime; /* Last time we set smap=umap */ |
| struct ccb * held_ccb; /* CCB held for QUEUE FULL */ |
| }; |
| |
| /*======================================================================== |
| ** |
| ** Declaration of structs: the launch script. |
| ** |
| **======================================================================== |
| ** |
| ** It is part of the CCB and is called by the scripts processor to |
| ** start or restart the data structure (nexus). |
| ** This 6 DWORDs mini script makes use of prefetching. |
| ** |
| **------------------------------------------------------------------------ |
| */ |
| struct launch { |
| /*---------------------------------------------------------------- |
| ** SCR_COPY(4), @(p_phys), @(dsa register) |
| ** SCR_JUMP, @(scheduler_point) |
| **---------------------------------------------------------------- |
| */ |
| ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */ |
| struct link schedule; /* Jump to scheduler point */ |
| ncrcmd p_phys; /* 'phys' header bus address */ |
| }; |
| |
| /*======================================================================== |
| ** |
| ** Declaration of structs: global HEADER. |
| ** |
| **======================================================================== |
| ** |
| ** This substructure is copied from the ccb to a global address after |
| ** selection (or reselection) and copied back before disconnect. |
| ** |
| ** These fields are accessible to the script processor. |
| ** |
| **------------------------------------------------------------------------ |
| */ |
| |
| struct head { |
| /*---------------------------------------------------------------- |
| ** Saved data pointer. |
| ** Points to the position in the script responsible for the |
| ** actual transfer transfer of data. |
| ** It's written after reception of a SAVE_DATA_POINTER message. |
| ** The goalpointer points after the last transfer command. |
| **---------------------------------------------------------------- |
| */ |
| u32 savep; |
| u32 lastp; |
| u32 goalp; |
| |
| /*---------------------------------------------------------------- |
| ** Alternate data pointer. |
| ** They are copied back to savep/lastp/goalp by the SCRIPTS |
| ** when the direction is unknown and the device claims data out. |
| **---------------------------------------------------------------- |
| */ |
| u32 wlastp; |
| u32 wgoalp; |
| |
| /*---------------------------------------------------------------- |
| ** The virtual address of the ccb containing this header. |
| **---------------------------------------------------------------- |
| */ |
| struct ccb * cp; |
| |
| /*---------------------------------------------------------------- |
| ** Status fields. |
| **---------------------------------------------------------------- |
| */ |
| u_char scr_st[4]; /* script status */ |
| u_char status[4]; /* host status. must be the */ |
| /* last DWORD of the header. */ |
| }; |
| |
| /* |
| ** The status bytes are used by the host and the script processor. |
| ** |
| ** The byte corresponding to the host_status must be stored in the |
| ** last DWORD of the CCB header since it is used for command |
| ** completion (ncr_wakeup()). Doing so, we are sure that the header |
| ** has been entirely copied back to the CCB when the host_status is |
| ** seen complete by the CPU. |
| ** |
| ** The last four bytes (status[4]) are copied to the scratchb register |
| ** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect, |
| ** and copied back just after disconnecting. |
| ** Inside the script the XX_REG are used. |
| ** |
| ** The first four bytes (scr_st[4]) are used inside the script by |
| ** "COPY" commands. |
| ** Because source and destination must have the same alignment |
| ** in a DWORD, the fields HAVE to be at the chosen offsets. |
| ** xerr_st 0 (0x34) scratcha |
| ** sync_st 1 (0x05) sxfer |
| ** wide_st 3 (0x03) scntl3 |
| */ |
| |
| /* |
| ** Last four bytes (script) |
| */ |
| #define QU_REG scr0 |
| #define HS_REG scr1 |
| #define HS_PRT nc_scr1 |
| #define SS_REG scr2 |
| #define SS_PRT nc_scr2 |
| #define PS_REG scr3 |
| |
| /* |
| ** Last four bytes (host) |
| */ |
| #ifdef SCSI_NCR_BIG_ENDIAN |
| #define actualquirks phys.header.status[3] |
| #define host_status phys.header.status[2] |
| #define scsi_status phys.header.status[1] |
| #define parity_status phys.header.status[0] |
| #else |
| #define actualquirks phys.header.status[0] |
| #define host_status phys.header.status[1] |
| #define scsi_status phys.header.status[2] |
| #define parity_status phys.header.status[3] |
| #endif |
| |
| /* |
| ** First four bytes (script) |
| */ |
| #define xerr_st header.scr_st[0] |
| #define sync_st header.scr_st[1] |
| #define nego_st header.scr_st[2] |
| #define wide_st header.scr_st[3] |
| |
| /* |
| ** First four bytes (host) |
| */ |
| #define xerr_status phys.xerr_st |
| #define nego_status phys.nego_st |
| |
| #if 0 |
| #define sync_status phys.sync_st |
| #define wide_status phys.wide_st |
| #endif |
| |
| /*========================================================== |
| ** |
| ** Declaration of structs: Data structure block |
| ** |
| **========================================================== |
| ** |
| ** During execution of a ccb by the script processor, |
| ** the DSA (data structure address) register points |
| ** to this substructure of the ccb. |
| ** This substructure contains the header with |
| ** the script-processor-changeable data and |
| ** data blocks for the indirect move commands. |
| ** |
| **---------------------------------------------------------- |
| */ |
| |
| struct dsb { |
| |
| /* |
| ** Header. |
| */ |
| |
| struct head header; |
| |
| /* |
| ** Table data for Script |
| */ |
| |
| struct scr_tblsel select; |
| struct scr_tblmove smsg ; |
| struct scr_tblmove cmd ; |
| struct scr_tblmove sense ; |
| struct scr_tblmove data[MAX_SCATTER]; |
| }; |
| |
| |
| /*======================================================================== |
| ** |
| ** Declaration of structs: Command control block. |
| ** |
| **======================================================================== |
| */ |
| struct ccb { |
| /*---------------------------------------------------------------- |
| ** This is the data structure which is pointed by the DSA |
| ** register when it is executed by the script processor. |
| ** It must be the first entry because it contains the header |
| ** as first entry that must be cache line aligned. |
| **---------------------------------------------------------------- |
| */ |
| struct dsb phys; |
| |
| /*---------------------------------------------------------------- |
| ** Mini-script used at CCB execution start-up. |
| ** Load the DSA with the data structure address (phys) and |
| ** jump to SELECT. Jump to CANCEL if CCB is to be canceled. |
| **---------------------------------------------------------------- |
| */ |
| struct launch start; |
| |
| /*---------------------------------------------------------------- |
| ** Mini-script used at CCB relection to restart the nexus. |
| ** Load the DSA with the data structure address (phys) and |
| ** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted. |
| **---------------------------------------------------------------- |
| */ |
| struct launch restart; |
| |
| /*---------------------------------------------------------------- |
| ** If a data transfer phase is terminated too early |
| ** (after reception of a message (i.e. DISCONNECT)), |
| ** we have to prepare a mini script to transfer |
| ** the rest of the data. |
| **---------------------------------------------------------------- |
| */ |
| ncrcmd patch[8]; |
| |
| /*---------------------------------------------------------------- |
| ** The general SCSI driver provides a |
| ** pointer to a control block. |
| **---------------------------------------------------------------- |
| */ |
| struct scsi_cmnd *cmd; /* SCSI command */ |
| u_char cdb_buf[16]; /* Copy of CDB */ |
| u_char sense_buf[64]; |
| int data_len; /* Total data length */ |
| |
| /*---------------------------------------------------------------- |
| ** Message areas. |
| ** We prepare a message to be sent after selection. |
| ** We may use a second one if the command is rescheduled |
| ** due to GETCC or QFULL. |
| ** Contents are IDENTIFY and SIMPLE_TAG. |
| ** While negotiating sync or wide transfer, |
| ** a SDTR or WDTR message is appended. |
| **---------------------------------------------------------------- |
| */ |
| u_char scsi_smsg [8]; |
| u_char scsi_smsg2[8]; |
| |
| /*---------------------------------------------------------------- |
| ** Other fields. |
| **---------------------------------------------------------------- |
| */ |
| u_long p_ccb; /* BUS address of this CCB */ |
| u_char sensecmd[6]; /* Sense command */ |
| u_char tag; /* Tag for this transfer */ |
| /* 255 means no tag */ |
| u_char target; |
| u_char lun; |
| u_char queued; |
| u_char auto_sense; |
| struct ccb * link_ccb; /* Host adapter CCB chain */ |
| struct list_head link_ccbq; /* Link to unit CCB queue */ |
| u32 startp; /* Initial data pointer */ |
| u_long magic; /* Free / busy CCB flag */ |
| }; |
| |
| #define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl)) |
| |
| |
| /*======================================================================== |
| ** |
| ** Declaration of structs: NCR device descriptor |
| ** |
| **======================================================================== |
| */ |
| struct ncb { |
| /*---------------------------------------------------------------- |
| ** The global header. |
| ** It is accessible to both the host and the script processor. |
| ** Must be cache line size aligned (32 for x86) in order to |
| ** allow cache line bursting when it is copied to/from CCB. |
| **---------------------------------------------------------------- |
| */ |
| struct head header; |
| |
| /*---------------------------------------------------------------- |
| ** CCBs management queues. |
| **---------------------------------------------------------------- |
| */ |
| struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */ |
| /* when lcb is not allocated. */ |
| struct scsi_cmnd *done_list; /* Commands waiting for done() */ |
| /* callback to be invoked. */ |
| spinlock_t smp_lock; /* Lock for SMP threading */ |
| |
| /*---------------------------------------------------------------- |
| ** Chip and controller indentification. |
| **---------------------------------------------------------------- |
| */ |
| int unit; /* Unit number */ |
| char inst_name[16]; /* ncb instance name */ |
| |
| /*---------------------------------------------------------------- |
| ** Initial value of some IO register bits. |
| ** These values are assumed to have been set by BIOS, and may |
| ** be used for probing adapter implementation differences. |
| **---------------------------------------------------------------- |
| */ |
| u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3, |
| sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4; |
| |
| /*---------------------------------------------------------------- |
| ** Actual initial value of IO register bits used by the |
| ** driver. They are loaded at initialisation according to |
| ** features that are to be enabled. |
| **---------------------------------------------------------------- |
| */ |
| u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3, |
| rv_ctest4, rv_ctest5, rv_stest2; |
| |
| /*---------------------------------------------------------------- |
| ** Targets management. |
| ** During reselection the ncr jumps to jump_tcb. |
| ** The SFBR register is loaded with the encoded target id. |
| ** For i = 0 to 3 |
| ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i) |
| ** |
| ** Recent chips will prefetch the 4 JUMPS using only 1 burst. |
| ** It is kind of hashcoding. |
| **---------------------------------------------------------------- |
| */ |
| struct link jump_tcb[4]; /* JUMPs for reselection */ |
| struct tcb target[MAX_TARGET]; /* Target data */ |
| |
| /*---------------------------------------------------------------- |
| ** Virtual and physical bus addresses of the chip. |
| **---------------------------------------------------------------- |
| */ |
| void __iomem *vaddr; /* Virtual and bus address of */ |
| unsigned long paddr; /* chip's IO registers. */ |
| unsigned long paddr2; /* On-chip RAM bus address. */ |
| volatile /* Pointer to volatile for */ |
| struct ncr_reg __iomem *reg; /* memory mapped IO. */ |
| |
| /*---------------------------------------------------------------- |
| ** SCRIPTS virtual and physical bus addresses. |
| ** 'script' is loaded in the on-chip RAM if present. |
| ** 'scripth' stays in main memory. |
| **---------------------------------------------------------------- |
| */ |
| struct script *script0; /* Copies of script and scripth */ |
| struct scripth *scripth0; /* relocated for this ncb. */ |
| struct scripth *scripth; /* Actual scripth virt. address */ |
| u_long p_script; /* Actual script and scripth */ |
| u_long p_scripth; /* bus addresses. */ |
| |
| /*---------------------------------------------------------------- |
| ** General controller parameters and configuration. |
| **---------------------------------------------------------------- |
| */ |
| struct device *dev; |
| u_char revision_id; /* PCI device revision id */ |
| u32 irq; /* IRQ level */ |
| u32 features; /* Chip features map */ |
| u_char myaddr; /* SCSI id of the adapter */ |
| u_char maxburst; /* log base 2 of dwords burst */ |
| u_char maxwide; /* Maximum transfer width */ |
| u_char minsync; /* Minimum sync period factor */ |
| u_char maxsync; /* Maximum sync period factor */ |
| u_char maxoffs; /* Max scsi offset */ |
| u_char multiplier; /* Clock multiplier (1,2,4) */ |
| u_char clock_divn; /* Number of clock divisors */ |
| u_long clock_khz; /* SCSI clock frequency in KHz */ |
| |
| /*---------------------------------------------------------------- |
| ** Start queue management. |
| ** It is filled up by the host processor and accessed by the |
| ** SCRIPTS processor in order to start SCSI commands. |
| **---------------------------------------------------------------- |
| */ |
| u16 squeueput; /* Next free slot of the queue */ |
| u16 actccbs; /* Number of allocated CCBs */ |
| u16 queuedccbs; /* Number of CCBs in start queue*/ |
| u16 queuedepth; /* Start queue depth */ |
| |
| /*---------------------------------------------------------------- |
| ** Timeout handler. |
| **---------------------------------------------------------------- |
| */ |
| struct timer_list timer; /* Timer handler link header */ |
| u_long lasttime; |
| u_long settle_time; /* Resetting the SCSI BUS */ |
| |
| /*---------------------------------------------------------------- |
| ** Debugging and profiling. |
| **---------------------------------------------------------------- |
| */ |
| struct ncr_reg regdump; /* Register dump */ |
| u_long regtime; /* Time it has been done */ |
| |
| /*---------------------------------------------------------------- |
| ** Miscellaneous buffers accessed by the scripts-processor. |
| ** They shall be DWORD aligned, because they may be read or |
| ** written with a SCR_COPY script command. |
| **---------------------------------------------------------------- |
| */ |
| u_char msgout[8]; /* Buffer for MESSAGE OUT */ |
| u_char msgin [8]; /* Buffer for MESSAGE IN */ |
| u32 lastmsg; /* Last SCSI message sent */ |
| u_char scratch; /* Scratch for SCSI receive */ |
| |
| /*---------------------------------------------------------------- |
| ** Miscellaneous configuration and status parameters. |
| **---------------------------------------------------------------- |
| */ |
| u_char disc; /* Diconnection allowed */ |
| u_char scsi_mode; /* Current SCSI BUS mode */ |
| u_char order; /* Tag order to use */ |
| u_char verbose; /* Verbosity for this controller*/ |
| int ncr_cache; /* Used for cache test at init. */ |
| u_long p_ncb; /* BUS address of this NCB */ |
| |
| /*---------------------------------------------------------------- |
| ** Command completion handling. |
| **---------------------------------------------------------------- |
| */ |
| #ifdef SCSI_NCR_CCB_DONE_SUPPORT |
| struct ccb *(ccb_done[MAX_DONE]); |
| int ccb_done_ic; |
| #endif |
| /*---------------------------------------------------------------- |
| ** Fields that should be removed or changed. |
| **---------------------------------------------------------------- |
| */ |
| struct ccb *ccb; /* Global CCB */ |
| struct usrcmd user; /* Command from user */ |
| volatile u_char release_stage; /* Synchronisation stage on release */ |
| }; |
| |
| #define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl)) |
| #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl)) |
| |
| /*========================================================== |
| ** |
| ** |
| ** Script for NCR-Processor. |
| ** |
| ** Use ncr_script_fill() to create the variable parts. |
| ** Use ncr_script_copy_and_bind() to make a copy and |
| ** bind to physical addresses. |
| ** |
| ** |
| **========================================================== |
| ** |
| ** We have to know the offsets of all labels before |
| ** we reach them (for forward jumps). |
| ** Therefore we declare a struct here. |
| ** If you make changes inside the script, |
| ** DONT FORGET TO CHANGE THE LENGTHS HERE! |
| ** |
| **---------------------------------------------------------- |
| */ |
| |
| /* |
| ** For HP Zalon/53c720 systems, the Zalon interface |
| ** between CPU and 53c720 does prefetches, which causes |
| ** problems with self modifying scripts. The problem |
| ** is overcome by calling a dummy subroutine after each |
| ** modification, to force a refetch of the script on |
| ** return from the subroutine. |
| */ |
| |
| #ifdef CONFIG_NCR53C8XX_PREFETCH |
| #define PREFETCH_FLUSH_CNT 2 |
| #define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma), |
| #else |
| #define PREFETCH_FLUSH_CNT 0 |
| #define PREFETCH_FLUSH |
| #endif |
| |
| /* |
| ** Script fragments which are loaded into the on-chip RAM |
| ** of 825A, 875 and 895 chips. |
| */ |
| struct script { |
| ncrcmd start [ 5]; |
| ncrcmd startpos [ 1]; |
| ncrcmd select [ 6]; |
| ncrcmd select2 [ 9 + PREFETCH_FLUSH_CNT]; |
| ncrcmd loadpos [ 4]; |
| ncrcmd send_ident [ 9]; |
| ncrcmd prepare [ 6]; |
| ncrcmd prepare2 [ 7]; |
| ncrcmd command [ 6]; |
| ncrcmd dispatch [ 32]; |
| ncrcmd clrack [ 4]; |
| ncrcmd no_data [ 17]; |
| ncrcmd status [ 8]; |
| ncrcmd msg_in [ 2]; |
| ncrcmd msg_in2 [ 16]; |
| ncrcmd msg_bad [ 4]; |
| ncrcmd setmsg [ 7]; |
| ncrcmd cleanup [ 6]; |
| ncrcmd complete [ 9]; |
| ncrcmd cleanup_ok [ 8 + PREFETCH_FLUSH_CNT]; |
| ncrcmd cleanup0 [ 1]; |
| #ifndef SCSI_NCR_CCB_DONE_SUPPORT |
| ncrcmd signal [ 12]; |
| #else |
| ncrcmd signal [ 9]; |
| ncrcmd done_pos [ 1]; |
| ncrcmd done_plug [ 2]; |
| ncrcmd done_end [ 7]; |
| #endif |
| ncrcmd save_dp [ 7]; |
| ncrcmd restore_dp [ 5]; |
| ncrcmd disconnect [ 10]; |
| ncrcmd msg_out [ 9]; |
| ncrcmd msg_out_done [ 7]; |
| ncrcmd idle [ 2]; |
| ncrcmd reselect [ 8]; |
| ncrcmd reselected [ 8]; |
| ncrcmd resel_dsa [ 6 + PREFETCH_FLUSH_CNT]; |
| ncrcmd loadpos1 [ 4]; |
| ncrcmd resel_lun [ 6]; |
| ncrcmd resel_tag [ 6]; |
| ncrcmd jump_to_nexus [ 4 + PREFETCH_FLUSH_CNT]; |
| ncrcmd nexus_indirect [ 4]; |
| ncrcmd resel_notag [ 4]; |
| ncrcmd data_in [MAX_SCATTERL * 4]; |
| ncrcmd data_in2 [ 4]; |
| ncrcmd data_out [MAX_SCATTERL * 4]; |
| ncrcmd data_out2 [ 4]; |
| }; |
| |
| /* |
| ** Script fragments which stay in main memory for all chips. |
| */ |
| struct scripth { |
| ncrcmd tryloop [MAX_START*2]; |
| ncrcmd tryloop2 [ 2]; |
| #ifdef SCSI_NCR_CCB_DONE_SUPPORT |
| ncrcmd done_queue [MAX_DONE*5]; |
| ncrcmd done_queue2 [ 2]; |
| #endif |
| ncrcmd select_no_atn [ 8]; |
| ncrcmd cancel [ 4]; |
| ncrcmd skip [ 9 + PREFETCH_FLUSH_CNT]; |
| ncrcmd skip2 [ 19]; |
| ncrcmd par_err_data_in [ 6]; |
| ncrcmd par_err_other [ 4]; |
| ncrcmd msg_reject [ 8]; |
| ncrcmd msg_ign_residue [ 24]; |
| ncrcmd msg_extended [ 10]; |
| ncrcmd msg_ext_2 [ 10]; |
| ncrcmd msg_wdtr [ 14]; |
| ncrcmd send_wdtr [ 7]; |
| ncrcmd msg_ext_3 [ 10]; |
| ncrcmd msg_sdtr [ 14]; |
| ncrcmd send_sdtr [ 7]; |
| ncrcmd nego_bad_phase [ 4]; |
| ncrcmd msg_out_abort [ 10]; |
| ncrcmd hdata_in [MAX_SCATTERH * 4]; |
| ncrcmd hdata_in2 [ 2]; |
| ncrcmd hdata_out [MAX_SCATTERH * 4]; |
| ncrcmd hdata_out2 [ 2]; |
| ncrcmd reset [ 4]; |
| ncrcmd aborttag [ 4]; |
| ncrcmd abort [ 2]; |
| ncrcmd abort_resel [ 20]; |
| ncrcmd resend_ident [ 4]; |
| ncrcmd clratn_go_on [ 3]; |
| ncrcmd nxtdsp_go_on [ 1]; |
| ncrcmd sdata_in [ 8]; |
| ncrcmd data_io [ 18]; |
| ncrcmd bad_identify [ 12]; |
| ncrcmd bad_i_t_l [ 4]; |
| ncrcmd bad_i_t_l_q [ 4]; |
| ncrcmd bad_target [ 8]; |
| ncrcmd bad_status [ 8]; |
| ncrcmd start_ram [ 4 + PREFETCH_FLUSH_CNT]; |
| ncrcmd start_ram0 [ 4]; |
| ncrcmd sto_restart [ 5]; |
| ncrcmd wait_dma [ 2]; |
| ncrcmd snooptest [ 9]; |
| ncrcmd snoopend [ 2]; |
| }; |
| |
| /*========================================================== |
| ** |
| ** |
| ** Function headers. |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln); |
| static void ncr_complete (struct ncb *np, struct ccb *cp); |
| static void ncr_exception (struct ncb *np); |
| static void ncr_free_ccb (struct ncb *np, struct ccb *cp); |
| static void ncr_init_ccb (struct ncb *np, struct ccb *cp); |
| static void ncr_init_tcb (struct ncb *np, u_char tn); |
| static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln); |
| static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev); |
| static void ncr_getclock (struct ncb *np, int mult); |
| static void ncr_selectclock (struct ncb *np, u_char scntl3); |
| static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd); |
| static void ncr_chip_reset (struct ncb *np, int delay); |
| static void ncr_init (struct ncb *np, int reset, char * msg, u_long code); |
| static int ncr_int_sbmc (struct ncb *np); |
| static int ncr_int_par (struct ncb *np); |
| static void ncr_int_ma (struct ncb *np); |
| static void ncr_int_sir (struct ncb *np); |
| static void ncr_int_sto (struct ncb *np); |
| static void ncr_negotiate (struct ncb* np, struct tcb* tp); |
| static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr); |
| |
| static void ncr_script_copy_and_bind |
| (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len); |
| static void ncr_script_fill (struct script * scr, struct scripth * scripth); |
| static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd); |
| static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p); |
| static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer); |
| static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev); |
| static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack); |
| static int ncr_snooptest (struct ncb *np); |
| static void ncr_timeout (struct ncb *np); |
| static void ncr_wakeup (struct ncb *np, u_long code); |
| static void ncr_wakeup_done (struct ncb *np); |
| static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn); |
| static void ncr_put_start_queue(struct ncb *np, struct ccb *cp); |
| |
| static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd); |
| static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd); |
| static void process_waiting_list(struct ncb *np, int sts); |
| |
| #define remove_from_waiting_list(np, cmd) \ |
| retrieve_from_waiting_list(1, (np), (cmd)) |
| #define requeue_waiting_list(np) process_waiting_list((np), DID_OK) |
| #define reset_waiting_list(np) process_waiting_list((np), DID_RESET) |
| |
| static inline char *ncr_name (struct ncb *np) |
| { |
| return np->inst_name; |
| } |
| |
| |
| /*========================================================== |
| ** |
| ** |
| ** Scripts for NCR-Processor. |
| ** |
| ** Use ncr_script_bind for binding to physical addresses. |
| ** |
| ** |
| **========================================================== |
| ** |
| ** NADDR generates a reference to a field of the controller data. |
| ** PADDR generates a reference to another part of the script. |
| ** RADDR generates a reference to a script processor register. |
| ** FADDR generates a reference to a script processor register |
| ** with offset. |
| ** |
| **---------------------------------------------------------- |
| */ |
| |
| #define RELOC_SOFTC 0x40000000 |
| #define RELOC_LABEL 0x50000000 |
| #define RELOC_REGISTER 0x60000000 |
| #if 0 |
| #define RELOC_KVAR 0x70000000 |
| #endif |
| #define RELOC_LABELH 0x80000000 |
| #define RELOC_MASK 0xf0000000 |
| |
| #define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label)) |
| #define PADDR(label) (RELOC_LABEL | offsetof(struct script, label)) |
| #define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label)) |
| #define RADDR(label) (RELOC_REGISTER | REG(label)) |
| #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs))) |
| #if 0 |
| #define KVAR(which) (RELOC_KVAR | (which)) |
| #endif |
| |
| #if 0 |
| #define SCRIPT_KVAR_JIFFIES (0) |
| #define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES |
| #define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES |
| /* |
| * Kernel variables referenced in the scripts. |
| * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY. |
| */ |
| static void *script_kvars[] __initdata = |
| { (void *)&jiffies }; |
| #endif |
| |
| static struct script script0 __initdata = { |
| /*--------------------------< START >-----------------------*/ { |
| /* |
| ** This NOP will be patched with LED ON |
| ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) |
| */ |
| SCR_NO_OP, |
| 0, |
| /* |
| ** Clear SIGP. |
| */ |
| SCR_FROM_REG (ctest2), |
| 0, |
| /* |
| ** Then jump to a certain point in tryloop. |
| ** Due to the lack of indirect addressing the code |
| ** is self modifying here. |
| */ |
| SCR_JUMP, |
| }/*-------------------------< STARTPOS >--------------------*/,{ |
| PADDRH(tryloop), |
| |
| }/*-------------------------< SELECT >----------------------*/,{ |
| /* |
| ** DSA contains the address of a scheduled |
| ** data structure. |
| ** |
| ** SCRATCHA contains the address of the script, |
| ** which starts the next entry. |
| ** |
| ** Set Initiator mode. |
| ** |
| ** (Target mode is left as an exercise for the reader) |
| */ |
| |
| SCR_CLR (SCR_TRG), |
| 0, |
| SCR_LOAD_REG (HS_REG, HS_SELECTING), |
| 0, |
| |
| /* |
| ** And try to select this target. |
| */ |
| SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select), |
| PADDR (reselect), |
| |
| }/*-------------------------< SELECT2 >----------------------*/,{ |
| /* |
| ** Now there are 4 possibilities: |
| ** |
| ** (1) The ncr loses arbitration. |
| ** This is ok, because it will try again, |
| ** when the bus becomes idle. |
| ** (But beware of the timeout function!) |
| ** |
| ** (2) The ncr is reselected. |
| ** Then the script processor takes the jump |
| ** to the RESELECT label. |
| ** |
| ** (3) The ncr wins arbitration. |
| ** Then it will execute SCRIPTS instruction until |
| ** the next instruction that checks SCSI phase. |
| ** Then will stop and wait for selection to be |
| ** complete or selection time-out to occur. |
| ** As a result the SCRIPTS instructions until |
| ** LOADPOS + 2 should be executed in parallel with |
| ** the SCSI core performing selection. |
| */ |
| |
| /* |
| ** The MESSAGE_REJECT problem seems to be due to a selection |
| ** timing problem. |
| ** Wait immediately for the selection to complete. |
| ** (2.5x behaves so) |
| */ |
| SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), |
| 0, |
| |
| /* |
| ** Next time use the next slot. |
| */ |
| SCR_COPY (4), |
| RADDR (temp), |
| PADDR (startpos), |
| /* |
| ** The ncr doesn't have an indirect load |
| ** or store command. So we have to |
| ** copy part of the control block to a |
| ** fixed place, where we can access it. |
| ** |
| ** We patch the address part of a |
| ** COPY command with the DSA-register. |
| */ |
| SCR_COPY_F (4), |
| RADDR (dsa), |
| PADDR (loadpos), |
| /* |
| ** Flush script prefetch if required |
| */ |
| PREFETCH_FLUSH |
| /* |
| ** then we do the actual copy. |
| */ |
| SCR_COPY (sizeof (struct head)), |
| /* |
| ** continued after the next label ... |
| */ |
| }/*-------------------------< LOADPOS >---------------------*/,{ |
| 0, |
| NADDR (header), |
| /* |
| ** Wait for the next phase or the selection |
| ** to complete or time-out. |
| */ |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), |
| PADDR (prepare), |
| |
| }/*-------------------------< SEND_IDENT >----------------------*/,{ |
| /* |
| ** Selection complete. |
| ** Send the IDENTIFY and SIMPLE_TAG messages |
| ** (and the EXTENDED_SDTR message) |
| */ |
| SCR_MOVE_TBL ^ SCR_MSG_OUT, |
| offsetof (struct dsb, smsg), |
| SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), |
| PADDRH (resend_ident), |
| SCR_LOAD_REG (scratcha, 0x80), |
| 0, |
| SCR_COPY (1), |
| RADDR (scratcha), |
| NADDR (lastmsg), |
| }/*-------------------------< PREPARE >----------------------*/,{ |
| /* |
| ** load the savep (saved pointer) into |
| ** the TEMP register (actual pointer) |
| */ |
| SCR_COPY (4), |
| NADDR (header.savep), |
| RADDR (temp), |
| /* |
| ** Initialize the status registers |
| */ |
| SCR_COPY (4), |
| NADDR (header.status), |
| RADDR (scr0), |
| }/*-------------------------< PREPARE2 >---------------------*/,{ |
| /* |
| ** Initialize the msgout buffer with a NOOP message. |
| */ |
| SCR_LOAD_REG (scratcha, NOP), |
| 0, |
| SCR_COPY (1), |
| RADDR (scratcha), |
| NADDR (msgout), |
| #if 0 |
| SCR_COPY (1), |
| RADDR (scratcha), |
| NADDR (msgin), |
| #endif |
| /* |
| ** Anticipate the COMMAND phase. |
| ** This is the normal case for initial selection. |
| */ |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)), |
| PADDR (dispatch), |
| |
| }/*-------------------------< COMMAND >--------------------*/,{ |
| /* |
| ** ... and send the command |
| */ |
| SCR_MOVE_TBL ^ SCR_COMMAND, |
| offsetof (struct dsb, cmd), |
| /* |
| ** If status is still HS_NEGOTIATE, negotiation failed. |
| ** We check this here, since we want to do that |
| ** only once. |
| */ |
| SCR_FROM_REG (HS_REG), |
| 0, |
| SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), |
| SIR_NEGO_FAILED, |
| |
| }/*-----------------------< DISPATCH >----------------------*/,{ |
| /* |
| ** MSG_IN is the only phase that shall be |
| ** entered at least once for each (re)selection. |
| ** So we test it first. |
| */ |
| SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), |
| PADDR (msg_in), |
| |
| SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)), |
| 0, |
| /* |
| ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4. |
| ** Possible data corruption during Memory Write and Invalidate. |
| ** This work-around resets the addressing logic prior to the |
| ** start of the first MOVE of a DATA IN phase. |
| ** (See Documentation/scsi/ncr53c8xx.txt for more information) |
| */ |
| SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), |
| 20, |
| SCR_COPY (4), |
| RADDR (scratcha), |
| RADDR (scratcha), |
| SCR_RETURN, |
| 0, |
| SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), |
| PADDR (status), |
| SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), |
| PADDR (command), |
| SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), |
| PADDR (msg_out), |
| /* |
| ** Discard one illegal phase byte, if required. |
| */ |
| SCR_LOAD_REG (scratcha, XE_BAD_PHASE), |
| 0, |
| SCR_COPY (1), |
| RADDR (scratcha), |
| NADDR (xerr_st), |
| SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)), |
| 8, |
| SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, |
| NADDR (scratch), |
| SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)), |
| 8, |
| SCR_MOVE_ABS (1) ^ SCR_ILG_IN, |
| NADDR (scratch), |
| SCR_JUMP, |
| PADDR (dispatch), |
| |
| }/*-------------------------< CLRACK >----------------------*/,{ |
| /* |
| ** Terminate possible pending message phase. |
| */ |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP, |
| PADDR (dispatch), |
| |
| }/*-------------------------< NO_DATA >--------------------*/,{ |
| /* |
| ** The target wants to tranfer too much data |
| ** or in the wrong direction. |
| ** Remember that in extended error. |
| */ |
| SCR_LOAD_REG (scratcha, XE_EXTRA_DATA), |
| 0, |
| SCR_COPY (1), |
| RADDR (scratcha), |
| NADDR (xerr_st), |
| /* |
| ** Discard one data byte, if required. |
| */ |
| SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), |
| 8, |
| SCR_MOVE_ABS (1) ^ SCR_DATA_OUT, |
| NADDR (scratch), |
| SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), |
| 8, |
| SCR_MOVE_ABS (1) ^ SCR_DATA_IN, |
| NADDR (scratch), |
| /* |
| ** .. and repeat as required. |
| */ |
| SCR_CALL, |
| PADDR (dispatch), |
| SCR_JUMP, |
| PADDR (no_data), |
| |
| }/*-------------------------< STATUS >--------------------*/,{ |
| /* |
| ** get the status |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_STATUS, |
| NADDR (scratch), |
| /* |
| ** save status to scsi_status. |
| ** mark as complete. |
| */ |
| SCR_TO_REG (SS_REG), |
| 0, |
| SCR_LOAD_REG (HS_REG, HS_COMPLETE), |
| 0, |
| SCR_JUMP, |
| PADDR (dispatch), |
| }/*-------------------------< MSG_IN >--------------------*/,{ |
| /* |
| ** Get the first byte of the message |
| ** and save it to SCRATCHA. |
| ** |
| ** The script processor doesn't negate the |
| ** ACK signal after this transfer. |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| NADDR (msgin[0]), |
| }/*-------------------------< MSG_IN2 >--------------------*/,{ |
| /* |
| ** Handle this message. |
| */ |
| SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)), |
| PADDR (complete), |
| SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)), |
| PADDR (disconnect), |
| SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)), |
| PADDR (save_dp), |
| SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)), |
| PADDR (restore_dp), |
| SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)), |
| PADDRH (msg_extended), |
| SCR_JUMP ^ IFTRUE (DATA (NOP)), |
| PADDR (clrack), |
| SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)), |
| PADDRH (msg_reject), |
| SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)), |
| PADDRH (msg_ign_residue), |
| /* |
| ** Rest of the messages left as |
| ** an exercise ... |
| ** |
| ** Unimplemented messages: |
| ** fall through to MSG_BAD. |
| */ |
| }/*-------------------------< MSG_BAD >------------------*/,{ |
| /* |
| ** unimplemented message - reject it. |
| */ |
| SCR_INT, |
| SIR_REJECT_SENT, |
| SCR_LOAD_REG (scratcha, MESSAGE_REJECT), |
| 0, |
| }/*-------------------------< SETMSG >----------------------*/,{ |
| SCR_COPY (1), |
| RADDR (scratcha), |
| NADDR (msgout), |
| SCR_SET (SCR_ATN), |
| 0, |
| SCR_JUMP, |
| PADDR (clrack), |
| }/*-------------------------< CLEANUP >-------------------*/,{ |
| /* |
| ** dsa: Pointer to ccb |
| ** or xxxxxxFF (no ccb) |
| ** |
| ** HS_REG: Host-Status (<>0!) |
| */ |
| SCR_FROM_REG (dsa), |
| 0, |
| SCR_JUMP ^ IFTRUE (DATA (0xff)), |
| PADDR (start), |
| /* |
| ** dsa is valid. |
| ** complete the cleanup. |
| */ |
| SCR_JUMP, |
| PADDR (cleanup_ok), |
| |
| }/*-------------------------< COMPLETE >-----------------*/,{ |
| /* |
| ** Complete message. |
| ** |
| ** Copy TEMP register to LASTP in header. |
| */ |
| SCR_COPY (4), |
| RADDR (temp), |
| NADDR (header.lastp), |
| /* |
| ** When we terminate the cycle by clearing ACK, |
| ** the target may disconnect immediately. |
| ** |
| ** We don't want to be told of an |
| ** "unexpected disconnect", |
| ** so we disable this feature. |
| */ |
| SCR_REG_REG (scntl2, SCR_AND, 0x7f), |
| 0, |
| /* |
| ** Terminate cycle ... |
| */ |
| SCR_CLR (SCR_ACK|SCR_ATN), |
| 0, |
| /* |
| ** ... and wait for the disconnect. |
| */ |
| SCR_WAIT_DISC, |
| 0, |
| }/*-------------------------< CLEANUP_OK >----------------*/,{ |
| /* |
| ** Save host status to header. |
| */ |
| SCR_COPY (4), |
| RADDR (scr0), |
| NADDR (header.status), |
| /* |
| ** and copy back the header to the ccb. |
| */ |
| SCR_COPY_F (4), |
| RADDR (dsa), |
| PADDR (cleanup0), |
| /* |
| ** Flush script prefetch if required |
| */ |
| PREFETCH_FLUSH |
| SCR_COPY (sizeof (struct head)), |
| NADDR (header), |
| }/*-------------------------< CLEANUP0 >--------------------*/,{ |
| 0, |
| }/*-------------------------< SIGNAL >----------------------*/,{ |
| /* |
| ** if job not completed ... |
| */ |
| SCR_FROM_REG (HS_REG), |
| 0, |
| /* |
| ** ... start the next command. |
| */ |
| SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))), |
| PADDR(start), |
| /* |
| ** If command resulted in not GOOD status, |
| ** call the C code if needed. |
| */ |
| SCR_FROM_REG (SS_REG), |
| 0, |
| SCR_CALL ^ IFFALSE (DATA (S_GOOD)), |
| PADDRH (bad_status), |
| |
| #ifndef SCSI_NCR_CCB_DONE_SUPPORT |
| |
| /* |
| ** ... signal completion to the host |
| */ |
| SCR_INT, |
| SIR_INTFLY, |
| /* |
| ** Auf zu neuen Schandtaten! |
| */ |
| SCR_JUMP, |
| PADDR(start), |
| |
| #else /* defined SCSI_NCR_CCB_DONE_SUPPORT */ |
| |
| /* |
| ** ... signal completion to the host |
| */ |
| SCR_JUMP, |
| }/*------------------------< DONE_POS >---------------------*/,{ |
| PADDRH (done_queue), |
| }/*------------------------< DONE_PLUG >--------------------*/,{ |
| SCR_INT, |
| SIR_DONE_OVERFLOW, |
| }/*------------------------< DONE_END >---------------------*/,{ |
| SCR_INT, |
| SIR_INTFLY, |
| SCR_COPY (4), |
| RADDR (temp), |
| PADDR (done_pos), |
| SCR_JUMP, |
| PADDR (start), |
| |
| #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ |
| |
| }/*-------------------------< SAVE_DP >------------------*/,{ |
| /* |
| ** SAVE_DP message: |
| ** Copy TEMP register to SAVEP in header. |
| */ |
| SCR_COPY (4), |
| RADDR (temp), |
| NADDR (header.savep), |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP, |
| PADDR (dispatch), |
| }/*-------------------------< RESTORE_DP >---------------*/,{ |
| /* |
| ** RESTORE_DP message: |
| ** Copy SAVEP in header to TEMP register. |
| */ |
| SCR_COPY (4), |
| NADDR (header.savep), |
| RADDR (temp), |
| SCR_JUMP, |
| PADDR (clrack), |
| |
| }/*-------------------------< DISCONNECT >---------------*/,{ |
| /* |
| ** DISCONNECTing ... |
| ** |
| ** disable the "unexpected disconnect" feature, |
| ** and remove the ACK signal. |
| */ |
| SCR_REG_REG (scntl2, SCR_AND, 0x7f), |
| 0, |
| SCR_CLR (SCR_ACK|SCR_ATN), |
| 0, |
| /* |
| ** Wait for the disconnect. |
| */ |
| SCR_WAIT_DISC, |
| 0, |
| /* |
| ** Status is: DISCONNECTED. |
| */ |
| SCR_LOAD_REG (HS_REG, HS_DISCONNECT), |
| 0, |
| SCR_JUMP, |
| PADDR (cleanup_ok), |
| |
| }/*-------------------------< MSG_OUT >-------------------*/,{ |
| /* |
| ** The target requests a message. |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, |
| NADDR (msgout), |
| SCR_COPY (1), |
| NADDR (msgout), |
| NADDR (lastmsg), |
| /* |
| ** If it was no ABORT message ... |
| */ |
| SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)), |
| PADDRH (msg_out_abort), |
| /* |
| ** ... wait for the next phase |
| ** if it's a message out, send it again, ... |
| */ |
| SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), |
| PADDR (msg_out), |
| }/*-------------------------< MSG_OUT_DONE >--------------*/,{ |
| /* |
| ** ... else clear the message ... |
| */ |
| SCR_LOAD_REG (scratcha, NOP), |
| 0, |
| SCR_COPY (4), |
| RADDR (scratcha), |
| NADDR (msgout), |
| /* |
| ** ... and process the next phase |
| */ |
| SCR_JUMP, |
| PADDR (dispatch), |
| }/*-------------------------< IDLE >------------------------*/,{ |
| /* |
| ** Nothing to do? |
| ** Wait for reselect. |
| ** This NOP will be patched with LED OFF |
| ** SCR_REG_REG (gpreg, SCR_OR, 0x01) |
| */ |
| SCR_NO_OP, |
| 0, |
| }/*-------------------------< RESELECT >--------------------*/,{ |
| /* |
| ** make the DSA invalid. |
| */ |
| SCR_LOAD_REG (dsa, 0xff), |
| 0, |
| SCR_CLR (SCR_TRG), |
| 0, |
| SCR_LOAD_REG (HS_REG, HS_IN_RESELECT), |
| 0, |
| /* |
| ** Sleep waiting for a reselection. |
| ** If SIGP is set, special treatment. |
| ** |
| ** Zu allem bereit .. |
| */ |
| SCR_WAIT_RESEL, |
| PADDR(start), |
| }/*-------------------------< RESELECTED >------------------*/,{ |
| /* |
| ** This NOP will be patched with LED ON |
| ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) |
| */ |
| SCR_NO_OP, |
| 0, |
| /* |
| ** ... zu nichts zu gebrauchen ? |
| ** |
| ** load the target id into the SFBR |
| ** and jump to the control block. |
| ** |
| ** Look at the declarations of |
| ** - struct ncb |
| ** - struct tcb |
| ** - struct lcb |
| ** - struct ccb |
| ** to understand what's going on. |
| */ |
| SCR_REG_SFBR (ssid, SCR_AND, 0x8F), |
| 0, |
| SCR_TO_REG (sdid), |
| 0, |
| SCR_JUMP, |
| NADDR (jump_tcb), |
| |
| }/*-------------------------< RESEL_DSA >-------------------*/,{ |
| /* |
| ** Ack the IDENTIFY or TAG previously received. |
| */ |
| SCR_CLR (SCR_ACK), |
| 0, |
| /* |
| ** The ncr doesn't have an indirect load |
| ** or store command. So we have to |
| ** copy part of the control block to a |
| ** fixed place, where we can access it. |
| ** |
| ** We patch the address part of a |
| ** COPY command with the DSA-register. |
| */ |
| SCR_COPY_F (4), |
| RADDR (dsa), |
| PADDR (loadpos1), |
| /* |
| ** Flush script prefetch if required |
| */ |
| PREFETCH_FLUSH |
| /* |
| ** then we do the actual copy. |
| */ |
| SCR_COPY (sizeof (struct head)), |
| /* |
| ** continued after the next label ... |
| */ |
| |
| }/*-------------------------< LOADPOS1 >-------------------*/,{ |
| 0, |
| NADDR (header), |
| /* |
| ** The DSA contains the data structure address. |
| */ |
| SCR_JUMP, |
| PADDR (prepare), |
| |
| }/*-------------------------< RESEL_LUN >-------------------*/,{ |
| /* |
| ** come back to this point |
| ** to get an IDENTIFY message |
| ** Wait for a msg_in phase. |
| */ |
| SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), |
| SIR_RESEL_NO_MSG_IN, |
| /* |
| ** message phase. |
| ** Read the data directly from the BUS DATA lines. |
| ** This helps to support very old SCSI devices that |
| ** may reselect without sending an IDENTIFY. |
| */ |
| SCR_FROM_REG (sbdl), |
| 0, |
| /* |
| ** It should be an Identify message. |
| */ |
| SCR_RETURN, |
| 0, |
| }/*-------------------------< RESEL_TAG >-------------------*/,{ |
| /* |
| ** Read IDENTIFY + SIMPLE + TAG using a single MOVE. |
| ** Agressive optimization, is'nt it? |
| ** No need to test the SIMPLE TAG message, since the |
| ** driver only supports conformant devices for tags. ;-) |
| */ |
| SCR_MOVE_ABS (3) ^ SCR_MSG_IN, |
| NADDR (msgin), |
| /* |
| ** Read the TAG from the SIDL. |
| ** Still an aggressive optimization. ;-) |
| ** Compute the CCB indirect jump address which |
| ** is (#TAG*2 & 0xfc) due to tag numbering using |
| ** 1,3,5..MAXTAGS*2+1 actual values. |
| */ |
| SCR_REG_SFBR (sidl, SCR_SHL, 0), |
| 0, |
| SCR_SFBR_REG (temp, SCR_AND, 0xfc), |
| 0, |
| }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{ |
| SCR_COPY_F (4), |
| RADDR (temp), |
| PADDR (nexus_indirect), |
| /* |
| ** Flush script prefetch if required |
| */ |
| PREFETCH_FLUSH |
| SCR_COPY (4), |
| }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{ |
| 0, |
| RADDR (temp), |
| SCR_RETURN, |
| 0, |
| }/*-------------------------< RESEL_NOTAG >-------------------*/,{ |
| /* |
| ** No tag expected. |
| ** Read an throw away the IDENTIFY. |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| NADDR (msgin), |
| SCR_JUMP, |
| PADDR (jump_to_nexus), |
| }/*-------------------------< DATA_IN >--------------------*/,{ |
| /* |
| ** Because the size depends on the |
| ** #define MAX_SCATTERL parameter, |
| ** it is filled in at runtime. |
| ** |
| ** ##===========< i=0; i<MAX_SCATTERL >========= |
| ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), |
| ** || PADDR (dispatch), |
| ** || SCR_MOVE_TBL ^ SCR_DATA_IN, |
| ** || offsetof (struct dsb, data[ i]), |
| ** ##========================================== |
| ** |
| **--------------------------------------------------------- |
| */ |
| 0 |
| }/*-------------------------< DATA_IN2 >-------------------*/,{ |
| SCR_CALL, |
| PADDR (dispatch), |
| SCR_JUMP, |
| PADDR (no_data), |
| }/*-------------------------< DATA_OUT >--------------------*/,{ |
| /* |
| ** Because the size depends on the |
| ** #define MAX_SCATTERL parameter, |
| ** it is filled in at runtime. |
| ** |
| ** ##===========< i=0; i<MAX_SCATTERL >========= |
| ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)), |
| ** || PADDR (dispatch), |
| ** || SCR_MOVE_TBL ^ SCR_DATA_OUT, |
| ** || offsetof (struct dsb, data[ i]), |
| ** ##========================================== |
| ** |
| **--------------------------------------------------------- |
| */ |
| 0 |
| }/*-------------------------< DATA_OUT2 >-------------------*/,{ |
| SCR_CALL, |
| PADDR (dispatch), |
| SCR_JUMP, |
| PADDR (no_data), |
| }/*--------------------------------------------------------*/ |
| }; |
| |
| static struct scripth scripth0 __initdata = { |
| /*-------------------------< TRYLOOP >---------------------*/{ |
| /* |
| ** Start the next entry. |
| ** Called addresses point to the launch script in the CCB. |
| ** They are patched by the main processor. |
| ** |
| ** Because the size depends on the |
| ** #define MAX_START parameter, it is filled |
| ** in at runtime. |
| ** |
| **----------------------------------------------------------- |
| ** |
| ** ##===========< I=0; i<MAX_START >=========== |
| ** || SCR_CALL, |
| ** || PADDR (idle), |
| ** ##========================================== |
| ** |
| **----------------------------------------------------------- |
| */ |
| 0 |
| }/*------------------------< TRYLOOP2 >---------------------*/,{ |
| SCR_JUMP, |
| PADDRH(tryloop), |
| |
| #ifdef SCSI_NCR_CCB_DONE_SUPPORT |
| |
| }/*------------------------< DONE_QUEUE >-------------------*/,{ |
| /* |
| ** Copy the CCB address to the next done entry. |
| ** Because the size depends on the |
| ** #define MAX_DONE parameter, it is filled |
| ** in at runtime. |
| ** |
| **----------------------------------------------------------- |
| ** |
| ** ##===========< I=0; i<MAX_DONE >=========== |
| ** || SCR_COPY (sizeof(struct ccb *), |
| ** || NADDR (header.cp), |
| ** || NADDR (ccb_done[i]), |
| ** || SCR_CALL, |
| ** || PADDR (done_end), |
| ** ##========================================== |
| ** |
| **----------------------------------------------------------- |
| */ |
| 0 |
| }/*------------------------< DONE_QUEUE2 >------------------*/,{ |
| SCR_JUMP, |
| PADDRH (done_queue), |
| |
| #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ |
| }/*------------------------< SELECT_NO_ATN >-----------------*/,{ |
| /* |
| ** Set Initiator mode. |
| ** And try to select this target without ATN. |
| */ |
| |
| SCR_CLR (SCR_TRG), |
| 0, |
| SCR_LOAD_REG (HS_REG, HS_SELECTING), |
| 0, |
| SCR_SEL_TBL ^ offsetof (struct dsb, select), |
| PADDR (reselect), |
| SCR_JUMP, |
| PADDR (select2), |
| |
| }/*-------------------------< CANCEL >------------------------*/,{ |
| |
| SCR_LOAD_REG (scratcha, HS_ABORTED), |
| 0, |
| SCR_JUMPR, |
| 8, |
| }/*-------------------------< SKIP >------------------------*/,{ |
| SCR_LOAD_REG (scratcha, 0), |
| 0, |
| /* |
| ** This entry has been canceled. |
| ** Next time use the next slot. |
| */ |
| SCR_COPY (4), |
| RADDR (temp), |
| PADDR (startpos), |
| /* |
| ** The ncr doesn't have an indirect load |
| ** or store command. So we have to |
| ** copy part of the control block to a |
| ** fixed place, where we can access it. |
| ** |
| ** We patch the address part of a |
| ** COPY command with the DSA-register. |
| */ |
| SCR_COPY_F (4), |
| RADDR (dsa), |
| PADDRH (skip2), |
| /* |
| ** Flush script prefetch if required |
| */ |
| PREFETCH_FLUSH |
| /* |
| ** then we do the actual copy. |
| */ |
| SCR_COPY (sizeof (struct head)), |
| /* |
| ** continued after the next label ... |
| */ |
| }/*-------------------------< SKIP2 >---------------------*/,{ |
| 0, |
| NADDR (header), |
| /* |
| ** Initialize the status registers |
| */ |
| SCR_COPY (4), |
| NADDR (header.status), |
| RADDR (scr0), |
| /* |
| ** Force host status. |
| */ |
| SCR_FROM_REG (scratcha), |
| 0, |
| SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)), |
| 16, |
| SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK), |
| 0, |
| SCR_JUMPR, |
| 8, |
| SCR_TO_REG (HS_REG), |
| 0, |
| SCR_LOAD_REG (SS_REG, S_GOOD), |
| 0, |
| SCR_JUMP, |
| PADDR (cleanup_ok), |
| |
| },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{ |
| /* |
| ** Ignore all data in byte, until next phase |
| */ |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), |
| PADDRH (par_err_other), |
| SCR_MOVE_ABS (1) ^ SCR_DATA_IN, |
| NADDR (scratch), |
| SCR_JUMPR, |
| -24, |
| },/*-------------------------< PAR_ERR_OTHER >------------------*/{ |
| /* |
| ** count it. |
| */ |
| SCR_REG_REG (PS_REG, SCR_ADD, 0x01), |
| 0, |
| /* |
| ** jump to dispatcher. |
| */ |
| SCR_JUMP, |
| PADDR (dispatch), |
| }/*-------------------------< MSG_REJECT >---------------*/,{ |
| /* |
| ** If a negotiation was in progress, |
| ** negotiation failed. |
| ** Otherwise, let the C code print |
| ** some message. |
| */ |
| SCR_FROM_REG (HS_REG), |
| 0, |
| SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)), |
| SIR_REJECT_RECEIVED, |
| SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), |
| SIR_NEGO_FAILED, |
| SCR_JUMP, |
| PADDR (clrack), |
| |
| }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{ |
| /* |
| ** Terminate cycle |
| */ |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), |
| PADDR (dispatch), |
| /* |
| ** get residue size. |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| NADDR (msgin[1]), |
| /* |
| ** Size is 0 .. ignore message. |
| */ |
| SCR_JUMP ^ IFTRUE (DATA (0)), |
| PADDR (clrack), |
| /* |
| ** Size is not 1 .. have to interrupt. |
| */ |
| SCR_JUMPR ^ IFFALSE (DATA (1)), |
| 40, |
| /* |
| ** Check for residue byte in swide register |
| */ |
| SCR_FROM_REG (scntl2), |
| 0, |
| SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)), |
| 16, |
| /* |
| ** There IS data in the swide register. |
| ** Discard it. |
| */ |
| SCR_REG_REG (scntl2, SCR_OR, WSR), |
| 0, |
| SCR_JUMP, |
| PADDR (clrack), |
| /* |
| ** Load again the size to the sfbr register. |
| */ |
| SCR_FROM_REG (scratcha), |
| 0, |
| SCR_INT, |
| SIR_IGN_RESIDUE, |
| SCR_JUMP, |
| PADDR (clrack), |
| |
| }/*-------------------------< MSG_EXTENDED >-------------*/,{ |
| /* |
| ** Terminate cycle |
| */ |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), |
| PADDR (dispatch), |
| /* |
| ** get length. |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| NADDR (msgin[1]), |
| /* |
| */ |
| SCR_JUMP ^ IFTRUE (DATA (3)), |
| PADDRH (msg_ext_3), |
| SCR_JUMP ^ IFFALSE (DATA (2)), |
| PADDR (msg_bad), |
| }/*-------------------------< MSG_EXT_2 >----------------*/,{ |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), |
| PADDR (dispatch), |
| /* |
| ** get extended message code. |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| NADDR (msgin[2]), |
| SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)), |
| PADDRH (msg_wdtr), |
| /* |
| ** unknown extended message |
| */ |
| SCR_JUMP, |
| PADDR (msg_bad) |
| }/*-------------------------< MSG_WDTR >-----------------*/,{ |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), |
| PADDR (dispatch), |
| /* |
| ** get data bus width |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| NADDR (msgin[3]), |
| /* |
| ** let the host do the real work. |
| */ |
| SCR_INT, |
| SIR_NEGO_WIDE, |
| /* |
| ** let the target fetch our answer. |
| */ |
| SCR_SET (SCR_ATN), |
| 0, |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), |
| PADDRH (nego_bad_phase), |
| |
| }/*-------------------------< SEND_WDTR >----------------*/,{ |
| /* |
| ** Send the EXTENDED_WDTR |
| */ |
| SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, |
| NADDR (msgout), |
| SCR_COPY (1), |
| NADDR (msgout), |
| NADDR (lastmsg), |
| SCR_JUMP, |
| PADDR (msg_out_done), |
| |
| }/*-------------------------< MSG_EXT_3 >----------------*/,{ |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), |
| PADDR (dispatch), |
| /* |
| ** get extended message code. |
| */ |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| NADDR (msgin[2]), |
| SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)), |
| PADDRH (msg_sdtr), |
| /* |
| ** unknown extended message |
| */ |
| SCR_JUMP, |
| PADDR (msg_bad) |
| |
| }/*-------------------------< MSG_SDTR >-----------------*/,{ |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), |
| PADDR (dispatch), |
| /* |
| ** get period and offset |
| */ |
| SCR_MOVE_ABS (2) ^ SCR_MSG_IN, |
| NADDR (msgin[3]), |
| /* |
| ** let the host do the real work. |
| */ |
| SCR_INT, |
| SIR_NEGO_SYNC, |
| /* |
| ** let the target fetch our answer. |
| */ |
| SCR_SET (SCR_ATN), |
| 0, |
| SCR_CLR (SCR_ACK), |
| 0, |
| SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), |
| PADDRH (nego_bad_phase), |
| |
| }/*-------------------------< SEND_SDTR >-------------*/,{ |
| /* |
| ** Send the EXTENDED_SDTR |
| */ |
| SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, |
| NADDR (msgout), |
| SCR_COPY (1), |
| NADDR (msgout), |
| NADDR (lastmsg), |
| SCR_JUMP, |
| PADDR (msg_out_done), |
| |
| }/*-------------------------< NEGO_BAD_PHASE >------------*/,{ |
| SCR_INT, |
| SIR_NEGO_PROTO, |
| SCR_JUMP, |
| PADDR (dispatch), |
| |
| }/*-------------------------< MSG_OUT_ABORT >-------------*/,{ |
| /* |
| ** After ABORT message, |
| ** |
| ** expect an immediate disconnect, ... |
| */ |
| SCR_REG_REG (scntl2, SCR_AND, 0x7f), |
| 0, |
| SCR_CLR (SCR_ACK|SCR_ATN), |
| 0, |
| SCR_WAIT_DISC, |
| 0, |
| /* |
| ** ... and set the status to "ABORTED" |
| */ |
| SCR_LOAD_REG (HS_REG, HS_ABORTED), |
| 0, |
| SCR_JUMP, |
| PADDR (cleanup), |
| |
| }/*-------------------------< HDATA_IN >-------------------*/,{ |
| /* |
| ** Because the size depends on the |
| ** #define MAX_SCATTERH parameter, |
| ** it is filled in at runtime. |
| ** |
| ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >== |
| ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), |
| ** || PADDR (dispatch), |
| ** || SCR_MOVE_TBL ^ SCR_DATA_IN, |
| ** || offsetof (struct dsb, data[ i]), |
| ** ##=================================================== |
| ** |
| **--------------------------------------------------------- |
| */ |
| 0 |
| }/*-------------------------< HDATA_IN2 >------------------*/,{ |
| SCR_JUMP, |
| PADDR (data_in), |
| |
| }/*-------------------------< HDATA_OUT >-------------------*/,{ |
| /* |
| ** Because the size depends on the |
| ** #define MAX_SCATTERH parameter, |
| ** it is filled in at runtime. |
| ** |
| ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >== |
| ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)), |
| ** || PADDR (dispatch), |
| ** || SCR_MOVE_TBL ^ SCR_DATA_OUT, |
| ** || offsetof (struct dsb, data[ i]), |
| ** ##=================================================== |
| ** |
| **--------------------------------------------------------- |
| */ |
| 0 |
| }/*-------------------------< HDATA_OUT2 >------------------*/,{ |
| SCR_JUMP, |
| PADDR (data_out), |
| |
| }/*-------------------------< RESET >----------------------*/,{ |
| /* |
| ** Send a TARGET_RESET message if bad IDENTIFY |
| ** received on reselection. |
| */ |
| SCR_LOAD_REG (scratcha, ABORT_TASK), |
| 0, |
| SCR_JUMP, |
| PADDRH (abort_resel), |
| }/*-------------------------< ABORTTAG >-------------------*/,{ |
| /* |
| ** Abort a wrong tag received on reselection. |
| */ |
| SCR_LOAD_REG (scratcha, ABORT_TASK), |
| 0, |
| SCR_JUMP, |
| PADDRH (abort_resel), |
| }/*-------------------------< ABORT >----------------------*/,{ |
| /* |
| ** Abort a reselection when no active CCB. |
| */ |
| SCR_LOAD_REG (scratcha, ABORT_TASK_SET), |
| 0, |
| }/*-------------------------< ABORT_RESEL >----------------*/,{ |
| SCR_COPY (1), |
| RADDR (scratcha), |
| NADDR (msgout), |
| SCR_SET (SCR_ATN), |
| 0, |
| SCR_CLR (SCR_ACK), |
| 0, |
| /* |
| ** and send it. |
| ** we expect an immediate disconnect |
| */ |
| SCR_REG_REG (scntl2, SCR_AND, 0x7f), |
| 0, |
| SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, |
| NADDR (msgout), |
| SCR_COPY (1), |
| NADDR (msgout), |
| NADDR (lastmsg), |
| SCR_CLR (SCR_ACK|SCR_ATN), |
| 0, |
| SCR_WAIT_DISC, |
| 0, |
| SCR_JUMP, |
| PADDR (start), |
| }/*-------------------------< RESEND_IDENT >-------------------*/,{ |
| /* |
| ** The target stays in MSG OUT phase after having acked |
| ** Identify [+ Tag [+ Extended message ]]. Targets shall |
| ** behave this way on parity error. |
| ** We must send it again all the messages. |
| */ |
| SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */ |
| 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */ |
| SCR_JUMP, |
| PADDR (send_ident), |
| }/*-------------------------< CLRATN_GO_ON >-------------------*/,{ |
| SCR_CLR (SCR_ATN), |
| 0, |
| SCR_JUMP, |
| }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{ |
| 0, |
| }/*-------------------------< SDATA_IN >-------------------*/,{ |
| SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), |
| PADDR (dispatch), |
| SCR_MOVE_TBL ^ SCR_DATA_IN, |
| offsetof (struct dsb, sense), |
| SCR_CALL, |
| PADDR (dispatch), |
| SCR_JUMP, |
| PADDR (no_data), |
| }/*-------------------------< DATA_IO >--------------------*/,{ |
| /* |
| ** We jump here if the data direction was unknown at the |
| ** time we had to queue the command to the scripts processor. |
| ** Pointers had been set as follow in this situation: |
| ** savep --> DATA_IO |
| ** lastp --> start pointer when DATA_IN |
| ** goalp --> goal pointer when DATA_IN |
| ** wlastp --> start pointer when DATA_OUT |
| ** wgoalp --> goal pointer when DATA_OUT |
| ** This script sets savep/lastp/goalp according to the |
| ** direction chosen by the target. |
| */ |
| SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)), |
| 32, |
| /* |
| ** Direction is DATA IN. |
| ** Warning: we jump here, even when phase is DATA OUT. |
| */ |
| SCR_COPY (4), |
| NADDR (header.lastp), |
| NADDR (header.savep), |
| |
| /* |
| ** Jump to the SCRIPTS according to actual direction. |
| */ |
| SCR_COPY (4), |
| NADDR (header.savep), |
| RADDR (temp), |
| SCR_RETURN, |
| 0, |
| /* |
| ** Direction is DATA OUT. |
| */ |
| SCR_COPY (4), |
| NADDR (header.wlastp), |
| NADDR (header.lastp), |
| SCR_COPY (4), |
| NADDR (header.wgoalp), |
| NADDR (header.goalp), |
| SCR_JUMPR, |
| -64, |
| }/*-------------------------< BAD_IDENTIFY >---------------*/,{ |
| /* |
| ** If message phase but not an IDENTIFY, |
| ** get some help from the C code. |
| ** Old SCSI device may behave so. |
| */ |
| SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)), |
| 16, |
| SCR_INT, |
| SIR_RESEL_NO_IDENTIFY, |
| SCR_JUMP, |
| PADDRH (reset), |
| /* |
| ** Message is an IDENTIFY, but lun is unknown. |
| ** Read the message, since we got it directly |
| ** from the SCSI BUS data lines. |
| ** Signal problem to C code for logging the event. |
| ** Send an ABORT_TASK_SET to clear all pending tasks. |
| */ |
| SCR_INT, |
| SIR_RESEL_BAD_LUN, |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| NADDR (msgin), |
| SCR_JUMP, |
| PADDRH (abort), |
| }/*-------------------------< BAD_I_T_L >------------------*/,{ |
| /* |
| ** We donnot have a task for that I_T_L. |
| ** Signal problem to C code for logging the event. |
| ** Send an ABORT_TASK_SET message. |
| */ |
| SCR_INT, |
| SIR_RESEL_BAD_I_T_L, |
| SCR_JUMP, |
| PADDRH (abort), |
| }/*-------------------------< BAD_I_T_L_Q >----------------*/,{ |
| /* |
| ** We donnot have a task that matches the tag. |
| ** Signal problem to C code for logging the event. |
| ** Send an ABORT_TASK message. |
| */ |
| SCR_INT, |
| SIR_RESEL_BAD_I_T_L_Q, |
| SCR_JUMP, |
| PADDRH (aborttag), |
| }/*-------------------------< BAD_TARGET >-----------------*/,{ |
| /* |
| ** We donnot know the target that reselected us. |
| ** Grab the first message if any (IDENTIFY). |
| ** Signal problem to C code for logging the event. |
| ** TARGET_RESET message. |
| */ |
| SCR_INT, |
| SIR_RESEL_BAD_TARGET, |
| SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)), |
| 8, |
| SCR_MOVE_ABS (1) ^ SCR_MSG_IN, |
| NADDR (msgin), |
| SCR_JUMP, |
| PADDRH (reset), |
| }/*-------------------------< BAD_STATUS >-----------------*/,{ |
| /* |
| ** If command resulted in either QUEUE FULL, |
| ** CHECK CONDITION or COMMAND TERMINATED, |
| ** call the C code. |
| */ |
| SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)), |
| SIR_BAD_STATUS, |
| SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)), |
| SIR_BAD_STATUS, |
| SCR_INT ^ IFTRUE (DATA (S_TERMINATED)), |
| SIR_BAD_STATUS, |
| SCR_RETURN, |
| 0, |
| }/*-------------------------< START_RAM >-------------------*/,{ |
| /* |
| ** Load the script into on-chip RAM, |
| ** and jump to start point. |
| */ |
| SCR_COPY_F (4), |
| RADDR (scratcha), |
| PADDRH (start_ram0), |
| /* |
| ** Flush script prefetch if required |
| */ |
| PREFETCH_FLUSH |
| SCR_COPY (sizeof (struct script)), |
| }/*-------------------------< START_RAM0 >--------------------*/,{ |
| 0, |
| PADDR (start), |
| SCR_JUMP, |
| PADDR (start), |
| }/*-------------------------< STO_RESTART >-------------------*/,{ |
| /* |
| ** |
| ** Repair start queue (e.g. next time use the next slot) |
| ** and jump to start point. |
| */ |
| SCR_COPY (4), |
| RADDR (temp), |
| PADDR (startpos), |
| SCR_JUMP, |
| PADDR (start), |
| }/*-------------------------< WAIT_DMA >-------------------*/,{ |
| /* |
| ** For HP Zalon/53c720 systems, the Zalon interface |
| ** between CPU and 53c720 does prefetches, which causes |
| ** problems with self modifying scripts. The problem |
| ** is overcome by calling a dummy subroutine after each |
| ** modification, to force a refetch of the script on |
| ** return from the subroutine. |
| */ |
| SCR_RETURN, |
| 0, |
| }/*-------------------------< SNOOPTEST >-------------------*/,{ |
| /* |
| ** Read the variable. |
| */ |
| SCR_COPY (4), |
| NADDR(ncr_cache), |
| RADDR (scratcha), |
| /* |
| ** Write the variable. |
| */ |
| SCR_COPY (4), |
| RADDR (temp), |
| NADDR(ncr_cache), |
| /* |
| ** Read back the variable. |
| */ |
| SCR_COPY (4), |
| NADDR(ncr_cache), |
| RADDR (temp), |
| }/*-------------------------< SNOOPEND >-------------------*/,{ |
| /* |
| ** And stop. |
| */ |
| SCR_INT, |
| 99, |
| }/*--------------------------------------------------------*/ |
| }; |
| |
| /*========================================================== |
| ** |
| ** |
| ** Fill in #define dependent parts of the script |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| void __init ncr_script_fill (struct script * scr, struct scripth * scrh) |
| { |
| int i; |
| ncrcmd *p; |
| |
| p = scrh->tryloop; |
| for (i=0; i<MAX_START; i++) { |
| *p++ =SCR_CALL; |
| *p++ =PADDR (idle); |
| } |
| |
| BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop)); |
| |
| #ifdef SCSI_NCR_CCB_DONE_SUPPORT |
| |
| p = scrh->done_queue; |
| for (i = 0; i<MAX_DONE; i++) { |
| *p++ =SCR_COPY (sizeof(struct ccb *)); |
| *p++ =NADDR (header.cp); |
| *p++ =NADDR (ccb_done[i]); |
| *p++ =SCR_CALL; |
| *p++ =PADDR (done_end); |
| } |
| |
| BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue)); |
| |
| #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ |
| |
| p = scrh->hdata_in; |
| for (i=0; i<MAX_SCATTERH; i++) { |
| *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)); |
| *p++ =PADDR (dispatch); |
| *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN; |
| *p++ =offsetof (struct dsb, data[i]); |
| } |
| |
| BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in)); |
| |
| p = scr->data_in; |
| for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) { |
| *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)); |
| *p++ =PADDR (dispatch); |
| *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN; |
| *p++ =offsetof (struct dsb, data[i]); |
| } |
| |
| BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in)); |
| |
| p = scrh->hdata_out; |
| for (i=0; i<MAX_SCATTERH; i++) { |
| *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)); |
| *p++ =PADDR (dispatch); |
| *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT; |
| *p++ =offsetof (struct dsb, data[i]); |
| } |
| |
| BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out)); |
| |
| p = scr->data_out; |
| for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) { |
| *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)); |
| *p++ =PADDR (dispatch); |
| *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT; |
| *p++ =offsetof (struct dsb, data[i]); |
| } |
| |
| BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out)); |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** Copy and rebind a script. |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| static void __init |
| ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len) |
| { |
| ncrcmd opcode, new, old, tmp1, tmp2; |
| ncrcmd *start, *end; |
| int relocs; |
| int opchanged = 0; |
| |
| start = src; |
| end = src + len/4; |
| |
| while (src < end) { |
| |
| opcode = *src++; |
| *dst++ = cpu_to_scr(opcode); |
| |
| /* |
| ** If we forget to change the length |
| ** in struct script, a field will be |
| ** padded with 0. This is an illegal |
| ** command. |
| */ |
| |
| if (opcode == 0) { |
| printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n", |
| ncr_name(np), (int) (src-start-1)); |
| mdelay(1000); |
| } |
| |
| if (DEBUG_FLAGS & DEBUG_SCRIPT) |
| printk (KERN_DEBUG "%p: <%x>\n", |
| (src-1), (unsigned)opcode); |
| |
| /* |
| ** We don't have to decode ALL commands |
| */ |
| switch (opcode >> 28) { |
| |
| case 0xc: |
| /* |
| ** COPY has TWO arguments. |
| */ |
| relocs = 2; |
| tmp1 = src[0]; |
| #ifdef RELOC_KVAR |
| if ((tmp1 & RELOC_MASK) == RELOC_KVAR) |
| tmp1 = 0; |
| #endif |
| tmp2 = src[1]; |
| #ifdef RELOC_KVAR |
| if ((tmp2 & RELOC_MASK) == RELOC_KVAR) |
| tmp2 = 0; |
| #endif |
| if ((tmp1 ^ tmp2) & 3) { |
| printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n", |
| ncr_name(np), (int) (src-start-1)); |
| mdelay(1000); |
| } |
| /* |
| ** If PREFETCH feature not enabled, remove |
| ** the NO FLUSH bit if present. |
| */ |
| if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) { |
| dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH); |
| ++opchanged; |
| } |
| break; |
| |
| case 0x0: |
| /* |
| ** MOVE (absolute address) |
| */ |
| relocs = 1; |
| break; |
| |
| case 0x8: |
| /* |
| ** JUMP / CALL |
| ** don't relocate if relative :-) |
| */ |
| if (opcode & 0x00800000) |
| relocs = 0; |
| else |
| relocs = 1; |
| break; |
| |
| case 0x4: |
| case 0x5: |
| case 0x6: |
| case 0x7: |
| relocs = 1; |
| break; |
| |
| default: |
| relocs = 0; |
| break; |
| } |
| |
| if (relocs) { |
| while (relocs--) { |
| old = *src++; |
| |
| switch (old & RELOC_MASK) { |
| case RELOC_REGISTER: |
| new = (old & ~RELOC_MASK) + np->paddr; |
| break; |
| case RELOC_LABEL: |
| new = (old & ~RELOC_MASK) + np->p_script; |
| break; |
| case RELOC_LABELH: |
| new = (old & ~RELOC_MASK) + np->p_scripth; |
| break; |
| case RELOC_SOFTC: |
| new = (old & ~RELOC_MASK) + np->p_ncb; |
| break; |
| #ifdef RELOC_KVAR |
| case RELOC_KVAR: |
| if (((old & ~RELOC_MASK) < |
| SCRIPT_KVAR_FIRST) || |
| ((old & ~RELOC_MASK) > |
| SCRIPT_KVAR_LAST)) |
| panic("ncr KVAR out of range"); |
| new = vtophys(script_kvars[old & |
| ~RELOC_MASK]); |
| break; |
| #endif |
| case 0: |
| /* Don't relocate a 0 address. */ |
| if (old == 0) { |
| new = old; |
| break; |
| } |
| /* fall through */ |
| default: |
| panic("ncr_script_copy_and_bind: weird relocation %x\n", old); |
| break; |
| } |
| |
| *dst++ = cpu_to_scr(new); |
| } |
| } else |
| *dst++ = cpu_to_scr(*src++); |
| |
| } |
| } |
| |
| /* |
| ** Linux host data structure |
| */ |
| |
| struct host_data { |
| struct ncb *ncb; |
| }; |
| |
| #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg) |
| |
| static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg) |
| { |
| PRINT_ADDR(cp->cmd, "%s: ", label); |
| |
| spi_print_msg(msg); |
| printk("\n"); |
| } |
| |
| /*========================================================== |
| ** |
| ** NCR chip clock divisor table. |
| ** Divisors are multiplied by 10,000,000 in order to make |
| ** calculations more simple. |
| ** |
| **========================================================== |
| */ |
| |
| #define _5M 5000000 |
| static u_long div_10M[] = |
| {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; |
| |
| |
| /*=============================================================== |
| ** |
| ** Prepare io register values used by ncr_init() according |
| ** to selected and supported features. |
| ** |
| ** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128 |
| ** transfers. 32,64,128 are only supported by 875 and 895 chips. |
| ** We use log base 2 (burst length) as internal code, with |
| ** value 0 meaning "burst disabled". |
| ** |
| **=============================================================== |
| */ |
| |
| /* |
| * Burst length from burst code. |
| */ |
| #define burst_length(bc) (!(bc))? 0 : 1 << (bc) |
| |
| /* |
| * Burst code from io register bits. Burst enable is ctest0 for c720 |
| */ |
| #define burst_code(dmode, ctest0) \ |
| (ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1 |
| |
| /* |
| * Set initial io register bits from burst code. |
| */ |
| static inline void ncr_init_burst(struct ncb *np, u_char bc) |
| { |
| u_char *be = &np->rv_ctest0; |
| *be &= ~0x80; |
| np->rv_dmode &= ~(0x3 << 6); |
| np->rv_ctest5 &= ~0x4; |
| |
| if (!bc) { |
| *be |= 0x80; |
| } else { |
| --bc; |
| np->rv_dmode |= ((bc & 0x3) << 6); |
| np->rv_ctest5 |= (bc & 0x4); |
| } |
| } |
| |
| static void __init ncr_prepare_setting(struct ncb *np) |
| { |
| u_char burst_max; |
| u_long period; |
| int i; |
| |
| /* |
| ** Save assumed BIOS setting |
| */ |
| |
| np->sv_scntl0 = INB(nc_scntl0) & 0x0a; |
| np->sv_scntl3 = INB(nc_scntl3) & 0x07; |
| np->sv_dmode = INB(nc_dmode) & 0xce; |
| np->sv_dcntl = INB(nc_dcntl) & 0xa8; |
| np->sv_ctest0 = INB(nc_ctest0) & 0x84; |
| np->sv_ctest3 = INB(nc_ctest3) & 0x01; |
| np->sv_ctest4 = INB(nc_ctest4) & 0x80; |
| np->sv_ctest5 = INB(nc_ctest5) & 0x24; |
| np->sv_gpcntl = INB(nc_gpcntl); |
| np->sv_stest2 = INB(nc_stest2) & 0x20; |
| np->sv_stest4 = INB(nc_stest4); |
| |
| /* |
| ** Wide ? |
| */ |
| |
| np->maxwide = (np->features & FE_WIDE)? 1 : 0; |
| |
| /* |
| * Guess the frequency of the chip's clock. |
| */ |
| if (np->features & FE_ULTRA) |
| np->clock_khz = 80000; |
| else |
| np->clock_khz = 40000; |
| |
| /* |
| * Get the clock multiplier factor. |
| */ |
| if (np->features & FE_QUAD) |
| np->multiplier = 4; |
| else if (np->features & FE_DBLR) |
| np->multiplier = 2; |
| else |
| np->multiplier = 1; |
| |
| /* |
| * Measure SCSI clock frequency for chips |
| * it may vary from assumed one. |
| */ |
| if (np->features & FE_VARCLK) |
| ncr_getclock(np, np->multiplier); |
| |
| /* |
| * Divisor to be used for async (timer pre-scaler). |
| */ |
| i = np->clock_divn - 1; |
| while (--i >= 0) { |
| if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) { |
| ++i; |
| break; |
| } |
| } |
| np->rv_scntl3 = i+1; |
| |
| /* |
| * Minimum synchronous period factor supported by the chip. |
| * Btw, 'period' is in tenths of nanoseconds. |
| */ |
| |
| period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; |
| if (period <= 250) np->minsync = 10; |
| else if (period <= 303) np->minsync = 11; |
| else if (period <= 500) np->minsync = 12; |
| else np->minsync = (period + 40 - 1) / 40; |
| |
| /* |
| * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). |
| */ |
| |
| if (np->minsync < 25 && !(np->features & FE_ULTRA)) |
| np->minsync = 25; |
| |
| /* |
| * Maximum synchronous period factor supported by the chip. |
| */ |
| |
| period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); |
| np->maxsync = period > 2540 ? 254 : period / 10; |
| |
| /* |
| ** Prepare initial value of other IO registers |
| */ |
| #if defined SCSI_NCR_TRUST_BIOS_SETTING |
| np->rv_scntl0 = np->sv_scntl0; |
| np->rv_dmode = np->sv_dmode; |
| np->rv_dcntl = np->sv_dcntl; |
| np->rv_ctest0 = np->sv_ctest0; |
| np->rv_ctest3 = np->sv_ctest3; |
| np->rv_ctest4 = np->sv_ctest4; |
| np->rv_ctest5 = np->sv_ctest5; |
| burst_max = burst_code(np->sv_dmode, np->sv_ctest0); |
| #else |
| |
| /* |
| ** Select burst length (dwords) |
| */ |
| burst_max = driver_setup.burst_max; |
| if (burst_max == 255) |
| burst_max = burst_code(np->sv_dmode, np->sv_ctest0); |
| if (burst_max > 7) |
| burst_max = 7; |
| if (burst_max > np->maxburst) |
| burst_max = np->maxburst; |
| |
| /* |
| ** Select all supported special features |
| */ |
| if (np->features & FE_ERL) |
| np->rv_dmode |= ERL; /* Enable Read Line */ |
| if (np->features & FE_BOF) |
| np->rv_dmode |= BOF; /* Burst Opcode Fetch */ |
| if (np->features & FE_ERMP) |
| np->rv_dmode |= ERMP; /* Enable Read Multiple */ |
| if (np->features & FE_PFEN) |
| np->rv_dcntl |= PFEN; /* Prefetch Enable */ |
| if (np->features & FE_CLSE) |
| np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ |
| if (np->features & FE_WRIE) |
| np->rv_ctest3 |= WRIE; /* Write and Invalidate */ |
| if (np->features & FE_DFS) |
| np->rv_ctest5 |= DFS; /* Dma Fifo Size */ |
| if (np->features & FE_MUX) |
| np->rv_ctest4 |= MUX; /* Host bus multiplex mode */ |
| if (np->features & FE_EA) |
| np->rv_dcntl |= EA; /* Enable ACK */ |
| if (np->features & FE_EHP) |
| np->rv_ctest0 |= EHP; /* Even host parity */ |
| |
| /* |
| ** Select some other |
| */ |
| if (driver_setup.master_parity) |
| np->rv_ctest4 |= MPEE; /* Master parity checking */ |
| if (driver_setup.scsi_parity) |
| np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ |
| |
| /* |
| ** Get SCSI addr of host adapter (set by bios?). |
| */ |
| if (np->myaddr == 255) { |
| np->myaddr = INB(nc_scid) & 0x07; |
| if (!np->myaddr) |
| np->myaddr = SCSI_NCR_MYADDR; |
| } |
| |
| #endif /* SCSI_NCR_TRUST_BIOS_SETTING */ |
| |
| /* |
| * Prepare initial io register bits for burst length |
| */ |
| ncr_init_burst(np, burst_max); |
| |
| /* |
| ** Set SCSI BUS mode. |
| ** |
| ** - ULTRA2 chips (895/895A/896) report the current |
| ** BUS mode through the STEST4 IO register. |
| ** - For previous generation chips (825/825A/875), |
| ** user has to tell us how to check against HVD, |
| ** since a 100% safe algorithm is not possible. |
| */ |
| np->scsi_mode = SMODE_SE; |
| if (np->features & FE_DIFF) { |
| switch(driver_setup.diff_support) { |
| case 4: /* Trust previous settings if present, then GPIO3 */ |
| if (np->sv_scntl3) { |
| if (np->sv_stest2 & 0x20) |
| np->scsi_mode = SMODE_HVD; |
| break; |
| } |
| case 3: /* SYMBIOS controllers report HVD through GPIO3 */ |
| if (INB(nc_gpreg) & 0x08) |
| break; |
| case 2: /* Set HVD unconditionally */ |
| np->scsi_mode = SMODE_HVD; |
| case 1: /* Trust previous settings for HVD */ |
| if (np->sv_stest2 & 0x20) |
| np->scsi_mode = SMODE_HVD; |
| break; |
| default:/* Don't care about HVD */ |
| break; |
| } |
| } |
| if (np->scsi_mode == SMODE_HVD) |
| np->rv_stest2 |= 0x20; |
| |
| /* |
| ** Set LED support from SCRIPTS. |
| ** Ignore this feature for boards known to use a |
| ** specific GPIO wiring and for the 895A or 896 |
| ** that drive the LED directly. |
| ** Also probe initial setting of GPIO0 as output. |
| */ |
| if ((driver_setup.led_pin) && |
| !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) |
| np->features |= FE_LED0; |
| |
| /* |
| ** Set irq mode. |
| */ |
| switch(driver_setup.irqm & 3) { |
| case 2: |
| np->rv_dcntl |= IRQM; |
| break; |
| case 1: |
| np->rv_dcntl |= (np->sv_dcntl & IRQM); |
| break; |
| default: |
| break; |
| } |
| |
| /* |
| ** Configure targets according to driver setup. |
| ** Allow to override sync, wide and NOSCAN from |
| ** boot command line. |
| */ |
| for (i = 0 ; i < MAX_TARGET ; i++) { |
| struct tcb *tp = &np->target[i]; |
| |
| tp->usrsync = driver_setup.default_sync; |
| tp->usrwide = driver_setup.max_wide; |
| tp->usrtags = MAX_TAGS; |
| tp->period = 0xffff; |
| if (!driver_setup.disconnection) |
| np->target[i].usrflag = UF_NODISC; |
| } |
| |
| /* |
| ** Announce all that stuff to user. |
| */ |
| |
| printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np), |
| np->myaddr, |
| np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10), |
| (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity", |
| (np->rv_stest2 & 0x20) ? ", Differential" : ""); |
| |
| if (bootverbose > 1) { |
| printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " |
| "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", |
| ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, |
| np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); |
| |
| printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " |
| "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", |
| ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, |
| np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); |
| } |
| |
| if (bootverbose && np->paddr2) |
| printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n", |
| ncr_name(np), np->paddr2); |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** Done SCSI commands list management. |
| ** |
| ** We donnot enter the scsi_done() callback immediately |
| ** after a command has been seen as completed but we |
| ** insert it into a list which is flushed outside any kind |
| ** of driver critical section. |
| ** This allows to do minimal stuff under interrupt and |
| ** inside critical sections and to also avoid locking up |
| ** on recursive calls to driver entry points under SMP. |
| ** In fact, the only kernel point which is entered by the |
| ** driver with a driver lock set is kmalloc(GFP_ATOMIC) |
| ** that shall not reenter the driver under any circumstances, |
| ** AFAIK. |
| ** |
| **========================================================== |
| */ |
| static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd) |
| { |
| unmap_scsi_data(np, cmd); |
| cmd->host_scribble = (char *) np->done_list; |
| np->done_list = cmd; |
| } |
| |
| static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd) |
| { |
| struct scsi_cmnd *cmd; |
| |
| while (lcmd) { |
| cmd = lcmd; |
| lcmd = (struct scsi_cmnd *) cmd->host_scribble; |
| cmd->scsi_done(cmd); |
| } |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** Prepare the next negotiation message if needed. |
| ** |
| ** Fill in the part of message buffer that contains the |
| ** negotiation and the nego_status field of the CCB. |
| ** Returns the size of the message in bytes. |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| |
| static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr) |
| { |
| struct tcb *tp = &np->target[cp->target]; |
| int msglen = 0; |
| int nego = 0; |
| struct scsi_target *starget = tp->starget; |
| |
| /* negotiate wide transfers ? */ |
| if (!tp->widedone) { |
| if (spi_support_wide(starget)) { |
| nego = NS_WIDE; |
| } else |
| tp->widedone=1; |
| } |
| |
| /* negotiate synchronous transfers? */ |
| if (!nego && !tp->period) { |
| if (spi_support_sync(starget)) { |
| nego = NS_SYNC; |
| } else { |
| tp->period =0xffff; |
| dev_info(&starget->dev, "target did not report SYNC.\n"); |
| } |
| } |
| |
| switch (nego) { |
| case NS_SYNC: |
| msglen += spi_populate_sync_msg(msgptr + msglen, |
| tp->maxoffs ? tp->minsync : 0, tp->maxoffs); |
| break; |
| case NS_WIDE: |
| msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide); |
| break; |
| } |
| |
| cp->nego_status = nego; |
| |
| if (nego) { |
| tp->nego_cp = cp; |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| ncr_print_msg(cp, nego == NS_WIDE ? |
| "wide msgout":"sync_msgout", msgptr); |
| } |
| } |
| |
| return msglen; |
| } |
| |
| |
| |
| /*========================================================== |
| ** |
| ** |
| ** Start execution of a SCSI command. |
| ** This is called from the generic SCSI driver. |
| ** |
| ** |
| **========================================================== |
| */ |
| static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd) |
| { |
| struct scsi_device *sdev = cmd->device; |
| struct tcb *tp = &np->target[sdev->id]; |
| struct lcb *lp = tp->lp[sdev->lun]; |
| struct ccb *cp; |
| |
| int segments; |
| u_char idmsg, *msgptr; |
| u32 msglen; |
| int direction; |
| u32 lastp, goalp; |
| |
| /*--------------------------------------------- |
| ** |
| ** Some shortcuts ... |
| ** |
| **--------------------------------------------- |
| */ |
| if ((sdev->id == np->myaddr ) || |
| (sdev->id >= MAX_TARGET) || |
| (sdev->lun >= MAX_LUN )) { |
| return(DID_BAD_TARGET); |
| } |
| |
| /*--------------------------------------------- |
| ** |
| ** Complete the 1st TEST UNIT READY command |
| ** with error condition if the device is |
| ** flagged NOSCAN, in order to speed up |
| ** the boot. |
| ** |
| **--------------------------------------------- |
| */ |
| if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) && |
| (tp->usrflag & UF_NOSCAN)) { |
| tp->usrflag &= ~UF_NOSCAN; |
| return DID_BAD_TARGET; |
| } |
| |
| if (DEBUG_FLAGS & DEBUG_TINY) { |
| PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]); |
| } |
| |
| /*--------------------------------------------------- |
| ** |
| ** Assign a ccb / bind cmd. |
| ** If resetting, shorten settle_time if necessary |
| ** in order to avoid spurious timeouts. |
| ** If resetting or no free ccb, |
| ** insert cmd into the waiting list. |
| ** |
| **---------------------------------------------------- |
| */ |
| if (np->settle_time && cmd->timeout_per_command >= HZ) { |
| u_long tlimit = jiffies + cmd->timeout_per_command - HZ; |
| if (time_after(np->settle_time, tlimit)) |
| np->settle_time = tlimit; |
| } |
| |
| if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) { |
| insert_into_waiting_list(np, cmd); |
| return(DID_OK); |
| } |
| cp->cmd = cmd; |
| |
| /*---------------------------------------------------- |
| ** |
| ** Build the identify / tag / sdtr message |
| ** |
| **---------------------------------------------------- |
| */ |
| |
| idmsg = IDENTIFY(0, sdev->lun); |
| |
| if (cp ->tag != NO_TAG || |
| (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC))) |
| idmsg |= 0x40; |
| |
| msgptr = cp->scsi_smsg; |
| msglen = 0; |
| msgptr[msglen++] = idmsg; |
| |
| if (cp->tag != NO_TAG) { |
| char order = np->order; |
| |
| /* |
| ** Force ordered tag if necessary to avoid timeouts |
| ** and to preserve interactivity. |
| */ |
| if (lp && time_after(jiffies, lp->tags_stime)) { |
| if (lp->tags_smap) { |
| order = ORDERED_QUEUE_TAG; |
| if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){ |
| PRINT_ADDR(cmd, |
| "ordered tag forced.\n"); |
| } |
| } |
| lp->tags_stime = jiffies + 3*HZ; |
| lp->tags_smap = lp->tags_umap; |
| } |
| |
| if (order == 0) { |
| /* |
| ** Ordered write ops, unordered read ops. |
| */ |
| switch (cmd->cmnd[0]) { |
| case 0x08: /* READ_SMALL (6) */ |
| case 0x28: /* READ_BIG (10) */ |
| case 0xa8: /* READ_HUGE (12) */ |
| order = SIMPLE_QUEUE_TAG; |
| break; |
| default: |
| order = ORDERED_QUEUE_TAG; |
| } |
| } |
| msgptr[msglen++] = order; |
| /* |
| ** Actual tags are numbered 1,3,5,..2*MAXTAGS+1, |
| ** since we may have to deal with devices that have |
| ** problems with #TAG 0 or too great #TAG numbers. |
| */ |
| msgptr[msglen++] = (cp->tag << 1) + 1; |
| } |
| |
| /*---------------------------------------------------- |
| ** |
| ** Build the data descriptors |
| ** |
| **---------------------------------------------------- |
| */ |
| |
| direction = cmd->sc_data_direction; |
| if (direction != DMA_NONE) { |
| segments = ncr_scatter(np, cp, cp->cmd); |
| if (segments < 0) { |
| ncr_free_ccb(np, cp); |
| return(DID_ERROR); |
| } |
| } |
| else { |
| cp->data_len = 0; |
| segments = 0; |
| } |
| |
| /*--------------------------------------------------- |
| ** |
| ** negotiation required? |
| ** |
| ** (nego_status is filled by ncr_prepare_nego()) |
| ** |
| **--------------------------------------------------- |
| */ |
| |
| cp->nego_status = 0; |
| |
| if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) { |
| msglen += ncr_prepare_nego (np, cp, msgptr + msglen); |
| } |
| |
| /*---------------------------------------------------- |
| ** |
| ** Determine xfer direction. |
| ** |
| **---------------------------------------------------- |
| */ |
| if (!cp->data_len) |
| direction = DMA_NONE; |
| |
| /* |
| ** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE |
| ** but prepare alternate pointers for TO_DEVICE in case |
| ** of our speculation will be just wrong. |
| ** SCRIPTS will swap values if needed. |
| */ |
| switch(direction) { |
| case DMA_BIDIRECTIONAL: |
| case DMA_TO_DEVICE: |
| goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8; |
| if (segments <= MAX_SCATTERL) |
| lastp = goalp - 8 - (segments * 16); |
| else { |
| lastp = NCB_SCRIPTH_PHYS (np, hdata_out2); |
| lastp -= (segments - MAX_SCATTERL) * 16; |
| } |
| if (direction != DMA_BIDIRECTIONAL) |
| break; |
| cp->phys.header.wgoalp = cpu_to_scr(goalp); |
| cp->phys.header.wlastp = cpu_to_scr(lastp); |
| /* fall through */ |
| case DMA_FROM_DEVICE: |
| goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8; |
| if (segments <= MAX_SCATTERL) |
| lastp = goalp - 8 - (segments * 16); |
| else { |
| lastp = NCB_SCRIPTH_PHYS (np, hdata_in2); |
| lastp -= (segments - MAX_SCATTERL) * 16; |
| } |
| break; |
| default: |
| case DMA_NONE: |
| lastp = goalp = NCB_SCRIPT_PHYS (np, no_data); |
| break; |
| } |
| |
| /* |
| ** Set all pointers values needed by SCRIPTS. |
| ** If direction is unknown, start at data_io. |
| */ |
| cp->phys.header.lastp = cpu_to_scr(lastp); |
| cp->phys.header.goalp = cpu_to_scr(goalp); |
| |
| if (direction == DMA_BIDIRECTIONAL) |
| cp->phys.header.savep = |
| cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io)); |
| else |
| cp->phys.header.savep= cpu_to_scr(lastp); |
| |
| /* |
| ** Save the initial data pointer in order to be able |
| ** to redo the command. |
| */ |
| cp->startp = cp->phys.header.savep; |
| |
| /*---------------------------------------------------- |
| ** |
| ** fill in ccb |
| ** |
| **---------------------------------------------------- |
| ** |
| ** |
| ** physical -> virtual backlink |
| ** Generic SCSI command |
| */ |
| |
| /* |
| ** Startqueue |
| */ |
| cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); |
| cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa)); |
| /* |
| ** select |
| */ |
| cp->phys.select.sel_id = sdev_id(sdev); |
| cp->phys.select.sel_scntl3 = tp->wval; |
| cp->phys.select.sel_sxfer = tp->sval; |
| /* |
| ** message |
| */ |
| cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg)); |
| cp->phys.smsg.size = cpu_to_scr(msglen); |
| |
| /* |
| ** command |
| */ |
| memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf))); |
| cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0])); |
| cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len); |
| |
| /* |
| ** status |
| */ |
| cp->actualquirks = 0; |
| cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; |
| cp->scsi_status = S_ILLEGAL; |
| cp->parity_status = 0; |
| |
| cp->xerr_status = XE_OK; |
| #if 0 |
| cp->sync_status = tp->sval; |
| cp->wide_status = tp->wval; |
| #endif |
| |
| /*---------------------------------------------------- |
| ** |
| ** Critical region: start this job. |
| ** |
| **---------------------------------------------------- |
| */ |
| |
| /* activate this job. */ |
| cp->magic = CCB_MAGIC; |
| |
| /* |
| ** insert next CCBs into start queue. |
| ** 2 max at a time is enough to flush the CCB wait queue. |
| */ |
| cp->auto_sense = 0; |
| if (lp) |
| ncr_start_next_ccb(np, lp, 2); |
| else |
| ncr_put_start_queue(np, cp); |
| |
| /* Command is successfully queued. */ |
| |
| return DID_OK; |
| } |
| |
| |
| /*========================================================== |
| ** |
| ** |
| ** Insert a CCB into the start queue and wake up the |
| ** SCRIPTS processor. |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn) |
| { |
| struct list_head *qp; |
| struct ccb *cp; |
| |
| if (lp->held_ccb) |
| return; |
| |
| while (maxn-- && lp->queuedccbs < lp->queuedepth) { |
| qp = ncr_list_pop(&lp->wait_ccbq); |
| if (!qp) |
| break; |
| ++lp->queuedccbs; |
| cp = list_entry(qp, struct ccb, link_ccbq); |
| list_add_tail(qp, &lp->busy_ccbq); |
| lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] = |
| cpu_to_scr(CCB_PHYS (cp, restart)); |
| ncr_put_start_queue(np, cp); |
| } |
| } |
| |
| static void ncr_put_start_queue(struct ncb *np, struct ccb *cp) |
| { |
| u16 qidx; |
| |
| /* |
| ** insert into start queue. |
| */ |
| if (!np->squeueput) np->squeueput = 1; |
| qidx = np->squeueput + 2; |
| if (qidx >= MAX_START + MAX_START) qidx = 1; |
| |
| np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); |
| MEMORY_BARRIER(); |
| np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start)); |
| |
| np->squeueput = qidx; |
| ++np->queuedccbs; |
| cp->queued = 1; |
| |
| if (DEBUG_FLAGS & DEBUG_QUEUE) |
| printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput); |
| |
| /* |
| ** Script processor may be waiting for reselect. |
| ** Wake it up. |
| */ |
| MEMORY_BARRIER(); |
| OUTB (nc_istat, SIGP); |
| } |
| |
| |
| static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay) |
| { |
| u32 term; |
| int retv = 0; |
| |
| np->settle_time = jiffies + settle_delay * HZ; |
| |
| if (bootverbose > 1) |
| printk("%s: resetting, " |
| "command processing suspended for %d seconds\n", |
| ncr_name(np), settle_delay); |
| |
| ncr_chip_reset(np, 100); |
| udelay(2000); /* The 895 needs time for the bus mode to settle */ |
| if (enab_int) |
| OUTW (nc_sien, RST); |
| /* |
| ** Enable Tolerant, reset IRQD if present and |
| ** properly set IRQ mode, prior to resetting the bus. |
| */ |
| OUTB (nc_stest3, TE); |
| OUTB (nc_scntl1, CRST); |
| udelay(200); |
| |
| if (!driver_setup.bus_check) |
| goto out; |
| /* |
| ** Check for no terminators or SCSI bus shorts to ground. |
| ** Read SCSI data bus, data parity bits and control signals. |
| ** We are expecting RESET to be TRUE and other signals to be |
| ** FALSE. |
| */ |
| |
| term = INB(nc_sstat0); |
| term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ |
| term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ |
| ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ |
| ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ |
| INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ |
| |
| if (!(np->features & FE_WIDE)) |
| term &= 0x3ffff; |
| |
| if (term != (2<<7)) { |
| printk("%s: suspicious SCSI data while resetting the BUS.\n", |
| ncr_name(np)); |
| printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " |
| "0x%lx, expecting 0x%lx\n", |
| ncr_name(np), |
| (np->features & FE_WIDE) ? "dp1,d15-8," : "", |
| (u_long)term, (u_long)(2<<7)); |
| if (driver_setup.bus_check == 1) |
| retv = 1; |
| } |
| out: |
| OUTB (nc_scntl1, 0); |
| return retv; |
| } |
| |
| /* |
| * Start reset process. |
| * If reset in progress do nothing. |
| * The interrupt handler will reinitialize the chip. |
| * The timeout handler will wait for settle_time before |
| * clearing it and so resuming command processing. |
| */ |
| static void ncr_start_reset(struct ncb *np) |
| { |
| if (!np->settle_time) { |
| ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay); |
| } |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** Reset the SCSI BUS. |
| ** This is called from the generic SCSI driver. |
| ** |
| ** |
| **========================================================== |
| */ |
| static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset) |
| { |
| /* struct scsi_device *device = cmd->device; */ |
| struct ccb *cp; |
| int found; |
| |
| /* |
| * Return immediately if reset is in progress. |
| */ |
| if (np->settle_time) { |
| return FAILED; |
| } |
| /* |
| * Start the reset process. |
| * The script processor is then assumed to be stopped. |
| * Commands will now be queued in the waiting list until a settle |
| * delay of 2 seconds will be completed. |
| */ |
| ncr_start_reset(np); |
| /* |
| * First, look in the wakeup list |
| */ |
| for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) { |
| /* |
| ** look for the ccb of this command. |
| */ |
| if (cp->host_status == HS_IDLE) continue; |
| if (cp->cmd == cmd) { |
| found = 1; |
| break; |
| } |
| } |
| /* |
| * Then, look in the waiting list |
| */ |
| if (!found && retrieve_from_waiting_list(0, np, cmd)) |
| found = 1; |
| /* |
| * Wake-up all awaiting commands with DID_RESET. |
| */ |
| reset_waiting_list(np); |
| /* |
| * Wake-up all pending commands with HS_RESET -> DID_RESET. |
| */ |
| ncr_wakeup(np, HS_RESET); |
| /* |
| * If the involved command was not in a driver queue, and the |
| * scsi driver told us reset is synchronous, and the command is not |
| * currently in the waiting list, complete it with DID_RESET status, |
| * in order to keep it alive. |
| */ |
| if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) { |
| cmd->result = ScsiResult(DID_RESET, 0); |
| ncr_queue_done_cmd(np, cmd); |
| } |
| |
| return SUCCESS; |
| } |
| |
| #if 0 /* unused and broken.. */ |
| /*========================================================== |
| ** |
| ** |
| ** Abort an SCSI command. |
| ** This is called from the generic SCSI driver. |
| ** |
| ** |
| **========================================================== |
| */ |
| static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd) |
| { |
| /* struct scsi_device *device = cmd->device; */ |
| struct ccb *cp; |
| int found; |
| int retv; |
| |
| /* |
| * First, look for the scsi command in the waiting list |
| */ |
| if (remove_from_waiting_list(np, cmd)) { |
| cmd->result = ScsiResult(DID_ABORT, 0); |
| ncr_queue_done_cmd(np, cmd); |
| return SCSI_ABORT_SUCCESS; |
| } |
| |
| /* |
| * Then, look in the wakeup list |
| */ |
| for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) { |
| /* |
| ** look for the ccb of this command. |
| */ |
| if (cp->host_status == HS_IDLE) continue; |
| if (cp->cmd == cmd) { |
| found = 1; |
| break; |
| } |
| } |
| |
| if (!found) { |
| return SCSI_ABORT_NOT_RUNNING; |
| } |
| |
| if (np->settle_time) { |
| return SCSI_ABORT_SNOOZE; |
| } |
| |
| /* |
| ** If the CCB is active, patch schedule jumps for the |
| ** script to abort the command. |
| */ |
| |
| switch(cp->host_status) { |
| case HS_BUSY: |
| case HS_NEGOTIATE: |
| printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp); |
| cp->start.schedule.l_paddr = |
| cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel)); |
| retv = SCSI_ABORT_PENDING; |
| break; |
| case HS_DISCONNECT: |
| cp->restart.schedule.l_paddr = |
| cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort)); |
| retv = SCSI_ABORT_PENDING; |
| break; |
| default: |
| retv = SCSI_ABORT_NOT_RUNNING; |
| break; |
| |
| } |
| |
| /* |
| ** If there are no requests, the script |
| ** processor will sleep on SEL_WAIT_RESEL. |
| ** Let's wake it up, since it may have to work. |
| */ |
| OUTB (nc_istat, SIGP); |
| |
| return retv; |
| } |
| #endif |
| |
| static void ncr_detach(struct ncb *np) |
| { |
| struct ccb *cp; |
| struct tcb *tp; |
| struct lcb *lp; |
| int target, lun; |
| int i; |
| char inst_name[16]; |
| |
| /* Local copy so we don't access np after freeing it! */ |
| strlcpy(inst_name, ncr_name(np), sizeof(inst_name)); |
| |
| printk("%s: releasing host resources\n", ncr_name(np)); |
| |
| /* |
| ** Stop the ncr_timeout process |
| ** Set release_stage to 1 and wait that ncr_timeout() set it to 2. |
| */ |
| |
| #ifdef DEBUG_NCR53C8XX |
| printk("%s: stopping the timer\n", ncr_name(np)); |
| #endif |
| np->release_stage = 1; |
| for (i = 50 ; i && np->release_stage != 2 ; i--) |
| mdelay(100); |
| if (np->release_stage != 2) |
| printk("%s: the timer seems to be already stopped\n", ncr_name(np)); |
| else np->release_stage = 2; |
| |
| /* |
| ** Disable chip interrupts |
| */ |
| |
| #ifdef DEBUG_NCR53C8XX |
| printk("%s: disabling chip interrupts\n", ncr_name(np)); |
| #endif |
| OUTW (nc_sien , 0); |
| OUTB (nc_dien , 0); |
| |
| /* |
| ** Reset NCR chip |
| ** Restore bios setting for automatic clock detection. |
| */ |
| |
| printk("%s: resetting chip\n", ncr_name(np)); |
| ncr_chip_reset(np, 100); |
| |
| OUTB(nc_dmode, np->sv_dmode); |
| OUTB(nc_dcntl, np->sv_dcntl); |
| OUTB(nc_ctest0, np->sv_ctest0); |
| OUTB(nc_ctest3, np->sv_ctest3); |
| OUTB(nc_ctest4, np->sv_ctest4); |
| OUTB(nc_ctest5, np->sv_ctest5); |
| OUTB(nc_gpcntl, np->sv_gpcntl); |
| OUTB(nc_stest2, np->sv_stest2); |
| |
| ncr_selectclock(np, np->sv_scntl3); |
| |
| /* |
| ** Free allocated ccb(s) |
| */ |
| |
| while ((cp=np->ccb->link_ccb) != NULL) { |
| np->ccb->link_ccb = cp->link_ccb; |
| if (cp->host_status) { |
| printk("%s: shall free an active ccb (host_status=%d)\n", |
| ncr_name(np), cp->host_status); |
| } |
| #ifdef DEBUG_NCR53C8XX |
| printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp); |
| #endif |
| m_free_dma(cp, sizeof(*cp), "CCB"); |
| } |
| |
| /* Free allocated tp(s) */ |
| |
| for (target = 0; target < MAX_TARGET ; target++) { |
| tp=&np->target[target]; |
| for (lun = 0 ; lun < MAX_LUN ; lun++) { |
| lp = tp->lp[lun]; |
| if (lp) { |
| #ifdef DEBUG_NCR53C8XX |
| printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp); |
| #endif |
| if (lp->jump_ccb != &lp->jump_ccb_0) |
| m_free_dma(lp->jump_ccb,256,"JUMP_CCB"); |
| m_free_dma(lp, sizeof(*lp), "LCB"); |
| } |
| } |
| } |
| |
| if (np->scripth0) |
| m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH"); |
| if (np->script0) |
| m_free_dma(np->script0, sizeof(struct script), "SCRIPT"); |
| if (np->ccb) |
| m_free_dma(np->ccb, sizeof(struct ccb), "CCB"); |
| m_free_dma(np, sizeof(struct ncb), "NCB"); |
| |
| printk("%s: host resources successfully released\n", inst_name); |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** Complete execution of a SCSI command. |
| ** Signal completion to the generic SCSI driver. |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| void ncr_complete (struct ncb *np, struct ccb *cp) |
| { |
| struct scsi_cmnd *cmd; |
| struct tcb *tp; |
| struct lcb *lp; |
| |
| /* |
| ** Sanity check |
| */ |
| |
| if (!cp || cp->magic != CCB_MAGIC || !cp->cmd) |
| return; |
| |
| /* |
| ** Print minimal debug information. |
| */ |
| |
| if (DEBUG_FLAGS & DEBUG_TINY) |
| printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp, |
| cp->host_status,cp->scsi_status); |
| |
| /* |
| ** Get command, target and lun pointers. |
| */ |
| |
| cmd = cp->cmd; |
| cp->cmd = NULL; |
| tp = &np->target[cmd->device->id]; |
| lp = tp->lp[cmd->device->lun]; |
| |
| /* |
| ** We donnot queue more than 1 ccb per target |
| ** with negotiation at any time. If this ccb was |
| ** used for negotiation, clear this info in the tcb. |
| */ |
| |
| if (cp == tp->nego_cp) |
| tp->nego_cp = NULL; |
| |
| /* |
| ** If auto-sense performed, change scsi status. |
| */ |
| if (cp->auto_sense) { |
| cp->scsi_status = cp->auto_sense; |
| } |
| |
| /* |
| ** If we were recovering from queue full or performing |
| ** auto-sense, requeue skipped CCBs to the wait queue. |
| */ |
| |
| if (lp && lp->held_ccb) { |
| if (cp == lp->held_ccb) { |
| list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq); |
| lp->held_ccb = NULL; |
| } |
| } |
| |
| /* |
| ** Check for parity errors. |
| */ |
| |
| if (cp->parity_status > 1) { |
| PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status); |
| } |
| |
| /* |
| ** Check for extended errors. |
| */ |
| |
| if (cp->xerr_status != XE_OK) { |
| switch (cp->xerr_status) { |
| case XE_EXTRA_DATA: |
| PRINT_ADDR(cmd, "extraneous data discarded.\n"); |
| break; |
| case XE_BAD_PHASE: |
| PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n"); |
| break; |
| default: |
| PRINT_ADDR(cmd, "extended error %d.\n", |
| cp->xerr_status); |
| break; |
| } |
| if (cp->host_status==HS_COMPLETE) |
| cp->host_status = HS_FAIL; |
| } |
| |
| /* |
| ** Print out any error for debugging purpose. |
| */ |
| if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { |
| if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) { |
| PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x " |
| "scsi_status=%x\n", cmd->cmnd[0], |
| cp->host_status, cp->scsi_status); |
| } |
| } |
| |
| /* |
| ** Check the status. |
| */ |
| if ( (cp->host_status == HS_COMPLETE) |
| && (cp->scsi_status == S_GOOD || |
| cp->scsi_status == S_COND_MET)) { |
| /* |
| * All went well (GOOD status). |
| * CONDITION MET status is returned on |
| * `Pre-Fetch' or `Search data' success. |
| */ |
| cmd->result = ScsiResult(DID_OK, cp->scsi_status); |
| |
| /* |
| ** @RESID@ |
| ** Could dig out the correct value for resid, |
| ** but it would be quite complicated. |
| */ |
| /* if (cp->phys.header.lastp != cp->phys.header.goalp) */ |
| |
| /* |
| ** Allocate the lcb if not yet. |
| */ |
| if (!lp) |
| ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun); |
| |
| tp->bytes += cp->data_len; |
| tp->transfers ++; |
| |
| /* |
| ** If tags was reduced due to queue full, |
| ** increase tags if 1000 good status received. |
| */ |
| if (lp && lp->usetags && lp->numtags < lp->maxtags) { |
| ++lp->num_good; |
| if (lp->num_good >= 1000) { |
| lp->num_good = 0; |
| ++lp->numtags; |
| ncr_setup_tags (np, cmd->device); |
| } |
| } |
| } else if ((cp->host_status == HS_COMPLETE) |
| && (cp->scsi_status == S_CHECK_COND)) { |
| /* |
| ** Check condition code |
| */ |
| cmd->result = ScsiResult(DID_OK, S_CHECK_COND); |
| |
| /* |
| ** Copy back sense data to caller's buffer. |
| */ |
| memcpy(cmd->sense_buffer, cp->sense_buf, |
| min_t(size_t, SCSI_SENSE_BUFFERSIZE, |
| sizeof(cp->sense_buf))); |
| |
| if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { |
| u_char *p = cmd->sense_buffer; |
| int i; |
| PRINT_ADDR(cmd, "sense data:"); |
| for (i=0; i<14; i++) printk (" %x", *p++); |
| printk (".\n"); |
| } |
| } else if ((cp->host_status == HS_COMPLETE) |
| && (cp->scsi_status == S_CONFLICT)) { |
| /* |
| ** Reservation Conflict condition code |
| */ |
| cmd->result = ScsiResult(DID_OK, S_CONFLICT); |
| |
| } else if ((cp->host_status == HS_COMPLETE) |
| && (cp->scsi_status == S_BUSY || |
| cp->scsi_status == S_QUEUE_FULL)) { |
| |
| /* |
| ** Target is busy. |
| */ |
| cmd->result = ScsiResult(DID_OK, cp->scsi_status); |
| |
| } else if ((cp->host_status == HS_SEL_TIMEOUT) |
| || (cp->host_status == HS_TIMEOUT)) { |
| |
| /* |
| ** No response |
| */ |
| cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status); |
| |
| } else if (cp->host_status == HS_RESET) { |
| |
| /* |
| ** SCSI bus reset |
| */ |
| cmd->result = ScsiResult(DID_RESET, cp->scsi_status); |
| |
| } else if (cp->host_status == HS_ABORTED) { |
| |
| /* |
| ** Transfer aborted |
| */ |
| cmd->result = ScsiResult(DID_ABORT, cp->scsi_status); |
| |
| } else { |
| |
| /* |
| ** Other protocol messes |
| */ |
| PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n", |
| cp->host_status, cp->scsi_status, cp); |
| |
| cmd->result = ScsiResult(DID_ERROR, cp->scsi_status); |
| } |
| |
| /* |
| ** trace output |
| */ |
| |
| if (tp->usrflag & UF_TRACE) { |
| u_char * p; |
| int i; |
| PRINT_ADDR(cmd, " CMD:"); |
| p = (u_char*) &cmd->cmnd[0]; |
| for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++); |
| |
| if (cp->host_status==HS_COMPLETE) { |
| switch (cp->scsi_status) { |
| case S_GOOD: |
| printk (" GOOD"); |
| break; |
| case S_CHECK_COND: |
| printk (" SENSE:"); |
| p = (u_char*) &cmd->sense_buffer; |
| for (i=0; i<14; i++) |
| printk (" %x", *p++); |
| break; |
| default: |
| printk (" STAT: %x\n", cp->scsi_status); |
| break; |
| } |
| } else printk (" HOSTERROR: %x", cp->host_status); |
| printk ("\n"); |
| } |
| |
| /* |
| ** Free this ccb |
| */ |
| ncr_free_ccb (np, cp); |
| |
| /* |
| ** requeue awaiting scsi commands for this lun. |
| */ |
| if (lp && lp->queuedccbs < lp->queuedepth && |
| !list_empty(&lp->wait_ccbq)) |
| ncr_start_next_ccb(np, lp, 2); |
| |
| /* |
| ** requeue awaiting scsi commands for this controller. |
| */ |
| if (np->waiting_list) |
| requeue_waiting_list(np); |
| |
| /* |
| ** signal completion to generic driver. |
| */ |
| ncr_queue_done_cmd(np, cmd); |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** Signal all (or one) control block done. |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| /* |
| ** This CCB has been skipped by the NCR. |
| ** Queue it in the corresponding unit queue. |
| */ |
| static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp) |
| { |
| struct tcb *tp = &np->target[cp->target]; |
| struct lcb *lp = tp->lp[cp->lun]; |
| |
| if (lp && cp != np->ccb) { |
| cp->host_status &= ~HS_SKIPMASK; |
| cp->start.schedule.l_paddr = |
| cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); |
| list_move_tail(&cp->link_ccbq, &lp->skip_ccbq); |
| if (cp->queued) { |
| --lp->queuedccbs; |
| } |
| } |
| if (cp->queued) { |
| --np->queuedccbs; |
| cp->queued = 0; |
| } |
| } |
| |
| /* |
| ** The NCR has completed CCBs. |
| ** Look at the DONE QUEUE if enabled, otherwise scan all CCBs |
| */ |
| void ncr_wakeup_done (struct ncb *np) |
| { |
| struct ccb *cp; |
| #ifdef SCSI_NCR_CCB_DONE_SUPPORT |
| int i, j; |
| |
| i = np->ccb_done_ic; |
| while (1) { |
| j = i+1; |
| if (j >= MAX_DONE) |
| j = 0; |
| |
| cp = np->ccb_done[j]; |
| if (!CCB_DONE_VALID(cp)) |
| break; |
| |
| np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY; |
| np->scripth->done_queue[5*j + 4] = |
| cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug)); |
| MEMORY_BARRIER(); |
| np->scripth->done_queue[5*i + 4] = |
| cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end)); |
| |
| if (cp->host_status & HS_DONEMASK) |
| ncr_complete (np, cp); |
| else if (cp->host_status & HS_SKIPMASK) |
| ncr_ccb_skipped (np, cp); |
| |
| i = j; |
| } |
| np->ccb_done_ic = i; |
| #else |
| cp = np->ccb; |
| while (cp) { |
| if (cp->host_status & HS_DONEMASK) |
| ncr_complete (np, cp); |
| else if (cp->host_status & HS_SKIPMASK) |
| ncr_ccb_skipped (np, cp); |
| cp = cp->link_ccb; |
| } |
| #endif |
| } |
| |
| /* |
| ** Complete all active CCBs. |
| */ |
| void ncr_wakeup (struct ncb *np, u_long code) |
| { |
| struct ccb *cp = np->ccb; |
| |
| while (cp) { |
| if (cp->host_status != HS_IDLE) { |
| cp->host_status = code; |
| ncr_complete (np, cp); |
| } |
| cp = cp->link_ccb; |
| } |
| } |
| |
| /* |
| ** Reset ncr chip. |
| */ |
| |
| /* Some initialisation must be done immediately following reset, for 53c720, |
| * at least. EA (dcntl bit 5) isn't set here as it is set once only in |
| * the _detect function. |
| */ |
| static void ncr_chip_reset(struct ncb *np, int delay) |
| { |
| OUTB (nc_istat, SRST); |
| udelay(delay); |
| OUTB (nc_istat, 0 ); |
| |
| if (np->features & FE_EHP) |
| OUTB (nc_ctest0, EHP); |
| if (np->features & FE_MUX) |
| OUTB (nc_ctest4, MUX); |
| } |
| |
| |
| /*========================================================== |
| ** |
| ** |
| ** Start NCR chip. |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| void ncr_init (struct ncb *np, int reset, char * msg, u_long code) |
| { |
| int i; |
| |
| /* |
| ** Reset chip if asked, otherwise just clear fifos. |
| */ |
| |
| if (reset) { |
| OUTB (nc_istat, SRST); |
| udelay(100); |
| } |
| else { |
| OUTB (nc_stest3, TE|CSF); |
| OUTONB (nc_ctest3, CLF); |
| } |
| |
| /* |
| ** Message. |
| */ |
| |
| if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg); |
| |
| /* |
| ** Clear Start Queue |
| */ |
| np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */ |
| for (i = 1; i < MAX_START + MAX_START; i += 2) |
| np->scripth0->tryloop[i] = |
| cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); |
| |
| /* |
| ** Start at first entry. |
| */ |
| np->squeueput = 0; |
| np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop)); |
| |
| #ifdef SCSI_NCR_CCB_DONE_SUPPORT |
| /* |
| ** Clear Done Queue |
| */ |
| for (i = 0; i < MAX_DONE; i++) { |
| np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY; |
| np->scripth0->done_queue[5*i + 4] = |
| cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end)); |
| } |
| #endif |
| |
| /* |
| ** Start at first entry. |
| */ |
| np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue)); |
| np->ccb_done_ic = MAX_DONE-1; |
| np->scripth0->done_queue[5*(MAX_DONE-1) + 4] = |
| cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug)); |
| |
| /* |
| ** Wakeup all pending jobs. |
| */ |
| ncr_wakeup (np, code); |
| |
| /* |
| ** Init chip. |
| */ |
| |
| /* |
| ** Remove reset; big delay because the 895 needs time for the |
| ** bus mode to settle |
| */ |
| ncr_chip_reset(np, 2000); |
| |
| OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); |
| /* full arb., ena parity, par->ATN */ |
| OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ |
| |
| ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ |
| |
| OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ |
| OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ |
| OUTB (nc_istat , SIGP ); /* Signal Process */ |
| OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ |
| OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ |
| |
| OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ |
| OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */ |
| OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ |
| OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ |
| |
| OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */ |
| OUTB (nc_stest3, TE); /* TolerANT enable */ |
| OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */ |
| |
| /* |
| ** Disable disconnects. |
| */ |
| |
| np->disc = 0; |
| |
| /* |
| ** Enable GPIO0 pin for writing if LED support. |
| */ |
| |
| if (np->features & FE_LED0) { |
| OUTOFFB (nc_gpcntl, 0x01); |
| } |
| |
| /* |
| ** enable ints |
| */ |
| |
| OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); |
| OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID); |
| |
| /* |
| ** Fill in target structure. |
| ** Reinitialize usrsync. |
| ** Reinitialize usrwide. |
| ** Prepare sync negotiation according to actual SCSI bus mode. |
| */ |
| |
| for (i=0;i<MAX_TARGET;i++) { |
| struct tcb *tp = &np->target[i]; |
| |
| tp->sval = 0; |
| tp->wval = np->rv_scntl3; |
| |
| if (tp->usrsync != 255) { |
| if (tp->usrsync <= np->maxsync) { |
| if (tp->usrsync < np->minsync) { |
| tp->usrsync = np->minsync; |
| } |
| } |
| else |
| tp->usrsync = 255; |
| } |
| |
| if (tp->usrwide > np->maxwide) |
| tp->usrwide = np->maxwide; |
| |
| } |
| |
| /* |
| ** Start script processor. |
| */ |
| if (np->paddr2) { |
| if (bootverbose) |
| printk ("%s: Downloading SCSI SCRIPTS.\n", |
| ncr_name(np)); |
| OUTL (nc_scratcha, vtobus(np->script0)); |
| OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram)); |
| } |
| else |
| OUTL_DSP (NCB_SCRIPT_PHYS (np, start)); |
| } |
| |
| /*========================================================== |
| ** |
| ** Prepare the negotiation values for wide and |
| ** synchronous transfers. |
| ** |
| **========================================================== |
| */ |
| |
| static void ncr_negotiate (struct ncb* np, struct tcb* tp) |
| { |
| /* |
| ** minsync unit is 4ns ! |
| */ |
| |
| u_long minsync = tp->usrsync; |
| |
| /* |
| ** SCSI bus mode limit |
| */ |
| |
| if (np->scsi_mode && np->scsi_mode == SMODE_SE) { |
| if (minsync < 12) minsync = 12; |
| } |
| |
| /* |
| ** our limit .. |
| */ |
| |
| if (minsync < np->minsync) |
| minsync = np->minsync; |
| |
| /* |
| ** divider limit |
| */ |
| |
| if (minsync > np->maxsync) |
| minsync = 255; |
| |
| if (tp->maxoffs > np->maxoffs) |
| tp->maxoffs = np->maxoffs; |
| |
| tp->minsync = minsync; |
| tp->maxoffs = (minsync<255 ? tp->maxoffs : 0); |
| |
| /* |
| ** period=0: has to negotiate sync transfer |
| */ |
| |
| tp->period=0; |
| |
| /* |
| ** widedone=0: has to negotiate wide transfer |
| */ |
| tp->widedone=0; |
| } |
| |
| /*========================================================== |
| ** |
| ** Get clock factor and sync divisor for a given |
| ** synchronous factor period. |
| ** Returns the clock factor (in sxfer) and scntl3 |
| ** synchronous divisor field. |
| ** |
| **========================================================== |
| */ |
| |
| static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p) |
| { |
| u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */ |
| int div = np->clock_divn; /* Number of divisors supported */ |
| u_long fak; /* Sync factor in sxfer */ |
| u_long per; /* Period in tenths of ns */ |
| u_long kpc; /* (per * clk) */ |
| |
| /* |
| ** Compute the synchronous period in tenths of nano-seconds |
| */ |
| if (sfac <= 10) per = 250; |
| else if (sfac == 11) per = 303; |
| else if (sfac == 12) per = 500; |
| else per = 40 * sfac; |
| |
| /* |
| ** Look for the greatest clock divisor that allows an |
| ** input speed faster than the period. |
| */ |
| kpc = per * clk; |
| while (--div >= 0) |
| if (kpc >= (div_10M[div] << 2)) break; |
| |
| /* |
| ** Calculate the lowest clock factor that allows an output |
| ** speed not faster than the period. |
| */ |
| fak = (kpc - 1) / div_10M[div] + 1; |
| |
| #if 0 /* This optimization does not seem very useful */ |
| |
| per = (fak * div_10M[div]) / clk; |
| |
| /* |
| ** Why not to try the immediate lower divisor and to choose |
| ** the one that allows the fastest output speed ? |
| ** We don't want input speed too much greater than output speed. |
| */ |
| if (div >= 1 && fak < 8) { |
| u_long fak2, per2; |
| fak2 = (kpc - 1) / div_10M[div-1] + 1; |
| per2 = (fak2 * div_10M[div-1]) / clk; |
| if (per2 < per && fak2 <= 8) { |
| fak = fak2; |
| per = per2; |
| --div; |
| } |
| } |
| #endif |
| |
| if (fak < 4) fak = 4; /* Should never happen, too bad ... */ |
| |
| /* |
| ** Compute and return sync parameters for the ncr |
| */ |
| *fakp = fak - 4; |
| *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0); |
| } |
| |
| |
| /*========================================================== |
| ** |
| ** Set actual values, sync status and patch all ccbs of |
| ** a target according to new sync/wide agreement. |
| ** |
| **========================================================== |
| */ |
| |
| static void ncr_set_sync_wide_status (struct ncb *np, u_char target) |
| { |
| struct ccb *cp; |
| struct tcb *tp = &np->target[target]; |
| |
| /* |
| ** set actual value and sync_status |
| */ |
| OUTB (nc_sxfer, tp->sval); |
| np->sync_st = tp->sval; |
| OUTB (nc_scntl3, tp->wval); |
| np->wide_st = tp->wval; |
| |
| /* |
| ** patch ALL ccbs of this target. |
| */ |
| for (cp = np->ccb; cp; cp = cp->link_ccb) { |
| if (!cp->cmd) continue; |
| if (scmd_id(cp->cmd) != target) continue; |
| #if 0 |
| cp->sync_status = tp->sval; |
| cp->wide_status = tp->wval; |
| #endif |
| cp->phys.select.sel_scntl3 = tp->wval; |
| cp->phys.select.sel_sxfer = tp->sval; |
| } |
| } |
| |
| /*========================================================== |
| ** |
| ** Switch sync mode for current job and it's target |
| ** |
| **========================================================== |
| */ |
| |
| static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer) |
| { |
| struct scsi_cmnd *cmd = cp->cmd; |
| struct tcb *tp; |
| u_char target = INB (nc_sdid) & 0x0f; |
| u_char idiv; |
| |
| BUG_ON(target != (scmd_id(cmd) & 0xf)); |
| |
| tp = &np->target[target]; |
| |
| if (!scntl3 || !(sxfer & 0x1f)) |
| scntl3 = np->rv_scntl3; |
| scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07); |
| |
| /* |
| ** Deduce the value of controller sync period from scntl3. |
| ** period is in tenths of nano-seconds. |
| */ |
| |
| idiv = ((scntl3 >> 4) & 0x7); |
| if ((sxfer & 0x1f) && idiv) |
| tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz; |
| else |
| tp->period = 0xffff; |
| |
| /* Stop there if sync parameters are unchanged */ |
| if (tp->sval == sxfer && tp->wval == scntl3) |
| return; |
| tp->sval = sxfer; |
| tp->wval = scntl3; |
| |
| if (sxfer & 0x01f) { |
| /* Disable extended Sreq/Sack filtering */ |
| if (tp->period <= 2000) |
| OUTOFFB(nc_stest2, EXT); |
| } |
| |
| spi_display_xfer_agreement(tp->starget); |
| |
| /* |
| ** set actual value and sync_status |
| ** patch ALL ccbs of this target. |
| */ |
| ncr_set_sync_wide_status(np, target); |
| } |
| |
| /*========================================================== |
| ** |
| ** Switch wide mode for current job and it's target |
| ** SCSI specs say: a SCSI device that accepts a WDTR |
| ** message shall reset the synchronous agreement to |
| ** asynchronous mode. |
| ** |
| **========================================================== |
| */ |
| |
| static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack) |
| { |
| struct scsi_cmnd *cmd = cp->cmd; |
| u16 target = INB (nc_sdid) & 0x0f; |
| struct tcb *tp; |
| u_char scntl3; |
| u_char sxfer; |
| |
| BUG_ON(target != (scmd_id(cmd) & 0xf)); |
| |
| tp = &np->target[target]; |
| tp->widedone = wide+1; |
| scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0); |
| |
| sxfer = ack ? 0 : tp->sval; |
| |
| /* |
| ** Stop there if sync/wide parameters are unchanged |
| */ |
| if (tp->sval == sxfer && tp->wval == scntl3) return; |
| tp->sval = sxfer; |
| tp->wval = scntl3; |
| |
| /* |
| ** Bells and whistles ;-) |
| */ |
| if (bootverbose >= 2) { |
| dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n", |
| (scntl3 & EWS) ? "en" : "dis"); |
| } |
| |
| /* |
| ** set actual value and sync_status |
| ** patch ALL ccbs of this target. |
| */ |
| ncr_set_sync_wide_status(np, target); |
| } |
| |
| /*========================================================== |
| ** |
| ** Switch tagged mode for a target. |
| ** |
| **========================================================== |
| */ |
| |
| static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev) |
| { |
| unsigned char tn = sdev->id, ln = sdev->lun; |
| struct tcb *tp = &np->target[tn]; |
| struct lcb *lp = tp->lp[ln]; |
| u_char reqtags, maxdepth; |
| |
| /* |
| ** Just in case ... |
| */ |
| if ((!tp) || (!lp) || !sdev) |
| return; |
| |
| /* |
| ** If SCSI device queue depth is not yet set, leave here. |
| */ |
| if (!lp->scdev_depth) |
| return; |
| |
| /* |
| ** Donnot allow more tags than the SCSI driver can queue |
| ** for this device. |
| ** Donnot allow more tags than we can handle. |
| */ |
| maxdepth = lp->scdev_depth; |
| if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs; |
| if (lp->maxtags > maxdepth) lp->maxtags = maxdepth; |
| if (lp->numtags > maxdepth) lp->numtags = maxdepth; |
| |
| /* |
| ** only devices conformant to ANSI Version >= 2 |
| ** only devices capable of tagged commands |
| ** only if enabled by user .. |
| */ |
| if (sdev->tagged_supported && lp->numtags > 1) { |
| reqtags = lp->numtags; |
| } else { |
| reqtags = 1; |
| } |
| |
| /* |
| ** Update max number of tags |
| */ |
| lp->numtags = reqtags; |
| if (lp->numtags > lp->maxtags) |
| lp->maxtags = lp->numtags; |
| |
| /* |
| ** If we want to switch tag mode, we must wait |
| ** for no CCB to be active. |
| */ |
| if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */ |
| if (lp->queuedepth == reqtags) /* Already announced */ |
| return; |
| lp->queuedepth = reqtags; |
| } |
| else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */ |
| lp->queuedepth = reqtags; |
| return; |
| } |
| else { /* Want to switch tag mode */ |
| if (lp->busyccbs) /* If not yet safe, return */ |
| return; |
| lp->queuedepth = reqtags; |
| lp->usetags = reqtags > 1 ? 1 : 0; |
| } |
| |
| /* |
| ** Patch the lun mini-script, according to tag mode. |
| */ |
| lp->jump_tag.l_paddr = lp->usetags? |
| cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) : |
| cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag)); |
| |
| /* |
| ** Announce change to user. |
| */ |
| if (bootverbose) { |
| if (lp->usetags) { |
| dev_info(&sdev->sdev_gendev, |
| "tagged command queue depth set to %d\n", |
| reqtags); |
| } else { |
| dev_info(&sdev->sdev_gendev, |
| "tagged command queueing disabled\n"); |
| } |
| } |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** ncr timeout handler. |
| ** |
| ** |
| **========================================================== |
| ** |
| ** Misused to keep the driver running when |
| ** interrupts are not configured correctly. |
| ** |
| **---------------------------------------------------------- |
| */ |
| |
| static void ncr_timeout (struct ncb *np) |
| { |
| u_long thistime = jiffies; |
| |
| /* |
| ** If release process in progress, let's go |
| ** Set the release stage from 1 to 2 to synchronize |
| ** with the release process. |
| */ |
| |
| if (np->release_stage) { |
| if (np->release_stage == 1) np->release_stage = 2; |
| return; |
| } |
| |
| np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL; |
| add_timer(&np->timer); |
| |
| /* |
| ** If we are resetting the ncr, wait for settle_time before |
| ** clearing it. Then command processing will be resumed. |
| */ |
| if (np->settle_time) { |
| if (np->settle_time <= thistime) { |
| if (bootverbose > 1) |
| printk("%s: command processing resumed\n", ncr_name(np)); |
| np->settle_time = 0; |
| np->disc = 1; |
| requeue_waiting_list(np); |
| } |
| return; |
| } |
| |
| /* |
| ** Since the generic scsi driver only allows us 0.5 second |
| ** to perform abort of a command, we must look at ccbs about |
| ** every 0.25 second. |
| */ |
| if (np->lasttime + 4*HZ < thistime) { |
| /* |
| ** block ncr interrupts |
| */ |
| np->lasttime = thistime; |
| } |
| |
| #ifdef SCSI_NCR_BROKEN_INTR |
| if (INB(nc_istat) & (INTF|SIP|DIP)) { |
| |
| /* |
| ** Process pending interrupts. |
| */ |
| if (DEBUG_FLAGS & DEBUG_TINY) printk ("{"); |
| ncr_exception (np); |
| if (DEBUG_FLAGS & DEBUG_TINY) printk ("}"); |
| } |
| #endif /* SCSI_NCR_BROKEN_INTR */ |
| } |
| |
| /*========================================================== |
| ** |
| ** log message for real hard errors |
| ** |
| ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)." |
| ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf." |
| ** |
| ** exception register: |
| ** ds: dstat |
| ** si: sist |
| ** |
| ** SCSI bus lines: |
| ** so: control lines as driver by NCR. |
| ** si: control lines as seen by NCR. |
| ** sd: scsi data lines as seen by NCR. |
| ** |
| ** wide/fastmode: |
| ** sxfer: (see the manual) |
| ** scntl3: (see the manual) |
| ** |
| ** current script command: |
| ** dsp: script address (relative to start of script). |
| ** dbc: first word of script command. |
| ** |
| ** First 16 register of the chip: |
| ** r0..rf |
| ** |
| **========================================================== |
| */ |
| |
| static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat) |
| { |
| u32 dsp; |
| int script_ofs; |
| int script_size; |
| char *script_name; |
| u_char *script_base; |
| int i; |
| |
| dsp = INL (nc_dsp); |
| |
| if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) { |
| script_ofs = dsp - np->p_script; |
| script_size = sizeof(struct script); |
| script_base = (u_char *) np->script0; |
| script_name = "script"; |
| } |
| else if (np->p_scripth < dsp && |
| dsp <= np->p_scripth + sizeof(struct scripth)) { |
| script_ofs = dsp - np->p_scripth; |
| script_size = sizeof(struct scripth); |
| script_base = (u_char *) np->scripth0; |
| script_name = "scripth"; |
| } else { |
| script_ofs = dsp; |
| script_size = 0; |
| script_base = NULL; |
| script_name = "mem"; |
| } |
| |
| printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", |
| ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, |
| (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl), |
| (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs, |
| (unsigned)INL (nc_dbc)); |
| |
| if (((script_ofs & 3) == 0) && |
| (unsigned)script_ofs < script_size) { |
| printk ("%s: script cmd = %08x\n", ncr_name(np), |
| scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs))); |
| } |
| |
| printk ("%s: regdump:", ncr_name(np)); |
| for (i=0; i<16;i++) |
| printk (" %02x", (unsigned)INB_OFF(i)); |
| printk (".\n"); |
| } |
| |
| /*============================================================ |
| ** |
| ** ncr chip exception handler. |
| ** |
| **============================================================ |
| ** |
| ** In normal cases, interrupt conditions occur one at a |
| ** time. The ncr is able to stack in some extra registers |
| ** other interrupts that will occur after the first one. |
| ** But, several interrupts may occur at the same time. |
| ** |
| ** We probably should only try to deal with the normal |
| ** case, but it seems that multiple interrupts occur in |
| ** some cases that are not abnormal at all. |
| ** |
| ** The most frequent interrupt condition is Phase Mismatch. |
| ** We should want to service this interrupt quickly. |
| ** A SCSI parity error may be delivered at the same time. |
| ** The SIR interrupt is not very frequent in this driver, |
| ** since the INTFLY is likely used for command completion |
| ** signaling. |
| ** The Selection Timeout interrupt may be triggered with |
| ** IID and/or UDC. |
| ** The SBMC interrupt (SCSI Bus Mode Change) may probably |
| ** occur at any time. |
| ** |
| ** This handler try to deal as cleverly as possible with all |
| ** the above. |
| ** |
| **============================================================ |
| */ |
| |
| void ncr_exception (struct ncb *np) |
| { |
| u_char istat, dstat; |
| u16 sist; |
| int i; |
| |
| /* |
| ** interrupt on the fly ? |
| ** Since the global header may be copied back to a CCB |
| ** using a posted PCI memory write, the last operation on |
| ** the istat register is a READ in order to flush posted |
| ** PCI write commands. |
| */ |
| istat = INB (nc_istat); |
| if (istat & INTF) { |
| OUTB (nc_istat, (istat & SIGP) | INTF); |
| istat = INB (nc_istat); |
| if (DEBUG_FLAGS & DEBUG_TINY) printk ("F "); |
| ncr_wakeup_done (np); |
| } |
| |
| if (!(istat & (SIP|DIP))) |
| return; |
| |
| if (istat & CABRT) |
| OUTB (nc_istat, CABRT); |
| |
| /* |
| ** Steinbach's Guideline for Systems Programming: |
| ** Never test for an error condition you don't know how to handle. |
| */ |
| |
| sist = (istat & SIP) ? INW (nc_sist) : 0; |
| dstat = (istat & DIP) ? INB (nc_dstat) : 0; |
| |
| if (DEBUG_FLAGS & DEBUG_TINY) |
| printk ("<%d|%x:%x|%x:%x>", |
| (int)INB(nc_scr0), |
| dstat,sist, |
| (unsigned)INL(nc_dsp), |
| (unsigned)INL(nc_dbc)); |
| |
| /*======================================================== |
| ** First, interrupts we want to service cleanly. |
| ** |
| ** Phase mismatch is the most frequent interrupt, and |
| ** so we have to service it as quickly and as cleanly |
| ** as possible. |
| ** Programmed interrupts are rarely used in this driver, |
| ** but we must handle them cleanly anyway. |
| ** We try to deal with PAR and SBMC combined with |
| ** some other interrupt(s). |
| **========================================================= |
| */ |
| |
| if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) && |
| !(dstat & (MDPE|BF|ABRT|IID))) { |
| if ((sist & SBMC) && ncr_int_sbmc (np)) |
| return; |
| if ((sist & PAR) && ncr_int_par (np)) |
| return; |
| if (sist & MA) { |
| ncr_int_ma (np); |
| return; |
| } |
| if (dstat & SIR) { |
| ncr_int_sir (np); |
| return; |
| } |
| /* |
| ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2. |
| */ |
| if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) { |
| printk( "%s: unknown interrupt(s) ignored, " |
| "ISTAT=%x DSTAT=%x SIST=%x\n", |
| ncr_name(np), istat, dstat, sist); |
| return; |
| } |
| OUTONB_STD (); |
| return; |
| } |
| |
| /*======================================================== |
| ** Now, interrupts that need some fixing up. |
| ** Order and multiple interrupts is so less important. |
| ** |
| ** If SRST has been asserted, we just reset the chip. |
| ** |
| ** Selection is intirely handled by the chip. If the |
| ** chip says STO, we trust it. Seems some other |
| ** interrupts may occur at the same time (UDC, IID), so |
| ** we ignore them. In any case we do enough fix-up |
| ** in the service routine. |
| ** We just exclude some fatal dma errors. |
| **========================================================= |
| */ |
| |
| if (sist & RST) { |
| ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET); |
| return; |
| } |
| |
| if ((sist & STO) && |
| !(dstat & (MDPE|BF|ABRT))) { |
| /* |
| ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1. |
| */ |
| OUTONB (nc_ctest3, CLF); |
| |
| ncr_int_sto (np); |
| return; |
| } |
| |
| /*========================================================= |
| ** Now, interrupts we are not able to recover cleanly. |
| ** (At least for the moment). |
| ** |
| ** Do the register dump. |
| ** Log message for real hard errors. |
| ** Clear all fifos. |
| ** For MDPE, BF, ABORT, IID, SGE and HTH we reset the |
| ** BUS and the chip. |
| ** We are more soft for UDC. |
| **========================================================= |
| */ |
| |
| if (time_after(jiffies, np->regtime)) { |
| np->regtime = jiffies + 10*HZ; |
| for (i = 0; i<sizeof(np->regdump); i++) |
| ((char*)&np->regdump)[i] = INB_OFF(i); |
| np->regdump.nc_dstat = dstat; |
| np->regdump.nc_sist = sist; |
| } |
| |
| ncr_log_hard_error(np, sist, dstat); |
| |
| printk ("%s: have to clear fifos.\n", ncr_name (np)); |
| OUTB (nc_stest3, TE|CSF); |
| OUTONB (nc_ctest3, CLF); |
| |
| if ((sist & (SGE)) || |
| (dstat & (MDPE|BF|ABRT|IID))) { |
| ncr_start_reset(np); |
| return; |
| } |
| |
| if (sist & HTH) { |
| printk ("%s: handshake timeout\n", ncr_name(np)); |
| ncr_start_reset(np); |
| return; |
| } |
| |
| if (sist & UDC) { |
| printk ("%s: unexpected disconnect\n", ncr_name(np)); |
| OUTB (HS_PRT, HS_UNEXPECTED); |
| OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup)); |
| return; |
| } |
| |
| /*========================================================= |
| ** We just miss the cause of the interrupt. :( |
| ** Print a message. The timeout will do the real work. |
| **========================================================= |
| */ |
| printk ("%s: unknown interrupt\n", ncr_name(np)); |
| } |
| |
| /*========================================================== |
| ** |
| ** ncr chip exception handler for selection timeout |
| ** |
| **========================================================== |
| ** |
| ** There seems to be a bug in the 53c810. |
| ** Although a STO-Interrupt is pending, |
| ** it continues executing script commands. |
| ** But it will fail and interrupt (IID) on |
| ** the next instruction where it's looking |
| ** for a valid phase. |
| ** |
| **---------------------------------------------------------- |
| */ |
| |
| void ncr_int_sto (struct ncb *np) |
| { |
| u_long dsa; |
| struct ccb *cp; |
| if (DEBUG_FLAGS & DEBUG_TINY) printk ("T"); |
| |
| /* |
| ** look for ccb and set the status. |
| */ |
| |
| dsa = INL (nc_dsa); |
| cp = np->ccb; |
| while (cp && (CCB_PHYS (cp, phys) != dsa)) |
| cp = cp->link_ccb; |
| |
| if (cp) { |
| cp-> host_status = HS_SEL_TIMEOUT; |
| ncr_complete (np, cp); |
| } |
| |
| /* |
| ** repair start queue and jump to start point. |
| */ |
| |
| OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart)); |
| return; |
| } |
| |
| /*========================================================== |
| ** |
| ** ncr chip exception handler for SCSI bus mode change |
| ** |
| **========================================================== |
| ** |
| ** spi2-r12 11.2.3 says a transceiver mode change must |
| ** generate a reset event and a device that detects a reset |
| ** event shall initiate a hard reset. It says also that a |
| ** device that detects a mode change shall set data transfer |
| ** mode to eight bit asynchronous, etc... |
| ** So, just resetting should be enough. |
| ** |
| ** |
| **---------------------------------------------------------- |
| */ |
| |
| static int ncr_int_sbmc (struct ncb *np) |
| { |
| u_char scsi_mode = INB (nc_stest4) & SMODE; |
| |
| if (scsi_mode != np->scsi_mode) { |
| printk("%s: SCSI bus mode change from %x to %x.\n", |
| ncr_name(np), np->scsi_mode, scsi_mode); |
| |
| np->scsi_mode = scsi_mode; |
| |
| |
| /* |
| ** Suspend command processing for 1 second and |
| ** reinitialize all except the chip. |
| */ |
| np->settle_time = jiffies + HZ; |
| ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /*========================================================== |
| ** |
| ** ncr chip exception handler for SCSI parity error. |
| ** |
| **========================================================== |
| ** |
| ** |
| **---------------------------------------------------------- |
| */ |
| |
| static int ncr_int_par (struct ncb *np) |
| { |
| u_char hsts = INB (HS_PRT); |
| u32 dbc = INL (nc_dbc); |
| u_char sstat1 = INB (nc_sstat1); |
| int phase = -1; |
| int msg = -1; |
| u32 jmp; |
| |
| printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n", |
| ncr_name(np), hsts, dbc, sstat1); |
| |
| /* |
| * Ignore the interrupt if the NCR is not connected |
| * to the SCSI bus, since the right work should have |
| * been done on unexpected disconnection handling. |
| */ |
| if (!(INB (nc_scntl1) & ISCON)) |
| return 0; |
| |
| /* |
| * If the nexus is not clearly identified, reset the bus. |
| * We will try to do better later. |
| */ |
| if (hsts & HS_INVALMASK) |
| goto reset_all; |
| |
| /* |
| * If the SCSI parity error occurs in MSG IN phase, prepare a |
| * MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED |
| * ERROR message and let the device decide to retry the command |
| * or to terminate with check condition. If we were in MSG IN |
| * phase waiting for the response of a negotiation, we will |
| * get SIR_NEGO_FAILED at dispatch. |
| */ |
| if (!(dbc & 0xc0000000)) |
| phase = (dbc >> 24) & 7; |
| if (phase == 7) |
| msg = MSG_PARITY_ERROR; |
| else |
| msg = INITIATOR_ERROR; |
| |
| |
| /* |
| * If the NCR stopped on a MOVE ^ DATA_IN, we jump to a |
| * script that will ignore all data in bytes until phase |
| * change, since we are not sure the chip will wait the phase |
| * change prior to delivering the interrupt. |
| */ |
| if (phase == 1) |
| jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in); |
| else |
| jmp = NCB_SCRIPTH_PHYS (np, par_err_other); |
| |
| OUTONB (nc_ctest3, CLF ); /* clear dma fifo */ |
| OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ |
| |
| np->msgout[0] = msg; |
| OUTL_DSP (jmp); |
| return 1; |
| |
| reset_all: |
| ncr_start_reset(np); |
| return 1; |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** ncr chip exception handler for phase errors. |
| ** |
| ** |
| **========================================================== |
| ** |
| ** We have to construct a new transfer descriptor, |
| ** to transfer the rest of the current block. |
| ** |
| **---------------------------------------------------------- |
| */ |
| |
| static void ncr_int_ma (struct ncb *np) |
| { |
| u32 dbc; |
| u32 rest; |
| u32 dsp; |
| u32 dsa; |
| u32 nxtdsp; |
| u32 newtmp; |
| u32 *vdsp; |
| u32 oadr, olen; |
| u32 *tblp; |
| ncrcmd *newcmd; |
| u_char cmd, sbcl; |
| struct ccb *cp; |
| |
| dsp = INL (nc_dsp); |
| dbc = INL (nc_dbc); |
| sbcl = INB (nc_sbcl); |
| |
| cmd = dbc >> 24; |
| rest = dbc & 0xffffff; |
| |
| /* |
| ** Take into account dma fifo and various buffers and latches, |
| ** only if the interrupted phase is an OUTPUT phase. |
| */ |
| |
| if ((cmd & 1) == 0) { |
| u_char ctest5, ss0, ss2; |
| u16 delta; |
| |
| ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0; |
| if (ctest5 & DFS) |
| delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff; |
| else |
| delta=(INB (nc_dfifo) - rest) & 0x7f; |
| |
| /* |
| ** The data in the dma fifo has not been transferred to |
| ** the target -> add the amount to the rest |
| ** and clear the data. |
| ** Check the sstat2 register in case of wide transfer. |
| */ |
| |
| rest += delta; |
| ss0 = INB (nc_sstat0); |
| if (ss0 & OLF) rest++; |
| if (ss0 & ORF) rest++; |
| if (INB(nc_scntl3) & EWS) { |
| ss2 = INB (nc_sstat2); |
| if (ss2 & OLF1) rest++; |
| if (ss2 & ORF1) rest++; |
| } |
| |
| if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) |
| printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7, |
| (unsigned) rest, (unsigned) delta, ss0); |
| |
| } else { |
| if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) |
| printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest); |
| } |
| |
| /* |
| ** Clear fifos. |
| */ |
| OUTONB (nc_ctest3, CLF ); /* clear dma fifo */ |
| OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ |
| |
| /* |
| ** locate matching cp. |
| ** if the interrupted phase is DATA IN or DATA OUT, |
| ** trust the global header. |
| */ |
| dsa = INL (nc_dsa); |
| if (!(cmd & 6)) { |
| cp = np->header.cp; |
| if (CCB_PHYS(cp, phys) != dsa) |
| cp = NULL; |
| } else { |
| cp = np->ccb; |
| while (cp && (CCB_PHYS (cp, phys) != dsa)) |
| cp = cp->link_ccb; |
| } |
| |
| /* |
| ** try to find the interrupted script command, |
| ** and the address at which to continue. |
| */ |
| vdsp = NULL; |
| nxtdsp = 0; |
| if (dsp > np->p_script && |
| dsp <= np->p_script + sizeof(struct script)) { |
| vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8)); |
| nxtdsp = dsp; |
| } |
| else if (dsp > np->p_scripth && |
| dsp <= np->p_scripth + sizeof(struct scripth)) { |
| vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8)); |
| nxtdsp = dsp; |
| } |
| else if (cp) { |
| if (dsp == CCB_PHYS (cp, patch[2])) { |
| vdsp = &cp->patch[0]; |
| nxtdsp = scr_to_cpu(vdsp[3]); |
| } |
| else if (dsp == CCB_PHYS (cp, patch[6])) { |
| vdsp = &cp->patch[4]; |
| nxtdsp = scr_to_cpu(vdsp[3]); |
| } |
| } |
| |
| /* |
| ** log the information |
| */ |
| |
| if (DEBUG_FLAGS & DEBUG_PHASE) { |
| printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", |
| cp, np->header.cp, |
| (unsigned)dsp, |
| (unsigned)nxtdsp, vdsp, cmd); |
| } |
| |
| /* |
| ** cp=0 means that the DSA does not point to a valid control |
| ** block. This should not happen since we donnot use multi-byte |
| ** move while we are being reselected ot after command complete. |
| ** We are not able to recover from such a phase error. |
| */ |
| if (!cp) { |
| printk ("%s: SCSI phase error fixup: " |
| "CCB already dequeued (0x%08lx)\n", |
| ncr_name (np), (u_long) np->header.cp); |
| goto reset_all; |
| } |
| |
| /* |
| ** get old startaddress and old length. |
| */ |
| |
| oadr = scr_to_cpu(vdsp[1]); |
| |
| if (cmd & 0x10) { /* Table indirect */ |
| tblp = (u32 *) ((char*) &cp->phys + oadr); |
| olen = scr_to_cpu(tblp[0]); |
| oadr = scr_to_cpu(tblp[1]); |
| } else { |
| tblp = (u32 *) 0; |
| olen = scr_to_cpu(vdsp[0]) & 0xffffff; |
| } |
| |
| if (DEBUG_FLAGS & DEBUG_PHASE) { |
| printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", |
| (unsigned) (scr_to_cpu(vdsp[0]) >> 24), |
| tblp, |
| (unsigned) olen, |
| (unsigned) oadr); |
| } |
| |
| /* |
| ** check cmd against assumed interrupted script command. |
| */ |
| |
| if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) { |
| PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] " |
| ">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24); |
| |
| goto reset_all; |
| } |
| |
| /* |
| ** cp != np->header.cp means that the header of the CCB |
| ** currently being processed has not yet been copied to |
| ** the global header area. That may happen if the device did |
| ** not accept all our messages after having been selected. |
| */ |
| if (cp != np->header.cp) { |
| printk ("%s: SCSI phase error fixup: " |
| "CCB address mismatch (0x%08lx != 0x%08lx)\n", |
| ncr_name (np), (u_long) cp, (u_long) np->header.cp); |
| } |
| |
| /* |
| ** if old phase not dataphase, leave here. |
| */ |
| |
| if (cmd & 0x06) { |
| PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n", |
| cmd&7, sbcl&7, (unsigned)olen, |
| (unsigned)oadr, (unsigned)rest); |
| goto unexpected_phase; |
| } |
| |
| /* |
| ** choose the correct patch area. |
| ** if savep points to one, choose the other. |
| */ |
| |
| newcmd = cp->patch; |
| newtmp = CCB_PHYS (cp, patch); |
| if (newtmp == scr_to_cpu(cp->phys.header.savep)) { |
| newcmd = &cp->patch[4]; |
| newtmp = CCB_PHYS (cp, patch[4]); |
| } |
| |
| /* |
| ** fillin the commands |
| */ |
| |
| newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest); |
| newcmd[1] = cpu_to_scr(oadr + olen - rest); |
| newcmd[2] = cpu_to_scr(SCR_JUMP); |
| newcmd[3] = cpu_to_scr(nxtdsp); |
| |
| if (DEBUG_FLAGS & DEBUG_PHASE) { |
| PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n", |
| (int) (newcmd - cp->patch), |
| (unsigned)scr_to_cpu(newcmd[0]), |
| (unsigned)scr_to_cpu(newcmd[1]), |
| (unsigned)scr_to_cpu(newcmd[2]), |
| (unsigned)scr_to_cpu(newcmd[3])); |
| } |
| /* |
| ** fake the return address (to the patch). |
| ** and restart script processor at dispatcher. |
| */ |
| OUTL (nc_temp, newtmp); |
| OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch)); |
| return; |
| |
| /* |
| ** Unexpected phase changes that occurs when the current phase |
| ** is not a DATA IN or DATA OUT phase are due to error conditions. |
| ** Such event may only happen when the SCRIPTS is using a |
| ** multibyte SCSI MOVE. |
| ** |
| ** Phase change Some possible cause |
| ** |
| ** COMMAND --> MSG IN SCSI parity error detected by target. |
| ** COMMAND --> STATUS Bad command or refused by target. |
| ** MSG OUT --> MSG IN Message rejected by target. |
| ** MSG OUT --> COMMAND Bogus target that discards extended |
| ** negotiation messages. |
| ** |
| ** The code below does not care of the new phase and so |
| ** trusts the target. Why to annoy it ? |
| ** If the interrupted phase is COMMAND phase, we restart at |
| ** dispatcher. |
| ** If a target does not get all the messages after selection, |
| ** the code assumes blindly that the target discards extended |
| ** messages and clears the negotiation status. |
| ** If the target does not want all our response to negotiation, |
| ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids |
| ** bloat for such a should_not_happen situation). |
| ** In all other situation, we reset the BUS. |
| ** Are these assumptions reasonnable ? (Wait and see ...) |
| */ |
| unexpected_phase: |
| dsp -= 8; |
| nxtdsp = 0; |
| |
| switch (cmd & 7) { |
| case 2: /* COMMAND phase */ |
| nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); |
| break; |
| #if 0 |
| case 3: /* STATUS phase */ |
| nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); |
| break; |
| #endif |
| case 6: /* MSG OUT phase */ |
| np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8); |
| if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) { |
| cp->host_status = HS_BUSY; |
| nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on); |
| } |
| else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) || |
| dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) { |
| nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase); |
| } |
| break; |
| #if 0 |
| case 7: /* MSG IN phase */ |
| nxtdsp = NCB_SCRIPT_PHYS (np, clrack); |
| break; |
| #endif |
| } |
| |
| if (nxtdsp) { |
| OUTL_DSP (nxtdsp); |
| return; |
| } |
| |
| reset_all: |
| ncr_start_reset(np); |
| } |
| |
| |
| static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp) |
| { |
| struct scsi_cmnd *cmd = cp->cmd; |
| struct tcb *tp = &np->target[cmd->device->id]; |
| struct lcb *lp = tp->lp[cmd->device->lun]; |
| struct list_head *qp; |
| struct ccb * cp2; |
| int disc_cnt = 0; |
| int busy_cnt = 0; |
| u32 startp; |
| u_char s_status = INB (SS_PRT); |
| |
| /* |
| ** Let the SCRIPTS processor skip all not yet started CCBs, |
| ** and count disconnected CCBs. Since the busy queue is in |
| ** the same order as the chip start queue, disconnected CCBs |
| ** are before cp and busy ones after. |
| */ |
| if (lp) { |
| qp = lp->busy_ccbq.prev; |
| while (qp != &lp->busy_ccbq) { |
| cp2 = list_entry(qp, struct ccb, link_ccbq); |
| qp = qp->prev; |
| ++busy_cnt; |
| if (cp2 == cp) |
| break; |
| cp2->start.schedule.l_paddr = |
| cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip)); |
| } |
| lp->held_ccb = cp; /* Requeue when this one completes */ |
| disc_cnt = lp->queuedccbs - busy_cnt; |
| } |
| |
| switch(s_status) { |
| default: /* Just for safety, should never happen */ |
| case S_QUEUE_FULL: |
| /* |
| ** Decrease number of tags to the number of |
| ** disconnected commands. |
| */ |
| if (!lp) |
| goto out; |
| if (bootverbose >= 1) { |
| PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected " |
| "CCBs\n", busy_cnt, disc_cnt); |
| } |
| if (disc_cnt < lp->numtags) { |
| lp->numtags = disc_cnt > 2 ? disc_cnt : 2; |
| lp->num_good = 0; |
| ncr_setup_tags (np, cmd->device); |
| } |
| /* |
| ** Requeue the command to the start queue. |
| ** If any disconnected commands, |
| ** Clear SIGP. |
| ** Jump to reselect. |
| */ |
| cp->phys.header.savep = cp->startp; |
| cp->host_status = HS_BUSY; |
| cp->scsi_status = S_ILLEGAL; |
| |
| ncr_put_start_queue(np, cp); |
| if (disc_cnt) |
| INB (nc_ctest2); /* Clear SIGP */ |
| OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect)); |
| return; |
| case S_TERMINATED: |
| case S_CHECK_COND: |
| /* |
| ** If we were requesting sense, give up. |
| */ |
| if (cp->auto_sense) |
| goto out; |
| |
| /* |
| ** Device returned CHECK CONDITION status. |
| ** Prepare all needed data strutures for getting |
| ** sense data. |
| ** |
| ** identify message |
| */ |
| cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun); |
| cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2)); |
| cp->phys.smsg.size = cpu_to_scr(1); |
| |
| /* |
| ** sense command |
| */ |
| cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd)); |
| cp->phys.cmd.size = cpu_to_scr(6); |
| |
| /* |
| ** patch requested size into sense command |
| */ |
| cp->sensecmd[0] = 0x03; |
| cp->sensecmd[1] = cmd->device->lun << 5; |
| cp->sensecmd[4] = sizeof(cp->sense_buf); |
| |
| /* |
| ** sense data |
| */ |
| memset(cp->sense_buf, 0, sizeof(cp->sense_buf)); |
| cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0])); |
| cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf)); |
| |
| /* |
| ** requeue the command. |
| */ |
| startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in)); |
| |
| cp->phys.header.savep = startp; |
| cp->phys.header.goalp = startp + 24; |
| cp->phys.header.lastp = startp; |
| cp->phys.header.wgoalp = startp + 24; |
| cp->phys.header.wlastp = startp; |
| |
| cp->host_status = HS_BUSY; |
| cp->scsi_status = S_ILLEGAL; |
| cp->auto_sense = s_status; |
| |
| cp->start.schedule.l_paddr = |
| cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); |
| |
| /* |
| ** Select without ATN for quirky devices. |
| */ |
| if (cmd->device->select_no_atn) |
| cp->start.schedule.l_paddr = |
| cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn)); |
| |
| ncr_put_start_queue(np, cp); |
| |
| OUTL_DSP (NCB_SCRIPT_PHYS (np, start)); |
| return; |
| } |
| |
| out: |
| OUTONB_STD (); |
| return; |
| } |
| |
| |
| /*========================================================== |
| ** |
| ** |
| ** ncr chip exception handler for programmed interrupts. |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| void ncr_int_sir (struct ncb *np) |
| { |
| u_char scntl3; |
| u_char chg, ofs, per, fak, wide; |
| u_char num = INB (nc_dsps); |
| struct ccb *cp=NULL; |
| u_long dsa = INL (nc_dsa); |
| u_char target = INB (nc_sdid) & 0x0f; |
| struct tcb *tp = &np->target[target]; |
| struct scsi_target *starget = tp->starget; |
| |
| if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num); |
| |
| switch (num) { |
| case SIR_INTFLY: |
| /* |
| ** This is used for HP Zalon/53c720 where INTFLY |
| ** operation is currently broken. |
| */ |
| ncr_wakeup_done(np); |
| #ifdef SCSI_NCR_CCB_DONE_SUPPORT |
| OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8); |
| #else |
| OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start)); |
| #endif |
| return; |
| case SIR_RESEL_NO_MSG_IN: |
| case SIR_RESEL_NO_IDENTIFY: |
| /* |
| ** If devices reselecting without sending an IDENTIFY |
| ** message still exist, this should help. |
| ** We just assume lun=0, 1 CCB, no tag. |
| */ |
| if (tp->lp[0]) { |
| OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0])); |
| return; |
| } |
| case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */ |
| case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */ |
| case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */ |
| case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */ |
| printk ("%s:%d: SIR %d, " |
| "incorrect nexus identification on reselection\n", |
| ncr_name (np), target, num); |
| goto out; |
| case SIR_DONE_OVERFLOW: |
| printk ("%s:%d: SIR %d, " |
| "CCB done queue overflow\n", |
| ncr_name (np), target, num); |
| goto out; |
| case SIR_BAD_STATUS: |
| cp = np->header.cp; |
| if (!cp || CCB_PHYS (cp, phys) != dsa) |
| goto out; |
| ncr_sir_to_redo(np, num, cp); |
| return; |
| default: |
| /* |
| ** lookup the ccb |
| */ |
| cp = np->ccb; |
| while (cp && (CCB_PHYS (cp, phys) != dsa)) |
| cp = cp->link_ccb; |
| |
| BUG_ON(!cp); |
| BUG_ON(cp != np->header.cp); |
| |
| if (!cp || cp != np->header.cp) |
| goto out; |
| } |
| |
| switch (num) { |
| /*----------------------------------------------------------------------------- |
| ** |
| ** Was Sie schon immer ueber transfermode negotiation wissen wollten ... |
| ** ("Everything you've always wanted to know about transfer mode |
| ** negotiation") |
| ** |
| ** We try to negotiate sync and wide transfer only after |
| ** a successful inquire command. We look at byte 7 of the |
| ** inquire data to determine the capabilities of the target. |
| ** |
| ** When we try to negotiate, we append the negotiation message |
| ** to the identify and (maybe) simple tag message. |
| ** The host status field is set to HS_NEGOTIATE to mark this |
| ** situation. |
| ** |
| ** If the target doesn't answer this message immediately |
| ** (as required by the standard), the SIR_NEGO_FAIL interrupt |
| ** will be raised eventually. |
| ** The handler removes the HS_NEGOTIATE status, and sets the |
| ** negotiated value to the default (async / nowide). |
| ** |
| ** If we receive a matching answer immediately, we check it |
| ** for validity, and set the values. |
| ** |
| ** If we receive a Reject message immediately, we assume the |
| ** negotiation has failed, and fall back to standard values. |
| ** |
| ** If we receive a negotiation message while not in HS_NEGOTIATE |
| ** state, it's a target initiated negotiation. We prepare a |
| ** (hopefully) valid answer, set our parameters, and send back |
| ** this answer to the target. |
| ** |
| ** If the target doesn't fetch the answer (no message out phase), |
| ** we assume the negotiation has failed, and fall back to default |
| ** settings. |
| ** |
| ** When we set the values, we adjust them in all ccbs belonging |
| ** to this target, in the controller's register, and in the "phys" |
| ** field of the controller's struct ncb. |
| ** |
| ** Possible cases: hs sir msg_in value send goto |
| ** We try to negotiate: |
| ** -> target doesn't msgin NEG FAIL noop defa. - dispatch |
| ** -> target rejected our msg NEG FAIL reject defa. - dispatch |
| ** -> target answered (ok) NEG SYNC sdtr set - clrack |
| ** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad |
| ** -> target answered (ok) NEG WIDE wdtr set - clrack |
| ** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad |
| ** -> any other msgin NEG FAIL noop defa. - dispatch |
| ** |
| ** Target tries to negotiate: |
| ** -> incoming message --- SYNC sdtr set SDTR - |
| ** -> incoming message --- WIDE wdtr set WDTR - |
| ** We sent our answer: |
| ** -> target doesn't msgout --- PROTO ? defa. - dispatch |
| ** |
| **----------------------------------------------------------------------------- |
| */ |
| |
| case SIR_NEGO_FAILED: |
| /*------------------------------------------------------- |
| ** |
| ** Negotiation failed. |
| ** Target doesn't send an answer message, |
| ** or target rejected our message. |
| ** |
| ** Remove negotiation request. |
| ** |
| **------------------------------------------------------- |
| */ |
| OUTB (HS_PRT, HS_BUSY); |
| |
| /* fall through */ |
| |
| case SIR_NEGO_PROTO: |
| /*------------------------------------------------------- |
| ** |
| ** Negotiation failed. |
| ** Target doesn't fetch the answer message. |
| ** |
| **------------------------------------------------------- |
| */ |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| PRINT_ADDR(cp->cmd, "negotiation failed sir=%x " |
| "status=%x.\n", num, cp->nego_status); |
| } |
| |
| /* |
| ** any error in negotiation: |
| ** fall back to default mode. |
| */ |
| switch (cp->nego_status) { |
| |
| case NS_SYNC: |
| spi_period(starget) = 0; |
| spi_offset(starget) = 0; |
| ncr_setsync (np, cp, 0, 0xe0); |
| break; |
| |
| case NS_WIDE: |
| spi_width(starget) = 0; |
| ncr_setwide (np, cp, 0, 0); |
| break; |
| |
| } |
| np->msgin [0] = NOP; |
| np->msgout[0] = NOP; |
| cp->nego_status = 0; |
| break; |
| |
| case SIR_NEGO_SYNC: |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| ncr_print_msg(cp, "sync msgin", np->msgin); |
| } |
| |
| chg = 0; |
| per = np->msgin[3]; |
| ofs = np->msgin[4]; |
| if (ofs==0) per=255; |
| |
| /* |
| ** if target sends SDTR message, |
| ** it CAN transfer synch. |
| */ |
| |
| if (ofs && starget) |
| spi_support_sync(starget) = 1; |
| |
| /* |
| ** check values against driver limits. |
| */ |
| |
| if (per < np->minsync) |
| {chg = 1; per = np->minsync;} |
| if (per < tp->minsync) |
| {chg = 1; per = tp->minsync;} |
| if (ofs > tp->maxoffs) |
| {chg = 1; ofs = tp->maxoffs;} |
| |
| /* |
| ** Check against controller limits. |
| */ |
| fak = 7; |
| scntl3 = 0; |
| if (ofs != 0) { |
| ncr_getsync(np, per, &fak, &scntl3); |
| if (fak > 7) { |
| chg = 1; |
| ofs = 0; |
| } |
| } |
| if (ofs == 0) { |
| fak = 7; |
| per = 0; |
| scntl3 = 0; |
| tp->minsync = 0; |
| } |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d " |
| "fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg); |
| } |
| |
| if (INB (HS_PRT) == HS_NEGOTIATE) { |
| OUTB (HS_PRT, HS_BUSY); |
| switch (cp->nego_status) { |
| |
| case NS_SYNC: |
| /* This was an answer message */ |
| if (chg) { |
| /* Answer wasn't acceptable. */ |
| spi_period(starget) = 0; |
| spi_offset(starget) = 0; |
| ncr_setsync(np, cp, 0, 0xe0); |
| OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad)); |
| } else { |
| /* Answer is ok. */ |
| spi_period(starget) = per; |
| spi_offset(starget) = ofs; |
| ncr_setsync(np, cp, scntl3, (fak<<5)|ofs); |
| OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack)); |
| } |
| return; |
| |
| case NS_WIDE: |
| spi_width(starget) = 0; |
| ncr_setwide(np, cp, 0, 0); |
| break; |
| } |
| } |
| |
| /* |
| ** It was a request. Set value and |
| ** prepare an answer message |
| */ |
| |
| spi_period(starget) = per; |
| spi_offset(starget) = ofs; |
| ncr_setsync(np, cp, scntl3, (fak<<5)|ofs); |
| |
| spi_populate_sync_msg(np->msgout, per, ofs); |
| cp->nego_status = NS_SYNC; |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| ncr_print_msg(cp, "sync msgout", np->msgout); |
| } |
| |
| if (!ofs) { |
| OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad)); |
| return; |
| } |
| np->msgin [0] = NOP; |
| |
| break; |
| |
| case SIR_NEGO_WIDE: |
| /* |
| ** Wide request message received. |
| */ |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| ncr_print_msg(cp, "wide msgin", np->msgin); |
| } |
| |
| /* |
| ** get requested values. |
| */ |
| |
| chg = 0; |
| wide = np->msgin[3]; |
| |
| /* |
| ** if target sends WDTR message, |
| ** it CAN transfer wide. |
| */ |
| |
| if (wide && starget) |
| spi_support_wide(starget) = 1; |
| |
| /* |
| ** check values against driver limits. |
| */ |
| |
| if (wide > tp->usrwide) |
| {chg = 1; wide = tp->usrwide;} |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide, |
| chg); |
| } |
| |
| if (INB (HS_PRT) == HS_NEGOTIATE) { |
| OUTB (HS_PRT, HS_BUSY); |
| switch (cp->nego_status) { |
| |
| case NS_WIDE: |
| /* |
| ** This was an answer message |
| */ |
| if (chg) { |
| /* Answer wasn't acceptable. */ |
| spi_width(starget) = 0; |
| ncr_setwide(np, cp, 0, 1); |
| OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad)); |
| } else { |
| /* Answer is ok. */ |
| spi_width(starget) = wide; |
| ncr_setwide(np, cp, wide, 1); |
| OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack)); |
| } |
| return; |
| |
| case NS_SYNC: |
| spi_period(starget) = 0; |
| spi_offset(starget) = 0; |
| ncr_setsync(np, cp, 0, 0xe0); |
| break; |
| } |
| } |
| |
| /* |
| ** It was a request, set value and |
| ** prepare an answer message |
| */ |
| |
| spi_width(starget) = wide; |
| ncr_setwide(np, cp, wide, 1); |
| spi_populate_width_msg(np->msgout, wide); |
| |
| np->msgin [0] = NOP; |
| |
| cp->nego_status = NS_WIDE; |
| |
| if (DEBUG_FLAGS & DEBUG_NEGO) { |
| ncr_print_msg(cp, "wide msgout", np->msgin); |
| } |
| break; |
| |
| /*-------------------------------------------------------------------- |
| ** |
| ** Processing of special messages |
| ** |
| **-------------------------------------------------------------------- |
| */ |
| |
| case SIR_REJECT_RECEIVED: |
| /*----------------------------------------------- |
| ** |
| ** We received a MESSAGE_REJECT. |
| ** |
| **----------------------------------------------- |
| */ |
| |
| PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n", |
| (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]); |
| break; |
| |
| case SIR_REJECT_SENT: |
| /*----------------------------------------------- |
| ** |
| ** We received an unknown message |
| ** |
| **----------------------------------------------- |
| */ |
| |
| ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin); |
| break; |
| |
| /*-------------------------------------------------------------------- |
| ** |
| ** Processing of special messages |
| ** |
| **-------------------------------------------------------------------- |
| */ |
| |
| case SIR_IGN_RESIDUE: |
| /*----------------------------------------------- |
| ** |
| ** We received an IGNORE RESIDUE message, |
| ** which couldn't be handled by the script. |
| ** |
| **----------------------------------------------- |
| */ |
| |
| PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet " |
| "implemented.\n"); |
| break; |
| #if 0 |
| case SIR_MISSING_SAVE: |
| /*----------------------------------------------- |
| ** |
| ** We received an DISCONNECT message, |
| ** but the datapointer wasn't saved before. |
| ** |
| **----------------------------------------------- |
| */ |
| |
| PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer " |
| "not saved: data=%x save=%x goal=%x.\n", |
| (unsigned) INL (nc_temp), |
| (unsigned) scr_to_cpu(np->header.savep), |
| (unsigned) scr_to_cpu(np->header.goalp)); |
| break; |
| #endif |
| } |
| |
| out: |
| OUTONB_STD (); |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** Acquire a control block |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd) |
| { |
| u_char tn = cmd->device->id; |
| u_char ln = cmd->device->lun; |
| struct tcb *tp = &np->target[tn]; |
| struct lcb *lp = tp->lp[ln]; |
| u_char tag = NO_TAG; |
| struct ccb *cp = NULL; |
| |
| /* |
| ** Lun structure available ? |
| */ |
| if (lp) { |
| struct list_head *qp; |
| /* |
| ** Keep from using more tags than we can handle. |
| */ |
| if (lp->usetags && lp->busyccbs >= lp->maxnxs) |
| return NULL; |
| |
| /* |
| ** Allocate a new CCB if needed. |
| */ |
| if (list_empty(&lp->free_ccbq)) |
| ncr_alloc_ccb(np, tn, ln); |
| |
| /* |
| ** Look for free CCB |
| */ |
| qp = ncr_list_pop(&lp->free_ccbq); |
| if (qp) { |
| cp = list_entry(qp, struct ccb, link_ccbq); |
| if (cp->magic) { |
| PRINT_ADDR(cmd, "ccb free list corrupted " |
| "(@%p)\n", cp); |
| cp = NULL; |
| } else { |
| list_add_tail(qp, &lp->wait_ccbq); |
| ++lp->busyccbs; |
| } |
| } |
| |
| /* |
| ** If a CCB is available, |
| ** Get a tag for this nexus if required. |
| */ |
| if (cp) { |
| if (lp->usetags) |
| tag = lp->cb_tags[lp->ia_tag]; |
| } |
| else if (lp->actccbs > 0) |
| return NULL; |
| } |
| |
| /* |
| ** if nothing available, take the default. |
| */ |
| if (!cp) |
| cp = np->ccb; |
| |
| /* |
| ** Wait until available. |
| */ |
| #if 0 |
| while (cp->magic) { |
| if (flags & SCSI_NOSLEEP) break; |
| if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0)) |
| break; |
| } |
| #endif |
| |
| if (cp->magic) |
| return NULL; |
| |
| cp->magic = 1; |
| |
| /* |
| ** Move to next available tag if tag used. |
| */ |
| if (lp) { |
| if (tag != NO_TAG) { |
| ++lp->ia_tag; |
| if (lp->ia_tag == MAX_TAGS) |
| lp->ia_tag = 0; |
| lp->tags_umap |= (((tagmap_t) 1) << tag); |
| } |
| } |
| |
| /* |
| ** Remember all informations needed to free this CCB. |
| */ |
| cp->tag = tag; |
| cp->target = tn; |
| cp->lun = ln; |
| |
| if (DEBUG_FLAGS & DEBUG_TAGS) { |
| PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag); |
| } |
| |
| return cp; |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** Release one control block |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| static void ncr_free_ccb (struct ncb *np, struct ccb *cp) |
| { |
| struct tcb *tp = &np->target[cp->target]; |
| struct lcb *lp = tp->lp[cp->lun]; |
| |
| if (DEBUG_FLAGS & DEBUG_TAGS) { |
| PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag); |
| } |
| |
| /* |
| ** If lun control block available, |
| ** decrement active commands and increment credit, |
| ** free the tag if any and remove the JUMP for reselect. |
| */ |
| if (lp) { |
| if (cp->tag != NO_TAG) { |
| lp->cb_tags[lp->if_tag++] = cp->tag; |
| if (lp->if_tag == MAX_TAGS) |
| lp->if_tag = 0; |
| lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag); |
| lp->tags_smap &= lp->tags_umap; |
| lp->jump_ccb[cp->tag] = |
| cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q)); |
| } else { |
| lp->jump_ccb[0] = |
| cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l)); |
| } |
| } |
| |
| /* |
| ** Make this CCB available. |
| */ |
| |
| if (lp) { |
| if (cp != np->ccb) |
| list_move(&cp->link_ccbq, &lp->free_ccbq); |
| --lp->busyccbs; |
| if (cp->queued) { |
| --lp->queuedccbs; |
| } |
| } |
| cp -> host_status = HS_IDLE; |
| cp -> magic = 0; |
| if (cp->queued) { |
| --np->queuedccbs; |
| cp->queued = 0; |
| } |
| |
| #if 0 |
| if (cp == np->ccb) |
| wakeup ((caddr_t) cp); |
| #endif |
| } |
| |
| |
| #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r)) |
| |
| /*------------------------------------------------------------------------ |
| ** Initialize the fixed part of a CCB structure. |
| **------------------------------------------------------------------------ |
| **------------------------------------------------------------------------ |
| */ |
| static void ncr_init_ccb(struct ncb *np, struct ccb *cp) |
| { |
| ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4); |
| |
| /* |
| ** Remember virtual and bus address of this ccb. |
| */ |
| cp->p_ccb = vtobus(cp); |
| cp->phys.header.cp = cp; |
| |
| /* |
| ** This allows list_del to work for the default ccb. |
| */ |
| INIT_LIST_HEAD(&cp->link_ccbq); |
| |
| /* |
| ** Initialyze the start and restart launch script. |
| ** |
| ** COPY(4) @(...p_phys), @(dsa) |
| ** JUMP @(sched_point) |
| */ |
| cp->start.setup_dsa[0] = cpu_to_scr(copy_4); |
| cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys)); |
| cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa)); |
| cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP); |
| cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys)); |
| |
| memcpy(&cp->restart, &cp->start, sizeof(cp->restart)); |
| |
| cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); |
| cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort)); |
| } |
| |
| |
| /*------------------------------------------------------------------------ |
| ** Allocate a CCB and initialize its fixed part. |
| **------------------------------------------------------------------------ |
| **------------------------------------------------------------------------ |
| */ |
| static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln) |
| { |
| struct tcb *tp = &np->target[tn]; |
| struct lcb *lp = tp->lp[ln]; |
| struct ccb *cp = NULL; |
| |
| /* |
| ** Allocate memory for this CCB. |
| */ |
| cp = m_calloc_dma(sizeof(struct ccb), "CCB"); |
| if (!cp) |
| return; |
| |
| /* |
| ** Count it and initialyze it. |
| */ |
| lp->actccbs++; |
| np->actccbs++; |
| memset(cp, 0, sizeof (*cp)); |
| ncr_init_ccb(np, cp); |
| |
| /* |
| ** Chain into wakeup list and free ccb queue and take it |
| ** into account for tagged commands. |
| */ |
| cp->link_ccb = np->ccb->link_ccb; |
| np->ccb->link_ccb = cp; |
| |
| list_add(&cp->link_ccbq, &lp->free_ccbq); |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** Allocation of resources for Targets/Luns/Tags. |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| |
| /*------------------------------------------------------------------------ |
| ** Target control block initialisation. |
| **------------------------------------------------------------------------ |
| ** This data structure is fully initialized after a SCSI command |
| ** has been successfully completed for this target. |
| ** It contains a SCRIPT that is called on target reselection. |
| **------------------------------------------------------------------------ |
| */ |
| static void ncr_init_tcb (struct ncb *np, u_char tn) |
| { |
| struct tcb *tp = &np->target[tn]; |
| ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1); |
| int th = tn & 3; |
| int i; |
| |
| /* |
| ** Jump to next tcb if SFBR does not match this target. |
| ** JUMP IF (SFBR != #target#), @(next tcb) |
| */ |
| tp->jump_tcb.l_cmd = |
| cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn)))); |
| tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr; |
| |
| /* |
| ** Load the synchronous transfer register. |
| ** COPY @(tp->sval), @(sxfer) |
| */ |
| tp->getscr[0] = cpu_to_scr(copy_1); |
| tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval)); |
| #ifdef SCSI_NCR_BIG_ENDIAN |
| tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3); |
| #else |
| tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer)); |
| #endif |
| |
| /* |
| ** Load the timing register. |
| ** COPY @(tp->wval), @(scntl3) |
| */ |
| tp->getscr[3] = cpu_to_scr(copy_1); |
| tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval)); |
| #ifdef SCSI_NCR_BIG_ENDIAN |
| tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3); |
| #else |
| tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3)); |
| #endif |
| |
| /* |
| ** Get the IDENTIFY message and the lun. |
| ** CALL @script(resel_lun) |
| */ |
| tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL); |
| tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun)); |
| |
| /* |
| ** Look for the lun control block of this nexus. |
| ** For i = 0 to 3 |
| ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb) |
| */ |
| for (i = 0 ; i < 4 ; i++) { |
| tp->jump_lcb[i].l_cmd = |
| cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3)))); |
| tp->jump_lcb[i].l_paddr = |
| cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify)); |
| } |
| |
| /* |
| ** Link this target control block to the JUMP chain. |
| */ |
| np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb)); |
| |
| /* |
| ** These assert's should be moved at driver initialisations. |
| */ |
| #ifdef SCSI_NCR_BIG_ENDIAN |
| BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^ |
| offsetof(struct tcb , sval )) &3) != 3); |
| BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^ |
| offsetof(struct tcb , wval )) &3) != 3); |
| #else |
| BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^ |
| offsetof(struct tcb , sval )) &3) != 0); |
| BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^ |
| offsetof(struct tcb , wval )) &3) != 0); |
| #endif |
| } |
| |
| |
| /*------------------------------------------------------------------------ |
| ** Lun control block allocation and initialization. |
| **------------------------------------------------------------------------ |
| ** This data structure is allocated and initialized after a SCSI |
| ** command has been successfully completed for this target/lun. |
| **------------------------------------------------------------------------ |
| */ |
| static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln) |
| { |
| struct tcb *tp = &np->target[tn]; |
| struct lcb *lp = tp->lp[ln]; |
| ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4); |
| int lh = ln & 3; |
| |
| /* |
| ** Already done, return. |
| */ |
| if (lp) |
| return lp; |
| |
| /* |
| ** Allocate the lcb. |
| */ |
| lp = m_calloc_dma(sizeof(struct lcb), "LCB"); |
| if (!lp) |
| goto fail; |
| memset(lp, 0, sizeof(*lp)); |
| tp->lp[ln] = lp; |
| |
| /* |
| ** Initialize the target control block if not yet. |
| */ |
| if (!tp->jump_tcb.l_cmd) |
| ncr_init_tcb(np, tn); |
| |
| /* |
| ** Initialize the CCB queue headers. |
| */ |
| INIT_LIST_HEAD(&lp->free_ccbq); |
| INIT_LIST_HEAD(&lp->busy_ccbq); |
| INIT_LIST_HEAD(&lp->wait_ccbq); |
| INIT_LIST_HEAD(&lp->skip_ccbq); |
| |
| /* |
| ** Set max CCBs to 1 and use the default 1 entry |
| ** jump table by default. |
| */ |
| lp->maxnxs = 1; |
| lp->jump_ccb = &lp->jump_ccb_0; |
| lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb)); |
| |
| /* |
| ** Initilialyze the reselect script: |
| ** |
| ** Jump to next lcb if SFBR does not match this lun. |
| ** Load TEMP with the CCB direct jump table bus address. |
| ** Get the SIMPLE TAG message and the tag. |
| ** |
| ** JUMP IF (SFBR != #lun#), @(next lcb) |
| ** COPY @(lp->p_jump_ccb), @(temp) |
| ** JUMP @script(resel_notag) |
| */ |
| lp->jump_lcb.l_cmd = |
| cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff)))); |
| lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr; |
| |
| lp->load_jump_ccb[0] = cpu_to_scr(copy_4); |
| lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb)); |
| lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp)); |
| |
| lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP); |
| lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag)); |
| |
| /* |
| ** Link this lun control block to the JUMP chain. |
| */ |
| tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb)); |
| |
| /* |
| ** Initialize command queuing control. |
| */ |
| lp->busyccbs = 1; |
| lp->queuedccbs = 1; |
| lp->queuedepth = 1; |
| fail: |
| return lp; |
| } |
| |
| |
| /*------------------------------------------------------------------------ |
| ** Lun control block setup on INQUIRY data received. |
| **------------------------------------------------------------------------ |
| ** We only support WIDE, SYNC for targets and CMDQ for logical units. |
| ** This setup is done on each INQUIRY since we are expecting user |
| ** will play with CHANGE DEFINITION commands. :-) |
| **------------------------------------------------------------------------ |
| */ |
| static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev) |
| { |
| unsigned char tn = sdev->id, ln = sdev->lun; |
| struct tcb *tp = &np->target[tn]; |
| struct lcb *lp = tp->lp[ln]; |
| |
| /* If no lcb, try to allocate it. */ |
| if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln))) |
| goto fail; |
| |
| /* |
| ** If unit supports tagged commands, allocate the |
| ** CCB JUMP table if not yet. |
| */ |
| if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) { |
| int i; |
| lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB"); |
| if (!lp->jump_ccb) { |
| lp->jump_ccb = &lp->jump_ccb_0; |
| goto fail; |
| } |
| lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb)); |
| for (i = 0 ; i < 64 ; i++) |
| lp->jump_ccb[i] = |
| cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q)); |
| for (i = 0 ; i < MAX_TAGS ; i++) |
| lp->cb_tags[i] = i; |
| lp->maxnxs = MAX_TAGS; |
| lp->tags_stime = jiffies + 3*HZ; |
| ncr_setup_tags (np, sdev); |
| } |
| |
| |
| fail: |
| return lp; |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** Build Scatter Gather Block |
| ** |
| ** |
| **========================================================== |
| ** |
| ** The transfer area may be scattered among |
| ** several non adjacent physical pages. |
| ** |
| ** We may use MAX_SCATTER blocks. |
| ** |
| **---------------------------------------------------------- |
| */ |
| |
| /* |
| ** We try to reduce the number of interrupts caused |
| ** by unexpected phase changes due to disconnects. |
| ** A typical harddisk may disconnect before ANY block. |
| ** If we wanted to avoid unexpected phase changes at all |
| ** we had to use a break point every 512 bytes. |
| ** Of course the number of scatter/gather blocks is |
| ** limited. |
| ** Under Linux, the scatter/gatter blocks are provided by |
| ** the generic driver. We just have to copy addresses and |
| ** sizes to the data segment array. |
| */ |
| |
| static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd) |
| { |
| int segment = 0; |
| int use_sg = scsi_sg_count(cmd); |
| |
| cp->data_len = 0; |
| |
| use_sg = map_scsi_sg_data(np, cmd); |
| if (use_sg > 0) { |
| struct scatterlist *sg; |
| struct scr_tblmove *data; |
| |
| if (use_sg > MAX_SCATTER) { |
| unmap_scsi_data(np, cmd); |
| return -1; |
| } |
| |
| data = &cp->phys.data[MAX_SCATTER - use_sg]; |
| |
| scsi_for_each_sg(cmd, sg, use_sg, segment) { |
| dma_addr_t baddr = sg_dma_address(sg); |
| unsigned int len = sg_dma_len(sg); |
| |
| ncr_build_sge(np, &data[segment], baddr, len); |
| cp->data_len += len; |
| } |
| } else |
| segment = -2; |
| |
| return segment; |
| } |
| |
| /*========================================================== |
| ** |
| ** |
| ** Test the bus snoop logic :-( |
| ** |
| ** Has to be called with interrupts disabled. |
| ** |
| ** |
| **========================================================== |
| */ |
| |
| static int __init ncr_regtest (struct ncb* np) |
| { |
| register volatile u32 data; |
| /* |
| ** ncr registers may NOT be cached. |
| ** write 0xffffffff to a read only register area, |
| ** and try to read it back. |
| */ |
| data = 0xffffffff; |
| OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data); |
| data = INL_OFF(offsetof(struct ncr_reg, nc_dstat)); |
| #if 1 |
| if (data == 0xffffffff) { |
| #else |
| if ((data & 0xe2f0fffd) != 0x02000080) { |
| #endif |
| printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", |
| (unsigned) data); |
| return (0x10); |
| } |
| return (0); |
| } |
| |
| static int __init ncr_snooptest (struct ncb* np) |
| { |
| u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc; |
| int i, err=0; |
| if (np->reg) { |
| err |= ncr_regtest (np); |
| if (err) |
| return (err); |
| } |
| |
| /* init */ |
| pc = NCB_SCRIPTH_PHYS (np, snooptest); |
| host_wr = 1; |
| ncr_wr = 2; |
| /* |
| ** Set memory and register. |
| */ |
| np->ncr_cache = cpu_to_scr(host_wr); |
| OUTL (nc_temp, ncr_wr); |
| /* |
| ** Start script (exchange values) |
| */ |
| OUTL_DSP (pc); |
| /* |
| ** Wait 'til done (with timeout) |
| */ |
| for (i=0; i<NCR_SNOOP_TIMEOUT; i++) |
| if (INB(nc_istat) & (INTF|SIP|DIP)) |
| break; |
| /* |
| ** Save termination position. |
| */ |
| pc = INL (nc_dsp); |
| /* |
| ** Read memory and register. |
| */ |
| host_rd = scr_to_cpu(np->ncr_cache); |
| ncr_rd = INL (nc_scratcha); |
| ncr_bk = INL (nc_temp); |
| /* |
| ** Reset ncr chip |
| */ |
| ncr_chip_reset(np, 100); |
| /* |
| ** check for timeout |
| */ |
| if (i>=NCR_SNOOP_TIMEOUT) { |
| printk ("CACHE TEST FAILED: timeout.\n"); |
| return (0x20); |
| } |
| /* |
| ** Check termination position. |
| */ |
| if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) { |
| printk ("CACHE TEST FAILED: script execution failed.\n"); |
| printk ("start=%08lx, pc=%08lx, end=%08lx\n", |
| (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc, |
| (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8); |
| return (0x40); |
| } |
| /* |
| ** Show results. |
| */ |
| if (host_wr != ncr_rd) { |
| printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n", |
| (int) host_wr, (int) ncr_rd); |
| err |= 1; |
| } |
| if (host_rd != ncr_wr) { |
| printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n", |
| (int) ncr_wr, (int) host_rd); |
| err |= 2; |
| } |
| if (ncr_bk != ncr_wr) { |
| printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n", |
| (int) ncr_wr, (int) ncr_bk); |
| err |= 4; |
| } |
| return (err); |
| } |
| |
| /*========================================================== |
| ** |
| ** Determine the ncr's clock frequency. |
| ** This is essential for the negotiation |
| ** of the synchronous transfer rate. |
| ** |
| **========================================================== |
| ** |
| ** Note: we have to return the correct value. |
| ** THERE IS NO SAFE DEFAULT VALUE. |
| ** |
| ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. |
| ** 53C860 and 53C875 rev. 1 support fast20 transfers but |
| ** do not have a clock doubler and so are provided with a |
| ** 80 MHz clock. All other fast20 boards incorporate a doubler |
| ** and so should be delivered with a 40 MHz clock. |
| ** The future fast40 chips (895/895) use a 40 Mhz base clock |
| ** and provide a clock quadrupler (160 Mhz). The code below |
| ** tries to deal as cleverly as possible with all this stuff. |
| ** |
| **---------------------------------------------------------- |
| */ |
| |
| /* |
| * Select NCR SCSI clock frequency |
| */ |
| static void ncr_selectclock(struct ncb *np, u_char scntl3) |
| { |
| if (np->multiplier < 2) { |
| OUTB(nc_scntl3, scntl3); |
| return; |
| } |
| |
| if (bootverbose >= 2) |
| printk ("%s: enabling clock multiplier\n", ncr_name(np)); |
| |
| OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ |
| if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */ |
| int i = 20; |
| while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) |
| udelay(20); |
| if (!i) |
| printk("%s: the chip cannot lock the frequency\n", ncr_name(np)); |
| } else /* Wait 20 micro-seconds for doubler */ |
| udelay(20); |
| OUTB(nc_stest3, HSC); /* Halt the scsi clock */ |
| OUTB(nc_scntl3, scntl3); |
| OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ |
| OUTB(nc_stest3, 0x00); /* Restart scsi clock */ |
| } |
| |
| |
| /* |
| * calculate NCR SCSI clock frequency (in KHz) |
| */ |
| static unsigned __init ncrgetfreq (struct ncb *np, int gen) |
| { |
| unsigned ms = 0; |
| char count = 0; |
| |
| /* |
| * Measure GEN timer delay in order |
| * to calculate SCSI clock frequency |
| * |
| * This code will never execute too |
| * many loop iterations (if DELAY is |
| * reasonably correct). It could get |
| * too low a delay (too high a freq.) |
| * if the CPU is slow executing the |
| * loop for some reason (an NMI, for |
| * example). For this reason we will |
| * if multiple measurements are to be |
| * performed trust the higher delay |
| * (lower frequency returned). |
| */ |
| OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */ |
| OUTW (nc_sien , 0); /* mask all scsi interrupts */ |
| (void) INW (nc_sist); /* clear pending scsi interrupt */ |
| OUTB (nc_dien , 0); /* mask all dma interrupts */ |
| (void) INW (nc_sist); /* another one, just to be sure :) */ |
| OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ |
| OUTB (nc_stime1, 0); /* disable general purpose timer */ |
| OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ |
| while (!(INW(nc_sist) & GEN) && ms++ < 100000) { |
| for (count = 0; count < 10; count ++) |
| udelay(100); /* count ms */ |
| } |
| OUTB (nc_stime1, 0); /* disable general purpose timer */ |
| /* |
| * set prescaler to divide by whatever 0 means |
| * 0 ought to choose divide by 2, but appears |
| * to set divide by 3.5 mode in my 53c810 ... |
| */ |
| OUTB (nc_scntl3, 0); |
| |
| if (bootverbose >= 2) |
| printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms); |
| /* |
| * adjust for prescaler, and convert into KHz |
| */ |
| return ms ? ((1 << gen) * 4340) / ms : 0; |
| } |
| |
| /* |
| * Get/probe NCR SCSI clock frequency |
| */ |
| static void __init ncr_getclock (struct ncb *np, int mult) |
| { |
| unsigned char scntl3 = INB(nc_scntl3); |
| unsigned char stest1 = INB(nc_stest1); |
| unsigned f1; |
| |
| np->multiplier = 1; |
| f1 = 40000; |
| |
| /* |
| ** True with 875 or 895 with clock multiplier selected |
| */ |
| if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { |
| if (bootverbose >= 2) |
| printk ("%s: clock multiplier found\n", ncr_name(np)); |
| np->multiplier = mult; |
| } |
| |
| /* |
| ** If multiplier not found or scntl3 not 7,5,3, |
| ** reset chip and get frequency from general purpose timer. |
| ** Otherwise trust scntl3 BIOS setting. |
| */ |
| if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { |
| unsigned f2; |
| |
| ncr_chip_reset(np, 5); |
| |
| (void) ncrgetfreq (np, 11); /* throw away first result */ |
| f1 = ncrgetfreq (np, 11); |
| f2 = ncrgetfreq (np, 11); |
| |
| if(bootverbose) |
| printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2); |
| |
| if (f1 > f2) f1 = f2; /* trust lower result */ |
| |
| if (f1 < 45000) f1 = 40000; |
| else if (f1 < 55000) f1 = 50000; |
| else f1 = 80000; |
| |
| if (f1 < 80000 && mult > 1) { |
| if (bootverbose >= 2) |
| printk ("%s: clock multiplier assumed\n", ncr_name(np)); |
| np->multiplier = mult; |
| } |
| } else { |
| if ((scntl3 & 7) == 3) f1 = 40000; |
| else if ((scntl3 & 7) == 5) f1 = 80000; |
| else f1 = 160000; |
| |
| f1 /= np->multiplier; |
| } |
| |
| /* |
| ** Compute controller synchronous parameters. |
| */ |
| f1 *= np->multiplier; |
| np->clock_khz = f1; |
| } |
| |
| /*===================== LINUX ENTRY POINTS SECTION ==========================*/ |
| |
| static int ncr53c8xx_slave_alloc(struct scsi_device *device) |
| { |
| struct Scsi_Host *host = device->host; |
| struct ncb *np = ((struct host_data *) host->hostdata)->ncb; |
| struct tcb *tp = &np->target[device->id]; |
| tp->starget = device->sdev_target; |
| |
| return 0; |
| } |
| |
| static int ncr53c8xx_slave_configure(struct scsi_device *device) |
| { |
| struct Scsi_Host *host = device->host; |
| struct ncb *np = ((struct host_data *) host->hostdata)->ncb; |
| struct tcb *tp = &np->target[device->id]; |
| struct lcb *lp = tp->lp[device->lun]; |
| int numtags, depth_to_use; |
| |
| ncr_setup_lcb(np, device); |
| |
| /* |
| ** Select queue depth from driver setup. |
| ** Donnot use more than configured by user. |
| ** Use at least 2. |
| ** Donnot use more than our maximum. |
| */ |
| numtags = device_queue_depth(np->unit, device->id, device->lun); |
| if (numtags > tp->usrtags) |
| numtags = tp->usrtags; |
| if (!device->tagged_supported) |
| numtags = 1; |
| depth_to_use = numtags; |
| if (depth_to_use < 2) |
| depth_to_use = 2; |
| if (depth_to_use > MAX_TAGS) |
| depth_to_use = MAX_TAGS; |
| |
| scsi_adjust_queue_depth(device, |
| (device->tagged_supported ? |
| MSG_SIMPLE_TAG : 0), |
| depth_to_use); |
| |
| /* |
| ** Since the queue depth is not tunable under Linux, |
| ** we need to know this value in order not to |
| ** announce stupid things to user. |
| ** |
| ** XXX(hch): As of Linux 2.6 it certainly _is_ tunable.. |
| ** In fact we just tuned it, or did I miss |
| ** something important? :) |
| */ |
| if (lp) { |
| lp->numtags = lp->maxtags = numtags; |
| lp->scdev_depth = depth_to_use; |
| } |
| ncr_setup_tags (np, device); |
| |
| #ifdef DEBUG_NCR53C8XX |
| printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n", |
| np->unit, device->id, device->lun, depth_to_use); |
| #endif |
| |
| if (spi_support_sync(device->sdev_target) && |
| !spi_initial_dv(device->sdev_target)) |
| spi_dv_device(device); |
| return 0; |
| } |
| |
| static int ncr53c8xx_queue_command (struct scsi_cmnd *cmd, void (* done)(struct scsi_cmnd *)) |
| { |
| struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb; |
| unsigned long flags; |
| int sts; |
| |
| #ifdef DEBUG_NCR53C8XX |
| printk("ncr53c8xx_queue_command\n"); |
| #endif |
| |
| cmd->scsi_done = done; |
| cmd->host_scribble = NULL; |
| cmd->__data_mapped = 0; |
| cmd->__data_mapping = 0; |
| |
| spin_lock_irqsave(&np->smp_lock, flags); |
| |
| if ((sts = ncr_queue_command(np, cmd)) != DID_OK) { |
| cmd->result = ScsiResult(sts, 0); |
| #ifdef DEBUG_NCR53C8XX |
| printk("ncr53c8xx : command not queued - result=%d\n", sts); |
| #endif |
| } |
| #ifdef DEBUG_NCR53C8XX |
| else |
| printk("ncr53c8xx : command successfully queued\n"); |
| #endif |
| |
| spin_unlock_irqrestore(&np->smp_lock, flags); |
| |
| if (sts != DID_OK) { |
| unmap_scsi_data(np, cmd); |
| done(cmd); |
| sts = 0; |
| } |
| |
| return sts; |
| } |
| |
| irqreturn_t ncr53c8xx_intr(int irq, void *dev_id) |
| { |
| unsigned long flags; |
| struct Scsi_Host *shost = (struct Scsi_Host *)dev_id; |
| struct host_data *host_data = (struct host_data *)shost->hostdata; |
| struct ncb *np = host_data->ncb; |
| struct scsi_cmnd *done_list; |
| |
| #ifdef DEBUG_NCR53C8XX |
| printk("ncr53c8xx : interrupt received\n"); |
| #endif |
| |
| if (DEBUG_FLAGS & DEBUG_TINY) printk ("["); |
| |
| spin_lock_irqsave(&np->smp_lock, flags); |
| ncr_exception(np); |
| done_list = np->done_list; |
| np->done_list = NULL; |
| spin_unlock_irqrestore(&np->smp_lock, flags); |
| |
| if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n"); |
| |
| if (done_list) |
| ncr_flush_done_cmds(done_list); |
| return IRQ_HANDLED; |
| } |
| |
| static void ncr53c8xx_timeout(unsigned long npref) |
| { |
| struct ncb *np = (struct ncb *) npref; |
| unsigned long flags; |
| struct scsi_cmnd *done_list; |
| |
| spin_lock_irqsave(&np->smp_lock, flags); |
| ncr_timeout(np); |
| done_list = np->done_list; |
| np->done_list = NULL; |
| spin_unlock_irqrestore(&np->smp_lock, flags); |
| |
| if (done_list) |
| ncr_flush_done_cmds(done_list); |
| } |
| |
| static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd) |
| { |
| struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb; |
| int sts; |
| unsigned long flags; |
| struct scsi_cmnd *done_list; |
| |
| /* |
| * If the mid-level driver told us reset is synchronous, it seems |
| * that we must call the done() callback for the involved command, |
| * even if this command was not queued to the low-level driver, |
| * before returning SUCCESS. |
| */ |
| |
| spin_lock_irqsave(&np->smp_lock, flags); |
| sts = ncr_reset_bus(np, cmd, 1); |
| |
| done_list = np->done_list; |
| np->done_list = NULL; |
| spin_unlock_irqrestore(&np->smp_lock, flags); |
| |
| ncr_flush_done_cmds(done_list); |
| |
| return sts; |
| } |
| |
| #if 0 /* unused and broken */ |
| static int ncr53c8xx_abort(struct scsi_cmnd *cmd) |
| { |
| struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb; |
| int sts; |
| unsigned long flags; |
| struct scsi_cmnd *done_list; |
| |
| printk("ncr53c8xx_abort: command pid %lu\n", cmd->serial_number); |
| |
| NCR_LOCK_NCB(np, flags); |
| |
| sts = ncr_abort_command(np, cmd); |
| out: |
| done_list = np->done_list; |
| np->done_list = NULL; |
| NCR_UNLOCK_NCB(np, flags); |
| |
| ncr_flush_done_cmds(done_list); |
| |
| return sts; |
| } |
| #endif |
| |
| |
| /* |
| ** Scsi command waiting list management. |
| ** |
| ** It may happen that we cannot insert a scsi command into the start queue, |
| ** in the following circumstances. |
| ** Too few preallocated ccb(s), |
| ** maxtags < cmd_per_lun of the Linux host control block, |
| ** etc... |
| ** Such scsi commands are inserted into a waiting list. |
| ** When a scsi command complete, we try to requeue the commands of the |
| ** waiting list. |
| */ |
| |
| #define next_wcmd host_scribble |
| |
| static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd) |
| { |
| struct scsi_cmnd *wcmd; |
| |
| #ifdef DEBUG_WAITING_LIST |
| printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd); |
| #endif |
| cmd->next_wcmd = NULL; |
| if (!(wcmd = np->waiting_list)) np->waiting_list = cmd; |
| else { |
| while ((wcmd->next_wcmd) != 0) |
| wcmd = (struct scsi_cmnd *) wcmd->next_wcmd; |
| wcmd->next_wcmd = (char *) cmd; |
| } |
| } |
| |
| static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd) |
| { |
| struct scsi_cmnd **pcmd = &np->waiting_list; |
| |
| while (*pcmd) { |
| if (cmd == *pcmd) { |
| if (to_remove) { |
| *pcmd = (struct scsi_cmnd *) cmd->next_wcmd; |
| cmd->next_wcmd = NULL; |
| } |
| #ifdef DEBUG_WAITING_LIST |
| printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd); |
| #endif |
| return cmd; |
| } |
| pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd; |
| } |
| return NULL; |
| } |
| |
| static void process_waiting_list(struct ncb *np, int sts) |
| { |
| struct scsi_cmnd *waiting_list, *wcmd; |
| |
| waiting_list = np->waiting_list; |
| np->waiting_list = NULL; |
| |
| #ifdef DEBUG_WAITING_LIST |
| if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts); |
| #endif |
| while ((wcmd = waiting_list) != 0) { |
| waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd; |
| wcmd->next_wcmd = NULL; |
| if (sts == DID_OK) { |
| #ifdef DEBUG_WAITING_LIST |
| printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd); |
| #endif |
| sts = ncr_queue_command(np, wcmd); |
| } |
| if (sts != DID_OK) { |
| #ifdef DEBUG_WAITING_LIST |
| printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts); |
| #endif |
| wcmd->result = ScsiResult(sts, 0); |
| ncr_queue_done_cmd(np, wcmd); |
| } |
| } |
| } |
| |
| #undef next_wcmd |
| |
| static ssize_t show_ncr53c8xx_revision(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct Scsi_Host *host = class_to_shost(dev); |
| struct host_data *host_data = (struct host_data *)host->hostdata; |
| |
| return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id); |
| } |
| |
| static struct device_attribute ncr53c8xx_revision_attr = { |
| .attr = { .name = "revision", .mode = S_IRUGO, }, |
| .show = show_ncr53c8xx_revision, |
| }; |
| |
| static struct device_attribute *ncr53c8xx_host_attrs[] = { |
| &ncr53c8xx_revision_attr, |
| NULL |
| }; |
| |
| /*========================================================== |
| ** |
| ** Boot command line. |
| ** |
| **========================================================== |
| */ |
| #ifdef MODULE |
| char *ncr53c8xx; /* command line passed by insmod */ |
| module_param(ncr53c8xx, charp, 0); |
| #endif |
| |
| #ifndef MODULE |
| static int __init ncr53c8xx_setup(char *str) |
| { |
| return sym53c8xx__setup(str); |
| } |
| |
| __setup("ncr53c8xx=", ncr53c8xx_setup); |
| #endif |
| |
| |
| /* |
| * Host attach and initialisations. |
| * |
| * Allocate host data and ncb structure. |
| * Request IO region and remap MMIO region. |
| * Do chip initialization. |
| * If all is OK, install interrupt handling and |
| * start the timer daemon. |
| */ |
| struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt, |
| int unit, struct ncr_device *device) |
| { |
| struct host_data *host_data; |
| struct ncb *np = NULL; |
| struct Scsi_Host *instance = NULL; |
| u_long flags = 0; |
| int i; |
| |
| if (!tpnt->name) |
| tpnt->name = SCSI_NCR_DRIVER_NAME; |
| if (!tpnt->shost_attrs) |
| tpnt->shost_attrs = ncr53c8xx_host_attrs; |
| |
| tpnt->queuecommand = ncr53c8xx_queue_command; |
| tpnt->slave_configure = ncr53c8xx_slave_configure; |
| tpnt->slave_alloc = ncr53c8xx_slave_alloc; |
| tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset; |
| tpnt->can_queue = SCSI_NCR_CAN_QUEUE; |
| tpnt->this_id = 7; |
| tpnt->sg_tablesize = SCSI_NCR_SG_TABLESIZE; |
| tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN; |
| tpnt->use_clustering = ENABLE_CLUSTERING; |
| |
| if (device->differential) |
| driver_setup.diff_support = device->differential; |
| |
| printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n", |
| unit, device->chip.revision_id, device->slot.irq); |
| |
| instance = scsi_host_alloc(tpnt, sizeof(*host_data)); |
| if (!instance) |
| goto attach_error; |
| host_data = (struct host_data *) instance->hostdata; |
| |
| np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB"); |
| if (!np) |
| goto attach_error; |
| spin_lock_init(&np->smp_lock); |
| np->dev = device->dev; |
| np->p_ncb = vtobus(np); |
| host_data->ncb = np; |
| |
| np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB"); |
| if (!np->ccb) |
| goto attach_error; |
| |
| /* Store input information in the host data structure. */ |
| np->unit = unit; |
| np->verbose = driver_setup.verbose; |
| sprintf(np->inst_name, "ncr53c720-%d", np->unit); |
| np->revision_id = device->chip.revision_id; |
| np->features = device->chip.features; |
| np->clock_divn = device->chip.nr_divisor; |
| np->maxoffs = device->chip.offset_max; |
| np->maxburst = device->chip.burst_max; |
| np->myaddr = device->host_id; |
| |
| /* Allocate SCRIPTS areas. */ |
| np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT"); |
| if (!np->script0) |
| goto attach_error; |
| np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH"); |
| if (!np->scripth0) |
| goto attach_error; |
| |
| init_timer(&np->timer); |
| np->timer.data = (unsigned long) np; |
| np->timer.function = ncr53c8xx_timeout; |
| |
| /* Try to map the controller chip to virtual and physical memory. */ |
| |
| np->paddr = device->slot.base; |
| np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0; |
| |
| if (device->slot.base_v) |
| np->vaddr = device->slot.base_v; |
| else |
| np->vaddr = ioremap(device->slot.base_c, 128); |
| |
| if (!np->vaddr) { |
| printk(KERN_ERR |
| "%s: can't map memory mapped IO region\n",ncr_name(np)); |
| goto attach_error; |
| } else { |
| if (bootverbose > 1) |
| printk(KERN_INFO |
| "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr); |
| } |
| |
| /* Make the controller's registers available. Now the INB INW INL |
| * OUTB OUTW OUTL macros can be used safely. |
| */ |
| |
| np->reg = (struct ncr_reg __iomem *)np->vaddr; |
| |
| /* Do chip dependent initialization. */ |
| ncr_prepare_setting(np); |
| |
| if (np->paddr2 && sizeof(struct script) > 4096) { |
| np->paddr2 = 0; |
| printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n", |
| ncr_name(np)); |
| } |
| |
| instance->max_channel = 0; |
| instance->this_id = np->myaddr; |
| instance->max_id = np->maxwide ? 16 : 8; |
| instance->max_lun = SCSI_NCR_MAX_LUN; |
| instance->base = (unsigned long) np->reg; |
| instance->irq = device->slot.irq; |
| instance->unique_id = device->slot.base; |
| instance->dma_channel = 0; |
| instance->cmd_per_lun = MAX_TAGS; |
| instance->can_queue = (MAX_START-4); |
| /* This can happen if you forget to call ncr53c8xx_init from |
| * your module_init */ |
| BUG_ON(!ncr53c8xx_transport_template); |
| instance->transportt = ncr53c8xx_transport_template; |
| |
| /* Patch script to physical addresses */ |
| ncr_script_fill(&script0, &scripth0); |
| |
| np->scripth = np->scripth0; |
| np->p_scripth = vtobus(np->scripth); |
| np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0); |
| |
| ncr_script_copy_and_bind(np, (ncrcmd *) &script0, |
| (ncrcmd *) np->script0, sizeof(struct script)); |
| ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0, |
| (ncrcmd *) np->scripth0, sizeof(struct scripth)); |
| np->ccb->p_ccb = vtobus (np->ccb); |
| |
| /* Patch the script for LED support. */ |
| |
| if (np->features & FE_LED0) { |
| np->script0->idle[0] = |
| cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01)); |
| np->script0->reselected[0] = |
| cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); |
| np->script0->start[0] = |
| cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); |
| } |
| |
| /* |
| * Look for the target control block of this nexus. |
| * For i = 0 to 3 |
| * JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb) |
| */ |
| for (i = 0 ; i < 4 ; i++) { |
| np->jump_tcb[i].l_cmd = |
| cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3)))); |
| np->jump_tcb[i].l_paddr = |
| cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target)); |
| } |
| |
| ncr_chip_reset(np, 100); |
| |
| /* Now check the cache handling of the chipset. */ |
| |
| if (ncr_snooptest(np)) { |
| printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n"); |
| goto attach_error; |
| } |
| |
| /* Install the interrupt handler. */ |
| np->irq = device->slot.irq; |
| |
| /* Initialize the fixed part of the default ccb. */ |
| ncr_init_ccb(np, np->ccb); |
| |
| /* |
| * After SCSI devices have been opened, we cannot reset the bus |
| * safely, so we do it here. Interrupt handler does the real work. |
| * Process the reset exception if interrupts are not enabled yet. |
| * Then enable disconnects. |
| */ |
| spin_lock_irqsave(&np->smp_lock, flags); |
| if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) { |
| printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np)); |
| |
| spin_unlock_irqrestore(&np->smp_lock, flags); |
| goto attach_error; |
| } |
| ncr_exception(np); |
| |
| np->disc = 1; |
| |
| /* |
| * The middle-level SCSI driver does not wait for devices to settle. |
| * Wait synchronously if more than 2 seconds. |
| */ |
| if (driver_setup.settle_delay > 2) { |
| printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n", |
| ncr_name(np), driver_setup.settle_delay); |
| mdelay(1000 * driver_setup.settle_delay); |
| } |
| |
| /* start the timeout daemon */ |
| np->lasttime=0; |
| ncr_timeout (np); |
| |
| /* use SIMPLE TAG messages by default */ |
| #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG |
| np->order = SIMPLE_QUEUE_TAG; |
| #endif |
| |
| spin_unlock_irqrestore(&np->smp_lock, flags); |
| |
| return instance; |
| |
| attach_error: |
| if (!instance) |
| return NULL; |
| printk(KERN_INFO "%s: detaching...\n", ncr_name(np)); |
| if (!np) |
| goto unregister; |
| if (np->scripth0) |
| m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH"); |
| if (np->script0) |
| m_free_dma(np->script0, sizeof(struct script), "SCRIPT"); |
| if (np->ccb) |
| m_free_dma(np->ccb, sizeof(struct ccb), "CCB"); |
| m_free_dma(np, sizeof(struct ncb), "NCB"); |
| host_data->ncb = NULL; |
| |
| unregister: |
| scsi_host_put(instance); |
| |
| return NULL; |
| } |
| |
| |
| void ncr53c8xx_release(struct Scsi_Host *host) |
| { |
| struct host_data *host_data = shost_priv(host); |
| #ifdef DEBUG_NCR53C8XX |
| printk("ncr53c8xx: release\n"); |
| #endif |
| if (host_data->ncb) |
| ncr_detach(host_data->ncb); |
| scsi_host_put(host); |
| } |
| |
| static void ncr53c8xx_set_period(struct scsi_target *starget, int period) |
| { |
| struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); |
| struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; |
| struct tcb *tp = &np->target[starget->id]; |
| |
| if (period > np->maxsync) |
| period = np->maxsync; |
| else if (period < np->minsync) |
| period = np->minsync; |
| |
| tp->usrsync = period; |
| |
| ncr_negotiate(np, tp); |
| } |
| |
| static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset) |
| { |
| struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); |
| struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; |
| struct tcb *tp = &np->target[starget->id]; |
| |
| if (offset > np->maxoffs) |
| offset = np->maxoffs; |
| else if (offset < 0) |
| offset = 0; |
| |
| tp->maxoffs = offset; |
| |
| ncr_negotiate(np, tp); |
| } |
| |
| static void ncr53c8xx_set_width(struct scsi_target *starget, int width) |
| { |
| struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); |
| struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; |
| struct tcb *tp = &np->target[starget->id]; |
| |
| if (width > np->maxwide) |
| width = np->maxwide; |
| else if (width < 0) |
| width = 0; |
| |
| tp->usrwide = width; |
| |
| ncr_negotiate(np, tp); |
| } |
| |
| static void ncr53c8xx_get_signalling(struct Scsi_Host *shost) |
| { |
| struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; |
| enum spi_signal_type type; |
| |
| switch (np->scsi_mode) { |
| case SMODE_SE: |
| type = SPI_SIGNAL_SE; |
| break; |
| case SMODE_HVD: |
| type = SPI_SIGNAL_HVD; |
| break; |
| default: |
| type = SPI_SIGNAL_UNKNOWN; |
| break; |
| } |
| spi_signalling(shost) = type; |
| } |
| |
| static struct spi_function_template ncr53c8xx_transport_functions = { |
| .set_period = ncr53c8xx_set_period, |
| .show_period = 1, |
| .set_offset = ncr53c8xx_set_offset, |
| .show_offset = 1, |
| .set_width = ncr53c8xx_set_width, |
| .show_width = 1, |
| .get_signalling = ncr53c8xx_get_signalling, |
| }; |
| |
| int __init ncr53c8xx_init(void) |
| { |
| ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions); |
| if (!ncr53c8xx_transport_template) |
| return -ENODEV; |
| return 0; |
| } |
| |
| void ncr53c8xx_exit(void) |
| { |
| spi_release_transport(ncr53c8xx_transport_template); |
| } |