blob: 54b09bfac5dabd81a74eb3c3920ab6529065b6c2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2020, The Linux Foundation. All rights reserved.
*/
/*
* Bluetooth Power Switch Module
* controls power to external Bluetooth device
* with interface to power management device
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/rfkill.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/delay.h>
#include <linux/bluetooth-power.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/clk.h>
#if defined(CONFIG_CNSS)
#include <net/cnss.h>
#endif
#if defined CONFIG_BT_SLIM_QCA6390 || defined CONFIG_BTFM_SLIM_WCN3990
#include "btfm_slim.h"
#include "btfm_slim_slave.h"
#endif
#include <linux/fs.h>
#define BT_PWR_DBG(fmt, arg...) pr_debug("%s: " fmt "\n", __func__, ## arg)
#define BT_PWR_INFO(fmt, arg...) pr_info("%s: " fmt "\n", __func__, ## arg)
#define BT_PWR_ERR(fmt, arg...) pr_err("%s: " fmt "\n", __func__, ## arg)
static const struct of_device_id bt_power_match_table[] = {
{ .compatible = "qca,ar3002" },
{ .compatible = "qca,qca6174" },
{ .compatible = "qca,wcn3990" },
{ .compatible = "qca,qca6390" },
{ .compatible = "qca,wcn6750" },
{}
};
static struct bluetooth_power_platform_data *bt_power_pdata;
static struct platform_device *btpdev;
static bool previous;
static int pwr_state;
struct class *bt_class;
static int bt_major;
static int soc_id;
static int bt_vreg_init(struct bt_power_vreg_data *vreg)
{
int rc = 0;
struct device *dev = &btpdev->dev;
BT_PWR_DBG("vreg_get for : %s", vreg->name);
/* Get the regulator handle */
vreg->reg = regulator_get(dev, vreg->name);
if (IS_ERR(vreg->reg)) {
rc = PTR_ERR(vreg->reg);
vreg->reg = NULL;
pr_err("%s: regulator_get(%s) failed. rc=%d\n",
__func__, vreg->name, rc);
goto out;
}
if ((regulator_count_voltages(vreg->reg) > 0)
&& (vreg->low_vol_level) && (vreg->high_vol_level))
vreg->set_voltage_sup = 1;
out:
return rc;
}
static int bt_vreg_enable(struct bt_power_vreg_data *vreg)
{
int rc = 0;
if (!vreg->is_enabled) {
if (vreg->set_voltage_sup) {
rc = regulator_set_voltage(vreg->reg,
vreg->low_vol_level,
vreg->high_vol_level);
if (rc < 0) {
BT_PWR_ERR("vreg_set_vol(%s) failed rc=%d\n",
vreg->name, rc);
goto out;
}
}
if (vreg->load_uA >= 0) {
rc = regulator_set_load(vreg->reg,
vreg->load_uA);
if (rc < 0) {
BT_PWR_ERR("vreg_set_mode(%s) failed rc=%d\n",
vreg->name, rc);
goto out;
}
}
rc = regulator_enable(vreg->reg);
if (rc < 0) {
BT_PWR_ERR("regulator_enable(%s) failed. rc=%d\n",
vreg->name, rc);
goto out;
}
vreg->is_enabled = true;
}
BT_PWR_ERR("vreg_en successful for : %s", vreg->name);
out:
return rc;
}
static int bt_vreg_unvote(struct bt_power_vreg_data *vreg)
{
int rc = 0;
if (!vreg)
return rc;
if (vreg->is_enabled) {
if (vreg->set_voltage_sup) {
/* Set the min voltage to 0 */
rc = regulator_set_voltage(vreg->reg, 0,
vreg->high_vol_level);
if (rc < 0) {
BT_PWR_ERR("vreg_set_vol(%s) failed rc=%d\n",
vreg->name, rc);
goto out;
}
}
if (vreg->load_uA >= 0) {
rc = regulator_set_load(vreg->reg, 0);
if (rc < 0) {
BT_PWR_ERR("vreg_set_mode(%s) failed rc=%d\n",
vreg->name, rc);
goto out;
}
}
}
BT_PWR_ERR("vreg_unvote successful for : %s", vreg->name);
out:
return rc;
}
static int bt_vreg_disable(struct bt_power_vreg_data *vreg)
{
int rc = 0;
if (!vreg)
return rc;
if (vreg->is_enabled) {
rc = regulator_disable(vreg->reg);
if (rc < 0) {
BT_PWR_ERR("regulator_disable(%s) failed. rc=%d\n",
vreg->name, rc);
goto out;
}
vreg->is_enabled = false;
if (vreg->set_voltage_sup) {
/* Set the min voltage to 0 */
rc = regulator_set_voltage(vreg->reg, 0,
vreg->high_vol_level);
if (rc < 0) {
BT_PWR_ERR("vreg_set_vol(%s) failed rc=%d\n",
vreg->name, rc);
goto out;
}
}
if (vreg->load_uA >= 0) {
rc = regulator_set_load(vreg->reg, 0);
if (rc < 0) {
BT_PWR_ERR("vreg_set_mode(%s) failed rc=%d\n",
vreg->name, rc);
goto out;
}
}
}
BT_PWR_ERR("vreg_disable successful for : %s", vreg->name);
out:
return rc;
}
static int bt_configure_vreg(struct bt_power_vreg_data *vreg)
{
int rc = 0;
BT_PWR_DBG("config %s", vreg->name);
/* Get the regulator handle for vreg */
if (!(vreg->reg)) {
rc = bt_vreg_init(vreg);
if (rc < 0)
return rc;
}
rc = bt_vreg_enable(vreg);
return rc;
}
static int bt_clk_enable(struct bt_power_clk_data *clk)
{
int rc = 0;
BT_PWR_DBG("%s", clk->name);
/* Get the clock handle for vreg */
if (!clk->clk || clk->is_enabled) {
BT_PWR_ERR("error - node: %p, clk->is_enabled:%d",
clk->clk, clk->is_enabled);
return -EINVAL;
}
rc = clk_prepare_enable(clk->clk);
if (rc) {
BT_PWR_ERR("failed to enable %s, rc(%d)\n", clk->name, rc);
return rc;
}
clk->is_enabled = true;
return rc;
}
static int bt_clk_disable(struct bt_power_clk_data *clk)
{
int rc = 0;
BT_PWR_DBG("%s", clk->name);
/* Get the clock handle for vreg */
if (!clk->clk || !clk->is_enabled) {
BT_PWR_ERR("error - node: %p, clk->is_enabled:%d",
clk->clk, clk->is_enabled);
return -EINVAL;
}
clk_disable_unprepare(clk->clk);
clk->is_enabled = false;
return rc;
}
static int bt_configure_gpios(int on)
{
int rc = 0;
int bt_reset_gpio = bt_power_pdata->bt_gpio_sys_rst;
int bt_sw_ctrl_gpio = bt_power_pdata->bt_gpio_sw_ctrl;
int bt_debug_gpio = bt_power_pdata->bt_gpio_debug;
int assertDebugGpio = 0;
if (on) {
rc = gpio_request(bt_reset_gpio, "bt_sys_rst_n");
if (rc) {
BT_PWR_ERR("unable to request gpio %d (%d)\n",
bt_reset_gpio, rc);
return rc;
}
rc = gpio_direction_output(bt_reset_gpio, 0);
if (rc) {
BT_PWR_ERR("Unable to set direction\n");
return rc;
}
msleep(50);
BT_PWR_INFO("BTON:Turn Bt Off bt-reset-gpio(%d) value(%d)\n",
bt_reset_gpio, gpio_get_value(bt_reset_gpio));
if (bt_sw_ctrl_gpio >= 0) {
BT_PWR_INFO("BTON:Turn Bt Off");
BT_PWR_INFO("bt-sw-ctrl-gpio(%d) value(%d)",
bt_sw_ctrl_gpio,
gpio_get_value(bt_sw_ctrl_gpio));
}
rc = gpio_direction_output(bt_reset_gpio, 1);
if (rc) {
BT_PWR_ERR("Unable to set direction\n");
return rc;
}
msleep(50);
/* Check if SW_CTRL is asserted */
if (bt_sw_ctrl_gpio >= 0) {
rc = gpio_direction_input(bt_sw_ctrl_gpio);
if (rc) {
BT_PWR_ERR("SWCTRL Dir Set Problem:%d\n", rc);
} else if (!gpio_get_value(bt_sw_ctrl_gpio)) {
/* Assert debug GPIO, if available as
* SW_CTRL is not asserted
*/
if (bt_debug_gpio >= 0)
assertDebugGpio = 1;
}
}
if (assertDebugGpio) {
rc = gpio_request(bt_debug_gpio, "bt_debug_n");
if (rc) {
BT_PWR_ERR("unable to request Debug Gpio\n");
} else {
rc = gpio_direction_output(bt_debug_gpio, 1);
if (rc)
BT_PWR_ERR("Prob: Set Debug-Gpio\n");
}
}
BT_PWR_INFO("BTON:Turn Bt On bt-reset-gpio(%d) value(%d)\n",
bt_reset_gpio, gpio_get_value(bt_reset_gpio));
if (bt_sw_ctrl_gpio >= 0) {
BT_PWR_INFO("BTON:Turn Bt On");
BT_PWR_INFO("bt-sw-ctrl-gpio(%d) value(%d)",
bt_sw_ctrl_gpio,
gpio_get_value(bt_sw_ctrl_gpio));
}
} else {
gpio_set_value(bt_reset_gpio, 0);
if (bt_debug_gpio >= 0)
gpio_set_value(bt_debug_gpio, 0);
msleep(100);
BT_PWR_INFO("BT-OFF:bt-reset-gpio(%d) value(%d)\n",
bt_reset_gpio, gpio_get_value(bt_reset_gpio));
if (bt_sw_ctrl_gpio >= 0) {
BT_PWR_INFO("BT-OFF:bt-sw-ctrl-gpio(%d) value(%d)",
bt_sw_ctrl_gpio,
gpio_get_value(bt_sw_ctrl_gpio));
}
}
BT_PWR_INFO("bt_gpio= %d on: %d is successful", bt_reset_gpio, on);
return rc;
}
static int bluetooth_power(int on)
{
int rc = 0;
BT_PWR_DBG("on: %d", on);
if (on == 1) {
// Power On
if (bt_power_pdata->bt_vdd_io) {
rc = bt_configure_vreg(bt_power_pdata->bt_vdd_io);
if (rc < 0) {
BT_PWR_ERR("bt_power vddio config failed");
goto out;
}
}
if (bt_power_pdata->bt_vdd_xtal) {
rc = bt_configure_vreg(bt_power_pdata->bt_vdd_xtal);
if (rc < 0) {
BT_PWR_ERR("bt_power vddxtal config failed");
goto vdd_xtal_fail;
}
}
if (bt_power_pdata->bt_vdd_core) {
rc = bt_configure_vreg(bt_power_pdata->bt_vdd_core);
if (rc < 0) {
BT_PWR_ERR("bt_power vddcore config failed");
goto vdd_core_fail;
}
}
if (bt_power_pdata->bt_vdd_pa) {
rc = bt_configure_vreg(bt_power_pdata->bt_vdd_pa);
if (rc < 0) {
BT_PWR_ERR("bt_power vddpa config failed");
goto vdd_pa_fail;
}
}
if (bt_power_pdata->bt_vdd_ldo) {
rc = bt_configure_vreg(bt_power_pdata->bt_vdd_ldo);
if (rc < 0) {
BT_PWR_ERR("bt_power vddldo config failed");
goto vdd_ldo_fail;
}
}
if (bt_power_pdata->bt_vdd_aon) {
rc = bt_configure_vreg(bt_power_pdata->bt_vdd_aon);
if (rc < 0) {
BT_PWR_ERR("bt_power vddaon config failed");
goto vdd_aon_fail;
}
}
if (bt_power_pdata->bt_vdd_dig) {
rc = bt_configure_vreg(bt_power_pdata->bt_vdd_dig);
if (rc < 0) {
BT_PWR_ERR("bt_power vdddig config failed");
goto vdd_dig_fail;
}
}
if (bt_power_pdata->bt_vdd_rfa1) {
rc = bt_configure_vreg(bt_power_pdata->bt_vdd_rfa1);
if (rc < 0) {
BT_PWR_ERR("bt_power vddrfa1 config failed");
goto vdd_rfa1_fail;
}
}
if (bt_power_pdata->bt_vdd_rfa2) {
rc = bt_configure_vreg(bt_power_pdata->bt_vdd_rfa2);
if (rc < 0) {
BT_PWR_ERR("bt_power vddrfa2 config failed");
goto vdd_rfa2_fail;
}
}
if (bt_power_pdata->bt_vdd_asd) {
rc = bt_configure_vreg(bt_power_pdata->bt_vdd_asd);
if (rc < 0) {
BT_PWR_ERR("bt_power vddasd config failed");
goto vdd_asd_fail;
}
}
if (bt_power_pdata->bt_chip_pwd) {
rc = bt_configure_vreg(bt_power_pdata->bt_chip_pwd);
if (rc < 0) {
BT_PWR_ERR("bt_power chippwd config failed");
goto chip_pwd_fail;
}
}
/* Parse dt_info and check if a target requires clock voting.
* Enable BT clock when BT is on and disable it when BT is off
*/
if (bt_power_pdata->bt_chip_clk) {
rc = bt_clk_enable(bt_power_pdata->bt_chip_clk);
if (rc < 0) {
BT_PWR_ERR("bt_power gpio config failed");
goto clk_fail;
}
}
if (bt_power_pdata->bt_gpio_sys_rst > 0) {
rc = bt_configure_gpios(on);
if (rc < 0) {
BT_PWR_ERR("bt_power gpio config failed");
goto gpio_fail;
}
}
} else if (on == 0) {
// Power Off
if (bt_power_pdata->bt_gpio_sys_rst > 0)
bt_configure_gpios(on);
gpio_fail:
if (bt_power_pdata->bt_gpio_sys_rst > 0)
gpio_free(bt_power_pdata->bt_gpio_sys_rst);
if (bt_power_pdata->bt_gpio_sw_ctrl > 0)
gpio_free(bt_power_pdata->bt_gpio_sw_ctrl);
if (bt_power_pdata->bt_gpio_debug > 0)
gpio_free(bt_power_pdata->bt_gpio_debug);
if (bt_power_pdata->bt_chip_clk)
bt_clk_disable(bt_power_pdata->bt_chip_clk);
clk_fail:
if (bt_power_pdata->bt_chip_pwd)
bt_vreg_disable(bt_power_pdata->bt_chip_pwd);
chip_pwd_fail:
if (bt_power_pdata->bt_vdd_asd)
bt_vreg_disable(bt_power_pdata->bt_vdd_asd);
vdd_asd_fail:
if (bt_power_pdata->bt_vdd_rfa2)
bt_vreg_disable(bt_power_pdata->bt_vdd_rfa2);
vdd_rfa2_fail:
if (bt_power_pdata->bt_vdd_rfa1)
bt_vreg_disable(bt_power_pdata->bt_vdd_rfa1);
vdd_rfa1_fail:
if (bt_power_pdata->bt_vdd_dig)
bt_vreg_disable(bt_power_pdata->bt_vdd_dig);
vdd_dig_fail:
if (bt_power_pdata->bt_vdd_aon)
bt_vreg_disable(bt_power_pdata->bt_vdd_aon);
vdd_aon_fail:
if (bt_power_pdata->bt_vdd_ldo)
bt_vreg_disable(bt_power_pdata->bt_vdd_ldo);
vdd_ldo_fail:
if (bt_power_pdata->bt_vdd_pa)
bt_vreg_disable(bt_power_pdata->bt_vdd_pa);
vdd_pa_fail:
if (bt_power_pdata->bt_vdd_core)
bt_vreg_disable(bt_power_pdata->bt_vdd_core);
vdd_core_fail:
if (bt_power_pdata->bt_vdd_xtal)
bt_vreg_disable(bt_power_pdata->bt_vdd_xtal);
vdd_xtal_fail:
if (bt_power_pdata->bt_vdd_io)
bt_vreg_disable(bt_power_pdata->bt_vdd_io);
} else if (on == 2) {
/* Retention mode */
if (bt_power_pdata->bt_vdd_rfa2)
bt_vreg_unvote(bt_power_pdata->bt_vdd_rfa2);
if (bt_power_pdata->bt_vdd_rfa1)
bt_vreg_unvote(bt_power_pdata->bt_vdd_rfa1);
if (bt_power_pdata->bt_vdd_dig)
bt_vreg_unvote(bt_power_pdata->bt_vdd_dig);
if (bt_power_pdata->bt_vdd_aon)
bt_vreg_unvote(bt_power_pdata->bt_vdd_aon);
} else {
BT_PWR_ERR("Invalid power mode: %d", on);
rc = -1;
}
out:
return rc;
}
static int bluetooth_toggle_radio(void *data, bool blocked)
{
int ret = 0;
int (*power_control)(int enable);
power_control =
((struct bluetooth_power_platform_data *)data)->bt_power_setup;
if (previous != blocked)
ret = (*power_control)(!blocked);
if (!ret)
previous = blocked;
return ret;
}
static const struct rfkill_ops bluetooth_power_rfkill_ops = {
.set_block = bluetooth_toggle_radio,
};
#if defined(CONFIG_CNSS) && defined(CONFIG_CLD_LL_CORE)
static ssize_t extldo_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int ret;
bool enable = false;
struct cnss_platform_cap cap;
ret = cnss_get_platform_cap(&cap);
if (ret) {
BT_PWR_ERR("Platform capability info from CNSS not available!");
enable = false;
} else if (!ret && (cap.cap_flag & CNSS_HAS_EXTERNAL_SWREG)) {
enable = true;
}
return snprintf(buf, 6, "%s", (enable ? "true" : "false"));
}
#else
static ssize_t extldo_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return snprintf(buf, 6, "%s", "false");
}
#endif
static DEVICE_ATTR_RO(extldo);
static int bluetooth_power_rfkill_probe(struct platform_device *pdev)
{
struct rfkill *rfkill;
int ret;
rfkill = rfkill_alloc("bt_power", &pdev->dev, RFKILL_TYPE_BLUETOOTH,
&bluetooth_power_rfkill_ops,
pdev->dev.platform_data);
if (!rfkill) {
dev_err(&pdev->dev, "rfkill allocate failed\n");
return -ENOMEM;
}
/* add file into rfkill0 to handle LDO27 */
ret = device_create_file(&pdev->dev, &dev_attr_extldo);
if (ret < 0)
BT_PWR_ERR("device create file error!");
/* force Bluetooth off during init to allow for user control */
rfkill_init_sw_state(rfkill, 1);
previous = true;
ret = rfkill_register(rfkill);
if (ret) {
dev_err(&pdev->dev, "rfkill register failed=%d\n", ret);
rfkill_destroy(rfkill);
return ret;
}
platform_set_drvdata(pdev, rfkill);
return 0;
}
static void bluetooth_power_rfkill_remove(struct platform_device *pdev)
{
struct rfkill *rfkill;
dev_dbg(&pdev->dev, "%s\n", __func__);
rfkill = platform_get_drvdata(pdev);
if (rfkill)
rfkill_unregister(rfkill);
rfkill_destroy(rfkill);
platform_set_drvdata(pdev, NULL);
}
#define MAX_PROP_SIZE 32
static int bt_dt_parse_vreg_info(struct device *dev,
struct bt_power_vreg_data **vreg_data, const char *vreg_name)
{
int len, ret = 0;
const __be32 *prop;
char prop_name[MAX_PROP_SIZE];
struct bt_power_vreg_data *vreg;
struct device_node *np = dev->of_node;
BT_PWR_DBG("vreg dev tree parse for %s", vreg_name);
*vreg_data = NULL;
snprintf(prop_name, MAX_PROP_SIZE, "%s-supply", vreg_name);
if (of_parse_phandle(np, prop_name, 0)) {
vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
if (!vreg) {
BT_PWR_ERR("No memory for vreg: %s", vreg_name);
ret = -ENOMEM;
goto err;
}
vreg->name = vreg_name;
/* Parse voltage-level from each node */
snprintf(prop_name, MAX_PROP_SIZE,
"%s-voltage-level", vreg_name);
prop = of_get_property(np, prop_name, &len);
if (!prop || (len != (2 * sizeof(__be32)))) {
dev_warn(dev, "%s %s property\n",
prop ? "invalid format" : "no", prop_name);
} else {
vreg->low_vol_level = be32_to_cpup(&prop[0]);
vreg->high_vol_level = be32_to_cpup(&prop[1]);
}
/* Parse current-level from each node */
snprintf(prop_name, MAX_PROP_SIZE,
"%s-current-level", vreg_name);
ret = of_property_read_u32(np, prop_name, &vreg->load_uA);
if (ret < 0) {
BT_PWR_DBG("%s property is not valid\n", prop_name);
vreg->load_uA = -1;
ret = 0;
}
*vreg_data = vreg;
BT_PWR_DBG("%s: vol=[%d %d]uV, current=[%d]uA\n",
vreg->name, vreg->low_vol_level,
vreg->high_vol_level,
vreg->load_uA);
} else
BT_PWR_INFO("%s: is not provided in device tree", vreg_name);
err:
return ret;
}
static int bt_dt_parse_clk_info(struct device *dev,
struct bt_power_clk_data **clk_data)
{
int ret = 0;
struct bt_power_clk_data *clk = NULL;
struct device_node *np = dev->of_node;
BT_PWR_DBG("");
*clk_data = NULL;
if (of_parse_phandle(np, "clocks", 0)) {
clk = devm_kzalloc(dev, sizeof(*clk), GFP_KERNEL);
if (!clk) {
BT_PWR_ERR("No memory for clocks");
ret = -ENOMEM;
goto err;
}
/* Allocated 20 bytes size buffer for clock name string */
clk->name = devm_kzalloc(dev, 20, GFP_KERNEL);
/* Parse clock name from node */
ret = of_property_read_string_index(np, "clock-names", 0,
&(clk->name));
if (ret < 0) {
BT_PWR_ERR("reading \"clock-names\" failed");
return ret;
}
clk->clk = devm_clk_get(dev, clk->name);
if (IS_ERR(clk->clk)) {
ret = PTR_ERR(clk->clk);
BT_PWR_ERR("failed to get %s, ret (%d)",
clk->name, ret);
clk->clk = NULL;
return ret;
}
*clk_data = clk;
} else {
BT_PWR_INFO("clocks is not provided in device tree");
}
err:
return ret;
}
static int bt_power_populate_dt_pinfo(struct platform_device *pdev)
{
int rc;
BT_PWR_DBG("");
if (!bt_power_pdata)
return -ENOMEM;
if (pdev->dev.of_node) {
bt_power_pdata->bt_gpio_sys_rst =
of_get_named_gpio(pdev->dev.of_node,
"qca,bt-reset-gpio", 0);
if (bt_power_pdata->bt_gpio_sys_rst < 0)
BT_PWR_INFO("bt-reset-gpio not provided in devicetree");
bt_power_pdata->bt_gpio_sw_ctrl =
of_get_named_gpio(pdev->dev.of_node,
"qca,bt-sw-ctrl-gpio", 0);
bt_power_pdata->bt_gpio_debug =
of_get_named_gpio(pdev->dev.of_node,
"qca,bt-debug-gpio", 0);
rc = bt_dt_parse_vreg_info(&pdev->dev,
&bt_power_pdata->bt_vdd_core,
"qca,bt-vdd-core");
rc = bt_dt_parse_vreg_info(&pdev->dev,
&bt_power_pdata->bt_vdd_io,
"qca,bt-vdd-io");
rc = bt_dt_parse_vreg_info(&pdev->dev,
&bt_power_pdata->bt_vdd_xtal,
"qca,bt-vdd-xtal");
rc = bt_dt_parse_vreg_info(&pdev->dev,
&bt_power_pdata->bt_vdd_pa,
"qca,bt-vdd-pa");
rc = bt_dt_parse_vreg_info(&pdev->dev,
&bt_power_pdata->bt_vdd_ldo,
"qca,bt-vdd-ldo");
rc = bt_dt_parse_vreg_info(&pdev->dev,
&bt_power_pdata->bt_chip_pwd,
"qca,bt-chip-pwd");
rc = bt_dt_parse_vreg_info(&pdev->dev,
&bt_power_pdata->bt_vdd_aon,
"qca,bt-vdd-aon");
rc = bt_dt_parse_vreg_info(&pdev->dev,
&bt_power_pdata->bt_vdd_dig,
"qca,bt-vdd-dig");
rc = bt_dt_parse_vreg_info(&pdev->dev,
&bt_power_pdata->bt_vdd_rfa1,
"qca,bt-vdd-rfa1");
rc = bt_dt_parse_vreg_info(&pdev->dev,
&bt_power_pdata->bt_vdd_rfa2,
"qca,bt-vdd-rfa2");
rc = bt_dt_parse_vreg_info(&pdev->dev,
&bt_power_pdata->bt_vdd_asd,
"qca,bt-vdd-asd");
rc = bt_dt_parse_clk_info(&pdev->dev,
&bt_power_pdata->bt_chip_clk);
}
bt_power_pdata->bt_power_setup = bluetooth_power;
return 0;
}
static int bt_power_probe(struct platform_device *pdev)
{
int ret = 0;
dev_dbg(&pdev->dev, "%s\n", __func__);
bt_power_pdata =
kzalloc(sizeof(struct bluetooth_power_platform_data),
GFP_KERNEL);
if (!bt_power_pdata) {
BT_PWR_ERR("Failed to allocate memory");
return -ENOMEM;
}
if (pdev->dev.of_node) {
ret = bt_power_populate_dt_pinfo(pdev);
if (ret < 0) {
BT_PWR_ERR("Failed to populate device tree info");
goto free_pdata;
}
pdev->dev.platform_data = bt_power_pdata;
} else if (pdev->dev.platform_data) {
/* Optional data set to default if not provided */
if (!((struct bluetooth_power_platform_data *)
(pdev->dev.platform_data))->bt_power_setup)
((struct bluetooth_power_platform_data *)
(pdev->dev.platform_data))->bt_power_setup =
bluetooth_power;
memcpy(bt_power_pdata, pdev->dev.platform_data,
sizeof(struct bluetooth_power_platform_data));
pwr_state = 0;
} else {
BT_PWR_ERR("Failed to get platform data");
goto free_pdata;
}
if (bluetooth_power_rfkill_probe(pdev) < 0)
goto free_pdata;
btpdev = pdev;
return 0;
free_pdata:
kfree(bt_power_pdata);
return ret;
}
static int bt_power_remove(struct platform_device *pdev)
{
dev_dbg(&pdev->dev, "%s\n", __func__);
bluetooth_power_rfkill_remove(pdev);
if (bt_power_pdata->bt_chip_pwd->reg)
regulator_put(bt_power_pdata->bt_chip_pwd->reg);
kfree(bt_power_pdata);
return 0;
}
int bt_register_slimdev(struct device *dev)
{
BT_PWR_DBG("");
if (!bt_power_pdata || (dev == NULL)) {
BT_PWR_ERR("Failed to allocate memory");
return -EINVAL;
}
bt_power_pdata->slim_dev = dev;
return 0;
}
int get_chipset_version(void)
{
BT_PWR_DBG("");
return soc_id;
}
int bt_disable_asd(void)
{
int rc = 0;
if (bt_power_pdata->bt_vdd_asd) {
BT_PWR_INFO("Disabling ASD regulator");
rc = bt_vreg_disable(bt_power_pdata->bt_vdd_asd);
} else {
BT_PWR_INFO("ASD regulator is not configured");
}
return rc;
}
static long bt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
int ret = 0, pwr_cntrl = 0;
int chipset_version = 0;
long value = -1;
switch (cmd) {
case BT_CMD_SLIM_TEST:
#if defined CONFIG_BT_SLIM_QCA6390 || defined CONFIG_BTFM_SLIM_WCN3990
if (!bt_power_pdata->slim_dev) {
BT_PWR_ERR("slim_dev is null\n");
return -EINVAL;
}
ret = btfm_slim_hw_init(
bt_power_pdata->slim_dev->platform_data
);
#endif
break;
case BT_CMD_PWR_CTRL:
pwr_cntrl = (int)arg;
BT_PWR_ERR("BT_CMD_PWR_CTRL pwr_cntrl:%d", pwr_cntrl);
if (pwr_state != pwr_cntrl) {
ret = bluetooth_power(pwr_cntrl);
if (!ret)
pwr_state = pwr_cntrl;
} else {
BT_PWR_ERR("BT state already:%d no change done\n"
, pwr_state);
ret = 0;
}
break;
case BT_CMD_CHIPSET_VERS:
chipset_version = (int)arg;
BT_PWR_ERR("unified Current SOC Version : %x", chipset_version);
if (chipset_version) {
soc_id = chipset_version;
if (soc_id == QCA_HSP_SOC_ID_0100 ||
soc_id == QCA_HSP_SOC_ID_0110 ||
soc_id == QCA_HSP_SOC_ID_0200) {
ret = bt_disable_asd();
}
} else {
BT_PWR_ERR("got invalid soc version");
soc_id = 0;
}
break;
case BT_CMD_GETVAL_RESET_GPIO:
if (bt_power_pdata->bt_gpio_sys_rst > 0) {
value = (long)gpio_get_value(
bt_power_pdata->bt_gpio_sys_rst);
BT_PWR_ERR("GET_RESET_GPIO(%d) value(%d)",
bt_power_pdata->bt_gpio_sys_rst, value);
ret = value;
} else {
BT_PWR_ERR("RESET_GPIO not configured");
ret = -EINVAL;
}
break;
case BT_CMD_GETVAL_SW_CTRL_GPIO:
if (bt_power_pdata->bt_gpio_sw_ctrl > 0) {
value = (long)gpio_get_value(
bt_power_pdata->bt_gpio_sw_ctrl);
BT_PWR_ERR("GET_SWCTRL_GPIO(%d) value(%d)",
bt_power_pdata->bt_gpio_sw_ctrl, value);
ret = value;
} else {
BT_PWR_ERR("SW_CTRL_GPIO not configured");
ret = -EINVAL;
}
break;
case BT_CMD_GETVAL_VDD_AON_LDO:
if ((bt_power_pdata->bt_vdd_aon) &&
(bt_power_pdata->bt_vdd_aon->is_enabled) &&
(regulator_is_enabled(
bt_power_pdata->bt_vdd_aon->reg))) {
value = (int)regulator_get_voltage(
bt_power_pdata->bt_vdd_aon->reg);
BT_PWR_ERR("GET_VDD_AON_LDO(%d) value(%d)",
bt_power_pdata->bt_vdd_aon, value);
ret = value;
} else {
BT_PWR_ERR("VDD-AON_LDO not configure/enabled");
ret = -EINVAL;
}
break;
case BT_CMD_GETVAL_VDD_DIG_LDO:
if ((bt_power_pdata->bt_vdd_dig) &&
(bt_power_pdata->bt_vdd_dig->is_enabled) &&
(regulator_is_enabled(
bt_power_pdata->bt_vdd_dig->reg))) {
value = (int)regulator_get_voltage(
bt_power_pdata->bt_vdd_dig->reg);
BT_PWR_ERR("GET_VDD_DIG_LDO(%d) value(%d)",
bt_power_pdata->bt_vdd_dig, value);
ret = value;
} else {
BT_PWR_ERR("VDD-DIG-LDO not configured/enabled");
ret = -EINVAL;
}
break;
case BT_CMD_GETVAL_VDD_RFA1_LDO:
if ((bt_power_pdata->bt_vdd_rfa1) &&
(bt_power_pdata->bt_vdd_rfa1->is_enabled) &&
(regulator_is_enabled(
bt_power_pdata->bt_vdd_rfa1->reg))) {
value = (int)regulator_get_voltage(
bt_power_pdata->bt_vdd_rfa1->reg);
BT_PWR_ERR("GET_VDD_RFA1_LDO(%d) value(%d)",
bt_power_pdata->bt_vdd_rfa1, value);
ret = value;
} else {
BT_PWR_ERR("VDD-RFA1-LDO not configure/enabled");
ret = -EINVAL;
}
break;
case BT_CMD_GETVAL_VDD_RFA2_LDO:
if ((bt_power_pdata->bt_vdd_rfa2) &&
(bt_power_pdata->bt_vdd_rfa2->is_enabled) &&
(regulator_is_enabled(
bt_power_pdata->bt_vdd_rfa2->reg))) {
value = (int)regulator_get_voltage(
bt_power_pdata->bt_vdd_rfa2->reg);
BT_PWR_ERR("GET_VDD_RFA2_LDO(%d) value(%d)",
bt_power_pdata->bt_vdd_rfa2, value);
ret = value;
} else {
BT_PWR_ERR("VDD-RFA2-LDO not configure/enabled");
ret = -EINVAL;
}
break;
default:
return -EINVAL;
}
return ret;
}
static struct platform_driver bt_power_driver = {
.probe = bt_power_probe,
.remove = bt_power_remove,
.driver = {
.name = "bt_power",
.of_match_table = bt_power_match_table,
},
};
static const struct file_operations bt_dev_fops = {
.unlocked_ioctl = bt_ioctl,
.compat_ioctl = bt_ioctl,
};
static int __init bluetooth_power_init(void)
{
int ret;
ret = platform_driver_register(&bt_power_driver);
bt_major = register_chrdev(0, "bt", &bt_dev_fops);
if (bt_major < 0) {
BT_PWR_ERR("failed to allocate char dev\n");
goto chrdev_unreg;
}
bt_class = class_create(THIS_MODULE, "bt-dev");
if (IS_ERR(bt_class)) {
BT_PWR_ERR("coudn't create class");
goto chrdev_unreg;
}
if (device_create(bt_class, NULL, MKDEV(bt_major, 0),
NULL, "btpower") == NULL) {
BT_PWR_ERR("failed to allocate char dev\n");
goto chrdev_unreg;
}
return 0;
chrdev_unreg:
unregister_chrdev(bt_major, "bt");
class_destroy(bt_class);
return ret;
}
static void __exit bluetooth_power_exit(void)
{
platform_driver_unregister(&bt_power_driver);
}
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM Bluetooth power control driver");
module_init(bluetooth_power_init);
module_exit(bluetooth_power_exit);