| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/fb.h> |
| |
| #include "ppatomctrl.h" |
| #include "atombios.h" |
| #include "cgs_common.h" |
| #include "pp_debug.h" |
| #include "ppevvmath.h" |
| |
| #define MEM_ID_MASK 0xff000000 |
| #define MEM_ID_SHIFT 24 |
| #define CLOCK_RANGE_MASK 0x00ffffff |
| #define CLOCK_RANGE_SHIFT 0 |
| #define LOW_NIBBLE_MASK 0xf |
| #define DATA_EQU_PREV 0 |
| #define DATA_FROM_TABLE 4 |
| |
| union voltage_object_info { |
| struct _ATOM_VOLTAGE_OBJECT_INFO v1; |
| struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2; |
| struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3; |
| }; |
| |
| static int atomctrl_retrieve_ac_timing( |
| uint8_t index, |
| ATOM_INIT_REG_BLOCK *reg_block, |
| pp_atomctrl_mc_reg_table *table) |
| { |
| uint32_t i, j; |
| uint8_t tmem_id; |
| ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *) |
| ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize)); |
| |
| uint8_t num_ranges = 0; |
| |
| while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK && |
| num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) { |
| tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT); |
| |
| if (index == tmem_id) { |
| table->mc_reg_table_entry[num_ranges].mclk_max = |
| (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >> |
| CLOCK_RANGE_SHIFT); |
| |
| for (i = 0, j = 1; i < table->last; i++) { |
| if ((table->mc_reg_address[i].uc_pre_reg_data & |
| LOW_NIBBLE_MASK) == DATA_FROM_TABLE) { |
| table->mc_reg_table_entry[num_ranges].mc_data[i] = |
| (uint32_t)*((uint32_t *)reg_data + j); |
| j++; |
| } else if ((table->mc_reg_address[i].uc_pre_reg_data & |
| LOW_NIBBLE_MASK) == DATA_EQU_PREV) { |
| table->mc_reg_table_entry[num_ranges].mc_data[i] = |
| table->mc_reg_table_entry[num_ranges].mc_data[i-1]; |
| } |
| } |
| num_ranges++; |
| } |
| |
| reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *) |
| ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ; |
| } |
| |
| PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK), |
| "Invalid VramInfo table.", return -1); |
| table->num_entries = num_ranges; |
| |
| return 0; |
| } |
| |
| /** |
| * Get memory clock AC timing registers index from VBIOS table |
| * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1 |
| * @param reg_block the address ATOM_INIT_REG_BLOCK |
| * @param table the address of MCRegTable |
| * @return 0 |
| */ |
| static int atomctrl_set_mc_reg_address_table( |
| ATOM_INIT_REG_BLOCK *reg_block, |
| pp_atomctrl_mc_reg_table *table) |
| { |
| uint8_t i = 0; |
| uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize)) |
| / sizeof(ATOM_INIT_REG_INDEX_FORMAT)); |
| ATOM_INIT_REG_INDEX_FORMAT *format = ®_block->asRegIndexBuf[0]; |
| |
| num_entries--; /* subtract 1 data end mark entry */ |
| |
| PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE), |
| "Invalid VramInfo table.", return -1); |
| |
| /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */ |
| while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) && |
| (i < num_entries)) { |
| table->mc_reg_address[i].s1 = |
| (uint16_t)(le16_to_cpu(format->usRegIndex)); |
| table->mc_reg_address[i].uc_pre_reg_data = |
| format->ucPreRegDataLength; |
| |
| i++; |
| format = (ATOM_INIT_REG_INDEX_FORMAT *) |
| ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT)); |
| } |
| |
| table->last = i; |
| return 0; |
| } |
| |
| |
| int atomctrl_initialize_mc_reg_table( |
| struct pp_hwmgr *hwmgr, |
| uint8_t module_index, |
| pp_atomctrl_mc_reg_table *table) |
| { |
| ATOM_VRAM_INFO_HEADER_V2_1 *vram_info; |
| ATOM_INIT_REG_BLOCK *reg_block; |
| int result = 0; |
| u8 frev, crev; |
| u16 size; |
| |
| vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *) |
| cgs_atom_get_data_table(hwmgr->device, |
| GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev); |
| |
| if (module_index >= vram_info->ucNumOfVRAMModule) { |
| printk(KERN_ERR "[ powerplay ] Invalid VramInfo table."); |
| result = -1; |
| } else if (vram_info->sHeader.ucTableFormatRevision < 2) { |
| printk(KERN_ERR "[ powerplay ] Invalid VramInfo table."); |
| result = -1; |
| } |
| |
| if (0 == result) { |
| reg_block = (ATOM_INIT_REG_BLOCK *) |
| ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset)); |
| result = atomctrl_set_mc_reg_address_table(reg_block, table); |
| } |
| |
| if (0 == result) { |
| result = atomctrl_retrieve_ac_timing(module_index, |
| reg_block, table); |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Set DRAM timings based on engine clock and memory clock. |
| */ |
| int atomctrl_set_engine_dram_timings_rv770( |
| struct pp_hwmgr *hwmgr, |
| uint32_t engine_clock, |
| uint32_t memory_clock) |
| { |
| SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters; |
| |
| /* They are both in 10KHz Units. */ |
| engine_clock_parameters.ulTargetEngineClock = |
| cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) | |
| ((COMPUTE_ENGINE_PLL_PARAM << 24))); |
| |
| /* in 10 khz units.*/ |
| engine_clock_parameters.sReserved.ulClock = |
| cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK); |
| return cgs_atom_exec_cmd_table(hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings), |
| &engine_clock_parameters); |
| } |
| |
| /** |
| * Private Function to get the PowerPlay Table Address. |
| * WARNING: The tabled returned by this function is in |
| * dynamically allocated memory. |
| * The caller has to release if by calling kfree. |
| */ |
| static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device) |
| { |
| int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo); |
| u8 frev, crev; |
| u16 size; |
| union voltage_object_info *voltage_info; |
| |
| voltage_info = (union voltage_object_info *) |
| cgs_atom_get_data_table(device, index, |
| &size, &frev, &crev); |
| |
| if (voltage_info != NULL) |
| return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3); |
| else |
| return NULL; |
| } |
| |
| static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3( |
| const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table, |
| uint8_t voltage_type, uint8_t voltage_mode) |
| { |
| unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize); |
| unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]); |
| uint8_t *start = (uint8_t *)voltage_object_info_table; |
| |
| while (offset < size) { |
| const ATOM_VOLTAGE_OBJECT_V3 *voltage_object = |
| (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset); |
| |
| if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType && |
| voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode) |
| return voltage_object; |
| |
| offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize); |
| } |
| |
| return NULL; |
| } |
| |
| /** atomctrl_get_memory_pll_dividers_si(). |
| * |
| * @param hwmgr input parameter: pointer to HwMgr |
| * @param clock_value input parameter: memory clock |
| * @param dividers output parameter: memory PLL dividers |
| * @param strobe_mode input parameter: 1 for strobe mode, 0 for performance mode |
| */ |
| int atomctrl_get_memory_pll_dividers_si( |
| struct pp_hwmgr *hwmgr, |
| uint32_t clock_value, |
| pp_atomctrl_memory_clock_param *mpll_param, |
| bool strobe_mode) |
| { |
| COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters; |
| int result; |
| |
| mpll_parameters.ulClock = cpu_to_le32(clock_value); |
| mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0); |
| |
| result = cgs_atom_exec_cmd_table |
| (hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam), |
| &mpll_parameters); |
| |
| if (0 == result) { |
| mpll_param->mpll_fb_divider.clk_frac = |
| le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac); |
| mpll_param->mpll_fb_divider.cl_kf = |
| le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv); |
| mpll_param->mpll_post_divider = |
| (uint32_t)mpll_parameters.ucPostDiv; |
| mpll_param->vco_mode = |
| (uint32_t)(mpll_parameters.ucPllCntlFlag & |
| MPLL_CNTL_FLAG_VCO_MODE_MASK); |
| mpll_param->yclk_sel = |
| (uint32_t)((mpll_parameters.ucPllCntlFlag & |
| MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0); |
| mpll_param->qdr = |
| (uint32_t)((mpll_parameters.ucPllCntlFlag & |
| MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0); |
| mpll_param->half_rate = |
| (uint32_t)((mpll_parameters.ucPllCntlFlag & |
| MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0); |
| mpll_param->dll_speed = |
| (uint32_t)(mpll_parameters.ucDllSpeed); |
| mpll_param->bw_ctrl = |
| (uint32_t)(mpll_parameters.ucBWCntl); |
| } |
| |
| return result; |
| } |
| |
| /** atomctrl_get_memory_pll_dividers_vi(). |
| * |
| * @param hwmgr input parameter: pointer to HwMgr |
| * @param clock_value input parameter: memory clock |
| * @param dividers output parameter: memory PLL dividers |
| */ |
| int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr, |
| uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param) |
| { |
| COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters; |
| int result; |
| |
| mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value); |
| |
| result = cgs_atom_exec_cmd_table(hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam), |
| &mpll_parameters); |
| |
| if (!result) |
| mpll_param->mpll_post_divider = |
| (uint32_t)mpll_parameters.ulClock.ucPostDiv; |
| |
| return result; |
| } |
| |
| int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr, |
| uint32_t clock_value, |
| pp_atomctrl_clock_dividers_kong *dividers) |
| { |
| COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters; |
| int result; |
| |
| pll_parameters.ulClock = cpu_to_le32(clock_value); |
| |
| result = cgs_atom_exec_cmd_table |
| (hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL), |
| &pll_parameters); |
| |
| if (0 == result) { |
| dividers->pll_post_divider = pll_parameters.ucPostDiv; |
| dividers->real_clock = le32_to_cpu(pll_parameters.ulClock); |
| } |
| |
| return result; |
| } |
| |
| int atomctrl_get_engine_pll_dividers_vi( |
| struct pp_hwmgr *hwmgr, |
| uint32_t clock_value, |
| pp_atomctrl_clock_dividers_vi *dividers) |
| { |
| COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters; |
| int result; |
| |
| pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value); |
| pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK; |
| |
| result = cgs_atom_exec_cmd_table |
| (hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL), |
| &pll_patameters); |
| |
| if (0 == result) { |
| dividers->pll_post_divider = |
| pll_patameters.ulClock.ucPostDiv; |
| dividers->real_clock = |
| le32_to_cpu(pll_patameters.ulClock.ulClock); |
| |
| dividers->ul_fb_div.ul_fb_div_frac = |
| le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac); |
| dividers->ul_fb_div.ul_fb_div = |
| le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv); |
| |
| dividers->uc_pll_ref_div = |
| pll_patameters.ucPllRefDiv; |
| dividers->uc_pll_post_div = |
| pll_patameters.ucPllPostDiv; |
| dividers->uc_pll_cntl_flag = |
| pll_patameters.ucPllCntlFlag; |
| } |
| |
| return result; |
| } |
| |
| int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr, |
| uint32_t clock_value, |
| pp_atomctrl_clock_dividers_ai *dividers) |
| { |
| COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters; |
| int result; |
| |
| pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value); |
| pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK; |
| |
| result = cgs_atom_exec_cmd_table |
| (hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL), |
| &pll_patameters); |
| |
| if (0 == result) { |
| dividers->usSclk_fcw_frac = le16_to_cpu(pll_patameters.usSclk_fcw_frac); |
| dividers->usSclk_fcw_int = le16_to_cpu(pll_patameters.usSclk_fcw_int); |
| dividers->ucSclkPostDiv = pll_patameters.ucSclkPostDiv; |
| dividers->ucSclkVcoMode = pll_patameters.ucSclkVcoMode; |
| dividers->ucSclkPllRange = pll_patameters.ucSclkPllRange; |
| dividers->ucSscEnable = pll_patameters.ucSscEnable; |
| dividers->usSsc_fcw1_frac = le16_to_cpu(pll_patameters.usSsc_fcw1_frac); |
| dividers->usSsc_fcw1_int = le16_to_cpu(pll_patameters.usSsc_fcw1_int); |
| dividers->usPcc_fcw_int = le16_to_cpu(pll_patameters.usPcc_fcw_int); |
| dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac); |
| dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac); |
| } |
| return result; |
| } |
| |
| int atomctrl_get_dfs_pll_dividers_vi( |
| struct pp_hwmgr *hwmgr, |
| uint32_t clock_value, |
| pp_atomctrl_clock_dividers_vi *dividers) |
| { |
| COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters; |
| int result; |
| |
| pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value); |
| pll_patameters.ulClock.ucPostDiv = |
| COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK; |
| |
| result = cgs_atom_exec_cmd_table |
| (hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL), |
| &pll_patameters); |
| |
| if (0 == result) { |
| dividers->pll_post_divider = |
| pll_patameters.ulClock.ucPostDiv; |
| dividers->real_clock = |
| le32_to_cpu(pll_patameters.ulClock.ulClock); |
| |
| dividers->ul_fb_div.ul_fb_div_frac = |
| le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac); |
| dividers->ul_fb_div.ul_fb_div = |
| le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv); |
| |
| dividers->uc_pll_ref_div = |
| pll_patameters.ucPllRefDiv; |
| dividers->uc_pll_post_div = |
| pll_patameters.ucPllPostDiv; |
| dividers->uc_pll_cntl_flag = |
| pll_patameters.ucPllCntlFlag; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Get the reference clock in 10KHz |
| */ |
| uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr) |
| { |
| ATOM_FIRMWARE_INFO *fw_info; |
| u8 frev, crev; |
| u16 size; |
| uint32_t clock; |
| |
| fw_info = (ATOM_FIRMWARE_INFO *) |
| cgs_atom_get_data_table(hwmgr->device, |
| GetIndexIntoMasterTable(DATA, FirmwareInfo), |
| &size, &frev, &crev); |
| |
| if (fw_info == NULL) |
| clock = 2700; |
| else |
| clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock)); |
| |
| return clock; |
| } |
| |
| /** |
| * Returns true if the given voltage type is controlled by GPIO pins. |
| * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC, |
| * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ. |
| * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE |
| */ |
| bool atomctrl_is_voltage_controled_by_gpio_v3( |
| struct pp_hwmgr *hwmgr, |
| uint8_t voltage_type, |
| uint8_t voltage_mode) |
| { |
| ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info = |
| (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device); |
| bool ret; |
| |
| PP_ASSERT_WITH_CODE((NULL != voltage_info), |
| "Could not find Voltage Table in BIOS.", return false;); |
| |
| ret = (NULL != atomctrl_lookup_voltage_type_v3 |
| (voltage_info, voltage_type, voltage_mode)) ? true : false; |
| |
| return ret; |
| } |
| |
| int atomctrl_get_voltage_table_v3( |
| struct pp_hwmgr *hwmgr, |
| uint8_t voltage_type, |
| uint8_t voltage_mode, |
| pp_atomctrl_voltage_table *voltage_table) |
| { |
| ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info = |
| (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device); |
| const ATOM_VOLTAGE_OBJECT_V3 *voltage_object; |
| unsigned int i; |
| |
| PP_ASSERT_WITH_CODE((NULL != voltage_info), |
| "Could not find Voltage Table in BIOS.", return -1;); |
| |
| voltage_object = atomctrl_lookup_voltage_type_v3 |
| (voltage_info, voltage_type, voltage_mode); |
| |
| if (voltage_object == NULL) |
| return -1; |
| |
| PP_ASSERT_WITH_CODE( |
| (voltage_object->asGpioVoltageObj.ucGpioEntryNum <= |
| PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES), |
| "Too many voltage entries!", |
| return -1; |
| ); |
| |
| for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) { |
| voltage_table->entries[i].value = |
| le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue); |
| voltage_table->entries[i].smio_low = |
| le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId); |
| } |
| |
| voltage_table->mask_low = |
| le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal); |
| voltage_table->count = |
| voltage_object->asGpioVoltageObj.ucGpioEntryNum; |
| voltage_table->phase_delay = |
| voltage_object->asGpioVoltageObj.ucPhaseDelay; |
| |
| return 0; |
| } |
| |
| static bool atomctrl_lookup_gpio_pin( |
| ATOM_GPIO_PIN_LUT * gpio_lookup_table, |
| const uint32_t pinId, |
| pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment) |
| { |
| unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize); |
| unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]); |
| uint8_t *start = (uint8_t *)gpio_lookup_table; |
| |
| while (offset < size) { |
| const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment = |
| (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset); |
| |
| if (pinId == pin_assignment->ucGPIO_ID) { |
| gpio_pin_assignment->uc_gpio_pin_bit_shift = |
| pin_assignment->ucGpioPinBitShift; |
| gpio_pin_assignment->us_gpio_pin_aindex = |
| le16_to_cpu(pin_assignment->usGpioPin_AIndex); |
| return true; |
| } |
| |
| offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * Private Function to get the PowerPlay Table Address. |
| * WARNING: The tabled returned by this function is in |
| * dynamically allocated memory. |
| * The caller has to release if by calling kfree. |
| */ |
| static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device) |
| { |
| u8 frev, crev; |
| u16 size; |
| void *table_address; |
| |
| table_address = (ATOM_GPIO_PIN_LUT *) |
| cgs_atom_get_data_table(device, |
| GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT), |
| &size, &frev, &crev); |
| |
| PP_ASSERT_WITH_CODE((NULL != table_address), |
| "Error retrieving BIOS Table Address!", return NULL;); |
| |
| return (ATOM_GPIO_PIN_LUT *)table_address; |
| } |
| |
| /** |
| * Returns 1 if the given pin id find in lookup table. |
| */ |
| bool atomctrl_get_pp_assign_pin( |
| struct pp_hwmgr *hwmgr, |
| const uint32_t pinId, |
| pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment) |
| { |
| bool bRet = false; |
| ATOM_GPIO_PIN_LUT *gpio_lookup_table = |
| get_gpio_lookup_table(hwmgr->device); |
| |
| PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table), |
| "Could not find GPIO lookup Table in BIOS.", return false); |
| |
| bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId, |
| gpio_pin_assignment); |
| |
| return bRet; |
| } |
| |
| int atomctrl_calculate_voltage_evv_on_sclk( |
| struct pp_hwmgr *hwmgr, |
| uint8_t voltage_type, |
| uint32_t sclk, |
| uint16_t virtual_voltage_Id, |
| uint16_t *voltage, |
| uint16_t dpm_level, |
| bool debug) |
| { |
| ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo; |
| |
| EFUSE_LINEAR_FUNC_PARAM sRO_fuse; |
| EFUSE_LINEAR_FUNC_PARAM sCACm_fuse; |
| EFUSE_LINEAR_FUNC_PARAM sCACb_fuse; |
| EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse; |
| EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse; |
| EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse; |
| EFUSE_INPUT_PARAMETER sInput_FuseValues; |
| READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues; |
| |
| uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused; |
| fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7; |
| fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma; |
| fInt fLkg_FT, repeat; |
| fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX; |
| fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin; |
| fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM; |
| fInt fSclk_margin, fSclk, fEVV_V; |
| fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL; |
| uint32_t ul_FT_Lkg_V0NORM; |
| fInt fLn_MaxDivMin, fMin, fAverage, fRange; |
| fInt fRoots[2]; |
| fInt fStepSize = GetScaledFraction(625, 100000); |
| |
| int result; |
| |
| getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *) |
| cgs_atom_get_data_table(hwmgr->device, |
| GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo), |
| NULL, NULL, NULL); |
| |
| if (!getASICProfilingInfo) |
| return -1; |
| |
| if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 || |
| (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 && |
| getASICProfilingInfo->asHeader.ucTableContentRevision < 4)) |
| return -1; |
| |
| /*----------------------------------------------------------- |
| *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL |
| *----------------------------------------------------------- |
| */ |
| fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000); |
| |
| switch (dpm_level) { |
| case 1: |
| fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1)); |
| fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000); |
| break; |
| case 2: |
| fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2)); |
| fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000); |
| break; |
| case 3: |
| fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3)); |
| fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000); |
| break; |
| case 4: |
| fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4)); |
| fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000); |
| break; |
| case 5: |
| fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5)); |
| fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000); |
| break; |
| case 6: |
| fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6)); |
| fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000); |
| break; |
| case 7: |
| fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7)); |
| fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000); |
| break; |
| default: |
| printk(KERN_ERR "DPM Level not supported\n"); |
| fPowerDPMx = Convert_ULONG_ToFraction(1); |
| fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000); |
| } |
| |
| /*------------------------- |
| * DECODING FUSE VALUES |
| * ------------------------ |
| */ |
| /*Decode RO_Fused*/ |
| sRO_fuse = getASICProfilingInfo->sRoFuse; |
| |
| sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex; |
| sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB; |
| sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength; |
| |
| sOutput_FuseValues.sEfuse = sInput_FuseValues; |
| |
| result = cgs_atom_exec_cmd_table(hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), |
| &sOutput_FuseValues); |
| |
| if (result) |
| return result; |
| |
| /* Finally, the actual fuse value */ |
| ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); |
| fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1); |
| fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1); |
| fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength); |
| |
| sCACm_fuse = getASICProfilingInfo->sCACm; |
| |
| sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex; |
| sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB; |
| sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength; |
| |
| sOutput_FuseValues.sEfuse = sInput_FuseValues; |
| |
| result = cgs_atom_exec_cmd_table(hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), |
| &sOutput_FuseValues); |
| |
| if (result) |
| return result; |
| |
| ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); |
| fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000); |
| fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000); |
| |
| fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength); |
| |
| sCACb_fuse = getASICProfilingInfo->sCACb; |
| |
| sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex; |
| sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB; |
| sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength; |
| sOutput_FuseValues.sEfuse = sInput_FuseValues; |
| |
| result = cgs_atom_exec_cmd_table(hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), |
| &sOutput_FuseValues); |
| |
| if (result) |
| return result; |
| |
| ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); |
| fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000); |
| fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000); |
| |
| fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength); |
| |
| sKt_Beta_fuse = getASICProfilingInfo->sKt_b; |
| |
| sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex; |
| sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB; |
| sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength; |
| |
| sOutput_FuseValues.sEfuse = sInput_FuseValues; |
| |
| result = cgs_atom_exec_cmd_table(hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), |
| &sOutput_FuseValues); |
| |
| if (result) |
| return result; |
| |
| ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); |
| fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000); |
| fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000); |
| |
| fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused, |
| fAverage, fRange, sKt_Beta_fuse.ucEfuseLength); |
| |
| sKv_m_fuse = getASICProfilingInfo->sKv_m; |
| |
| sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex; |
| sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB; |
| sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength; |
| |
| sOutput_FuseValues.sEfuse = sInput_FuseValues; |
| |
| result = cgs_atom_exec_cmd_table(hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), |
| &sOutput_FuseValues); |
| if (result) |
| return result; |
| |
| ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); |
| fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000); |
| fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000); |
| fRange = fMultiply(fRange, ConvertToFraction(-1)); |
| |
| fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused, |
| fAverage, fRange, sKv_m_fuse.ucEfuseLength); |
| |
| sKv_b_fuse = getASICProfilingInfo->sKv_b; |
| |
| sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex; |
| sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB; |
| sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength; |
| sOutput_FuseValues.sEfuse = sInput_FuseValues; |
| |
| result = cgs_atom_exec_cmd_table(hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), |
| &sOutput_FuseValues); |
| |
| if (result) |
| return result; |
| |
| ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); |
| fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000); |
| fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000); |
| |
| fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused, |
| fAverage, fRange, sKv_b_fuse.ucEfuseLength); |
| |
| /* Decoding the Leakage - No special struct container */ |
| /* |
| * usLkgEuseIndex=56 |
| * ucLkgEfuseBitLSB=6 |
| * ucLkgEfuseLength=10 |
| * ulLkgEncodeLn_MaxDivMin=69077 |
| * ulLkgEncodeMax=1000000 |
| * ulLkgEncodeMin=1000 |
| * ulEfuseLogisticAlpha=13 |
| */ |
| |
| sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex; |
| sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB; |
| sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength; |
| |
| sOutput_FuseValues.sEfuse = sInput_FuseValues; |
| |
| result = cgs_atom_exec_cmd_table(hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), |
| &sOutput_FuseValues); |
| |
| if (result) |
| return result; |
| |
| ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); |
| fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000); |
| fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000); |
| |
| fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM, |
| fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength); |
| fLkg_FT = fFT_Lkg_V0NORM; |
| |
| /*------------------------------------------- |
| * PART 2 - Grabbing all required values |
| *------------------------------------------- |
| */ |
| fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000), |
| ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign))); |
| fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000), |
| ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign))); |
| fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000), |
| ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign))); |
| fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000), |
| ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign))); |
| fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000), |
| ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign))); |
| fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000), |
| ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign))); |
| fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000), |
| ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign))); |
| fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000), |
| ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign))); |
| |
| fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a)); |
| fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b)); |
| fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c)); |
| |
| fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed)); |
| |
| fMargin_FMAX_mean = GetScaledFraction( |
| le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000); |
| fMargin_Plat_mean = GetScaledFraction( |
| le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000); |
| fMargin_FMAX_sigma = GetScaledFraction( |
| le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000); |
| fMargin_Plat_sigma = GetScaledFraction( |
| le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000); |
| |
| fMargin_DC_sigma = GetScaledFraction( |
| le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100); |
| fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000)); |
| |
| fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100)); |
| fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100)); |
| fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100)); |
| fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100))); |
| fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10)); |
| |
| fSclk = GetScaledFraction(sclk, 100); |
| |
| fV_max = fDivide(GetScaledFraction( |
| le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4)); |
| fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10); |
| fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100); |
| fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10); |
| fV_FT = fDivide(GetScaledFraction( |
| le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4)); |
| fV_min = fDivide(GetScaledFraction( |
| le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4)); |
| |
| /*----------------------- |
| * PART 3 |
| *----------------------- |
| */ |
| |
| fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5)); |
| fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b); |
| fC_Term = fAdd(fMargin_RO_c, |
| fAdd(fMultiply(fSM_A0, fLkg_FT), |
| fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)), |
| fAdd(fMultiply(fSM_A3, fSclk), |
| fSubtract(fSM_A7, fRO_fused))))); |
| |
| fVDDC_base = fSubtract(fRO_fused, |
| fSubtract(fMargin_RO_c, |
| fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk)))); |
| fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2)); |
| |
| repeat = fSubtract(fVDDC_base, |
| fDivide(fMargin_DC_sigma, ConvertToFraction(1000))); |
| |
| fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a, |
| fGetSquare(repeat)), |
| fAdd(fMultiply(fMargin_RO_b, repeat), |
| fMargin_RO_c)); |
| |
| fDC_SCLK = fSubtract(fRO_fused, |
| fSubtract(fRO_DC_margin, |
| fSubtract(fSM_A3, |
| fMultiply(fSM_A2, repeat)))); |
| fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1)); |
| |
| fSigma_DC = fSubtract(fSclk, fDC_SCLK); |
| |
| fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean); |
| fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean); |
| fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma); |
| fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma); |
| |
| fSquared_Sigma_DC = fGetSquare(fSigma_DC); |
| fSquared_Sigma_CR = fGetSquare(fSigma_CR); |
| fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX); |
| |
| fSclk_margin = fAdd(fMicro_FMAX, |
| fAdd(fMicro_CR, |
| fAdd(fMargin_fixed, |
| fSqrt(fAdd(fSquared_Sigma_FMAX, |
| fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR)))))); |
| /* |
| fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5; |
| fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6; |
| fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused; |
| */ |
| |
| fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5); |
| fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6); |
| fC_Term = fAdd(fRO_DC_margin, |
| fAdd(fMultiply(fSM_A0, fLkg_FT), |
| fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT), |
| fAdd(fSclk, fSclk_margin)), |
| fAdd(fMultiply(fSM_A3, |
| fAdd(fSclk, fSclk_margin)), |
| fSubtract(fSM_A7, fRO_fused))))); |
| |
| SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots); |
| |
| if (GreaterThan(fRoots[0], fRoots[1])) |
| fEVV_V = fRoots[1]; |
| else |
| fEVV_V = fRoots[0]; |
| |
| if (GreaterThan(fV_min, fEVV_V)) |
| fEVV_V = fV_min; |
| else if (GreaterThan(fEVV_V, fV_max)) |
| fEVV_V = fSubtract(fV_max, fStepSize); |
| |
| fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0); |
| |
| /*----------------- |
| * PART 4 |
| *----------------- |
| */ |
| |
| fV_x = fV_min; |
| |
| while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) { |
| fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd( |
| fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk), |
| fGetSquare(fV_x)), fDerateTDP); |
| |
| fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor, |
| fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused, |
| fT_prod), fKv_b_fused), fV_x)), fV_x))); |
| fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply( |
| fKt_Beta_fused, fT_prod))); |
| fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply( |
| fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT))); |
| fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply( |
| fKt_Beta_fused, fT_FT))); |
| |
| fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right); |
| |
| fTDP_Current = fDivide(fTDP_Power, fV_x); |
| |
| fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine), |
| ConvertToFraction(10))); |
| |
| fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0); |
| |
| if (GreaterThan(fV_max, fV_NL) && |
| (GreaterThan(fV_NL, fEVV_V) || |
| Equal(fV_NL, fEVV_V))) { |
| fV_NL = fMultiply(fV_NL, ConvertToFraction(1000)); |
| |
| *voltage = (uint16_t)fV_NL.partial.real; |
| break; |
| } else |
| fV_x = fAdd(fV_x, fStepSize); |
| } |
| |
| return result; |
| } |
| |
| /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table. |
| * @param hwmgr input: pointer to hwManager |
| * @param voltage_type input: type of EVV voltage VDDC or VDDGFX |
| * @param sclk input: in 10Khz unit. DPM state SCLK frequency |
| * which is define in PPTable SCLK/VDDC dependence |
| * table associated with this virtual_voltage_Id |
| * @param virtual_voltage_Id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08 |
| * @param voltage output: real voltage level in unit of mv |
| */ |
| int atomctrl_get_voltage_evv_on_sclk( |
| struct pp_hwmgr *hwmgr, |
| uint8_t voltage_type, |
| uint32_t sclk, uint16_t virtual_voltage_Id, |
| uint16_t *voltage) |
| { |
| int result; |
| GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space; |
| |
| get_voltage_info_param_space.ucVoltageType = |
| voltage_type; |
| get_voltage_info_param_space.ucVoltageMode = |
| ATOM_GET_VOLTAGE_EVV_VOLTAGE; |
| get_voltage_info_param_space.usVoltageLevel = |
| cpu_to_le16(virtual_voltage_Id); |
| get_voltage_info_param_space.ulSCLKFreq = |
| cpu_to_le32(sclk); |
| |
| result = cgs_atom_exec_cmd_table(hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, GetVoltageInfo), |
| &get_voltage_info_param_space); |
| |
| if (0 != result) |
| return result; |
| |
| *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *) |
| (&get_voltage_info_param_space))->usVoltageLevel); |
| |
| return result; |
| } |
| |
| /** |
| * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table. |
| * @param hwmgr input: pointer to hwManager |
| * @param virtual_voltage_id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08 |
| * @param voltage output: real voltage level in unit of mv |
| */ |
| int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr, |
| uint16_t virtual_voltage_id, |
| uint16_t *voltage) |
| { |
| int result; |
| int entry_id; |
| GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space; |
| |
| /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */ |
| for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) { |
| if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) { |
| /* found */ |
| break; |
| } |
| } |
| |
| PP_ASSERT_WITH_CODE(entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count, |
| "Can't find requested voltage id in vddc_dependency_on_sclk table!", |
| return -EINVAL; |
| ); |
| |
| get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC; |
| get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE; |
| get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id; |
| get_voltage_info_param_space.ulSCLKFreq = |
| cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk); |
| |
| result = cgs_atom_exec_cmd_table(hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, GetVoltageInfo), |
| &get_voltage_info_param_space); |
| |
| if (0 != result) |
| return result; |
| |
| *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *) |
| (&get_voltage_info_param_space))->usVoltageLevel); |
| |
| return result; |
| } |
| |
| /** |
| * Get the mpll reference clock in 10KHz |
| */ |
| uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr) |
| { |
| ATOM_COMMON_TABLE_HEADER *fw_info; |
| uint32_t clock; |
| u8 frev, crev; |
| u16 size; |
| |
| fw_info = (ATOM_COMMON_TABLE_HEADER *) |
| cgs_atom_get_data_table(hwmgr->device, |
| GetIndexIntoMasterTable(DATA, FirmwareInfo), |
| &size, &frev, &crev); |
| |
| if (fw_info == NULL) |
| clock = 2700; |
| else { |
| if ((fw_info->ucTableFormatRevision == 2) && |
| (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) { |
| ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 = |
| (ATOM_FIRMWARE_INFO_V2_1 *)fw_info; |
| clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock)); |
| } else { |
| ATOM_FIRMWARE_INFO *fwInfo_0_0 = |
| (ATOM_FIRMWARE_INFO *)fw_info; |
| clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock)); |
| } |
| } |
| |
| return clock; |
| } |
| |
| /** |
| * Get the asic internal spread spectrum table |
| */ |
| static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device) |
| { |
| ATOM_ASIC_INTERNAL_SS_INFO *table = NULL; |
| u8 frev, crev; |
| u16 size; |
| |
| table = (ATOM_ASIC_INTERNAL_SS_INFO *) |
| cgs_atom_get_data_table(device, |
| GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info), |
| &size, &frev, &crev); |
| |
| return table; |
| } |
| |
| /** |
| * Get the asic internal spread spectrum assignment |
| */ |
| static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr, |
| const uint8_t clockSource, |
| const uint32_t clockSpeed, |
| pp_atomctrl_internal_ss_info *ssEntry) |
| { |
| ATOM_ASIC_INTERNAL_SS_INFO *table; |
| ATOM_ASIC_SS_ASSIGNMENT *ssInfo; |
| int entry_found = 0; |
| |
| memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info)); |
| |
| table = asic_internal_ss_get_ss_table(hwmgr->device); |
| |
| if (NULL == table) |
| return -1; |
| |
| ssInfo = &table->asSpreadSpectrum[0]; |
| |
| while (((uint8_t *)ssInfo - (uint8_t *)table) < |
| le16_to_cpu(table->sHeader.usStructureSize)) { |
| if ((clockSource == ssInfo->ucClockIndication) && |
| ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) { |
| entry_found = 1; |
| break; |
| } |
| |
| ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo + |
| sizeof(ATOM_ASIC_SS_ASSIGNMENT)); |
| } |
| |
| if (entry_found) { |
| ssEntry->speed_spectrum_percentage = |
| le16_to_cpu(ssInfo->usSpreadSpectrumPercentage); |
| ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz); |
| |
| if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) && |
| (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) || |
| (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) { |
| ssEntry->speed_spectrum_rate /= 100; |
| } |
| |
| switch (ssInfo->ucSpreadSpectrumMode) { |
| case 0: |
| ssEntry->speed_spectrum_mode = |
| pp_atomctrl_spread_spectrum_mode_down; |
| break; |
| case 1: |
| ssEntry->speed_spectrum_mode = |
| pp_atomctrl_spread_spectrum_mode_center; |
| break; |
| default: |
| ssEntry->speed_spectrum_mode = |
| pp_atomctrl_spread_spectrum_mode_down; |
| break; |
| } |
| } |
| |
| return entry_found ? 0 : 1; |
| } |
| |
| /** |
| * Get the memory clock spread spectrum info |
| */ |
| int atomctrl_get_memory_clock_spread_spectrum( |
| struct pp_hwmgr *hwmgr, |
| const uint32_t memory_clock, |
| pp_atomctrl_internal_ss_info *ssInfo) |
| { |
| return asic_internal_ss_get_ss_asignment(hwmgr, |
| ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo); |
| } |
| /** |
| * Get the engine clock spread spectrum info |
| */ |
| int atomctrl_get_engine_clock_spread_spectrum( |
| struct pp_hwmgr *hwmgr, |
| const uint32_t engine_clock, |
| pp_atomctrl_internal_ss_info *ssInfo) |
| { |
| return asic_internal_ss_get_ss_asignment(hwmgr, |
| ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo); |
| } |
| |
| int atomctrl_read_efuse(void *device, uint16_t start_index, |
| uint16_t end_index, uint32_t mask, uint32_t *efuse) |
| { |
| int result; |
| READ_EFUSE_VALUE_PARAMETER efuse_param; |
| |
| efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4); |
| efuse_param.sEfuse.ucBitShift = (uint8_t) |
| (start_index - ((start_index / 32) * 32)); |
| efuse_param.sEfuse.ucBitLength = (uint8_t) |
| ((end_index - start_index) + 1); |
| |
| result = cgs_atom_exec_cmd_table(device, |
| GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), |
| &efuse_param); |
| if (!result) |
| *efuse = le32_to_cpu(efuse_param.ulEfuseValue) & mask; |
| |
| return result; |
| } |
| |
| int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock, |
| uint8_t level) |
| { |
| DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters; |
| int result; |
| |
| memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq = |
| memory_clock & SET_CLOCK_FREQ_MASK; |
| memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag = |
| ADJUST_MC_SETTING_PARAM; |
| memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level; |
| |
| result = cgs_atom_exec_cmd_table |
| (hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings), |
| &memory_clock_parameters); |
| |
| return result; |
| } |
| |
| int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type, |
| uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage) |
| { |
| |
| int result; |
| GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space; |
| |
| get_voltage_info_param_space.ucVoltageType = voltage_type; |
| get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE; |
| get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id); |
| get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk); |
| |
| result = cgs_atom_exec_cmd_table(hwmgr->device, |
| GetIndexIntoMasterTable(COMMAND, GetVoltageInfo), |
| &get_voltage_info_param_space); |
| |
| if (0 != result) |
| return result; |
| |
| *voltage = le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel); |
| |
| return result; |
| } |
| |
| int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table) |
| { |
| |
| int i; |
| u8 frev, crev; |
| u16 size; |
| |
| ATOM_SMU_INFO_V2_1 *psmu_info = |
| (ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device, |
| GetIndexIntoMasterTable(DATA, SMU_Info), |
| &size, &frev, &crev); |
| |
| |
| for (i = 0; i < psmu_info->ucSclkEntryNum; i++) { |
| table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting; |
| table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv; |
| table->entry[i].usFcw_pcc = |
| le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc); |
| table->entry[i].usFcw_trans_upper = |
| le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper); |
| table->entry[i].usRcw_trans_lower = |
| le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower); |
| } |
| |
| return 0; |
| } |
| |
| int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr, |
| struct pp_atom_ctrl__avfs_parameters *param) |
| { |
| ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL; |
| |
| if (param == NULL) |
| return -EINVAL; |
| |
| profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *) |
| cgs_atom_get_data_table(hwmgr->device, |
| GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo), |
| NULL, NULL, NULL); |
| if (!profile) |
| return -1; |
| |
| param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0); |
| param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1); |
| param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2); |
| param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma); |
| param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean); |
| param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma); |
| param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0); |
| param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1); |
| param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2); |
| param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0); |
| param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1); |
| param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2); |
| param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1); |
| param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2); |
| param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b); |
| param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1); |
| param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2); |
| param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b); |
| param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv); |
| param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF; |
| param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON; |
| param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF; |
| param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON; |
| param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor); |
| param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage; |
| |
| return 0; |
| } |