| /* Intel(R) Gigabit Ethernet Linux driver |
| * Copyright(c) 2007-2014 Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, see <http://www.gnu.org/licenses/>. |
| * |
| * The full GNU General Public License is included in this distribution in |
| * the file called "COPYING". |
| * |
| * Contact Information: |
| * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| */ |
| |
| /* e1000_i210 |
| * e1000_i211 |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/if_ether.h> |
| |
| #include "e1000_hw.h" |
| #include "e1000_i210.h" |
| |
| static s32 igb_update_flash_i210(struct e1000_hw *hw); |
| |
| /** |
| * igb_get_hw_semaphore_i210 - Acquire hardware semaphore |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the HW semaphore to access the PHY or NVM |
| */ |
| static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw) |
| { |
| u32 swsm; |
| s32 timeout = hw->nvm.word_size + 1; |
| s32 i = 0; |
| |
| /* Get the SW semaphore */ |
| while (i < timeout) { |
| swsm = rd32(E1000_SWSM); |
| if (!(swsm & E1000_SWSM_SMBI)) |
| break; |
| |
| udelay(50); |
| i++; |
| } |
| |
| if (i == timeout) { |
| /* In rare circumstances, the SW semaphore may already be held |
| * unintentionally. Clear the semaphore once before giving up. |
| */ |
| if (hw->dev_spec._82575.clear_semaphore_once) { |
| hw->dev_spec._82575.clear_semaphore_once = false; |
| igb_put_hw_semaphore(hw); |
| for (i = 0; i < timeout; i++) { |
| swsm = rd32(E1000_SWSM); |
| if (!(swsm & E1000_SWSM_SMBI)) |
| break; |
| |
| udelay(50); |
| } |
| } |
| |
| /* If we do not have the semaphore here, we have to give up. */ |
| if (i == timeout) { |
| hw_dbg("Driver can't access device - SMBI bit is set.\n"); |
| return -E1000_ERR_NVM; |
| } |
| } |
| |
| /* Get the FW semaphore. */ |
| for (i = 0; i < timeout; i++) { |
| swsm = rd32(E1000_SWSM); |
| wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); |
| |
| /* Semaphore acquired if bit latched */ |
| if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) |
| break; |
| |
| udelay(50); |
| } |
| |
| if (i == timeout) { |
| /* Release semaphores */ |
| igb_put_hw_semaphore(hw); |
| hw_dbg("Driver can't access the NVM\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * igb_acquire_nvm_i210 - Request for access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the necessary semaphores for exclusive access to the EEPROM. |
| * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| * Return successful if access grant bit set, else clear the request for |
| * EEPROM access and return -E1000_ERR_NVM (-1). |
| **/ |
| static s32 igb_acquire_nvm_i210(struct e1000_hw *hw) |
| { |
| return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); |
| } |
| |
| /** |
| * igb_release_nvm_i210 - Release exclusive access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Stop any current commands to the EEPROM and clear the EEPROM request bit, |
| * then release the semaphores acquired. |
| **/ |
| static void igb_release_nvm_i210(struct e1000_hw *hw) |
| { |
| igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); |
| } |
| |
| /** |
| * igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore |
| * @hw: pointer to the HW structure |
| * @mask: specifies which semaphore to acquire |
| * |
| * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
| * will also specify which port we're acquiring the lock for. |
| **/ |
| s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask) |
| { |
| u32 swfw_sync; |
| u32 swmask = mask; |
| u32 fwmask = mask << 16; |
| s32 ret_val = 0; |
| s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ |
| |
| while (i < timeout) { |
| if (igb_get_hw_semaphore_i210(hw)) { |
| ret_val = -E1000_ERR_SWFW_SYNC; |
| goto out; |
| } |
| |
| swfw_sync = rd32(E1000_SW_FW_SYNC); |
| if (!(swfw_sync & (fwmask | swmask))) |
| break; |
| |
| /* Firmware currently using resource (fwmask) */ |
| igb_put_hw_semaphore(hw); |
| mdelay(5); |
| i++; |
| } |
| |
| if (i == timeout) { |
| hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); |
| ret_val = -E1000_ERR_SWFW_SYNC; |
| goto out; |
| } |
| |
| swfw_sync |= swmask; |
| wr32(E1000_SW_FW_SYNC, swfw_sync); |
| |
| igb_put_hw_semaphore(hw); |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_release_swfw_sync_i210 - Release SW/FW semaphore |
| * @hw: pointer to the HW structure |
| * @mask: specifies which semaphore to acquire |
| * |
| * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
| * will also specify which port we're releasing the lock for. |
| **/ |
| void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask) |
| { |
| u32 swfw_sync; |
| |
| while (igb_get_hw_semaphore_i210(hw)) |
| ; /* Empty */ |
| |
| swfw_sync = rd32(E1000_SW_FW_SYNC); |
| swfw_sync &= ~mask; |
| wr32(E1000_SW_FW_SYNC, swfw_sync); |
| |
| igb_put_hw_semaphore(hw); |
| } |
| |
| /** |
| * igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register |
| * @hw: pointer to the HW structure |
| * @offset: offset of word in the Shadow Ram to read |
| * @words: number of words to read |
| * @data: word read from the Shadow Ram |
| * |
| * Reads a 16 bit word from the Shadow Ram using the EERD register. |
| * Uses necessary synchronization semaphores. |
| **/ |
| static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| s32 status = 0; |
| u16 i, count; |
| |
| /* We cannot hold synchronization semaphores for too long, |
| * because of forceful takeover procedure. However it is more efficient |
| * to read in bursts than synchronizing access for each word. |
| */ |
| for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { |
| count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? |
| E1000_EERD_EEWR_MAX_COUNT : (words - i); |
| if (!(hw->nvm.ops.acquire(hw))) { |
| status = igb_read_nvm_eerd(hw, offset, count, |
| data + i); |
| hw->nvm.ops.release(hw); |
| } else { |
| status = E1000_ERR_SWFW_SYNC; |
| } |
| |
| if (status) |
| break; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * igb_write_nvm_srwr - Write to Shadow Ram using EEWR |
| * @hw: pointer to the HW structure |
| * @offset: offset within the Shadow Ram to be written to |
| * @words: number of words to write |
| * @data: 16 bit word(s) to be written to the Shadow Ram |
| * |
| * Writes data to Shadow Ram at offset using EEWR register. |
| * |
| * If igb_update_nvm_checksum is not called after this function , the |
| * Shadow Ram will most likely contain an invalid checksum. |
| **/ |
| static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 i, k, eewr = 0; |
| u32 attempts = 100000; |
| s32 ret_val = 0; |
| |
| /* A check for invalid values: offset too large, too many words, |
| * too many words for the offset, and not enough words. |
| */ |
| if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
| (words == 0)) { |
| hw_dbg("nvm parameter(s) out of bounds\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| |
| for (i = 0; i < words; i++) { |
| eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | |
| (data[i] << E1000_NVM_RW_REG_DATA) | |
| E1000_NVM_RW_REG_START; |
| |
| wr32(E1000_SRWR, eewr); |
| |
| for (k = 0; k < attempts; k++) { |
| if (E1000_NVM_RW_REG_DONE & |
| rd32(E1000_SRWR)) { |
| ret_val = 0; |
| break; |
| } |
| udelay(5); |
| } |
| |
| if (ret_val) { |
| hw_dbg("Shadow RAM write EEWR timed out\n"); |
| break; |
| } |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR |
| * @hw: pointer to the HW structure |
| * @offset: offset within the Shadow RAM to be written to |
| * @words: number of words to write |
| * @data: 16 bit word(s) to be written to the Shadow RAM |
| * |
| * Writes data to Shadow RAM at offset using EEWR register. |
| * |
| * If e1000_update_nvm_checksum is not called after this function , the |
| * data will not be committed to FLASH and also Shadow RAM will most likely |
| * contain an invalid checksum. |
| * |
| * If error code is returned, data and Shadow RAM may be inconsistent - buffer |
| * partially written. |
| **/ |
| static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| s32 status = 0; |
| u16 i, count; |
| |
| /* We cannot hold synchronization semaphores for too long, |
| * because of forceful takeover procedure. However it is more efficient |
| * to write in bursts than synchronizing access for each word. |
| */ |
| for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { |
| count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? |
| E1000_EERD_EEWR_MAX_COUNT : (words - i); |
| if (!(hw->nvm.ops.acquire(hw))) { |
| status = igb_write_nvm_srwr(hw, offset, count, |
| data + i); |
| hw->nvm.ops.release(hw); |
| } else { |
| status = E1000_ERR_SWFW_SYNC; |
| } |
| |
| if (status) |
| break; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * igb_read_invm_word_i210 - Reads OTP |
| * @hw: pointer to the HW structure |
| * @address: the word address (aka eeprom offset) to read |
| * @data: pointer to the data read |
| * |
| * Reads 16-bit words from the OTP. Return error when the word is not |
| * stored in OTP. |
| **/ |
| static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data) |
| { |
| s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; |
| u32 invm_dword; |
| u16 i; |
| u8 record_type, word_address; |
| |
| for (i = 0; i < E1000_INVM_SIZE; i++) { |
| invm_dword = rd32(E1000_INVM_DATA_REG(i)); |
| /* Get record type */ |
| record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); |
| if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE) |
| break; |
| if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE) |
| i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; |
| if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE) |
| i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; |
| if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) { |
| word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); |
| if (word_address == address) { |
| *data = INVM_DWORD_TO_WORD_DATA(invm_dword); |
| hw_dbg("Read INVM Word 0x%02x = %x\n", |
| address, *data); |
| status = 0; |
| break; |
| } |
| } |
| } |
| if (status) |
| hw_dbg("Requested word 0x%02x not found in OTP\n", address); |
| return status; |
| } |
| |
| /** |
| * igb_read_invm_i210 - Read invm wrapper function for I210/I211 |
| * @hw: pointer to the HW structure |
| * @words: number of words to read |
| * @data: pointer to the data read |
| * |
| * Wrapper function to return data formerly found in the NVM. |
| **/ |
| static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset, |
| u16 words __always_unused, u16 *data) |
| { |
| s32 ret_val = 0; |
| |
| /* Only the MAC addr is required to be present in the iNVM */ |
| switch (offset) { |
| case NVM_MAC_ADDR: |
| ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]); |
| ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1, |
| &data[1]); |
| ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2, |
| &data[2]); |
| if (ret_val) |
| hw_dbg("MAC Addr not found in iNVM\n"); |
| break; |
| case NVM_INIT_CTRL_2: |
| ret_val = igb_read_invm_word_i210(hw, (u8)offset, data); |
| if (ret_val) { |
| *data = NVM_INIT_CTRL_2_DEFAULT_I211; |
| ret_val = 0; |
| } |
| break; |
| case NVM_INIT_CTRL_4: |
| ret_val = igb_read_invm_word_i210(hw, (u8)offset, data); |
| if (ret_val) { |
| *data = NVM_INIT_CTRL_4_DEFAULT_I211; |
| ret_val = 0; |
| } |
| break; |
| case NVM_LED_1_CFG: |
| ret_val = igb_read_invm_word_i210(hw, (u8)offset, data); |
| if (ret_val) { |
| *data = NVM_LED_1_CFG_DEFAULT_I211; |
| ret_val = 0; |
| } |
| break; |
| case NVM_LED_0_2_CFG: |
| ret_val = igb_read_invm_word_i210(hw, (u8)offset, data); |
| if (ret_val) { |
| *data = NVM_LED_0_2_CFG_DEFAULT_I211; |
| ret_val = 0; |
| } |
| break; |
| case NVM_ID_LED_SETTINGS: |
| ret_val = igb_read_invm_word_i210(hw, (u8)offset, data); |
| if (ret_val) { |
| *data = ID_LED_RESERVED_FFFF; |
| ret_val = 0; |
| } |
| break; |
| case NVM_SUB_DEV_ID: |
| *data = hw->subsystem_device_id; |
| break; |
| case NVM_SUB_VEN_ID: |
| *data = hw->subsystem_vendor_id; |
| break; |
| case NVM_DEV_ID: |
| *data = hw->device_id; |
| break; |
| case NVM_VEN_ID: |
| *data = hw->vendor_id; |
| break; |
| default: |
| hw_dbg("NVM word 0x%02x is not mapped.\n", offset); |
| *data = NVM_RESERVED_WORD; |
| break; |
| } |
| return ret_val; |
| } |
| |
| /** |
| * igb_read_invm_version - Reads iNVM version and image type |
| * @hw: pointer to the HW structure |
| * @invm_ver: version structure for the version read |
| * |
| * Reads iNVM version and image type. |
| **/ |
| s32 igb_read_invm_version(struct e1000_hw *hw, |
| struct e1000_fw_version *invm_ver) { |
| u32 *record = NULL; |
| u32 *next_record = NULL; |
| u32 i = 0; |
| u32 invm_dword = 0; |
| u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE / |
| E1000_INVM_RECORD_SIZE_IN_BYTES); |
| u32 buffer[E1000_INVM_SIZE]; |
| s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; |
| u16 version = 0; |
| |
| /* Read iNVM memory */ |
| for (i = 0; i < E1000_INVM_SIZE; i++) { |
| invm_dword = rd32(E1000_INVM_DATA_REG(i)); |
| buffer[i] = invm_dword; |
| } |
| |
| /* Read version number */ |
| for (i = 1; i < invm_blocks; i++) { |
| record = &buffer[invm_blocks - i]; |
| next_record = &buffer[invm_blocks - i + 1]; |
| |
| /* Check if we have first version location used */ |
| if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) { |
| version = 0; |
| status = 0; |
| break; |
| } |
| /* Check if we have second version location used */ |
| else if ((i == 1) && |
| ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) { |
| version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; |
| status = 0; |
| break; |
| } |
| /* Check if we have odd version location |
| * used and it is the last one used |
| */ |
| else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) && |
| ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) && |
| (i != 1))) { |
| version = (*next_record & E1000_INVM_VER_FIELD_TWO) |
| >> 13; |
| status = 0; |
| break; |
| } |
| /* Check if we have even version location |
| * used and it is the last one used |
| */ |
| else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) && |
| ((*record & 0x3) == 0)) { |
| version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; |
| status = 0; |
| break; |
| } |
| } |
| |
| if (!status) { |
| invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK) |
| >> E1000_INVM_MAJOR_SHIFT; |
| invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK; |
| } |
| /* Read Image Type */ |
| for (i = 1; i < invm_blocks; i++) { |
| record = &buffer[invm_blocks - i]; |
| next_record = &buffer[invm_blocks - i + 1]; |
| |
| /* Check if we have image type in first location used */ |
| if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) { |
| invm_ver->invm_img_type = 0; |
| status = 0; |
| break; |
| } |
| /* Check if we have image type in first location used */ |
| else if ((((*record & 0x3) == 0) && |
| ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) || |
| ((((*record & 0x3) != 0) && (i != 1)))) { |
| invm_ver->invm_img_type = |
| (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23; |
| status = 0; |
| break; |
| } |
| } |
| return status; |
| } |
| |
| /** |
| * igb_validate_nvm_checksum_i210 - Validate EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| **/ |
| static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw) |
| { |
| s32 status = 0; |
| s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *); |
| |
| if (!(hw->nvm.ops.acquire(hw))) { |
| |
| /* Replace the read function with semaphore grabbing with |
| * the one that skips this for a while. |
| * We have semaphore taken already here. |
| */ |
| read_op_ptr = hw->nvm.ops.read; |
| hw->nvm.ops.read = igb_read_nvm_eerd; |
| |
| status = igb_validate_nvm_checksum(hw); |
| |
| /* Revert original read operation. */ |
| hw->nvm.ops.read = read_op_ptr; |
| |
| hw->nvm.ops.release(hw); |
| } else { |
| status = E1000_ERR_SWFW_SYNC; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * igb_update_nvm_checksum_i210 - Update EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| * up to the checksum. Then calculates the EEPROM checksum and writes the |
| * value to the EEPROM. Next commit EEPROM data onto the Flash. |
| **/ |
| static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u16 checksum = 0; |
| u16 i, nvm_data; |
| |
| /* Read the first word from the EEPROM. If this times out or fails, do |
| * not continue or we could be in for a very long wait while every |
| * EEPROM read fails |
| */ |
| ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg("EEPROM read failed\n"); |
| goto out; |
| } |
| |
| if (!(hw->nvm.ops.acquire(hw))) { |
| /* Do not use hw->nvm.ops.write, hw->nvm.ops.read |
| * because we do not want to take the synchronization |
| * semaphores twice here. |
| */ |
| |
| for (i = 0; i < NVM_CHECKSUM_REG; i++) { |
| ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data); |
| if (ret_val) { |
| hw->nvm.ops.release(hw); |
| hw_dbg("NVM Read Error while updating checksum.\n"); |
| goto out; |
| } |
| checksum += nvm_data; |
| } |
| checksum = (u16) NVM_SUM - checksum; |
| ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, |
| &checksum); |
| if (ret_val) { |
| hw->nvm.ops.release(hw); |
| hw_dbg("NVM Write Error while updating checksum.\n"); |
| goto out; |
| } |
| |
| hw->nvm.ops.release(hw); |
| |
| ret_val = igb_update_flash_i210(hw); |
| } else { |
| ret_val = -E1000_ERR_SWFW_SYNC; |
| } |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_pool_flash_update_done_i210 - Pool FLUDONE status. |
| * @hw: pointer to the HW structure |
| * |
| **/ |
| static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw) |
| { |
| s32 ret_val = -E1000_ERR_NVM; |
| u32 i, reg; |
| |
| for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) { |
| reg = rd32(E1000_EECD); |
| if (reg & E1000_EECD_FLUDONE_I210) { |
| ret_val = 0; |
| break; |
| } |
| udelay(5); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * igb_get_flash_presence_i210 - Check if flash device is detected. |
| * @hw: pointer to the HW structure |
| * |
| **/ |
| bool igb_get_flash_presence_i210(struct e1000_hw *hw) |
| { |
| u32 eec = 0; |
| bool ret_val = false; |
| |
| eec = rd32(E1000_EECD); |
| if (eec & E1000_EECD_FLASH_DETECTED_I210) |
| ret_val = true; |
| |
| return ret_val; |
| } |
| |
| /** |
| * igb_update_flash_i210 - Commit EEPROM to the flash |
| * @hw: pointer to the HW structure |
| * |
| **/ |
| static s32 igb_update_flash_i210(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| u32 flup; |
| |
| ret_val = igb_pool_flash_update_done_i210(hw); |
| if (ret_val == -E1000_ERR_NVM) { |
| hw_dbg("Flash update time out\n"); |
| goto out; |
| } |
| |
| flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210; |
| wr32(E1000_EECD, flup); |
| |
| ret_val = igb_pool_flash_update_done_i210(hw); |
| if (ret_val) |
| hw_dbg("Flash update complete\n"); |
| else |
| hw_dbg("Flash update time out\n"); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igb_valid_led_default_i210 - Verify a valid default LED config |
| * @hw: pointer to the HW structure |
| * @data: pointer to the NVM (EEPROM) |
| * |
| * Read the EEPROM for the current default LED configuration. If the |
| * LED configuration is not valid, set to a valid LED configuration. |
| **/ |
| s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data) |
| { |
| s32 ret_val; |
| |
| ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); |
| if (ret_val) { |
| hw_dbg("NVM Read Error\n"); |
| goto out; |
| } |
| |
| if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { |
| switch (hw->phy.media_type) { |
| case e1000_media_type_internal_serdes: |
| *data = ID_LED_DEFAULT_I210_SERDES; |
| break; |
| case e1000_media_type_copper: |
| default: |
| *data = ID_LED_DEFAULT_I210; |
| break; |
| } |
| } |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * __igb_access_xmdio_reg - Read/write XMDIO register |
| * @hw: pointer to the HW structure |
| * @address: XMDIO address to program |
| * @dev_addr: device address to program |
| * @data: pointer to value to read/write from/to the XMDIO address |
| * @read: boolean flag to indicate read or write |
| **/ |
| static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address, |
| u8 dev_addr, u16 *data, bool read) |
| { |
| s32 ret_val = 0; |
| |
| ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA | |
| dev_addr); |
| if (ret_val) |
| return ret_val; |
| |
| if (read) |
| ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data); |
| else |
| ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Recalibrate the device back to 0 */ |
| ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0); |
| if (ret_val) |
| return ret_val; |
| |
| return ret_val; |
| } |
| |
| /** |
| * igb_read_xmdio_reg - Read XMDIO register |
| * @hw: pointer to the HW structure |
| * @addr: XMDIO address to program |
| * @dev_addr: device address to program |
| * @data: value to be read from the EMI address |
| **/ |
| s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data) |
| { |
| return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true); |
| } |
| |
| /** |
| * igb_write_xmdio_reg - Write XMDIO register |
| * @hw: pointer to the HW structure |
| * @addr: XMDIO address to program |
| * @dev_addr: device address to program |
| * @data: value to be written to the XMDIO address |
| **/ |
| s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data) |
| { |
| return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false); |
| } |
| |
| /** |
| * igb_init_nvm_params_i210 - Init NVM func ptrs. |
| * @hw: pointer to the HW structure |
| **/ |
| s32 igb_init_nvm_params_i210(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| |
| nvm->ops.acquire = igb_acquire_nvm_i210; |
| nvm->ops.release = igb_release_nvm_i210; |
| nvm->ops.valid_led_default = igb_valid_led_default_i210; |
| |
| /* NVM Function Pointers */ |
| if (igb_get_flash_presence_i210(hw)) { |
| hw->nvm.type = e1000_nvm_flash_hw; |
| nvm->ops.read = igb_read_nvm_srrd_i210; |
| nvm->ops.write = igb_write_nvm_srwr_i210; |
| nvm->ops.validate = igb_validate_nvm_checksum_i210; |
| nvm->ops.update = igb_update_nvm_checksum_i210; |
| } else { |
| hw->nvm.type = e1000_nvm_invm; |
| nvm->ops.read = igb_read_invm_i210; |
| nvm->ops.write = NULL; |
| nvm->ops.validate = NULL; |
| nvm->ops.update = NULL; |
| } |
| return ret_val; |
| } |
| |
| /** |
| * igb_pll_workaround_i210 |
| * @hw: pointer to the HW structure |
| * |
| * Works around an errata in the PLL circuit where it occasionally |
| * provides the wrong clock frequency after power up. |
| **/ |
| s32 igb_pll_workaround_i210(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val; |
| u16 nvm_word, phy_word, pci_word, tmp_nvm; |
| int i; |
| |
| /* Get and set needed register values */ |
| wuc = rd32(E1000_WUC); |
| mdicnfg = rd32(E1000_MDICNFG); |
| reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO; |
| wr32(E1000_MDICNFG, reg_val); |
| |
| /* Get data from NVM, or set default */ |
| ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD, |
| &nvm_word); |
| if (ret_val) |
| nvm_word = E1000_INVM_DEFAULT_AL; |
| tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL; |
| for (i = 0; i < E1000_MAX_PLL_TRIES; i++) { |
| /* check current state directly from internal PHY */ |
| igb_read_phy_reg_gs40g(hw, (E1000_PHY_PLL_FREQ_PAGE | |
| E1000_PHY_PLL_FREQ_REG), &phy_word); |
| if ((phy_word & E1000_PHY_PLL_UNCONF) |
| != E1000_PHY_PLL_UNCONF) { |
| ret_val = 0; |
| break; |
| } else { |
| ret_val = -E1000_ERR_PHY; |
| } |
| /* directly reset the internal PHY */ |
| ctrl = rd32(E1000_CTRL); |
| wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST); |
| |
| ctrl_ext = rd32(E1000_CTRL_EXT); |
| ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE); |
| wr32(E1000_CTRL_EXT, ctrl_ext); |
| |
| wr32(E1000_WUC, 0); |
| reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16); |
| wr32(E1000_EEARBC_I210, reg_val); |
| |
| igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); |
| pci_word |= E1000_PCI_PMCSR_D3; |
| igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); |
| usleep_range(1000, 2000); |
| pci_word &= ~E1000_PCI_PMCSR_D3; |
| igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); |
| reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16); |
| wr32(E1000_EEARBC_I210, reg_val); |
| |
| /* restore WUC register */ |
| wr32(E1000_WUC, wuc); |
| } |
| /* restore MDICNFG setting */ |
| wr32(E1000_MDICNFG, mdicnfg); |
| return ret_val; |
| } |