| /* |
| * kernel/sched_cpupri.c |
| * |
| * CPU priority management |
| * |
| * Copyright (C) 2007-2008 Novell |
| * |
| * Author: Gregory Haskins <ghaskins@novell.com> |
| * |
| * This code tracks the priority of each CPU so that global migration |
| * decisions are easy to calculate. Each CPU can be in a state as follows: |
| * |
| * (INVALID), IDLE, NORMAL, RT1, ... RT99 |
| * |
| * going from the lowest priority to the highest. CPUs in the INVALID state |
| * are not eligible for routing. The system maintains this state with |
| * a 2 dimensional bitmap (the first for priority class, the second for cpus |
| * in that class). Therefore a typical application without affinity |
| * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit |
| * searches). For tasks with affinity restrictions, the algorithm has a |
| * worst case complexity of O(min(102, nr_domcpus)), though the scenario that |
| * yields the worst case search is fairly contrived. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| */ |
| |
| #include "sched_cpupri.h" |
| |
| /* Convert between a 140 based task->prio, and our 102 based cpupri */ |
| static int convert_prio(int prio) |
| { |
| int cpupri; |
| |
| if (prio == CPUPRI_INVALID) |
| cpupri = CPUPRI_INVALID; |
| else if (prio == MAX_PRIO) |
| cpupri = CPUPRI_IDLE; |
| else if (prio >= MAX_RT_PRIO) |
| cpupri = CPUPRI_NORMAL; |
| else |
| cpupri = MAX_RT_PRIO - prio + 1; |
| |
| return cpupri; |
| } |
| |
| #define for_each_cpupri_active(array, idx) \ |
| for_each_set_bit(idx, array, CPUPRI_NR_PRIORITIES) |
| |
| /** |
| * cpupri_find - find the best (lowest-pri) CPU in the system |
| * @cp: The cpupri context |
| * @p: The task |
| * @lowest_mask: A mask to fill in with selected CPUs (or NULL) |
| * |
| * Note: This function returns the recommended CPUs as calculated during the |
| * current invokation. By the time the call returns, the CPUs may have in |
| * fact changed priorities any number of times. While not ideal, it is not |
| * an issue of correctness since the normal rebalancer logic will correct |
| * any discrepancies created by racing against the uncertainty of the current |
| * priority configuration. |
| * |
| * Returns: (int)bool - CPUs were found |
| */ |
| int cpupri_find(struct cpupri *cp, struct task_struct *p, |
| struct cpumask *lowest_mask) |
| { |
| int idx = 0; |
| int task_pri = convert_prio(p->prio); |
| |
| for_each_cpupri_active(cp->pri_active, idx) { |
| struct cpupri_vec *vec = &cp->pri_to_cpu[idx]; |
| |
| if (idx >= task_pri) |
| break; |
| |
| if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids) |
| continue; |
| |
| if (lowest_mask) { |
| cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask); |
| |
| /* |
| * We have to ensure that we have at least one bit |
| * still set in the array, since the map could have |
| * been concurrently emptied between the first and |
| * second reads of vec->mask. If we hit this |
| * condition, simply act as though we never hit this |
| * priority level and continue on. |
| */ |
| if (cpumask_any(lowest_mask) >= nr_cpu_ids) |
| continue; |
| } |
| |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * cpupri_set - update the cpu priority setting |
| * @cp: The cpupri context |
| * @cpu: The target cpu |
| * @pri: The priority (INVALID-RT99) to assign to this CPU |
| * |
| * Note: Assumes cpu_rq(cpu)->lock is locked |
| * |
| * Returns: (void) |
| */ |
| void cpupri_set(struct cpupri *cp, int cpu, int newpri) |
| { |
| int *currpri = &cp->cpu_to_pri[cpu]; |
| int oldpri = *currpri; |
| unsigned long flags; |
| |
| newpri = convert_prio(newpri); |
| |
| BUG_ON(newpri >= CPUPRI_NR_PRIORITIES); |
| |
| if (newpri == oldpri) |
| return; |
| |
| /* |
| * If the cpu was currently mapped to a different value, we |
| * need to map it to the new value then remove the old value. |
| * Note, we must add the new value first, otherwise we risk the |
| * cpu being cleared from pri_active, and this cpu could be |
| * missed for a push or pull. |
| */ |
| if (likely(newpri != CPUPRI_INVALID)) { |
| struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; |
| |
| raw_spin_lock_irqsave(&vec->lock, flags); |
| |
| cpumask_set_cpu(cpu, vec->mask); |
| vec->count++; |
| if (vec->count == 1) |
| set_bit(newpri, cp->pri_active); |
| |
| raw_spin_unlock_irqrestore(&vec->lock, flags); |
| } |
| if (likely(oldpri != CPUPRI_INVALID)) { |
| struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; |
| |
| raw_spin_lock_irqsave(&vec->lock, flags); |
| |
| vec->count--; |
| if (!vec->count) |
| clear_bit(oldpri, cp->pri_active); |
| cpumask_clear_cpu(cpu, vec->mask); |
| |
| raw_spin_unlock_irqrestore(&vec->lock, flags); |
| } |
| |
| *currpri = newpri; |
| } |
| |
| /** |
| * cpupri_init - initialize the cpupri structure |
| * @cp: The cpupri context |
| * @bootmem: true if allocations need to use bootmem |
| * |
| * Returns: -ENOMEM if memory fails. |
| */ |
| int cpupri_init(struct cpupri *cp, bool bootmem) |
| { |
| gfp_t gfp = GFP_KERNEL; |
| int i; |
| |
| if (bootmem) |
| gfp = GFP_NOWAIT; |
| |
| memset(cp, 0, sizeof(*cp)); |
| |
| for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) { |
| struct cpupri_vec *vec = &cp->pri_to_cpu[i]; |
| |
| raw_spin_lock_init(&vec->lock); |
| vec->count = 0; |
| if (!zalloc_cpumask_var(&vec->mask, gfp)) |
| goto cleanup; |
| } |
| |
| for_each_possible_cpu(i) |
| cp->cpu_to_pri[i] = CPUPRI_INVALID; |
| return 0; |
| |
| cleanup: |
| for (i--; i >= 0; i--) |
| free_cpumask_var(cp->pri_to_cpu[i].mask); |
| return -ENOMEM; |
| } |
| |
| /** |
| * cpupri_cleanup - clean up the cpupri structure |
| * @cp: The cpupri context |
| */ |
| void cpupri_cleanup(struct cpupri *cp) |
| { |
| int i; |
| |
| for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) |
| free_cpumask_var(cp->pri_to_cpu[i].mask); |
| } |