| /* |
| * Performance events core code: |
| * |
| * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
| * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar |
| * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
| * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| * |
| * For licensing details see kernel-base/COPYING |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/cpu.h> |
| #include <linux/smp.h> |
| #include <linux/idr.h> |
| #include <linux/file.h> |
| #include <linux/poll.h> |
| #include <linux/slab.h> |
| #include <linux/hash.h> |
| #include <linux/sysfs.h> |
| #include <linux/dcache.h> |
| #include <linux/percpu.h> |
| #include <linux/ptrace.h> |
| #include <linux/reboot.h> |
| #include <linux/vmstat.h> |
| #include <linux/device.h> |
| #include <linux/vmalloc.h> |
| #include <linux/hardirq.h> |
| #include <linux/rculist.h> |
| #include <linux/uaccess.h> |
| #include <linux/syscalls.h> |
| #include <linux/anon_inodes.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/perf_event.h> |
| #include <linux/ftrace_event.h> |
| #include <linux/hw_breakpoint.h> |
| |
| #include <asm/irq_regs.h> |
| |
| enum event_type_t { |
| EVENT_FLEXIBLE = 0x1, |
| EVENT_PINNED = 0x2, |
| EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, |
| }; |
| |
| atomic_t perf_task_events __read_mostly; |
| static atomic_t nr_mmap_events __read_mostly; |
| static atomic_t nr_comm_events __read_mostly; |
| static atomic_t nr_task_events __read_mostly; |
| |
| static LIST_HEAD(pmus); |
| static DEFINE_MUTEX(pmus_lock); |
| static struct srcu_struct pmus_srcu; |
| |
| /* |
| * perf event paranoia level: |
| * -1 - not paranoid at all |
| * 0 - disallow raw tracepoint access for unpriv |
| * 1 - disallow cpu events for unpriv |
| * 2 - disallow kernel profiling for unpriv |
| */ |
| int sysctl_perf_event_paranoid __read_mostly = 1; |
| |
| int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ |
| |
| /* |
| * max perf event sample rate |
| */ |
| int sysctl_perf_event_sample_rate __read_mostly = 100000; |
| |
| static atomic64_t perf_event_id; |
| |
| static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, |
| enum event_type_t event_type); |
| |
| static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, |
| enum event_type_t event_type); |
| |
| void __weak perf_event_print_debug(void) { } |
| |
| extern __weak const char *perf_pmu_name(void) |
| { |
| return "pmu"; |
| } |
| |
| static inline u64 perf_clock(void) |
| { |
| return local_clock(); |
| } |
| |
| void perf_pmu_disable(struct pmu *pmu) |
| { |
| int *count = this_cpu_ptr(pmu->pmu_disable_count); |
| if (!(*count)++) |
| pmu->pmu_disable(pmu); |
| } |
| |
| void perf_pmu_enable(struct pmu *pmu) |
| { |
| int *count = this_cpu_ptr(pmu->pmu_disable_count); |
| if (!--(*count)) |
| pmu->pmu_enable(pmu); |
| } |
| |
| static DEFINE_PER_CPU(struct list_head, rotation_list); |
| |
| /* |
| * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized |
| * because they're strictly cpu affine and rotate_start is called with IRQs |
| * disabled, while rotate_context is called from IRQ context. |
| */ |
| static void perf_pmu_rotate_start(struct pmu *pmu) |
| { |
| struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); |
| struct list_head *head = &__get_cpu_var(rotation_list); |
| |
| WARN_ON(!irqs_disabled()); |
| |
| if (list_empty(&cpuctx->rotation_list)) |
| list_add(&cpuctx->rotation_list, head); |
| } |
| |
| static void get_ctx(struct perf_event_context *ctx) |
| { |
| WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); |
| } |
| |
| static void free_ctx(struct rcu_head *head) |
| { |
| struct perf_event_context *ctx; |
| |
| ctx = container_of(head, struct perf_event_context, rcu_head); |
| kfree(ctx); |
| } |
| |
| static void put_ctx(struct perf_event_context *ctx) |
| { |
| if (atomic_dec_and_test(&ctx->refcount)) { |
| if (ctx->parent_ctx) |
| put_ctx(ctx->parent_ctx); |
| if (ctx->task) |
| put_task_struct(ctx->task); |
| call_rcu(&ctx->rcu_head, free_ctx); |
| } |
| } |
| |
| static void unclone_ctx(struct perf_event_context *ctx) |
| { |
| if (ctx->parent_ctx) { |
| put_ctx(ctx->parent_ctx); |
| ctx->parent_ctx = NULL; |
| } |
| } |
| |
| static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) |
| { |
| /* |
| * only top level events have the pid namespace they were created in |
| */ |
| if (event->parent) |
| event = event->parent; |
| |
| return task_tgid_nr_ns(p, event->ns); |
| } |
| |
| static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) |
| { |
| /* |
| * only top level events have the pid namespace they were created in |
| */ |
| if (event->parent) |
| event = event->parent; |
| |
| return task_pid_nr_ns(p, event->ns); |
| } |
| |
| /* |
| * If we inherit events we want to return the parent event id |
| * to userspace. |
| */ |
| static u64 primary_event_id(struct perf_event *event) |
| { |
| u64 id = event->id; |
| |
| if (event->parent) |
| id = event->parent->id; |
| |
| return id; |
| } |
| |
| /* |
| * Get the perf_event_context for a task and lock it. |
| * This has to cope with with the fact that until it is locked, |
| * the context could get moved to another task. |
| */ |
| static struct perf_event_context * |
| perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) |
| { |
| struct perf_event_context *ctx; |
| |
| rcu_read_lock(); |
| retry: |
| ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); |
| if (ctx) { |
| /* |
| * If this context is a clone of another, it might |
| * get swapped for another underneath us by |
| * perf_event_task_sched_out, though the |
| * rcu_read_lock() protects us from any context |
| * getting freed. Lock the context and check if it |
| * got swapped before we could get the lock, and retry |
| * if so. If we locked the right context, then it |
| * can't get swapped on us any more. |
| */ |
| raw_spin_lock_irqsave(&ctx->lock, *flags); |
| if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { |
| raw_spin_unlock_irqrestore(&ctx->lock, *flags); |
| goto retry; |
| } |
| |
| if (!atomic_inc_not_zero(&ctx->refcount)) { |
| raw_spin_unlock_irqrestore(&ctx->lock, *flags); |
| ctx = NULL; |
| } |
| } |
| rcu_read_unlock(); |
| return ctx; |
| } |
| |
| /* |
| * Get the context for a task and increment its pin_count so it |
| * can't get swapped to another task. This also increments its |
| * reference count so that the context can't get freed. |
| */ |
| static struct perf_event_context * |
| perf_pin_task_context(struct task_struct *task, int ctxn) |
| { |
| struct perf_event_context *ctx; |
| unsigned long flags; |
| |
| ctx = perf_lock_task_context(task, ctxn, &flags); |
| if (ctx) { |
| ++ctx->pin_count; |
| raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| } |
| return ctx; |
| } |
| |
| static void perf_unpin_context(struct perf_event_context *ctx) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&ctx->lock, flags); |
| --ctx->pin_count; |
| raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| put_ctx(ctx); |
| } |
| |
| /* |
| * Update the record of the current time in a context. |
| */ |
| static void update_context_time(struct perf_event_context *ctx) |
| { |
| u64 now = perf_clock(); |
| |
| ctx->time += now - ctx->timestamp; |
| ctx->timestamp = now; |
| } |
| |
| static u64 perf_event_time(struct perf_event *event) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| return ctx ? ctx->time : 0; |
| } |
| |
| /* |
| * Update the total_time_enabled and total_time_running fields for a event. |
| */ |
| static void update_event_times(struct perf_event *event) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| u64 run_end; |
| |
| if (event->state < PERF_EVENT_STATE_INACTIVE || |
| event->group_leader->state < PERF_EVENT_STATE_INACTIVE) |
| return; |
| |
| if (ctx->is_active) |
| run_end = perf_event_time(event); |
| else |
| run_end = event->tstamp_stopped; |
| |
| event->total_time_enabled = run_end - event->tstamp_enabled; |
| |
| if (event->state == PERF_EVENT_STATE_INACTIVE) |
| run_end = event->tstamp_stopped; |
| else |
| run_end = perf_event_time(event); |
| |
| event->total_time_running = run_end - event->tstamp_running; |
| } |
| |
| /* |
| * Update total_time_enabled and total_time_running for all events in a group. |
| */ |
| static void update_group_times(struct perf_event *leader) |
| { |
| struct perf_event *event; |
| |
| update_event_times(leader); |
| list_for_each_entry(event, &leader->sibling_list, group_entry) |
| update_event_times(event); |
| } |
| |
| static struct list_head * |
| ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) |
| { |
| if (event->attr.pinned) |
| return &ctx->pinned_groups; |
| else |
| return &ctx->flexible_groups; |
| } |
| |
| /* |
| * Add a event from the lists for its context. |
| * Must be called with ctx->mutex and ctx->lock held. |
| */ |
| static void |
| list_add_event(struct perf_event *event, struct perf_event_context *ctx) |
| { |
| WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); |
| event->attach_state |= PERF_ATTACH_CONTEXT; |
| |
| /* |
| * If we're a stand alone event or group leader, we go to the context |
| * list, group events are kept attached to the group so that |
| * perf_group_detach can, at all times, locate all siblings. |
| */ |
| if (event->group_leader == event) { |
| struct list_head *list; |
| |
| if (is_software_event(event)) |
| event->group_flags |= PERF_GROUP_SOFTWARE; |
| |
| list = ctx_group_list(event, ctx); |
| list_add_tail(&event->group_entry, list); |
| } |
| |
| list_add_rcu(&event->event_entry, &ctx->event_list); |
| if (!ctx->nr_events) |
| perf_pmu_rotate_start(ctx->pmu); |
| ctx->nr_events++; |
| if (event->attr.inherit_stat) |
| ctx->nr_stat++; |
| } |
| |
| /* |
| * Called at perf_event creation and when events are attached/detached from a |
| * group. |
| */ |
| static void perf_event__read_size(struct perf_event *event) |
| { |
| int entry = sizeof(u64); /* value */ |
| int size = 0; |
| int nr = 1; |
| |
| if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
| size += sizeof(u64); |
| |
| if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
| size += sizeof(u64); |
| |
| if (event->attr.read_format & PERF_FORMAT_ID) |
| entry += sizeof(u64); |
| |
| if (event->attr.read_format & PERF_FORMAT_GROUP) { |
| nr += event->group_leader->nr_siblings; |
| size += sizeof(u64); |
| } |
| |
| size += entry * nr; |
| event->read_size = size; |
| } |
| |
| static void perf_event__header_size(struct perf_event *event) |
| { |
| struct perf_sample_data *data; |
| u64 sample_type = event->attr.sample_type; |
| u16 size = 0; |
| |
| perf_event__read_size(event); |
| |
| if (sample_type & PERF_SAMPLE_IP) |
| size += sizeof(data->ip); |
| |
| if (sample_type & PERF_SAMPLE_ADDR) |
| size += sizeof(data->addr); |
| |
| if (sample_type & PERF_SAMPLE_PERIOD) |
| size += sizeof(data->period); |
| |
| if (sample_type & PERF_SAMPLE_READ) |
| size += event->read_size; |
| |
| event->header_size = size; |
| } |
| |
| static void perf_event__id_header_size(struct perf_event *event) |
| { |
| struct perf_sample_data *data; |
| u64 sample_type = event->attr.sample_type; |
| u16 size = 0; |
| |
| if (sample_type & PERF_SAMPLE_TID) |
| size += sizeof(data->tid_entry); |
| |
| if (sample_type & PERF_SAMPLE_TIME) |
| size += sizeof(data->time); |
| |
| if (sample_type & PERF_SAMPLE_ID) |
| size += sizeof(data->id); |
| |
| if (sample_type & PERF_SAMPLE_STREAM_ID) |
| size += sizeof(data->stream_id); |
| |
| if (sample_type & PERF_SAMPLE_CPU) |
| size += sizeof(data->cpu_entry); |
| |
| event->id_header_size = size; |
| } |
| |
| static void perf_group_attach(struct perf_event *event) |
| { |
| struct perf_event *group_leader = event->group_leader, *pos; |
| |
| /* |
| * We can have double attach due to group movement in perf_event_open. |
| */ |
| if (event->attach_state & PERF_ATTACH_GROUP) |
| return; |
| |
| event->attach_state |= PERF_ATTACH_GROUP; |
| |
| if (group_leader == event) |
| return; |
| |
| if (group_leader->group_flags & PERF_GROUP_SOFTWARE && |
| !is_software_event(event)) |
| group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; |
| |
| list_add_tail(&event->group_entry, &group_leader->sibling_list); |
| group_leader->nr_siblings++; |
| |
| perf_event__header_size(group_leader); |
| |
| list_for_each_entry(pos, &group_leader->sibling_list, group_entry) |
| perf_event__header_size(pos); |
| } |
| |
| /* |
| * Remove a event from the lists for its context. |
| * Must be called with ctx->mutex and ctx->lock held. |
| */ |
| static void |
| list_del_event(struct perf_event *event, struct perf_event_context *ctx) |
| { |
| /* |
| * We can have double detach due to exit/hot-unplug + close. |
| */ |
| if (!(event->attach_state & PERF_ATTACH_CONTEXT)) |
| return; |
| |
| event->attach_state &= ~PERF_ATTACH_CONTEXT; |
| |
| ctx->nr_events--; |
| if (event->attr.inherit_stat) |
| ctx->nr_stat--; |
| |
| list_del_rcu(&event->event_entry); |
| |
| if (event->group_leader == event) |
| list_del_init(&event->group_entry); |
| |
| update_group_times(event); |
| |
| /* |
| * If event was in error state, then keep it |
| * that way, otherwise bogus counts will be |
| * returned on read(). The only way to get out |
| * of error state is by explicit re-enabling |
| * of the event |
| */ |
| if (event->state > PERF_EVENT_STATE_OFF) |
| event->state = PERF_EVENT_STATE_OFF; |
| } |
| |
| static void perf_group_detach(struct perf_event *event) |
| { |
| struct perf_event *sibling, *tmp; |
| struct list_head *list = NULL; |
| |
| /* |
| * We can have double detach due to exit/hot-unplug + close. |
| */ |
| if (!(event->attach_state & PERF_ATTACH_GROUP)) |
| return; |
| |
| event->attach_state &= ~PERF_ATTACH_GROUP; |
| |
| /* |
| * If this is a sibling, remove it from its group. |
| */ |
| if (event->group_leader != event) { |
| list_del_init(&event->group_entry); |
| event->group_leader->nr_siblings--; |
| goto out; |
| } |
| |
| if (!list_empty(&event->group_entry)) |
| list = &event->group_entry; |
| |
| /* |
| * If this was a group event with sibling events then |
| * upgrade the siblings to singleton events by adding them |
| * to whatever list we are on. |
| */ |
| list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { |
| if (list) |
| list_move_tail(&sibling->group_entry, list); |
| sibling->group_leader = sibling; |
| |
| /* Inherit group flags from the previous leader */ |
| sibling->group_flags = event->group_flags; |
| } |
| |
| out: |
| perf_event__header_size(event->group_leader); |
| |
| list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) |
| perf_event__header_size(tmp); |
| } |
| |
| static inline int |
| event_filter_match(struct perf_event *event) |
| { |
| return event->cpu == -1 || event->cpu == smp_processor_id(); |
| } |
| |
| static void |
| event_sched_out(struct perf_event *event, |
| struct perf_cpu_context *cpuctx, |
| struct perf_event_context *ctx) |
| { |
| u64 tstamp = perf_event_time(event); |
| u64 delta; |
| /* |
| * An event which could not be activated because of |
| * filter mismatch still needs to have its timings |
| * maintained, otherwise bogus information is return |
| * via read() for time_enabled, time_running: |
| */ |
| if (event->state == PERF_EVENT_STATE_INACTIVE |
| && !event_filter_match(event)) { |
| delta = ctx->time - event->tstamp_stopped; |
| event->tstamp_running += delta; |
| event->tstamp_stopped = tstamp; |
| } |
| |
| if (event->state != PERF_EVENT_STATE_ACTIVE) |
| return; |
| |
| event->state = PERF_EVENT_STATE_INACTIVE; |
| if (event->pending_disable) { |
| event->pending_disable = 0; |
| event->state = PERF_EVENT_STATE_OFF; |
| } |
| event->tstamp_stopped = tstamp; |
| event->pmu->del(event, 0); |
| event->oncpu = -1; |
| |
| if (!is_software_event(event)) |
| cpuctx->active_oncpu--; |
| ctx->nr_active--; |
| if (event->attr.exclusive || !cpuctx->active_oncpu) |
| cpuctx->exclusive = 0; |
| } |
| |
| static void |
| group_sched_out(struct perf_event *group_event, |
| struct perf_cpu_context *cpuctx, |
| struct perf_event_context *ctx) |
| { |
| struct perf_event *event; |
| int state = group_event->state; |
| |
| event_sched_out(group_event, cpuctx, ctx); |
| |
| /* |
| * Schedule out siblings (if any): |
| */ |
| list_for_each_entry(event, &group_event->sibling_list, group_entry) |
| event_sched_out(event, cpuctx, ctx); |
| |
| if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) |
| cpuctx->exclusive = 0; |
| } |
| |
| static inline struct perf_cpu_context * |
| __get_cpu_context(struct perf_event_context *ctx) |
| { |
| return this_cpu_ptr(ctx->pmu->pmu_cpu_context); |
| } |
| |
| /* |
| * Cross CPU call to remove a performance event |
| * |
| * We disable the event on the hardware level first. After that we |
| * remove it from the context list. |
| */ |
| static void __perf_event_remove_from_context(void *info) |
| { |
| struct perf_event *event = info; |
| struct perf_event_context *ctx = event->ctx; |
| struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); |
| |
| /* |
| * If this is a task context, we need to check whether it is |
| * the current task context of this cpu. If not it has been |
| * scheduled out before the smp call arrived. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) |
| return; |
| |
| raw_spin_lock(&ctx->lock); |
| |
| event_sched_out(event, cpuctx, ctx); |
| |
| list_del_event(event, ctx); |
| |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| |
| /* |
| * Remove the event from a task's (or a CPU's) list of events. |
| * |
| * Must be called with ctx->mutex held. |
| * |
| * CPU events are removed with a smp call. For task events we only |
| * call when the task is on a CPU. |
| * |
| * If event->ctx is a cloned context, callers must make sure that |
| * every task struct that event->ctx->task could possibly point to |
| * remains valid. This is OK when called from perf_release since |
| * that only calls us on the top-level context, which can't be a clone. |
| * When called from perf_event_exit_task, it's OK because the |
| * context has been detached from its task. |
| */ |
| static void perf_event_remove_from_context(struct perf_event *event) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| struct task_struct *task = ctx->task; |
| |
| if (!task) { |
| /* |
| * Per cpu events are removed via an smp call and |
| * the removal is always successful. |
| */ |
| smp_call_function_single(event->cpu, |
| __perf_event_remove_from_context, |
| event, 1); |
| return; |
| } |
| |
| retry: |
| task_oncpu_function_call(task, __perf_event_remove_from_context, |
| event); |
| |
| raw_spin_lock_irq(&ctx->lock); |
| /* |
| * If the context is active we need to retry the smp call. |
| */ |
| if (ctx->nr_active && !list_empty(&event->group_entry)) { |
| raw_spin_unlock_irq(&ctx->lock); |
| goto retry; |
| } |
| |
| /* |
| * The lock prevents that this context is scheduled in so we |
| * can remove the event safely, if the call above did not |
| * succeed. |
| */ |
| if (!list_empty(&event->group_entry)) |
| list_del_event(event, ctx); |
| raw_spin_unlock_irq(&ctx->lock); |
| } |
| |
| /* |
| * Cross CPU call to disable a performance event |
| */ |
| static void __perf_event_disable(void *info) |
| { |
| struct perf_event *event = info; |
| struct perf_event_context *ctx = event->ctx; |
| struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); |
| |
| /* |
| * If this is a per-task event, need to check whether this |
| * event's task is the current task on this cpu. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) |
| return; |
| |
| raw_spin_lock(&ctx->lock); |
| |
| /* |
| * If the event is on, turn it off. |
| * If it is in error state, leave it in error state. |
| */ |
| if (event->state >= PERF_EVENT_STATE_INACTIVE) { |
| update_context_time(ctx); |
| update_group_times(event); |
| if (event == event->group_leader) |
| group_sched_out(event, cpuctx, ctx); |
| else |
| event_sched_out(event, cpuctx, ctx); |
| event->state = PERF_EVENT_STATE_OFF; |
| } |
| |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Disable a event. |
| * |
| * If event->ctx is a cloned context, callers must make sure that |
| * every task struct that event->ctx->task could possibly point to |
| * remains valid. This condition is satisifed when called through |
| * perf_event_for_each_child or perf_event_for_each because they |
| * hold the top-level event's child_mutex, so any descendant that |
| * goes to exit will block in sync_child_event. |
| * When called from perf_pending_event it's OK because event->ctx |
| * is the current context on this CPU and preemption is disabled, |
| * hence we can't get into perf_event_task_sched_out for this context. |
| */ |
| void perf_event_disable(struct perf_event *event) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| struct task_struct *task = ctx->task; |
| |
| if (!task) { |
| /* |
| * Disable the event on the cpu that it's on |
| */ |
| smp_call_function_single(event->cpu, __perf_event_disable, |
| event, 1); |
| return; |
| } |
| |
| retry: |
| task_oncpu_function_call(task, __perf_event_disable, event); |
| |
| raw_spin_lock_irq(&ctx->lock); |
| /* |
| * If the event is still active, we need to retry the cross-call. |
| */ |
| if (event->state == PERF_EVENT_STATE_ACTIVE) { |
| raw_spin_unlock_irq(&ctx->lock); |
| goto retry; |
| } |
| |
| /* |
| * Since we have the lock this context can't be scheduled |
| * in, so we can change the state safely. |
| */ |
| if (event->state == PERF_EVENT_STATE_INACTIVE) { |
| update_group_times(event); |
| event->state = PERF_EVENT_STATE_OFF; |
| } |
| |
| raw_spin_unlock_irq(&ctx->lock); |
| } |
| |
| static int |
| event_sched_in(struct perf_event *event, |
| struct perf_cpu_context *cpuctx, |
| struct perf_event_context *ctx) |
| { |
| u64 tstamp = perf_event_time(event); |
| |
| if (event->state <= PERF_EVENT_STATE_OFF) |
| return 0; |
| |
| event->state = PERF_EVENT_STATE_ACTIVE; |
| event->oncpu = smp_processor_id(); |
| /* |
| * The new state must be visible before we turn it on in the hardware: |
| */ |
| smp_wmb(); |
| |
| if (event->pmu->add(event, PERF_EF_START)) { |
| event->state = PERF_EVENT_STATE_INACTIVE; |
| event->oncpu = -1; |
| return -EAGAIN; |
| } |
| |
| event->tstamp_running += tstamp - event->tstamp_stopped; |
| |
| event->shadow_ctx_time = tstamp - ctx->timestamp; |
| |
| if (!is_software_event(event)) |
| cpuctx->active_oncpu++; |
| ctx->nr_active++; |
| |
| if (event->attr.exclusive) |
| cpuctx->exclusive = 1; |
| |
| return 0; |
| } |
| |
| static int |
| group_sched_in(struct perf_event *group_event, |
| struct perf_cpu_context *cpuctx, |
| struct perf_event_context *ctx) |
| { |
| struct perf_event *event, *partial_group = NULL; |
| struct pmu *pmu = group_event->pmu; |
| u64 now = ctx->time; |
| bool simulate = false; |
| |
| if (group_event->state == PERF_EVENT_STATE_OFF) |
| return 0; |
| |
| pmu->start_txn(pmu); |
| |
| if (event_sched_in(group_event, cpuctx, ctx)) { |
| pmu->cancel_txn(pmu); |
| return -EAGAIN; |
| } |
| |
| /* |
| * Schedule in siblings as one group (if any): |
| */ |
| list_for_each_entry(event, &group_event->sibling_list, group_entry) { |
| if (event_sched_in(event, cpuctx, ctx)) { |
| partial_group = event; |
| goto group_error; |
| } |
| } |
| |
| if (!pmu->commit_txn(pmu)) |
| return 0; |
| |
| group_error: |
| /* |
| * Groups can be scheduled in as one unit only, so undo any |
| * partial group before returning: |
| * The events up to the failed event are scheduled out normally, |
| * tstamp_stopped will be updated. |
| * |
| * The failed events and the remaining siblings need to have |
| * their timings updated as if they had gone thru event_sched_in() |
| * and event_sched_out(). This is required to get consistent timings |
| * across the group. This also takes care of the case where the group |
| * could never be scheduled by ensuring tstamp_stopped is set to mark |
| * the time the event was actually stopped, such that time delta |
| * calculation in update_event_times() is correct. |
| */ |
| list_for_each_entry(event, &group_event->sibling_list, group_entry) { |
| if (event == partial_group) |
| simulate = true; |
| |
| if (simulate) { |
| event->tstamp_running += now - event->tstamp_stopped; |
| event->tstamp_stopped = now; |
| } else { |
| event_sched_out(event, cpuctx, ctx); |
| } |
| } |
| event_sched_out(group_event, cpuctx, ctx); |
| |
| pmu->cancel_txn(pmu); |
| |
| return -EAGAIN; |
| } |
| |
| /* |
| * Work out whether we can put this event group on the CPU now. |
| */ |
| static int group_can_go_on(struct perf_event *event, |
| struct perf_cpu_context *cpuctx, |
| int can_add_hw) |
| { |
| /* |
| * Groups consisting entirely of software events can always go on. |
| */ |
| if (event->group_flags & PERF_GROUP_SOFTWARE) |
| return 1; |
| /* |
| * If an exclusive group is already on, no other hardware |
| * events can go on. |
| */ |
| if (cpuctx->exclusive) |
| return 0; |
| /* |
| * If this group is exclusive and there are already |
| * events on the CPU, it can't go on. |
| */ |
| if (event->attr.exclusive && cpuctx->active_oncpu) |
| return 0; |
| /* |
| * Otherwise, try to add it if all previous groups were able |
| * to go on. |
| */ |
| return can_add_hw; |
| } |
| |
| static void add_event_to_ctx(struct perf_event *event, |
| struct perf_event_context *ctx) |
| { |
| u64 tstamp = perf_event_time(event); |
| |
| list_add_event(event, ctx); |
| perf_group_attach(event); |
| event->tstamp_enabled = tstamp; |
| event->tstamp_running = tstamp; |
| event->tstamp_stopped = tstamp; |
| } |
| |
| /* |
| * Cross CPU call to install and enable a performance event |
| * |
| * Must be called with ctx->mutex held |
| */ |
| static void __perf_install_in_context(void *info) |
| { |
| struct perf_event *event = info; |
| struct perf_event_context *ctx = event->ctx; |
| struct perf_event *leader = event->group_leader; |
| struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); |
| int err; |
| |
| /* |
| * If this is a task context, we need to check whether it is |
| * the current task context of this cpu. If not it has been |
| * scheduled out before the smp call arrived. |
| * Or possibly this is the right context but it isn't |
| * on this cpu because it had no events. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) { |
| if (cpuctx->task_ctx || ctx->task != current) |
| return; |
| cpuctx->task_ctx = ctx; |
| } |
| |
| raw_spin_lock(&ctx->lock); |
| ctx->is_active = 1; |
| update_context_time(ctx); |
| |
| add_event_to_ctx(event, ctx); |
| |
| if (!event_filter_match(event)) |
| goto unlock; |
| |
| /* |
| * Don't put the event on if it is disabled or if |
| * it is in a group and the group isn't on. |
| */ |
| if (event->state != PERF_EVENT_STATE_INACTIVE || |
| (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) |
| goto unlock; |
| |
| /* |
| * An exclusive event can't go on if there are already active |
| * hardware events, and no hardware event can go on if there |
| * is already an exclusive event on. |
| */ |
| if (!group_can_go_on(event, cpuctx, 1)) |
| err = -EEXIST; |
| else |
| err = event_sched_in(event, cpuctx, ctx); |
| |
| if (err) { |
| /* |
| * This event couldn't go on. If it is in a group |
| * then we have to pull the whole group off. |
| * If the event group is pinned then put it in error state. |
| */ |
| if (leader != event) |
| group_sched_out(leader, cpuctx, ctx); |
| if (leader->attr.pinned) { |
| update_group_times(leader); |
| leader->state = PERF_EVENT_STATE_ERROR; |
| } |
| } |
| |
| unlock: |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Attach a performance event to a context |
| * |
| * First we add the event to the list with the hardware enable bit |
| * in event->hw_config cleared. |
| * |
| * If the event is attached to a task which is on a CPU we use a smp |
| * call to enable it in the task context. The task might have been |
| * scheduled away, but we check this in the smp call again. |
| * |
| * Must be called with ctx->mutex held. |
| */ |
| static void |
| perf_install_in_context(struct perf_event_context *ctx, |
| struct perf_event *event, |
| int cpu) |
| { |
| struct task_struct *task = ctx->task; |
| |
| event->ctx = ctx; |
| |
| if (!task) { |
| /* |
| * Per cpu events are installed via an smp call and |
| * the install is always successful. |
| */ |
| smp_call_function_single(cpu, __perf_install_in_context, |
| event, 1); |
| return; |
| } |
| |
| retry: |
| task_oncpu_function_call(task, __perf_install_in_context, |
| event); |
| |
| raw_spin_lock_irq(&ctx->lock); |
| /* |
| * we need to retry the smp call. |
| */ |
| if (ctx->is_active && list_empty(&event->group_entry)) { |
| raw_spin_unlock_irq(&ctx->lock); |
| goto retry; |
| } |
| |
| /* |
| * The lock prevents that this context is scheduled in so we |
| * can add the event safely, if it the call above did not |
| * succeed. |
| */ |
| if (list_empty(&event->group_entry)) |
| add_event_to_ctx(event, ctx); |
| raw_spin_unlock_irq(&ctx->lock); |
| } |
| |
| /* |
| * Put a event into inactive state and update time fields. |
| * Enabling the leader of a group effectively enables all |
| * the group members that aren't explicitly disabled, so we |
| * have to update their ->tstamp_enabled also. |
| * Note: this works for group members as well as group leaders |
| * since the non-leader members' sibling_lists will be empty. |
| */ |
| static void __perf_event_mark_enabled(struct perf_event *event, |
| struct perf_event_context *ctx) |
| { |
| struct perf_event *sub; |
| u64 tstamp = perf_event_time(event); |
| |
| event->state = PERF_EVENT_STATE_INACTIVE; |
| event->tstamp_enabled = tstamp - event->total_time_enabled; |
| list_for_each_entry(sub, &event->sibling_list, group_entry) { |
| if (sub->state >= PERF_EVENT_STATE_INACTIVE) |
| sub->tstamp_enabled = tstamp - sub->total_time_enabled; |
| } |
| } |
| |
| /* |
| * Cross CPU call to enable a performance event |
| */ |
| static void __perf_event_enable(void *info) |
| { |
| struct perf_event *event = info; |
| struct perf_event_context *ctx = event->ctx; |
| struct perf_event *leader = event->group_leader; |
| struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); |
| int err; |
| |
| /* |
| * If this is a per-task event, need to check whether this |
| * event's task is the current task on this cpu. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) { |
| if (cpuctx->task_ctx || ctx->task != current) |
| return; |
| cpuctx->task_ctx = ctx; |
| } |
| |
| raw_spin_lock(&ctx->lock); |
| ctx->is_active = 1; |
| update_context_time(ctx); |
| |
| if (event->state >= PERF_EVENT_STATE_INACTIVE) |
| goto unlock; |
| __perf_event_mark_enabled(event, ctx); |
| |
| if (!event_filter_match(event)) |
| goto unlock; |
| |
| /* |
| * If the event is in a group and isn't the group leader, |
| * then don't put it on unless the group is on. |
| */ |
| if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) |
| goto unlock; |
| |
| if (!group_can_go_on(event, cpuctx, 1)) { |
| err = -EEXIST; |
| } else { |
| if (event == leader) |
| err = group_sched_in(event, cpuctx, ctx); |
| else |
| err = event_sched_in(event, cpuctx, ctx); |
| } |
| |
| if (err) { |
| /* |
| * If this event can't go on and it's part of a |
| * group, then the whole group has to come off. |
| */ |
| if (leader != event) |
| group_sched_out(leader, cpuctx, ctx); |
| if (leader->attr.pinned) { |
| update_group_times(leader); |
| leader->state = PERF_EVENT_STATE_ERROR; |
| } |
| } |
| |
| unlock: |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Enable a event. |
| * |
| * If event->ctx is a cloned context, callers must make sure that |
| * every task struct that event->ctx->task could possibly point to |
| * remains valid. This condition is satisfied when called through |
| * perf_event_for_each_child or perf_event_for_each as described |
| * for perf_event_disable. |
| */ |
| void perf_event_enable(struct perf_event *event) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| struct task_struct *task = ctx->task; |
| |
| if (!task) { |
| /* |
| * Enable the event on the cpu that it's on |
| */ |
| smp_call_function_single(event->cpu, __perf_event_enable, |
| event, 1); |
| return; |
| } |
| |
| raw_spin_lock_irq(&ctx->lock); |
| if (event->state >= PERF_EVENT_STATE_INACTIVE) |
| goto out; |
| |
| /* |
| * If the event is in error state, clear that first. |
| * That way, if we see the event in error state below, we |
| * know that it has gone back into error state, as distinct |
| * from the task having been scheduled away before the |
| * cross-call arrived. |
| */ |
| if (event->state == PERF_EVENT_STATE_ERROR) |
| event->state = PERF_EVENT_STATE_OFF; |
| |
| retry: |
| raw_spin_unlock_irq(&ctx->lock); |
| task_oncpu_function_call(task, __perf_event_enable, event); |
| |
| raw_spin_lock_irq(&ctx->lock); |
| |
| /* |
| * If the context is active and the event is still off, |
| * we need to retry the cross-call. |
| */ |
| if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) |
| goto retry; |
| |
| /* |
| * Since we have the lock this context can't be scheduled |
| * in, so we can change the state safely. |
| */ |
| if (event->state == PERF_EVENT_STATE_OFF) |
| __perf_event_mark_enabled(event, ctx); |
| |
| out: |
| raw_spin_unlock_irq(&ctx->lock); |
| } |
| |
| static int perf_event_refresh(struct perf_event *event, int refresh) |
| { |
| /* |
| * not supported on inherited events |
| */ |
| if (event->attr.inherit || !is_sampling_event(event)) |
| return -EINVAL; |
| |
| atomic_add(refresh, &event->event_limit); |
| perf_event_enable(event); |
| |
| return 0; |
| } |
| |
| static void ctx_sched_out(struct perf_event_context *ctx, |
| struct perf_cpu_context *cpuctx, |
| enum event_type_t event_type) |
| { |
| struct perf_event *event; |
| |
| raw_spin_lock(&ctx->lock); |
| perf_pmu_disable(ctx->pmu); |
| ctx->is_active = 0; |
| if (likely(!ctx->nr_events)) |
| goto out; |
| update_context_time(ctx); |
| |
| if (!ctx->nr_active) |
| goto out; |
| |
| if (event_type & EVENT_PINNED) { |
| list_for_each_entry(event, &ctx->pinned_groups, group_entry) |
| group_sched_out(event, cpuctx, ctx); |
| } |
| |
| if (event_type & EVENT_FLEXIBLE) { |
| list_for_each_entry(event, &ctx->flexible_groups, group_entry) |
| group_sched_out(event, cpuctx, ctx); |
| } |
| out: |
| perf_pmu_enable(ctx->pmu); |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Test whether two contexts are equivalent, i.e. whether they |
| * have both been cloned from the same version of the same context |
| * and they both have the same number of enabled events. |
| * If the number of enabled events is the same, then the set |
| * of enabled events should be the same, because these are both |
| * inherited contexts, therefore we can't access individual events |
| * in them directly with an fd; we can only enable/disable all |
| * events via prctl, or enable/disable all events in a family |
| * via ioctl, which will have the same effect on both contexts. |
| */ |
| static int context_equiv(struct perf_event_context *ctx1, |
| struct perf_event_context *ctx2) |
| { |
| return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx |
| && ctx1->parent_gen == ctx2->parent_gen |
| && !ctx1->pin_count && !ctx2->pin_count; |
| } |
| |
| static void __perf_event_sync_stat(struct perf_event *event, |
| struct perf_event *next_event) |
| { |
| u64 value; |
| |
| if (!event->attr.inherit_stat) |
| return; |
| |
| /* |
| * Update the event value, we cannot use perf_event_read() |
| * because we're in the middle of a context switch and have IRQs |
| * disabled, which upsets smp_call_function_single(), however |
| * we know the event must be on the current CPU, therefore we |
| * don't need to use it. |
| */ |
| switch (event->state) { |
| case PERF_EVENT_STATE_ACTIVE: |
| event->pmu->read(event); |
| /* fall-through */ |
| |
| case PERF_EVENT_STATE_INACTIVE: |
| update_event_times(event); |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* |
| * In order to keep per-task stats reliable we need to flip the event |
| * values when we flip the contexts. |
| */ |
| value = local64_read(&next_event->count); |
| value = local64_xchg(&event->count, value); |
| local64_set(&next_event->count, value); |
| |
| swap(event->total_time_enabled, next_event->total_time_enabled); |
| swap(event->total_time_running, next_event->total_time_running); |
| |
| /* |
| * Since we swizzled the values, update the user visible data too. |
| */ |
| perf_event_update_userpage(event); |
| perf_event_update_userpage(next_event); |
| } |
| |
| #define list_next_entry(pos, member) \ |
| list_entry(pos->member.next, typeof(*pos), member) |
| |
| static void perf_event_sync_stat(struct perf_event_context *ctx, |
| struct perf_event_context *next_ctx) |
| { |
| struct perf_event *event, *next_event; |
| |
| if (!ctx->nr_stat) |
| return; |
| |
| update_context_time(ctx); |
| |
| event = list_first_entry(&ctx->event_list, |
| struct perf_event, event_entry); |
| |
| next_event = list_first_entry(&next_ctx->event_list, |
| struct perf_event, event_entry); |
| |
| while (&event->event_entry != &ctx->event_list && |
| &next_event->event_entry != &next_ctx->event_list) { |
| |
| __perf_event_sync_stat(event, next_event); |
| |
| event = list_next_entry(event, event_entry); |
| next_event = list_next_entry(next_event, event_entry); |
| } |
| } |
| |
| void perf_event_context_sched_out(struct task_struct *task, int ctxn, |
| struct task_struct *next) |
| { |
| struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; |
| struct perf_event_context *next_ctx; |
| struct perf_event_context *parent; |
| struct perf_cpu_context *cpuctx; |
| int do_switch = 1; |
| |
| if (likely(!ctx)) |
| return; |
| |
| cpuctx = __get_cpu_context(ctx); |
| if (!cpuctx->task_ctx) |
| return; |
| |
| rcu_read_lock(); |
| parent = rcu_dereference(ctx->parent_ctx); |
| next_ctx = next->perf_event_ctxp[ctxn]; |
| if (parent && next_ctx && |
| rcu_dereference(next_ctx->parent_ctx) == parent) { |
| /* |
| * Looks like the two contexts are clones, so we might be |
| * able to optimize the context switch. We lock both |
| * contexts and check that they are clones under the |
| * lock (including re-checking that neither has been |
| * uncloned in the meantime). It doesn't matter which |
| * order we take the locks because no other cpu could |
| * be trying to lock both of these tasks. |
| */ |
| raw_spin_lock(&ctx->lock); |
| raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); |
| if (context_equiv(ctx, next_ctx)) { |
| /* |
| * XXX do we need a memory barrier of sorts |
| * wrt to rcu_dereference() of perf_event_ctxp |
| */ |
| task->perf_event_ctxp[ctxn] = next_ctx; |
| next->perf_event_ctxp[ctxn] = ctx; |
| ctx->task = next; |
| next_ctx->task = task; |
| do_switch = 0; |
| |
| perf_event_sync_stat(ctx, next_ctx); |
| } |
| raw_spin_unlock(&next_ctx->lock); |
| raw_spin_unlock(&ctx->lock); |
| } |
| rcu_read_unlock(); |
| |
| if (do_switch) { |
| ctx_sched_out(ctx, cpuctx, EVENT_ALL); |
| cpuctx->task_ctx = NULL; |
| } |
| } |
| |
| #define for_each_task_context_nr(ctxn) \ |
| for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) |
| |
| /* |
| * Called from scheduler to remove the events of the current task, |
| * with interrupts disabled. |
| * |
| * We stop each event and update the event value in event->count. |
| * |
| * This does not protect us against NMI, but disable() |
| * sets the disabled bit in the control field of event _before_ |
| * accessing the event control register. If a NMI hits, then it will |
| * not restart the event. |
| */ |
| void __perf_event_task_sched_out(struct task_struct *task, |
| struct task_struct *next) |
| { |
| int ctxn; |
| |
| for_each_task_context_nr(ctxn) |
| perf_event_context_sched_out(task, ctxn, next); |
| } |
| |
| static void task_ctx_sched_out(struct perf_event_context *ctx, |
| enum event_type_t event_type) |
| { |
| struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); |
| |
| if (!cpuctx->task_ctx) |
| return; |
| |
| if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) |
| return; |
| |
| ctx_sched_out(ctx, cpuctx, event_type); |
| cpuctx->task_ctx = NULL; |
| } |
| |
| /* |
| * Called with IRQs disabled |
| */ |
| static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, |
| enum event_type_t event_type) |
| { |
| ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); |
| } |
| |
| static void |
| ctx_pinned_sched_in(struct perf_event_context *ctx, |
| struct perf_cpu_context *cpuctx) |
| { |
| struct perf_event *event; |
| |
| list_for_each_entry(event, &ctx->pinned_groups, group_entry) { |
| if (event->state <= PERF_EVENT_STATE_OFF) |
| continue; |
| if (!event_filter_match(event)) |
| continue; |
| |
| if (group_can_go_on(event, cpuctx, 1)) |
| group_sched_in(event, cpuctx, ctx); |
| |
| /* |
| * If this pinned group hasn't been scheduled, |
| * put it in error state. |
| */ |
| if (event->state == PERF_EVENT_STATE_INACTIVE) { |
| update_group_times(event); |
| event->state = PERF_EVENT_STATE_ERROR; |
| } |
| } |
| } |
| |
| static void |
| ctx_flexible_sched_in(struct perf_event_context *ctx, |
| struct perf_cpu_context *cpuctx) |
| { |
| struct perf_event *event; |
| int can_add_hw = 1; |
| |
| list_for_each_entry(event, &ctx->flexible_groups, group_entry) { |
| /* Ignore events in OFF or ERROR state */ |
| if (event->state <= PERF_EVENT_STATE_OFF) |
| continue; |
| /* |
| * Listen to the 'cpu' scheduling filter constraint |
| * of events: |
| */ |
| if (!event_filter_match(event)) |
| continue; |
| |
| if (group_can_go_on(event, cpuctx, can_add_hw)) { |
| if (group_sched_in(event, cpuctx, ctx)) |
| can_add_hw = 0; |
| } |
| } |
| } |
| |
| static void |
| ctx_sched_in(struct perf_event_context *ctx, |
| struct perf_cpu_context *cpuctx, |
| enum event_type_t event_type) |
| { |
| raw_spin_lock(&ctx->lock); |
| ctx->is_active = 1; |
| if (likely(!ctx->nr_events)) |
| goto out; |
| |
| ctx->timestamp = perf_clock(); |
| |
| /* |
| * First go through the list and put on any pinned groups |
| * in order to give them the best chance of going on. |
| */ |
| if (event_type & EVENT_PINNED) |
| ctx_pinned_sched_in(ctx, cpuctx); |
| |
| /* Then walk through the lower prio flexible groups */ |
| if (event_type & EVENT_FLEXIBLE) |
| ctx_flexible_sched_in(ctx, cpuctx); |
| |
| out: |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, |
| enum event_type_t event_type) |
| { |
| struct perf_event_context *ctx = &cpuctx->ctx; |
| |
| ctx_sched_in(ctx, cpuctx, event_type); |
| } |
| |
| static void task_ctx_sched_in(struct perf_event_context *ctx, |
| enum event_type_t event_type) |
| { |
| struct perf_cpu_context *cpuctx; |
| |
| cpuctx = __get_cpu_context(ctx); |
| if (cpuctx->task_ctx == ctx) |
| return; |
| |
| ctx_sched_in(ctx, cpuctx, event_type); |
| cpuctx->task_ctx = ctx; |
| } |
| |
| void perf_event_context_sched_in(struct perf_event_context *ctx) |
| { |
| struct perf_cpu_context *cpuctx; |
| |
| cpuctx = __get_cpu_context(ctx); |
| if (cpuctx->task_ctx == ctx) |
| return; |
| |
| perf_pmu_disable(ctx->pmu); |
| /* |
| * We want to keep the following priority order: |
| * cpu pinned (that don't need to move), task pinned, |
| * cpu flexible, task flexible. |
| */ |
| cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); |
| |
| ctx_sched_in(ctx, cpuctx, EVENT_PINNED); |
| cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE); |
| ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE); |
| |
| cpuctx->task_ctx = ctx; |
| |
| /* |
| * Since these rotations are per-cpu, we need to ensure the |
| * cpu-context we got scheduled on is actually rotating. |
| */ |
| perf_pmu_rotate_start(ctx->pmu); |
| perf_pmu_enable(ctx->pmu); |
| } |
| |
| /* |
| * Called from scheduler to add the events of the current task |
| * with interrupts disabled. |
| * |
| * We restore the event value and then enable it. |
| * |
| * This does not protect us against NMI, but enable() |
| * sets the enabled bit in the control field of event _before_ |
| * accessing the event control register. If a NMI hits, then it will |
| * keep the event running. |
| */ |
| void __perf_event_task_sched_in(struct task_struct *task) |
| { |
| struct perf_event_context *ctx; |
| int ctxn; |
| |
| for_each_task_context_nr(ctxn) { |
| ctx = task->perf_event_ctxp[ctxn]; |
| if (likely(!ctx)) |
| continue; |
| |
| perf_event_context_sched_in(ctx); |
| } |
| } |
| |
| #define MAX_INTERRUPTS (~0ULL) |
| |
| static void perf_log_throttle(struct perf_event *event, int enable); |
| |
| static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) |
| { |
| u64 frequency = event->attr.sample_freq; |
| u64 sec = NSEC_PER_SEC; |
| u64 divisor, dividend; |
| |
| int count_fls, nsec_fls, frequency_fls, sec_fls; |
| |
| count_fls = fls64(count); |
| nsec_fls = fls64(nsec); |
| frequency_fls = fls64(frequency); |
| sec_fls = 30; |
| |
| /* |
| * We got @count in @nsec, with a target of sample_freq HZ |
| * the target period becomes: |
| * |
| * @count * 10^9 |
| * period = ------------------- |
| * @nsec * sample_freq |
| * |
| */ |
| |
| /* |
| * Reduce accuracy by one bit such that @a and @b converge |
| * to a similar magnitude. |
| */ |
| #define REDUCE_FLS(a, b) \ |
| do { \ |
| if (a##_fls > b##_fls) { \ |
| a >>= 1; \ |
| a##_fls--; \ |
| } else { \ |
| b >>= 1; \ |
| b##_fls--; \ |
| } \ |
| } while (0) |
| |
| /* |
| * Reduce accuracy until either term fits in a u64, then proceed with |
| * the other, so that finally we can do a u64/u64 division. |
| */ |
| while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { |
| REDUCE_FLS(nsec, frequency); |
| REDUCE_FLS(sec, count); |
| } |
| |
| if (count_fls + sec_fls > 64) { |
| divisor = nsec * frequency; |
| |
| while (count_fls + sec_fls > 64) { |
| REDUCE_FLS(count, sec); |
| divisor >>= 1; |
| } |
| |
| dividend = count * sec; |
| } else { |
| dividend = count * sec; |
| |
| while (nsec_fls + frequency_fls > 64) { |
| REDUCE_FLS(nsec, frequency); |
| dividend >>= 1; |
| } |
| |
| divisor = nsec * frequency; |
| } |
| |
| if (!divisor) |
| return dividend; |
| |
| return div64_u64(dividend, divisor); |
| } |
| |
| static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| s64 period, sample_period; |
| s64 delta; |
| |
| period = perf_calculate_period(event, nsec, count); |
| |
| delta = (s64)(period - hwc->sample_period); |
| delta = (delta + 7) / 8; /* low pass filter */ |
| |
| sample_period = hwc->sample_period + delta; |
| |
| if (!sample_period) |
| sample_period = 1; |
| |
| hwc->sample_period = sample_period; |
| |
| if (local64_read(&hwc->period_left) > 8*sample_period) { |
| event->pmu->stop(event, PERF_EF_UPDATE); |
| local64_set(&hwc->period_left, 0); |
| event->pmu->start(event, PERF_EF_RELOAD); |
| } |
| } |
| |
| static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period) |
| { |
| struct perf_event *event; |
| struct hw_perf_event *hwc; |
| u64 interrupts, now; |
| s64 delta; |
| |
| raw_spin_lock(&ctx->lock); |
| list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
| if (event->state != PERF_EVENT_STATE_ACTIVE) |
| continue; |
| |
| if (!event_filter_match(event)) |
| continue; |
| |
| hwc = &event->hw; |
| |
| interrupts = hwc->interrupts; |
| hwc->interrupts = 0; |
| |
| /* |
| * unthrottle events on the tick |
| */ |
| if (interrupts == MAX_INTERRUPTS) { |
| perf_log_throttle(event, 1); |
| event->pmu->start(event, 0); |
| } |
| |
| if (!event->attr.freq || !event->attr.sample_freq) |
| continue; |
| |
| event->pmu->read(event); |
| now = local64_read(&event->count); |
| delta = now - hwc->freq_count_stamp; |
| hwc->freq_count_stamp = now; |
| |
| if (delta > 0) |
| perf_adjust_period(event, period, delta); |
| } |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Round-robin a context's events: |
| */ |
| static void rotate_ctx(struct perf_event_context *ctx) |
| { |
| raw_spin_lock(&ctx->lock); |
| |
| /* |
| * Rotate the first entry last of non-pinned groups. Rotation might be |
| * disabled by the inheritance code. |
| */ |
| if (!ctx->rotate_disable) |
| list_rotate_left(&ctx->flexible_groups); |
| |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized |
| * because they're strictly cpu affine and rotate_start is called with IRQs |
| * disabled, while rotate_context is called from IRQ context. |
| */ |
| static void perf_rotate_context(struct perf_cpu_context *cpuctx) |
| { |
| u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC; |
| struct perf_event_context *ctx = NULL; |
| int rotate = 0, remove = 1; |
| |
| if (cpuctx->ctx.nr_events) { |
| remove = 0; |
| if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) |
| rotate = 1; |
| } |
| |
| ctx = cpuctx->task_ctx; |
| if (ctx && ctx->nr_events) { |
| remove = 0; |
| if (ctx->nr_events != ctx->nr_active) |
| rotate = 1; |
| } |
| |
| perf_pmu_disable(cpuctx->ctx.pmu); |
| perf_ctx_adjust_freq(&cpuctx->ctx, interval); |
| if (ctx) |
| perf_ctx_adjust_freq(ctx, interval); |
| |
| if (!rotate) |
| goto done; |
| |
| cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); |
| if (ctx) |
| task_ctx_sched_out(ctx, EVENT_FLEXIBLE); |
| |
| rotate_ctx(&cpuctx->ctx); |
| if (ctx) |
| rotate_ctx(ctx); |
| |
| cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE); |
| if (ctx) |
| task_ctx_sched_in(ctx, EVENT_FLEXIBLE); |
| |
| done: |
| if (remove) |
| list_del_init(&cpuctx->rotation_list); |
| |
| perf_pmu_enable(cpuctx->ctx.pmu); |
| } |
| |
| void perf_event_task_tick(void) |
| { |
| struct list_head *head = &__get_cpu_var(rotation_list); |
| struct perf_cpu_context *cpuctx, *tmp; |
| |
| WARN_ON(!irqs_disabled()); |
| |
| list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { |
| if (cpuctx->jiffies_interval == 1 || |
| !(jiffies % cpuctx->jiffies_interval)) |
| perf_rotate_context(cpuctx); |
| } |
| } |
| |
| static int event_enable_on_exec(struct perf_event *event, |
| struct perf_event_context *ctx) |
| { |
| if (!event->attr.enable_on_exec) |
| return 0; |
| |
| event->attr.enable_on_exec = 0; |
| if (event->state >= PERF_EVENT_STATE_INACTIVE) |
| return 0; |
| |
| __perf_event_mark_enabled(event, ctx); |
| |
| return 1; |
| } |
| |
| /* |
| * Enable all of a task's events that have been marked enable-on-exec. |
| * This expects task == current. |
| */ |
| static void perf_event_enable_on_exec(struct perf_event_context *ctx) |
| { |
| struct perf_event *event; |
| unsigned long flags; |
| int enabled = 0; |
| int ret; |
| |
| local_irq_save(flags); |
| if (!ctx || !ctx->nr_events) |
| goto out; |
| |
| task_ctx_sched_out(ctx, EVENT_ALL); |
| |
| raw_spin_lock(&ctx->lock); |
| |
| list_for_each_entry(event, &ctx->pinned_groups, group_entry) { |
| ret = event_enable_on_exec(event, ctx); |
| if (ret) |
| enabled = 1; |
| } |
| |
| list_for_each_entry(event, &ctx->flexible_groups, group_entry) { |
| ret = event_enable_on_exec(event, ctx); |
| if (ret) |
| enabled = 1; |
| } |
| |
| /* |
| * Unclone this context if we enabled any event. |
| */ |
| if (enabled) |
| unclone_ctx(ctx); |
| |
| raw_spin_unlock(&ctx->lock); |
| |
| perf_event_context_sched_in(ctx); |
| out: |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Cross CPU call to read the hardware event |
| */ |
| static void __perf_event_read(void *info) |
| { |
| struct perf_event *event = info; |
| struct perf_event_context *ctx = event->ctx; |
| struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); |
| |
| /* |
| * If this is a task context, we need to check whether it is |
| * the current task context of this cpu. If not it has been |
| * scheduled out before the smp call arrived. In that case |
| * event->count would have been updated to a recent sample |
| * when the event was scheduled out. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) |
| return; |
| |
| raw_spin_lock(&ctx->lock); |
| update_context_time(ctx); |
| update_event_times(event); |
| raw_spin_unlock(&ctx->lock); |
| |
| event->pmu->read(event); |
| } |
| |
| static inline u64 perf_event_count(struct perf_event *event) |
| { |
| return local64_read(&event->count) + atomic64_read(&event->child_count); |
| } |
| |
| static u64 perf_event_read(struct perf_event *event) |
| { |
| /* |
| * If event is enabled and currently active on a CPU, update the |
| * value in the event structure: |
| */ |
| if (event->state == PERF_EVENT_STATE_ACTIVE) { |
| smp_call_function_single(event->oncpu, |
| __perf_event_read, event, 1); |
| } else if (event->state == PERF_EVENT_STATE_INACTIVE) { |
| struct perf_event_context *ctx = event->ctx; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&ctx->lock, flags); |
| /* |
| * may read while context is not active |
| * (e.g., thread is blocked), in that case |
| * we cannot update context time |
| */ |
| if (ctx->is_active) |
| update_context_time(ctx); |
| update_event_times(event); |
| raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| } |
| |
| return perf_event_count(event); |
| } |
| |
| /* |
| * Callchain support |
| */ |
| |
| struct callchain_cpus_entries { |
| struct rcu_head rcu_head; |
| struct perf_callchain_entry *cpu_entries[0]; |
| }; |
| |
| static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]); |
| static atomic_t nr_callchain_events; |
| static DEFINE_MUTEX(callchain_mutex); |
| struct callchain_cpus_entries *callchain_cpus_entries; |
| |
| |
| __weak void perf_callchain_kernel(struct perf_callchain_entry *entry, |
| struct pt_regs *regs) |
| { |
| } |
| |
| __weak void perf_callchain_user(struct perf_callchain_entry *entry, |
| struct pt_regs *regs) |
| { |
| } |
| |
| static void release_callchain_buffers_rcu(struct rcu_head *head) |
| { |
| struct callchain_cpus_entries *entries; |
| int cpu; |
| |
| entries = container_of(head, struct callchain_cpus_entries, rcu_head); |
| |
| for_each_possible_cpu(cpu) |
| kfree(entries->cpu_entries[cpu]); |
| |
| kfree(entries); |
| } |
| |
| static void release_callchain_buffers(void) |
| { |
| struct callchain_cpus_entries *entries; |
| |
| entries = callchain_cpus_entries; |
| rcu_assign_pointer(callchain_cpus_entries, NULL); |
| call_rcu(&entries->rcu_head, release_callchain_buffers_rcu); |
| } |
| |
| static int alloc_callchain_buffers(void) |
| { |
| int cpu; |
| int size; |
| struct callchain_cpus_entries *entries; |
| |
| /* |
| * We can't use the percpu allocation API for data that can be |
| * accessed from NMI. Use a temporary manual per cpu allocation |
| * until that gets sorted out. |
| */ |
| size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) * |
| num_possible_cpus(); |
| |
| entries = kzalloc(size, GFP_KERNEL); |
| if (!entries) |
| return -ENOMEM; |
| |
| size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS; |
| |
| for_each_possible_cpu(cpu) { |
| entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL, |
| cpu_to_node(cpu)); |
| if (!entries->cpu_entries[cpu]) |
| goto fail; |
| } |
| |
| rcu_assign_pointer(callchain_cpus_entries, entries); |
| |
| return 0; |
| |
| fail: |
| for_each_possible_cpu(cpu) |
| kfree(entries->cpu_entries[cpu]); |
| kfree(entries); |
| |
| return -ENOMEM; |
| } |
| |
| static int get_callchain_buffers(void) |
| { |
| int err = 0; |
| int count; |
| |
| mutex_lock(&callchain_mutex); |
| |
| count = atomic_inc_return(&nr_callchain_events); |
| if (WARN_ON_ONCE(count < 1)) { |
| err = -EINVAL; |
| goto exit; |
| } |
| |
| if (count > 1) { |
| /* If the allocation failed, give up */ |
| if (!callchain_cpus_entries) |
| err = -ENOMEM; |
| goto exit; |
| } |
| |
| err = alloc_callchain_buffers(); |
| if (err) |
| release_callchain_buffers(); |
| exit: |
| mutex_unlock(&callchain_mutex); |
| |
| return err; |
| } |
| |
| static void put_callchain_buffers(void) |
| { |
| if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) { |
| release_callchain_buffers(); |
| mutex_unlock(&callchain_mutex); |
| } |
| } |
| |
| static int get_recursion_context(int *recursion) |
| { |
| int rctx; |
| |
| if (in_nmi()) |
| rctx = 3; |
| else if (in_irq()) |
| rctx = 2; |
| else if (in_softirq()) |
| rctx = 1; |
| else |
| rctx = 0; |
| |
| if (recursion[rctx]) |
| return -1; |
| |
| recursion[rctx]++; |
| barrier(); |
| |
| return rctx; |
| } |
| |
| static inline void put_recursion_context(int *recursion, int rctx) |
| { |
| barrier(); |
| recursion[rctx]--; |
| } |
| |
| static struct perf_callchain_entry *get_callchain_entry(int *rctx) |
| { |
| int cpu; |
| struct callchain_cpus_entries *entries; |
| |
| *rctx = get_recursion_context(__get_cpu_var(callchain_recursion)); |
| if (*rctx == -1) |
| return NULL; |
| |
| entries = rcu_dereference(callchain_cpus_entries); |
| if (!entries) |
| return NULL; |
| |
| cpu = smp_processor_id(); |
| |
| return &entries->cpu_entries[cpu][*rctx]; |
| } |
| |
| static void |
| put_callchain_entry(int rctx) |
| { |
| put_recursion_context(__get_cpu_var(callchain_recursion), rctx); |
| } |
| |
| static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) |
| { |
| int rctx; |
| struct perf_callchain_entry *entry; |
| |
| |
| entry = get_callchain_entry(&rctx); |
| if (rctx == -1) |
| return NULL; |
| |
| if (!entry) |
| goto exit_put; |
| |
| entry->nr = 0; |
| |
| if (!user_mode(regs)) { |
| perf_callchain_store(entry, PERF_CONTEXT_KERNEL); |
| perf_callchain_kernel(entry, regs); |
| if (current->mm) |
| regs = task_pt_regs(current); |
| else |
| regs = NULL; |
| } |
| |
| if (regs) { |
| perf_callchain_store(entry, PERF_CONTEXT_USER); |
| perf_callchain_user(entry, regs); |
| } |
| |
| exit_put: |
| put_callchain_entry(rctx); |
| |
| return entry; |
| } |
| |
| /* |
| * Initialize the perf_event context in a task_struct: |
| */ |
| static void __perf_event_init_context(struct perf_event_context *ctx) |
| { |
| raw_spin_lock_init(&ctx->lock); |
| mutex_init(&ctx->mutex); |
| INIT_LIST_HEAD(&ctx->pinned_groups); |
| INIT_LIST_HEAD(&ctx->flexible_groups); |
| INIT_LIST_HEAD(&ctx->event_list); |
| atomic_set(&ctx->refcount, 1); |
| } |
| |
| static struct perf_event_context * |
| alloc_perf_context(struct pmu *pmu, struct task_struct *task) |
| { |
| struct perf_event_context *ctx; |
| |
| ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); |
| if (!ctx) |
| return NULL; |
| |
| __perf_event_init_context(ctx); |
| if (task) { |
| ctx->task = task; |
| get_task_struct(task); |
| } |
| ctx->pmu = pmu; |
| |
| return ctx; |
| } |
| |
| static struct task_struct * |
| find_lively_task_by_vpid(pid_t vpid) |
| { |
| struct task_struct *task; |
| int err; |
| |
| rcu_read_lock(); |
| if (!vpid) |
| task = current; |
| else |
| task = find_task_by_vpid(vpid); |
| if (task) |
| get_task_struct(task); |
| rcu_read_unlock(); |
| |
| if (!task) |
| return ERR_PTR(-ESRCH); |
| |
| /* Reuse ptrace permission checks for now. */ |
| err = -EACCES; |
| if (!ptrace_may_access(task, PTRACE_MODE_READ)) |
| goto errout; |
| |
| return task; |
| errout: |
| put_task_struct(task); |
| return ERR_PTR(err); |
| |
| } |
| |
| static struct perf_event_context * |
| find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) |
| { |
| struct perf_event_context *ctx; |
| struct perf_cpu_context *cpuctx; |
| unsigned long flags; |
| int ctxn, err; |
| |
| if (!task) { |
| /* Must be root to operate on a CPU event: */ |
| if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) |
| return ERR_PTR(-EACCES); |
| |
| /* |
| * We could be clever and allow to attach a event to an |
| * offline CPU and activate it when the CPU comes up, but |
| * that's for later. |
| */ |
| if (!cpu_online(cpu)) |
| return ERR_PTR(-ENODEV); |
| |
| cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); |
| ctx = &cpuctx->ctx; |
| get_ctx(ctx); |
| |
| return ctx; |
| } |
| |
| err = -EINVAL; |
| ctxn = pmu->task_ctx_nr; |
| if (ctxn < 0) |
| goto errout; |
| |
| retry: |
| ctx = perf_lock_task_context(task, ctxn, &flags); |
| if (ctx) { |
| unclone_ctx(ctx); |
| raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| } |
| |
| if (!ctx) { |
| ctx = alloc_perf_context(pmu, task); |
| err = -ENOMEM; |
| if (!ctx) |
| goto errout; |
| |
| get_ctx(ctx); |
| |
| err = 0; |
| mutex_lock(&task->perf_event_mutex); |
| /* |
| * If it has already passed perf_event_exit_task(). |
| * we must see PF_EXITING, it takes this mutex too. |
| */ |
| if (task->flags & PF_EXITING) |
| err = -ESRCH; |
| else if (task->perf_event_ctxp[ctxn]) |
| err = -EAGAIN; |
| else |
| rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); |
| mutex_unlock(&task->perf_event_mutex); |
| |
| if (unlikely(err)) { |
| put_task_struct(task); |
| kfree(ctx); |
| |
| if (err == -EAGAIN) |
| goto retry; |
| goto errout; |
| } |
| } |
| |
| return ctx; |
| |
| errout: |
| return ERR_PTR(err); |
| } |
| |
| static void perf_event_free_filter(struct perf_event *event); |
| |
| static void free_event_rcu(struct rcu_head *head) |
| { |
| struct perf_event *event; |
| |
| event = container_of(head, struct perf_event, rcu_head); |
| if (event->ns) |
| put_pid_ns(event->ns); |
| perf_event_free_filter(event); |
| kfree(event); |
| } |
| |
| static void perf_buffer_put(struct perf_buffer *buffer); |
| |
| static void free_event(struct perf_event *event) |
| { |
| irq_work_sync(&event->pending); |
| |
| if (!event->parent) { |
| if (event->attach_state & PERF_ATTACH_TASK) |
| jump_label_dec(&perf_task_events); |
| if (event->attr.mmap || event->attr.mmap_data) |
| atomic_dec(&nr_mmap_events); |
| if (event->attr.comm) |
| atomic_dec(&nr_comm_events); |
| if (event->attr.task) |
| atomic_dec(&nr_task_events); |
| if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) |
| put_callchain_buffers(); |
| } |
| |
| if (event->buffer) { |
| perf_buffer_put(event->buffer); |
| event->buffer = NULL; |
| } |
| |
| if (event->destroy) |
| event->destroy(event); |
| |
| if (event->ctx) |
| put_ctx(event->ctx); |
| |
| call_rcu(&event->rcu_head, free_event_rcu); |
| } |
| |
| int perf_event_release_kernel(struct perf_event *event) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| |
| /* |
| * Remove from the PMU, can't get re-enabled since we got |
| * here because the last ref went. |
| */ |
| perf_event_disable(event); |
| |
| WARN_ON_ONCE(ctx->parent_ctx); |
| /* |
| * There are two ways this annotation is useful: |
| * |
| * 1) there is a lock recursion from perf_event_exit_task |
| * see the comment there. |
| * |
| * 2) there is a lock-inversion with mmap_sem through |
| * perf_event_read_group(), which takes faults while |
| * holding ctx->mutex, however this is called after |
| * the last filedesc died, so there is no possibility |
| * to trigger the AB-BA case. |
| */ |
| mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); |
| raw_spin_lock_irq(&ctx->lock); |
| perf_group_detach(event); |
| list_del_event(event, ctx); |
| raw_spin_unlock_irq(&ctx->lock); |
| mutex_unlock(&ctx->mutex); |
| |
| free_event(event); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(perf_event_release_kernel); |
| |
| /* |
| * Called when the last reference to the file is gone. |
| */ |
| static int perf_release(struct inode *inode, struct file *file) |
| { |
| struct perf_event *event = file->private_data; |
| struct task_struct *owner; |
| |
| file->private_data = NULL; |
| |
| rcu_read_lock(); |
| owner = ACCESS_ONCE(event->owner); |
| /* |
| * Matches the smp_wmb() in perf_event_exit_task(). If we observe |
| * !owner it means the list deletion is complete and we can indeed |
| * free this event, otherwise we need to serialize on |
| * owner->perf_event_mutex. |
| */ |
| smp_read_barrier_depends(); |
| if (owner) { |
| /* |
| * Since delayed_put_task_struct() also drops the last |
| * task reference we can safely take a new reference |
| * while holding the rcu_read_lock(). |
| */ |
| get_task_struct(owner); |
| } |
| rcu_read_unlock(); |
| |
| if (owner) { |
| mutex_lock(&owner->perf_event_mutex); |
| /* |
| * We have to re-check the event->owner field, if it is cleared |
| * we raced with perf_event_exit_task(), acquiring the mutex |
| * ensured they're done, and we can proceed with freeing the |
| * event. |
| */ |
| if (event->owner) |
| list_del_init(&event->owner_entry); |
| mutex_unlock(&owner->perf_event_mutex); |
| put_task_struct(owner); |
| } |
| |
| return perf_event_release_kernel(event); |
| } |
| |
| u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) |
| { |
| struct perf_event *child; |
| u64 total = 0; |
| |
| *enabled = 0; |
| *running = 0; |
| |
| mutex_lock(&event->child_mutex); |
| total += perf_event_read(event); |
| *enabled += event->total_time_enabled + |
| atomic64_read(&event->child_total_time_enabled); |
| *running += event->total_time_running + |
| atomic64_read(&event->child_total_time_running); |
| |
| list_for_each_entry(child, &event->child_list, child_list) { |
| total += perf_event_read(child); |
| *enabled += child->total_time_enabled; |
| *running += child->total_time_running; |
| } |
| mutex_unlock(&event->child_mutex); |
| |
| return total; |
| } |
| EXPORT_SYMBOL_GPL(perf_event_read_value); |
| |
| static int perf_event_read_group(struct perf_event *event, |
| u64 read_format, char __user *buf) |
| { |
| struct perf_event *leader = event->group_leader, *sub; |
| int n = 0, size = 0, ret = -EFAULT; |
| struct perf_event_context *ctx = leader->ctx; |
| u64 values[5]; |
| u64 count, enabled, running; |
| |
| mutex_lock(&ctx->mutex); |
| count = perf_event_read_value(leader, &enabled, &running); |
| |
| values[n++] = 1 + leader->nr_siblings; |
| if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
| values[n++] = enabled; |
| if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
| values[n++] = running; |
| values[n++] = count; |
| if (read_format & PERF_FORMAT_ID) |
| values[n++] = primary_event_id(leader); |
| |
| size = n * sizeof(u64); |
| |
| if (copy_to_user(buf, values, size)) |
| goto unlock; |
| |
| ret = size; |
| |
| list_for_each_entry(sub, &leader->sibling_list, group_entry) { |
| n = 0; |
| |
| values[n++] = perf_event_read_value(sub, &enabled, &running); |
| if (read_format & PERF_FORMAT_ID) |
| values[n++] = primary_event_id(sub); |
| |
| size = n * sizeof(u64); |
| |
| if (copy_to_user(buf + ret, values, size)) { |
| ret = -EFAULT; |
| goto unlock; |
| } |
| |
| ret += size; |
| } |
| unlock: |
| mutex_unlock(&ctx->mutex); |
| |
| return ret; |
| } |
| |
| static int perf_event_read_one(struct perf_event *event, |
| u64 read_format, char __user *buf) |
| { |
| u64 enabled, running; |
| u64 values[4]; |
| int n = 0; |
| |
| values[n++] = perf_event_read_value(event, &enabled, &running); |
| if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
| values[n++] = enabled; |
| if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
| values[n++] = running; |
| if (read_format & PERF_FORMAT_ID) |
| values[n++] = primary_event_id(event); |
| |
| if (copy_to_user(buf, values, n * sizeof(u64))) |
| return -EFAULT; |
| |
| return n * sizeof(u64); |
| } |
| |
| /* |
| * Read the performance event - simple non blocking version for now |
| */ |
| static ssize_t |
| perf_read_hw(struct perf_event *event, char __user *buf, size_t count) |
| { |
| u64 read_format = event->attr.read_format; |
| int ret; |
| |
| /* |
| * Return end-of-file for a read on a event that is in |
| * error state (i.e. because it was pinned but it couldn't be |
| * scheduled on to the CPU at some point). |
| */ |
| if (event->state == PERF_EVENT_STATE_ERROR) |
| return 0; |
| |
| if (count < event->read_size) |
| return -ENOSPC; |
| |
| WARN_ON_ONCE(event->ctx->parent_ctx); |
| if (read_format & PERF_FORMAT_GROUP) |
| ret = perf_event_read_group(event, read_format, buf); |
| else |
| ret = perf_event_read_one(event, read_format, buf); |
| |
| return ret; |
| } |
| |
| static ssize_t |
| perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) |
| { |
| struct perf_event *event = file->private_data; |
| |
| return perf_read_hw(event, buf, count); |
| } |
| |
| static unsigned int perf_poll(struct file *file, poll_table *wait) |
| { |
| struct perf_event *event = file->private_data; |
| struct perf_buffer *buffer; |
| unsigned int events = POLL_HUP; |
| |
| rcu_read_lock(); |
| buffer = rcu_dereference(event->buffer); |
| if (buffer) |
| events = atomic_xchg(&buffer->poll, 0); |
| rcu_read_unlock(); |
| |
| poll_wait(file, &event->waitq, wait); |
| |
| return events; |
| } |
| |
| static void perf_event_reset(struct perf_event *event) |
| { |
| (void)perf_event_read(event); |
| local64_set(&event->count, 0); |
| perf_event_update_userpage(event); |
| } |
| |
| /* |
| * Holding the top-level event's child_mutex means that any |
| * descendant process that has inherited this event will block |
| * in sync_child_event if it goes to exit, thus satisfying the |
| * task existence requirements of perf_event_enable/disable. |
| */ |
| static void perf_event_for_each_child(struct perf_event *event, |
| void (*func)(struct perf_event *)) |
| { |
| struct perf_event *child; |
| |
| WARN_ON_ONCE(event->ctx->parent_ctx); |
| mutex_lock(&event->child_mutex); |
| func(event); |
| list_for_each_entry(child, &event->child_list, child_list) |
| func(child); |
| mutex_unlock(&event->child_mutex); |
| } |
| |
| static void perf_event_for_each(struct perf_event *event, |
| void (*func)(struct perf_event *)) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| struct perf_event *sibling; |
| |
| WARN_ON_ONCE(ctx->parent_ctx); |
| mutex_lock(&ctx->mutex); |
| event = event->group_leader; |
| |
| perf_event_for_each_child(event, func); |
| func(event); |
| list_for_each_entry(sibling, &event->sibling_list, group_entry) |
| perf_event_for_each_child(event, func); |
| mutex_unlock(&ctx->mutex); |
| } |
| |
| static int perf_event_period(struct perf_event *event, u64 __user *arg) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| int ret = 0; |
| u64 value; |
| |
| if (!is_sampling_event(event)) |
| return -EINVAL; |
| |
| if (copy_from_user(&value, arg, sizeof(value))) |
| return -EFAULT; |
| |
| if (!value) |
| return -EINVAL; |
| |
| raw_spin_lock_irq(&ctx->lock); |
| if (event->attr.freq) { |
| if (value > sysctl_perf_event_sample_rate) { |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| event->attr.sample_freq = value; |
| } else { |
| event->attr.sample_period = value; |
| event->hw.sample_period = value; |
| } |
| unlock: |
| raw_spin_unlock_irq(&ctx->lock); |
| |
| return ret; |
| } |
| |
| static const struct file_operations perf_fops; |
| |
| static struct perf_event *perf_fget_light(int fd, int *fput_needed) |
| { |
| struct file *file; |
| |
| file = fget_light(fd, fput_needed); |
| if (!file) |
| return ERR_PTR(-EBADF); |
| |
| if (file->f_op != &perf_fops) { |
| fput_light(file, *fput_needed); |
| *fput_needed = 0; |
| return ERR_PTR(-EBADF); |
| } |
| |
| return file->private_data; |
| } |
| |
| static int perf_event_set_output(struct perf_event *event, |
| struct perf_event *output_event); |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg); |
| |
| static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct perf_event *event = file->private_data; |
| void (*func)(struct perf_event *); |
| u32 flags = arg; |
| |
| switch (cmd) { |
| case PERF_EVENT_IOC_ENABLE: |
| func = perf_event_enable; |
| break; |
| case PERF_EVENT_IOC_DISABLE: |
| func = perf_event_disable; |
| break; |
| case PERF_EVENT_IOC_RESET: |
| func = perf_event_reset; |
| break; |
| |
| case PERF_EVENT_IOC_REFRESH: |
| return perf_event_refresh(event, arg); |
| |
| case PERF_EVENT_IOC_PERIOD: |
| return perf_event_period(event, (u64 __user *)arg); |
| |
| case PERF_EVENT_IOC_SET_OUTPUT: |
| { |
| struct perf_event *output_event = NULL; |
| int fput_needed = 0; |
| int ret; |
| |
| if (arg != -1) { |
| output_event = perf_fget_light(arg, &fput_needed); |
| if (IS_ERR(output_event)) |
| return PTR_ERR(output_event); |
| } |
| |
| ret = perf_event_set_output(event, output_event); |
| if (output_event) |
| fput_light(output_event->filp, fput_needed); |
| |
| return ret; |
| } |
| |
| case PERF_EVENT_IOC_SET_FILTER: |
| return perf_event_set_filter(event, (void __user *)arg); |
| |
| default: |
| return -ENOTTY; |
| } |
| |
| if (flags & PERF_IOC_FLAG_GROUP) |
| perf_event_for_each(event, func); |
| else |
| perf_event_for_each_child(event, func); |
| |
| return 0; |
| } |
| |
| int perf_event_task_enable(void) |
| { |
| struct perf_event *event; |
| |
| mutex_lock(¤t->perf_event_mutex); |
| list_for_each_entry(event, ¤t->perf_event_list, owner_entry) |
| perf_event_for_each_child(event, perf_event_enable); |
| mutex_unlock(¤t->perf_event_mutex); |
| |
| return 0; |
| } |
| |
| int perf_event_task_disable(void) |
| { |
| struct perf_event *event; |
| |
| mutex_lock(¤t->perf_event_mutex); |
| list_for_each_entry(event, ¤t->perf_event_list, owner_entry) |
| perf_event_for_each_child(event, perf_event_disable); |
| mutex_unlock(¤t->perf_event_mutex); |
| |
| return 0; |
| } |
| |
| #ifndef PERF_EVENT_INDEX_OFFSET |
| # define PERF_EVENT_INDEX_OFFSET 0 |
| #endif |
| |
| static int perf_event_index(struct perf_event *event) |
| { |
| if (event->hw.state & PERF_HES_STOPPED) |
| return 0; |
| |
| if (event->state != PERF_EVENT_STATE_ACTIVE) |
| return 0; |
| |
| return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; |
| } |
| |
| /* |
| * Callers need to ensure there can be no nesting of this function, otherwise |
| * the seqlock logic goes bad. We can not serialize this because the arch |
| * code calls this from NMI context. |
| */ |
| void perf_event_update_userpage(struct perf_event *event) |
| { |
| struct perf_event_mmap_page *userpg; |
| struct perf_buffer *buffer; |
| |
| rcu_read_lock(); |
| buffer = rcu_dereference(event->buffer); |
| if (!buffer) |
| goto unlock; |
| |
| userpg = buffer->user_page; |
| |
| /* |
| * Disable preemption so as to not let the corresponding user-space |
| * spin too long if we get preempted. |
| */ |
| preempt_disable(); |
| ++userpg->lock; |
| barrier(); |
| userpg->index = perf_event_index(event); |
| userpg->offset = perf_event_count(event); |
| if (event->state == PERF_EVENT_STATE_ACTIVE) |
| userpg->offset -= local64_read(&event->hw.prev_count); |
| |
| userpg->time_enabled = event->total_time_enabled + |
| atomic64_read(&event->child_total_time_enabled); |
| |
| userpg->time_running = event->total_time_running + |
| atomic64_read(&event->child_total_time_running); |
| |
| barrier(); |
| ++userpg->lock; |
| preempt_enable(); |
| unlock: |
| rcu_read_unlock(); |
| } |
| |
| static unsigned long perf_data_size(struct perf_buffer *buffer); |
| |
| static void |
| perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags) |
| { |
| long max_size = perf_data_size(buffer); |
| |
| if (watermark) |
| buffer->watermark = min(max_size, watermark); |
| |
| if (!buffer->watermark) |
| buffer->watermark = max_size / 2; |
| |
| if (flags & PERF_BUFFER_WRITABLE) |
| buffer->writable = 1; |
| |
| atomic_set(&buffer->refcount, 1); |
| } |
| |
| #ifndef CONFIG_PERF_USE_VMALLOC |
| |
| /* |
| * Back perf_mmap() with regular GFP_KERNEL-0 pages. |
| */ |
| |
| static struct page * |
| perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff) |
| { |
| if (pgoff > buffer->nr_pages) |
| return NULL; |
| |
| if (pgoff == 0) |
| return virt_to_page(buffer->user_page); |
| |
| return virt_to_page(buffer->data_pages[pgoff - 1]); |
| } |
| |
| static void *perf_mmap_alloc_page(int cpu) |
| { |
| struct page *page; |
| int node; |
| |
| node = (cpu == -1) ? cpu : cpu_to_node(cpu); |
| page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); |
| if (!page) |
| return NULL; |
| |
| return page_address(page); |
| } |
| |
| static struct perf_buffer * |
| perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags) |
| { |
| struct perf_buffer *buffer; |
| unsigned long size; |
| int i; |
| |
| size = sizeof(struct perf_buffer); |
| size += nr_pages * sizeof(void *); |
| |
| buffer = kzalloc(size, GFP_KERNEL); |
| if (!buffer) |
| goto fail; |
| |
| buffer->user_page = perf_mmap_alloc_page(cpu); |
| if (!buffer->user_page) |
| goto fail_user_page; |
| |
| for (i = 0; i < nr_pages; i++) { |
| buffer->data_pages[i] = perf_mmap_alloc_page(cpu); |
| if (!buffer->data_pages[i]) |
| goto fail_data_pages; |
| } |
| |
| buffer->nr_pages = nr_pages; |
| |
| perf_buffer_init(buffer, watermark, flags); |
| |
| return buffer; |
| |
| fail_data_pages: |
| for (i--; i >= 0; i--) |
| free_page((unsigned long)buffer->data_pages[i]); |
| |
| free_page((unsigned long)buffer->user_page); |
| |
| fail_user_page: |
| kfree(buffer); |
| |
| fail: |
| return NULL; |
| } |
| |
| static void perf_mmap_free_page(unsigned long addr) |
| { |
| struct page *page = virt_to_page((void *)addr); |
| |
| page->mapping = NULL; |
| __free_page(page); |
| } |
| |
| static void perf_buffer_free(struct perf_buffer *buffer) |
| { |
| int i; |
| |
| perf_mmap_free_page((unsigned long)buffer->user_page); |
| for (i = 0; i < buffer->nr_pages; i++) |
| perf_mmap_free_page((unsigned long)buffer->data_pages[i]); |
| kfree(buffer); |
| } |
| |
| static inline int page_order(struct perf_buffer *buffer) |
| { |
| return 0; |
| } |
| |
| #else |
| |
| /* |
| * Back perf_mmap() with vmalloc memory. |
| * |
| * Required for architectures that have d-cache aliasing issues. |
| */ |
| |
| static inline int page_order(struct perf_buffer *buffer) |
| { |
| return buffer->page_order; |
| } |
| |
| static struct page * |
| perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff) |
| { |
| if (pgoff > (1UL << page_order(buffer))) |
| return NULL; |
| |
| return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE); |
| } |
| |
| static void perf_mmap_unmark_page(void *addr) |
| { |
| struct page *page = vmalloc_to_page(addr); |
| |
| page->mapping = NULL; |
| } |
| |
| static void perf_buffer_free_work(struct work_struct *work) |
| { |
| struct perf_buffer *buffer; |
| void *base; |
| int i, nr; |
| |
| buffer = container_of(work, struct perf_buffer, work); |
| nr = 1 << page_order(buffer); |
| |
| base = buffer->user_page; |
| for (i = 0; i < nr + 1; i++) |
| perf_mmap_unmark_page(base + (i * PAGE_SIZE)); |
| |
| vfree(base); |
| kfree(buffer); |
| } |
| |
| static void perf_buffer_free(struct perf_buffer *buffer) |
| { |
| schedule_work(&buffer->work); |
| } |
| |
| static struct perf_buffer * |
| perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags) |
| { |
| struct perf_buffer *buffer; |
| unsigned long size; |
| void *all_buf; |
| |
| size = sizeof(struct perf_buffer); |
| size += sizeof(void *); |
| |
| buffer = kzalloc(size, GFP_KERNEL); |
| if (!buffer) |
| goto fail; |
| |
| INIT_WORK(&buffer->work, perf_buffer_free_work); |
| |
| all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); |
| if (!all_buf) |
| goto fail_all_buf; |
| |
| buffer->user_page = all_buf; |
| buffer->data_pages[0] = all_buf + PAGE_SIZE; |
| buffer->page_order = ilog2(nr_pages); |
| buffer->nr_pages = 1; |
| |
| perf_buffer_init(buffer, watermark, flags); |
| |
| return buffer; |
| |
| fail_all_buf: |
| kfree(buffer); |
| |
| fail: |
| return NULL; |
| } |
| |
| #endif |
| |
| static unsigned long perf_data_size(struct perf_buffer *buffer) |
| { |
| return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer)); |
| } |
| |
| static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
| { |
| struct perf_event *event = vma->vm_file->private_data; |
| struct perf_buffer *buffer; |
| int ret = VM_FAULT_SIGBUS; |
| |
| if (vmf->flags & FAULT_FLAG_MKWRITE) { |
| if (vmf->pgoff == 0) |
| ret = 0; |
| return ret; |
| } |
| |
| rcu_read_lock(); |
| buffer = rcu_dereference(event->buffer); |
| if (!buffer) |
| goto unlock; |
| |
| if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) |
| goto unlock; |
| |
| vmf->page = perf_mmap_to_page(buffer, vmf->pgoff); |
| if (!vmf->page) |
| goto unlock; |
| |
| get_page(vmf->page); |
| vmf->page->mapping = vma->vm_file->f_mapping; |
| vmf->page->index = vmf->pgoff; |
| |
| ret = 0; |
| unlock: |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static void perf_buffer_free_rcu(struct rcu_head *rcu_head) |
| { |
| struct perf_buffer *buffer; |
| |
| buffer = container_of(rcu_head, struct perf_buffer, rcu_head); |
| perf_buffer_free(buffer); |
| } |
| |
| static struct perf_buffer *perf_buffer_get(struct perf_event *event) |
| { |
| struct perf_buffer *buffer; |
| |
| rcu_read_lock(); |
| buffer = rcu_dereference(event->buffer); |
| if (buffer) { |
| if (!atomic_inc_not_zero(&buffer->refcount)) |
| buffer = NULL; |
| } |
| rcu_read_unlock(); |
| |
| return buffer; |
| } |
| |
| static void perf_buffer_put(struct perf_buffer *buffer) |
| { |
| if (!atomic_dec_and_test(&buffer->refcount)) |
| return; |
| |
| call_rcu(&buffer->rcu_head, perf_buffer_free_rcu); |
| } |
| |
| static void perf_mmap_open(struct vm_area_struct *vma) |
| { |
| struct perf_event *event = vma->vm_file->private_data; |
| |
| atomic_inc(&event->mmap_count); |
| } |
| |
| static void perf_mmap_close(struct vm_area_struct *vma) |
| { |
| struct perf_event *event = vma->vm_file->private_data; |
| |
| if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { |
| unsigned long size = perf_data_size(event->buffer); |
| struct user_struct *user = event->mmap_user; |
| struct perf_buffer *buffer = event->buffer; |
| |
| atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); |
| vma->vm_mm->locked_vm -= event->mmap_locked; |
| rcu_assign_pointer(event->buffer, NULL); |
| mutex_unlock(&event->mmap_mutex); |
| |
| perf_buffer_put(buffer); |
| free_uid(user); |
| } |
| } |
| |
| static const struct vm_operations_struct perf_mmap_vmops = { |
| .open = perf_mmap_open, |
| .close = perf_mmap_close, |
| .fault = perf_mmap_fault, |
| .page_mkwrite = perf_mmap_fault, |
| }; |
| |
| static int perf_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| struct perf_event *event = file->private_data; |
| unsigned long user_locked, user_lock_limit; |
| struct user_struct *user = current_user(); |
| unsigned long locked, lock_limit; |
| struct perf_buffer *buffer; |
| unsigned long vma_size; |
| unsigned long nr_pages; |
| long user_extra, extra; |
| int ret = 0, flags = 0; |
| |
| /* |
| * Don't allow mmap() of inherited per-task counters. This would |
| * create a performance issue due to all children writing to the |
| * same buffer. |
| */ |
| if (event->cpu == -1 && event->attr.inherit) |
| return -EINVAL; |
| |
| if (!(vma->vm_flags & VM_SHARED)) |
| return -EINVAL; |
| |
| vma_size = vma->vm_end - vma->vm_start; |
| nr_pages = (vma_size / PAGE_SIZE) - 1; |
| |
| /* |
| * If we have buffer pages ensure they're a power-of-two number, so we |
| * can do bitmasks instead of modulo. |
| */ |
| if (nr_pages != 0 && !is_power_of_2(nr_pages)) |
| return -EINVAL; |
| |
| if (vma_size != PAGE_SIZE * (1 + nr_pages)) |
| return -EINVAL; |
| |
| if (vma->vm_pgoff != 0) |
| return -EINVAL; |
| |
| WARN_ON_ONCE(event->ctx->parent_ctx); |
| mutex_lock(&event->mmap_mutex); |
| if (event->buffer) { |
| if (event->buffer->nr_pages == nr_pages) |
| atomic_inc(&event->buffer->refcount); |
| else |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| user_extra = nr_pages + 1; |
| user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); |
| |
| /* |
| * Increase the limit linearly with more CPUs: |
| */ |
| user_lock_limit *= num_online_cpus(); |
| |
| user_locked = atomic_long_read(&user->locked_vm) + user_extra; |
| |
| extra = 0; |
| if (user_locked > user_lock_limit) |
| extra = user_locked - user_lock_limit; |
| |
| lock_limit = rlimit(RLIMIT_MEMLOCK); |
| lock_limit >>= PAGE_SHIFT; |
| locked = vma->vm_mm->locked_vm + extra; |
| |
| if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && |
| !capable(CAP_IPC_LOCK)) { |
| ret = -EPERM; |
| goto unlock; |
| } |
| |
| WARN_ON(event->buffer); |
| |
| if (vma->vm_flags & VM_WRITE) |
| flags |= PERF_BUFFER_WRITABLE; |
| |
| buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark, |
| event->cpu, flags); |
| if (!buffer) { |
| ret = -ENOMEM; |
| goto unlock; |
| } |
| rcu_assign_pointer(event->buffer, buffer); |
| |
| atomic_long_add(user_extra, &user->locked_vm); |
| event->mmap_locked = extra; |
| event->mmap_user = get_current_user(); |
| vma->vm_mm->locked_vm += event->mmap_locked; |
| |
| unlock: |
| if (!ret) |
| atomic_inc(&event->mmap_count); |
| mutex_unlock(&event->mmap_mutex); |
| |
| vma->vm_flags |= VM_RESERVED; |
| vma->vm_ops = &perf_mmap_vmops; |
| |
| return ret; |
| } |
| |
| static int perf_fasync(int fd, struct file *filp, int on) |
| { |
| struct inode *inode = filp->f_path.dentry->d_inode; |
| struct perf_event *event = filp->private_data; |
| int retval; |
| |
| mutex_lock(&inode->i_mutex); |
| retval = fasync_helper(fd, filp, on, &event->fasync); |
| mutex_unlock(&inode->i_mutex); |
| |
| if (retval < 0) |
| return retval; |
| |
| return 0; |
| } |
| |
| static const struct file_operations perf_fops = { |
| .llseek = no_llseek, |
| .release = perf_release, |
| .read = perf_read, |
| .poll = perf_poll, |
| .unlocked_ioctl = perf_ioctl, |
| .compat_ioctl = perf_ioctl, |
| .mmap = perf_mmap, |
| .fasync = perf_fasync, |
| }; |
| |
| /* |
| * Perf event wakeup |
| * |
| * If there's data, ensure we set the poll() state and publish everything |
| * to user-space before waking everybody up. |
| */ |
| |
| void perf_event_wakeup(struct perf_event *event) |
| { |
| wake_up_all(&event->waitq); |
| |
| if (event->pending_kill) { |
| kill_fasync(&event->fasync, SIGIO, event->pending_kill); |
| event->pending_kill = 0; |
| } |
| } |
| |
| static void perf_pending_event(struct irq_work *entry) |
| { |
| struct perf_event *event = container_of(entry, |
| struct perf_event, pending); |
| |
| if (event->pending_disable) { |
| event->pending_disable = 0; |
| __perf_event_disable(event); |
| } |
| |
| if (event->pending_wakeup) { |
| event->pending_wakeup = 0; |
| perf_event_wakeup(event); |
| } |
| } |
| |
| /* |
| * We assume there is only KVM supporting the callbacks. |
| * Later on, we might change it to a list if there is |
| * another virtualization implementation supporting the callbacks. |
| */ |
| struct perf_guest_info_callbacks *perf_guest_cbs; |
| |
| int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) |
| { |
| perf_guest_cbs = cbs; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); |
| |
| int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) |
| { |
| perf_guest_cbs = NULL; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); |
| |
| /* |
| * Output |
| */ |
| static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail, |
| unsigned long offset, unsigned long head) |
| { |
| unsigned long mask; |
| |
| if (!buffer->writable) |
| return true; |
| |
| mask = perf_data_size(buffer) - 1; |
| |
| offset = (offset - tail) & mask; |
| head = (head - tail) & mask; |
| |
| if ((int)(head - offset) < 0) |
| return false; |
| |
| return true; |
| } |
| |
| static void perf_output_wakeup(struct perf_output_handle *handle) |
| { |
| atomic_set(&handle->buffer->poll, POLL_IN); |
| |
| if (handle->nmi) { |
| handle->event->pending_wakeup = 1; |
| irq_work_queue(&handle->event->pending); |
| } else |
| perf_event_wakeup(handle->event); |
| } |
| |
| /* |
| * We need to ensure a later event_id doesn't publish a head when a former |
| * event isn't done writing. However since we need to deal with NMIs we |
| * cannot fully serialize things. |
| * |
| * We only publish the head (and generate a wakeup) when the outer-most |
| * event completes. |
| */ |
| static void perf_output_get_handle(struct perf_output_handle *handle) |
| { |
| struct perf_buffer *buffer = handle->buffer; |
| |
| preempt_disable(); |
| local_inc(&buffer->nest); |
| handle->wakeup = local_read(&buffer->wakeup); |
| } |
| |
| static void perf_output_put_handle(struct perf_output_handle *handle) |
| { |
| struct perf_buffer *buffer = handle->buffer; |
| unsigned long head; |
| |
| again: |
| head = local_read(&buffer->head); |
| |
| /* |
| * IRQ/NMI can happen here, which means we can miss a head update. |
| */ |
| |
| if (!local_dec_and_test(&buffer->nest)) |
| goto out; |
| |
| /* |
| * Publish the known good head. Rely on the full barrier implied |
| * by atomic_dec_and_test() order the buffer->head read and this |
| * write. |
| */ |
| buffer->user_page->data_head = head; |
| |
| /* |
| * Now check if we missed an update, rely on the (compiler) |
| * barrier in atomic_dec_and_test() to re-read buffer->head. |
| */ |
| if (unlikely(head != local_read(&buffer->head))) { |
| local_inc(&buffer->nest); |
| goto again; |
| } |
| |
| if (handle->wakeup != local_read(&buffer->wakeup)) |
| perf_output_wakeup(handle); |
| |
| out: |
| preempt_enable(); |
| } |
| |
| __always_inline void perf_output_copy(struct perf_output_handle *handle, |
| const void *buf, unsigned int len) |
| { |
| do { |
| unsigned long size = min_t(unsigned long, handle->size, len); |
| |
| memcpy(handle->addr, buf, size); |
| |
| len -= size; |
| handle->addr += size; |
| buf += size; |
| handle->size -= size; |
| if (!handle->size) { |
| struct perf_buffer *buffer = handle->buffer; |
| |
| handle->page++; |
| handle->page &= buffer->nr_pages - 1; |
| handle->addr = buffer->data_pages[handle->page]; |
| handle->size = PAGE_SIZE << page_order(buffer); |
| } |
| } while (len); |
| } |
| |
| static void __perf_event_header__init_id(struct perf_event_header *header, |
| struct perf_sample_data *data, |
| struct perf_event *event) |
| { |
| u64 sample_type = event->attr.sample_type; |
| |
| data->type = sample_type; |
| header->size += event->id_header_size; |
| |
| if (sample_type & PERF_SAMPLE_TID) { |
| /* namespace issues */ |
| data->tid_entry.pid = perf_event_pid(event, current); |
| data->tid_entry.tid = perf_event_tid(event, current); |
| } |
| |
| if (sample_type & PERF_SAMPLE_TIME) |
| data->time = perf_clock(); |
| |
| if (sample_type & PERF_SAMPLE_ID) |
| data->id = primary_event_id(event); |
| |
| if (sample_type & PERF_SAMPLE_STREAM_ID) |
| data->stream_id = event->id; |
| |
| if (sample_type & PERF_SAMPLE_CPU) { |
| data->cpu_entry.cpu = raw_smp_processor_id(); |
| data->cpu_entry.reserved = 0; |
| } |
| } |
| |
| static void perf_event_header__init_id(struct perf_event_header *header, |
| struct perf_sample_data *data, |
| struct perf_event *event) |
| { |
| if (event->attr.sample_id_all) |
| __perf_event_header__init_id(header, data, event); |
| } |
| |
| static void __perf_event__output_id_sample(struct perf_output_handle *handle, |
| struct perf_sample_data *data) |
| { |
| u64 sample_type = data->type; |
| |
| if (sample_type & PERF_SAMPLE_TID) |
| perf_output_put(handle, data->tid_entry); |
| |
| if (sample_type & PERF_SAMPLE_TIME) |
| perf_output_put(handle, data->time); |
| |
| if (sample_type & PERF_SAMPLE_ID) |
| perf_output_put(handle, data->id); |
| |
| if (sample_type & PERF_SAMPLE_STREAM_ID) |
| perf_output_put(handle, data->stream_id); |
| |
| if (sample_type & PERF_SAMPLE_CPU) |
| perf_output_put(handle, data->cpu_entry); |
| } |
| |
| static void perf_event__output_id_sample(struct perf_event *event, |
| struct perf_output_handle *handle, |
| struct perf_sample_data *sample) |
| { |
| if (event->attr.sample_id_all) |
| __perf_event__output_id_sample(handle, sample); |
| } |
| |
| int perf_output_begin(struct perf_output_handle *handle, |
| struct perf_event *event, unsigned int size, |
| int nmi, int sample) |
| { |
| struct perf_buffer *buffer; |
| unsigned long tail, offset, head; |
| int have_lost; |
| struct perf_sample_data sample_data; |
| struct { |
| struct perf_event_header header; |
| u64 id; |
| u64 lost; |
| } lost_event; |
| |
| rcu_read_lock(); |
| /* |
| * For inherited events we send all the output towards the parent. |
| */ |
| if (event->parent) |
| event = event->parent; |
| |
| buffer = rcu_dereference(event->buffer); |
| if (!buffer) |
| goto out; |
| |
| handle->buffer = buffer; |
| handle->event = event; |
| handle->nmi = nmi; |
| handle->sample = sample; |
| |
| if (!buffer->nr_pages) |
| goto out; |
| |
| have_lost = local_read(&buffer->lost); |
| if (have_lost) { |
| lost_event.header.size = sizeof(lost_event); |
| perf_event_header__init_id(&lost_event.header, &sample_data, |
| event); |
| size += lost_event.header.size; |
| } |
| |
| perf_output_get_handle(handle); |
| |
| do { |
| /* |
| * Userspace could choose to issue a mb() before updating the |
| * tail pointer. So that all reads will be completed before the |
| * write is issued. |
| */ |
| tail = ACCESS_ONCE(buffer->user_page->data_tail); |
| smp_rmb(); |
| offset = head = local_read(&buffer->head); |
| head += size; |
| if (unlikely(!perf_output_space(buffer, tail, offset, head))) |
| goto fail; |
| } while (local_cmpxchg(&buffer->head, offset, head) != offset); |
| |
| if (head - local_read(&buffer->wakeup) > buffer->watermark) |
| local_add(buffer->watermark, &buffer->wakeup); |
| |
| handle->page = offset >> (PAGE_SHIFT + page_order(buffer)); |
| handle->page &= buffer->nr_pages - 1; |
| handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1); |
| handle->addr = buffer->data_pages[handle->page]; |
| handle->addr += handle->size; |
| handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size; |
| |
| if (have_lost) { |
| lost_event.header.type = PERF_RECORD_LOST; |
| lost_event.header.misc = 0; |
| lost_event.id = event->id; |
| lost_event.lost = local_xchg(&buffer->lost, 0); |
| |
| perf_output_put(handle, lost_event); |
| perf_event__output_id_sample(event, handle, &sample_data); |
| } |
| |
| return 0; |
| |
| fail: |
| local_inc(&buffer->lost); |
| perf_output_put_handle(handle); |
| out: |
| rcu_read_unlock(); |
| |
| return -ENOSPC; |
| } |
| |
| void perf_output_end(struct perf_output_handle *handle) |
| { |
| struct perf_event *event = handle->event; |
| struct perf_buffer *buffer = handle->buffer; |
| |
| int wakeup_events = event->attr.wakeup_events; |
| |
| if (handle->sample && wakeup_events) { |
| int events = local_inc_return(&buffer->events); |
| if (events >= wakeup_events) { |
| local_sub(wakeup_events, &buffer->events); |
| local_inc(&buffer->wakeup); |
| } |
| } |
| |
| perf_output_put_handle(handle); |
| rcu_read_unlock(); |
| } |
| |
| static void perf_output_read_one(struct perf_output_handle *handle, |
| struct perf_event *event, |
| u64 enabled, u64 running) |
| { |
| u64 read_format = event->attr.read_format; |
| u64 values[4]; |
| int n = 0; |
| |
| values[n++] = perf_event_count(event); |
| if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { |
| values[n++] = enabled + |
| atomic64_read(&event->child_total_time_enabled); |
| } |
| if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { |
| values[n++] = running + |
| atomic64_read(&event->child_total_time_running); |
| } |
| if (read_format & PERF_FORMAT_ID) |
| values[n++] = primary_event_id(event); |
| |
| perf_output_copy(handle, values, n * sizeof(u64)); |
| } |
| |
| /* |
| * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. |
| */ |
| static void perf_output_read_group(struct perf_output_handle *handle, |
| struct perf_event *event, |
| u64 enabled, u64 running) |
| { |
| struct perf_event *leader = event->group_leader, *sub; |
| u64 read_format = event->attr.read_format; |
| u64 values[5]; |
| int n = 0; |
| |
| values[n++] = 1 + leader->nr_siblings; |
| |
| if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
| values[n++] = enabled; |
| |
| if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
| values[n++] = running; |
| |
| if (leader != event) |
| leader->pmu->read(leader); |
| |
| values[n++] = perf_event_count(leader); |
| if (read_format & PERF_FORMAT_ID) |
| values[n++] = primary_event_id(leader); |
| |
| perf_output_copy(handle, values, n * sizeof(u64)); |
| |
| list_for_each_entry(sub, &leader->sibling_list, group_entry) { |
| n = 0; |
| |
| if (sub != event) |
| sub->pmu->read(sub); |
| |
| values[n++] = perf_event_count(sub); |
| if (read_format & PERF_FORMAT_ID) |
| values[n++] = primary_event_id(sub); |
| |
| perf_output_copy(handle, values, n * sizeof(u64)); |
| } |
| } |
| |
| #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ |
| PERF_FORMAT_TOTAL_TIME_RUNNING) |
| |
| static void perf_output_read(struct perf_output_handle *handle, |
| struct perf_event *event) |
| { |
| u64 enabled = 0, running = 0, now, ctx_time; |
| u64 read_format = event->attr.read_format; |
| |
| /* |
| * compute total_time_enabled, total_time_running |
| * based on snapshot values taken when the event |
| * was last scheduled in. |
| * |
| * we cannot simply called update_context_time() |
| * because of locking issue as we are called in |
| * NMI context |
| */ |
| if (read_format & PERF_FORMAT_TOTAL_TIMES) { |
| now = perf_clock(); |
| ctx_time = event->shadow_ctx_time + now; |
| enabled = ctx_time - event->tstamp_enabled; |
| running = ctx_time - event->tstamp_running; |
| } |
| |
| if (event->attr.read_format & PERF_FORMAT_GROUP) |
| perf_output_read_group(handle, event, enabled, running); |
| else |
| perf_output_read_one(handle, event, enabled, running); |
| } |
| |
| void perf_output_sample(struct perf_output_handle *handle, |
| struct perf_event_header *header, |
| struct perf_sample_data *data, |
| struct perf_event *event) |
| { |
| u64 sample_type = data->type; |
| |
| perf_output_put(handle, *header); |
| |
| if (sample_type & PERF_SAMPLE_IP) |
| perf_output_put(handle, data->ip); |
| |
| if (sample_type & PERF_SAMPLE_TID) |
| perf_output_put(handle, data->tid_entry); |
| |
| if (sample_type & PERF_SAMPLE_TIME) |
| perf_output_put(handle, data->time); |
| |
| if (sample_type & PERF_SAMPLE_ADDR) |
| perf_output_put(handle, data->addr); |
| |
| if (sample_type & PERF_SAMPLE_ID) |
| perf_output_put(handle, data->id); |
| |
| if (sample_type & PERF_SAMPLE_STREAM_ID) |
| perf_output_put(handle, data->stream_id); |
| |
| if (sample_type & PERF_SAMPLE_CPU) |
| perf_output_put(handle, data->cpu_entry); |
| |
| if (sample_type & PERF_SAMPLE_PERIOD) |
| perf_output_put(handle, data->period); |
| |
| if (sample_type & PERF_SAMPLE_READ) |
| perf_output_read(handle, event); |
| |
| if (sample_type & PERF_SAMPLE_CALLCHAIN) { |
| if (data->callchain) { |
| int size = 1; |
| |
| if (data->callchain) |
| size += data->callchain->nr; |
| |
| size *= sizeof(u64); |
| |
| perf_output_copy(handle, data->callchain, size); |
| } else { |
| u64 nr = 0; |
| perf_output_put(handle, nr); |
| } |
| } |
| |
| if (sample_type & PERF_SAMPLE_RAW) { |
| if (data->raw) { |
| perf_output_put(handle, data->raw->size); |
| perf_output_copy(handle, data->raw->data, |
| data->raw->size); |
| } else { |
| struct { |
| u32 size; |
| u32 data; |
| } raw = { |
| .size = sizeof(u32), |
| .data = 0, |
| }; |
| perf_output_put(handle, raw); |
| } |
| } |
| } |
| |
| void perf_prepare_sample(struct perf_event_header *header, |
| struct perf_sample_data *data, |
| struct perf_event *event, |
| struct pt_regs *regs) |
| { |
| u64 sample_type = event->attr.sample_type; |
| |
| header->type = PERF_RECORD_SAMPLE; |
| header->size = sizeof(*header) + event->header_size; |
| |
| header->misc = 0; |
| header->misc |= perf_misc_flags(regs); |
| |
| __perf_event_header__init_id(header, data, event); |
| |
| if (sample_type & PERF_SAMPLE_IP) |
| data->ip = perf_instruction_pointer(regs); |
| |
| if (sample_type & PERF_SAMPLE_CALLCHAIN) { |
| int size = 1; |
| |
| data->callchain = perf_callchain(regs); |
| |
| if (data->callchain) |
| size += data->callchain->nr; |
| |
| header->size += size * sizeof(u64); |
| } |
| |
| if (sample_type & PERF_SAMPLE_RAW) { |
| int size = sizeof(u32); |
| |
| if (data->raw) |
| size += data->raw->size; |
| else |
| size += sizeof(u32); |
| |
| WARN_ON_ONCE(size & (sizeof(u64)-1)); |
| header->size += size; |
| } |
| } |
| |
| static void perf_event_output(struct perf_event *event, int nmi, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct perf_output_handle handle; |
| struct perf_event_header header; |
| |
| /* protect the callchain buffers */ |
| rcu_read_lock(); |
| |
| perf_prepare_sample(&header, data, event, regs); |
| |
| if (perf_output_begin(&handle, event, header.size, nmi, 1)) |
| goto exit; |
| |
| perf_output_sample(&handle, &header, data, event); |
| |
| perf_output_end(&handle); |
| |
| exit: |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * read event_id |
| */ |
| |
| struct perf_read_event { |
| struct perf_event_header header; |
| |
| u32 pid; |
| u32 tid; |
| }; |
| |
| static void |
| perf_event_read_event(struct perf_event *event, |
| struct task_struct *task) |
| { |
| struct perf_output_handle handle; |
| struct perf_sample_data sample; |
| struct perf_read_event read_event = { |
| .header = { |
| .type = PERF_RECORD_READ, |
| .misc = 0, |
| .size = sizeof(read_event) + event->read_size, |
| }, |
| .pid = perf_event_pid(event, task), |
| .tid = perf_event_tid(event, task), |
| }; |
| int ret; |
| |
| perf_event_header__init_id(&read_event.header, &sample, event); |
| ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); |
| if (ret) |
| return; |
| |
| perf_output_put(&handle, read_event); |
| perf_output_read(&handle, event); |
| perf_event__output_id_sample(event, &handle, &sample); |
| |
| perf_output_end(&handle); |
| } |
| |
| /* |
| * task tracking -- fork/exit |
| * |
| * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task |
| */ |
| |
| struct perf_task_event { |
| struct task_struct *task; |
| struct perf_event_context *task_ctx; |
| |
| struct { |
| struct perf_event_header header; |
| |
| u32 pid; |
| u32 ppid; |
| u32 tid; |
| u32 ptid; |
| u64 time; |
| } event_id; |
| }; |
| |
| static void perf_event_task_output(struct perf_event *event, |
| struct perf_task_event *task_event) |
| { |
| struct perf_output_handle handle; |
| struct perf_sample_data sample; |
| struct task_struct *task = task_event->task; |
| int ret, size = task_event->event_id.header.size; |
| |
| perf_event_header__init_id(&task_event->event_id.header, &sample, event); |
| |
| ret = perf_output_begin(&handle, event, |
| task_event->event_id.header.size, 0, 0); |
| if (ret) |
| goto out; |
| |
| task_event->event_id.pid = perf_event_pid(event, task); |
| task_event->event_id.ppid = perf_event_pid(event, current); |
| |
| task_event->event_id.tid = perf_event_tid(event, task); |
| task_event->event_id.ptid = perf_event_tid(event, current); |
| |
| perf_output_put(&handle, task_event->event_id); |
| |
| perf_event__output_id_sample(event, &handle, &sample); |
| |
| perf_output_end(&handle); |
| out: |
| task_event->event_id.header.size = size; |
| } |
| |
| static int perf_event_task_match(struct perf_event *event) |
| { |
| if (event->state < PERF_EVENT_STATE_INACTIVE) |
| return 0; |
| |
| if (!event_filter_match(event)) |
| return 0; |
| |
| if (event->attr.comm || event->attr.mmap || |
| event->attr.mmap_data || event->attr.task) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void perf_event_task_ctx(struct perf_event_context *ctx, |
| struct perf_task_event *task_event) |
| { |
| struct perf_event *event; |
| |
| list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
| if (perf_event_task_match(event)) |
| perf_event_task_output(event, task_event); |
| } |
| } |
| |
| static void perf_event_task_event(struct perf_task_event *task_event) |
| { |
| struct perf_cpu_context *cpuctx; |
| struct perf_event_context *ctx; |
| struct pmu *pmu; |
| int ctxn; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(pmu, &pmus, entry) { |
| cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); |
| if (cpuctx->active_pmu != pmu) |
| goto next; |
| perf_event_task_ctx(&cpuctx->ctx, task_event); |
| |
| ctx = task_event->task_ctx; |
| if (!ctx) { |
| ctxn = pmu->task_ctx_nr; |
| if (ctxn < 0) |
| goto next; |
| ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); |
| } |
| if (ctx) |
| perf_event_task_ctx(ctx, task_event); |
| next: |
| put_cpu_ptr(pmu->pmu_cpu_context); |
| } |
| rcu_read_unlock(); |
| } |
| |
| static void perf_event_task(struct task_struct *task, |
| struct perf_event_context *task_ctx, |
| int new) |
| { |
| struct perf_task_event task_event; |
| |
| if (!atomic_read(&nr_comm_events) && |
| !atomic_read(&nr_mmap_events) && |
| !atomic_read(&nr_task_events)) |
| return; |
| |
| task_event = (struct perf_task_event){ |
| .task = task, |
| .task_ctx = task_ctx, |
| .event_id = { |
| .header = { |
| .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, |
| .misc = 0, |
| .size = sizeof(task_event.event_id), |
| }, |
| /* .pid */ |
| /* .ppid */ |
| /* .tid */ |
| /* .ptid */ |
| .time = perf_clock(), |
| }, |
| }; |
| |
| perf_event_task_event(&task_event); |
| } |
| |
| void perf_event_fork(struct task_struct *task) |
| { |
| perf_event_task(task, NULL, 1); |
| } |
| |
| /* |
| * comm tracking |
| */ |
| |
| struct perf_comm_event { |
| struct task_struct *task; |
| char *comm; |
| int comm_size; |
| |
| struct { |
| struct perf_event_header header; |
| |
| u32 pid; |
| u32 tid; |
| } event_id; |
| }; |
| |
| static void perf_event_comm_output(struct perf_event *event, |
| struct perf_comm_event *comm_event) |
| { |
| struct perf_output_handle handle; |
| struct perf_sample_data sample; |
| int size = comm_event->event_id.header.size; |
| int ret; |
| |
| perf_event_header__init_id(&comm_event->event_id.header, &sample, event); |
| ret = perf_output_begin(&handle, event, |
| comm_event->event_id.header.size, 0, 0); |
| |
| if (ret) |
| goto out; |
| |
| comm_event->event_id.pid = perf_event_pid(event, comm_event->task); |
| comm_event->event_id.tid = perf_event_tid(event, comm_event->task); |
| |
| perf_output_put(&handle, comm_event->event_id); |
| perf_output_copy(&handle, comm_event->comm, |
| comm_event->comm_size); |
| |
| perf_event__output_id_sample(event, &handle, &sample); |
| |
| perf_output_end(&handle); |
| out: |
| comm_event->event_id.header.size = size; |
| } |
| |
| static int perf_event_comm_match(struct perf_event *event) |
| { |
| if (event->state < PERF_EVENT_STATE_INACTIVE) |
| return 0; |
| |
| if (!event_filter_match(event)) |
| return 0; |
| |
| if (event->attr.comm) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void perf_event_comm_ctx(struct perf_event_context *ctx, |
| struct perf_comm_event *comm_event) |
| { |
| struct perf_event *event; |
| |
| list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
| if (perf_event_comm_match(event)) |
| perf_event_comm_output(event, comm_event); |
| } |
| } |
| |
| static void perf_event_comm_event(struct perf_comm_event *comm_event) |
| { |
| struct perf_cpu_context *cpuctx; |
| struct perf_event_context *ctx; |
| char comm[TASK_COMM_LEN]; |
| unsigned int size; |
| struct pmu *pmu; |
| int ctxn; |
| |
| memset(comm, 0, sizeof(comm)); |
| strlcpy(comm, comm_event->task->comm, sizeof(comm)); |
| size = ALIGN(strlen(comm)+1, sizeof(u64)); |
| |
| comm_event->comm = comm; |
| comm_event->comm_size = size; |
| |
| comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; |
| rcu_read_lock(); |
| list_for_each_entry_rcu(pmu, &pmus, entry) { |
| cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); |
| if (cpuctx->active_pmu != pmu) |
| goto next; |
| perf_event_comm_ctx(&cpuctx->ctx, comm_event); |
| |
| ctxn = pmu->task_ctx_nr; |
| if (ctxn < 0) |
| goto next; |
| |
| ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); |
| if (ctx) |
| perf_event_comm_ctx(ctx, comm_event); |
| next: |
| put_cpu_ptr(pmu->pmu_cpu_context); |
| } |
| rcu_read_unlock(); |
| } |
| |
| void perf_event_comm(struct task_struct *task) |
| { |
| struct perf_comm_event comm_event; |
| struct perf_event_context *ctx; |
| int ctxn; |
| |
| for_each_task_context_nr(ctxn) { |
| ctx = task->perf_event_ctxp[ctxn]; |
| if (!ctx) |
| continue; |
| |
| perf_event_enable_on_exec(ctx); |
| } |
| |
| if (!atomic_read(&nr_comm_events)) |
| return; |
| |
| comm_event = (struct perf_comm_event){ |
| .task = task, |
| /* .comm */ |
| /* .comm_size */ |
| .event_id = { |
| .header = { |
| .type = PERF_RECORD_COMM, |
| .misc = 0, |
| /* .size */ |
| }, |
| /* .pid */ |
| /* .tid */ |
| }, |
| }; |
| |
| perf_event_comm_event(&comm_event); |
| } |
| |
| /* |
| * mmap tracking |
| */ |
| |
| struct perf_mmap_event { |
| struct vm_area_struct *vma; |
| |
| const char *file_name; |
| int file_size; |
| |
| struct { |
| struct perf_event_header header; |
| |
| u32 pid; |
| u32 tid; |
| u64 start; |
| u64 len; |
| u64 pgoff; |
| } event_id; |
| }; |
| |
| static void perf_event_mmap_output(struct perf_event *event, |
| struct perf_mmap_event *mmap_event) |
| { |
| struct perf_output_handle handle; |
| struct perf_sample_data sample; |
| int size = mmap_event->event_id.header.size; |
| int ret; |
| |
| perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); |
| ret = perf_output_begin(&handle, event, |
| mmap_event->event_id.header.size, 0, 0); |
| if (ret) |
| goto out; |
| |
| mmap_event->event_id.pid = perf_event_pid(event, current); |
| mmap_event->event_id.tid = perf_event_tid(event, current); |
| |
| perf_output_put(&handle, mmap_event->event_id); |
| perf_output_copy(&handle, mmap_event->file_name, |
| mmap_event->file_size); |
| |
| perf_event__output_id_sample(event, &handle, &sample); |
| |
| perf_output_end(&handle); |
| out: |
| mmap_event->event_id.header.size = size; |
| } |
| |
| static int perf_event_mmap_match(struct perf_event *event, |
| struct perf_mmap_event *mmap_event, |
| int executable) |
| { |
| if (event->state < PERF_EVENT_STATE_INACTIVE) |
| return 0; |
| |
| if (!event_filter_match(event)) |
| return 0; |
| |
| if ((!executable && event->attr.mmap_data) || |
| (executable && event->attr.mmap)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void perf_event_mmap_ctx(struct perf_event_context *ctx, |
| struct perf_mmap_event *mmap_event, |
| int executable) |
| { |
| struct perf_event *event; |
| |
| list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
| if (perf_event_mmap_match(event, mmap_event, executable)) |
| perf_event_mmap_output(event, mmap_event); |
| } |
| } |
| |
| static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) |
| { |
| struct perf_cpu_context *cpuctx; |
| struct perf_event_context *ctx; |
| struct vm_area_struct *vma = mmap_event->vma; |
| struct file *file = vma->vm_file; |
| unsigned int size; |
| char tmp[16]; |
| char *buf = NULL; |
| const char *name; |
| struct pmu *pmu; |
| int ctxn; |
| |
| memset(tmp, 0, sizeof(tmp)); |
| |
| if (file) { |
| /* |
| * d_path works from the end of the buffer backwards, so we |
| * need to add enough zero bytes after the string to handle |
| * the 64bit alignment we do later. |
| */ |
| buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); |
| if (!buf) { |
| name = strncpy(tmp, "//enomem", sizeof(tmp)); |
| goto got_name; |
| } |
| name = d_path(&file->f_path, buf, PATH_MAX); |
| if (IS_ERR(name)) { |
| name = strncpy(tmp, "//toolong", sizeof(tmp)); |
| goto got_name; |
| } |
| } else { |
| if (arch_vma_name(mmap_event->vma)) { |
| name = strncpy(tmp, arch_vma_name(mmap_event->vma), |
| sizeof(tmp)); |
| goto got_name; |
| } |
| |
| if (!vma->vm_mm) { |
| name = strncpy(tmp, "[vdso]", sizeof(tmp)); |
| goto got_name; |
| } else if (vma->vm_start <= vma->vm_mm->start_brk && |
| vma->vm_end >= vma->vm_mm->brk) { |
| name = strncpy(tmp, "[heap]", sizeof(tmp)); |
| goto got_name; |
| } else if (vma->vm_start <= vma->vm_mm->start_stack && |
| vma->vm_end >= vma->vm_mm->start_stack) { |
| name = strncpy(tmp, "[stack]", sizeof(tmp)); |
| goto got_name; |
| } |
| |
| name = strncpy(tmp, "//anon", sizeof(tmp)); |
| goto got_name; |
| } |
| |
| got_name: |
| size = ALIGN(strlen(name)+1, sizeof(u64)); |
| |
| mmap_event->file_name = name; |
| mmap_event->file_size = size; |
| |
| mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(pmu, &pmus, entry) { |
| cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); |
| if (cpuctx->active_pmu != pmu) |
| goto next; |
| perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, |
| vma->vm_flags & VM_EXEC); |
| |
| ctxn = pmu->task_ctx_nr; |
| if (ctxn < 0) |
| goto next; |
| |
| ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); |
| if (ctx) { |
| perf_event_mmap_ctx(ctx, mmap_event, |
| vma->vm_flags & VM_EXEC); |
| } |
| next: |
| put_cpu_ptr(pmu->pmu_cpu_context); |
| } |
| rcu_read_unlock(); |
| |
| kfree(buf); |
| } |
| |
| void perf_event_mmap(struct vm_area_struct *vma) |
| { |
| struct perf_mmap_event mmap_event; |
| |
| if (!atomic_read(&nr_mmap_events)) |
| return; |
| |
| mmap_event = (struct perf_mmap_event){ |
| .vma = vma, |
| /* .file_name */ |
| /* .file_size */ |
| .event_id = { |
| .header = { |
| .type = PERF_RECORD_MMAP, |
| .misc = PERF_RECORD_MISC_USER, |
| /* .size */ |
| }, |
| /* .pid */ |
| /* .tid */ |
| .start = vma->vm_start, |
| .len = vma->vm_end - vma->vm_start, |
| .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, |
| }, |
| }; |
| |
| perf_event_mmap_event(&mmap_event); |
| } |
| |
| /* |
| * IRQ throttle logging |
| */ |
| |
| static void perf_log_throttle(struct perf_event *event, int enable) |
| { |
| struct perf_output_handle handle; |
| struct perf_sample_data sample; |
| int ret; |
| |
| struct { |
| struct perf_event_header header; |
| u64 time; |
| u64 id; |
| u64 stream_id; |
| } throttle_event = { |
| .header = { |
| .type = PERF_RECORD_THROTTLE, |
| .misc = 0, |
| .size = sizeof(throttle_event), |
| }, |
| .time = perf_clock(), |
| .id = primary_event_id(event), |
| .stream_id = event->id, |
| }; |
| |
| if (enable) |
| throttle_event.header.type = PERF_RECORD_UNTHROTTLE; |
| |
| perf_event_header__init_id(&throttle_event.header, &sample, event); |
| |
| ret = perf_output_begin(&handle, event, |
| throttle_event.header.size, 1, 0); |
| if (ret) |
| return; |
| |
| perf_output_put(&handle, throttle_event); |
| perf_event__output_id_sample(event, &handle, &sample); |
| perf_output_end(&handle); |
| } |
| |
| /* |
| * Generic event overflow handling, sampling. |
| */ |
| |
| static int __perf_event_overflow(struct perf_event *event, int nmi, |
| int throttle, struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| int events = atomic_read(&event->event_limit); |
| struct hw_perf_event *hwc = &event->hw; |
| int ret = 0; |
| |
| /* |
| * Non-sampling counters might still use the PMI to fold short |
| * hardware counters, ignore those. |
| */ |
| if (unlikely(!is_sampling_event(event))) |
| return 0; |
| |
| if (!throttle) { |
| hwc->interrupts++; |
| } else { |
| if (hwc->interrupts != MAX_INTERRUPTS) { |
| hwc->interrupts++; |
| if (HZ * hwc->interrupts > |
| (u64)sysctl_perf_event_sample_rate) { |
| hwc->interrupts = MAX_INTERRUPTS; |
| perf_log_throttle(event, 0); |
| ret = 1; |
| } |
| } else { |
| /* |
| * Keep re-disabling events even though on the previous |
| * pass we disabled it - just in case we raced with a |
| * sched-in and the event got enabled again: |
| */ |
| ret = 1; |
| } |
| } |
| |
| if (event->attr.freq) { |
| u64 now = perf_clock(); |
| s64 delta = now - hwc->freq_time_stamp; |
| |
| hwc->freq_time_stamp = now; |
| |
| if (delta > 0 && delta < 2*TICK_NSEC) |
| perf_adjust_period(event, delta, hwc->last_period); |
| } |
| |
| /* |
| * XXX event_limit might not quite work as expected on inherited |
| * events |
| */ |
| |
| event->pending_kill = POLL_IN; |
| if (events && atomic_dec_and_test(&event->event_limit)) { |
| ret = 1; |
| event->pending_kill = POLL_HUP; |
| if (nmi) { |
| event->pending_disable = 1; |
| irq_work_queue(&event->pending); |
| } else |
| perf_event_disable(event); |
| } |
| |
| if (event->overflow_handler) |
| event->overflow_handler(event, nmi, data, regs); |
| else |
| perf_event_output(event, nmi, data, regs); |
| |
| return ret; |
| } |
| |
| int perf_event_overflow(struct perf_event *event, int nmi, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| return __perf_event_overflow(event, nmi, 1, data, regs); |
| } |
| |
| /* |
| * Generic software event infrastructure |
| */ |
| |
| struct swevent_htable { |
| struct swevent_hlist *swevent_hlist; |
| struct mutex hlist_mutex; |
| int hlist_refcount; |
| |
| /* Recursion avoidance in each contexts */ |
| int recursion[PERF_NR_CONTEXTS]; |
| }; |
| |
| static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); |
| |
| /* |
| * We directly increment event->count and keep a second value in |
| * event->hw.period_left to count intervals. This period event |
| * is kept in the range [-sample_period, 0] so that we can use the |
| * sign as trigger. |
| */ |
| |
| static u64 perf_swevent_set_period(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| u64 period = hwc->last_period; |
| u64 nr, offset; |
| s64 old, val; |
| |
| hwc->last_period = hwc->sample_period; |
| |
| again: |
| old = val = local64_read(&hwc->period_left); |
| if (val < 0) |
| return 0; |
| |
| nr = div64_u64(period + val, period); |
| offset = nr * period; |
| val -= offset; |
| if (local64_cmpxchg(&hwc->period_left, old, val) != old) |
| goto again; |
| |
| return nr; |
| } |
| |
| static void perf_swevent_overflow(struct perf_event *event, u64 overflow, |
| int nmi, struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int throttle = 0; |
| |
| data->period = event->hw.last_period; |
| if (!overflow) |
| overflow = perf_swevent_set_period(event); |
| |
| if (hwc->interrupts == MAX_INTERRUPTS) |
| return; |
| |
| for (; overflow; overflow--) { |
| if (__perf_event_overflow(event, nmi, throttle, |
| data, regs)) { |
| /* |
| * We inhibit the overflow from happening when |
| * hwc->interrupts == MAX_INTERRUPTS. |
| */ |
| break; |
| } |
| throttle = 1; |
| } |
| } |
| |
| static void perf_swevent_event(struct perf_event *event, u64 nr, |
| int nmi, struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| local64_add(nr, &event->count); |
| |
| if (!regs) |
| return; |
| |
| if (!is_sampling_event(event)) |
| return; |
| |
| if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) |
| return perf_swevent_overflow(event, 1, nmi, data, regs); |
| |
| if (local64_add_negative(nr, &hwc->period_left)) |
| return; |
| |
| perf_swevent_overflow(event, 0, nmi, data, regs); |
| } |
| |
| static int perf_exclude_event(struct perf_event *event, |
| struct pt_regs *regs) |
| { |
| if (event->hw.state & PERF_HES_STOPPED) |
| return 0; |
| |
| if (regs) { |
| if (event->attr.exclude_user && user_mode(regs)) |
| return 1; |
| |
| if (event->attr.exclude_kernel && !user_mode(regs)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int perf_swevent_match(struct perf_event *event, |
| enum perf_type_id type, |
| u32 event_id, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| if (event->attr.type != type) |
| return 0; |
| |
| if (event->attr.config != event_id) |
| return 0; |
| |
| if (perf_exclude_event(event, regs)) |
| return 0; |
| |
| return 1; |
| } |
| |
| static inline u64 swevent_hash(u64 type, u32 event_id) |
| { |
| u64 val = event_id | (type << 32); |
| |
| return hash_64(val, SWEVENT_HLIST_BITS); |
| } |
| |
| static inline struct hlist_head * |
| __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) |
| { |
| u64 hash = swevent_hash(type, event_id); |
| |
| return &hlist->heads[hash]; |
| } |
| |
| /* For the read side: events when they trigger */ |
| static inline struct hlist_head * |
| find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) |
| { |
| struct swevent_hlist *hlist; |
| |
| hlist = rcu_dereference(swhash->swevent_hlist); |
| if (!hlist) |
| return NULL; |
| |
| return __find_swevent_head(hlist, type, event_id); |
| } |
| |
| /* For the event head insertion and removal in the hlist */ |
| static inline struct hlist_head * |
| find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) |
| { |
| struct swevent_hlist *hlist; |
| u32 event_id = event->attr.config; |
| u64 type = event->attr.type; |
| |
| /* |
| * Event scheduling is always serialized against hlist allocation |
| * and release. Which makes the protected version suitable here. |
| * The context lock guarantees that. |
| */ |
| hlist = rcu_dereference_protected(swhash->swevent_hlist, |
| lockdep_is_held(&event->ctx->lock)); |
| if (!hlist) |
| return NULL; |
| |
| return __find_swevent_head(hlist, type, event_id); |
| } |
| |
| static void do_perf_sw_event(enum perf_type_id type, u32 event_id, |
| u64 nr, int nmi, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); |
| struct perf_event *event; |
| struct hlist_node *node; |
| struct hlist_head *head; |
| |
| rcu_read_lock(); |
| head = find_swevent_head_rcu(swhash, type, event_id); |
| if (!head) |
| goto end; |
| |
| hlist_for_each_entry_rcu(event, node, head, hlist_entry) { |
| if (perf_swevent_match(event, type, event_id, data, regs)) |
| perf_swevent_event(event, nr, nmi, data, regs); |
| } |
| end: |
| rcu_read_unlock(); |
| } |
| |
| int perf_swevent_get_recursion_context(void) |
| { |
| struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); |
| |
| return get_recursion_context(swhash->recursion); |
| } |
| EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); |
| |
| inline void perf_swevent_put_recursion_context(int rctx) |
| { |
| struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); |
| |
| put_recursion_context(swhash->recursion, rctx); |
| } |
| |
| void __perf_sw_event(u32 event_id, u64 nr, int nmi, |
| struct pt_regs *regs, u64 addr) |
| { |
| struct perf_sample_data data; |
| int rctx; |
| |
| preempt_disable_notrace(); |
| rctx = perf_swevent_get_recursion_context(); |
| if (rctx < 0) |
| return; |
| |
| perf_sample_data_init(&data, addr); |
| |
| do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs); |
| |
| perf_swevent_put_recursion_context(rctx); |
| preempt_enable_notrace(); |
| } |
| |
| static void perf_swevent_read(struct perf_event *event) |
| { |
| } |
| |
| static int perf_swevent_add(struct perf_event *event, int flags) |
| { |
| struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); |
| struct hw_perf_event *hwc = &event->hw; |
| struct hlist_head *head; |
| |
| if (is_sampling_event(event)) { |
| hwc->last_period = hwc->sample_period; |
| perf_swevent_set_period(event); |
| } |
| |
| hwc->state = !(flags & PERF_EF_START); |
| |
| head = find_swevent_head(swhash, event); |
| if (WARN_ON_ONCE(!head)) |
| return -EINVAL; |
| |
| hlist_add_head_rcu(&event->hlist_entry, head); |
| |
| return 0; |
| } |
| |
| static void perf_swevent_del(struct perf_event *event, int flags) |
| { |
| hlist_del_rcu(&event->hlist_entry); |
| } |
| |
| static void perf_swevent_start(struct perf_event *event, int flags) |
| { |
| event->hw.state = 0; |
| } |
| |
| static void perf_swevent_stop(struct perf_event *event, int flags) |
| { |
| event->hw.state = PERF_HES_STOPPED; |
| } |
| |
| /* Deref the hlist from the update side */ |
| static inline struct swevent_hlist * |
| swevent_hlist_deref(struct swevent_htable *swhash) |
| { |
| return rcu_dereference_protected(swhash->swevent_hlist, |
| lockdep_is_held(&swhash->hlist_mutex)); |
| } |
| |
| static void swevent_hlist_release_rcu(struct rcu_head *rcu_head) |
| { |
| struct swevent_hlist *hlist; |
| |
| hlist = container_of(rcu_head, struct swevent_hlist, rcu_head); |
| kfree(hlist); |
| } |
| |
| static void swevent_hlist_release(struct swevent_htable *swhash) |
| { |
| struct swevent_hlist *hlist = swevent_hlist_deref(swhash); |
| |
| if (!hlist) |
| return; |
| |
| rcu_assign_pointer(swhash->swevent_hlist, NULL); |
| call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu); |
| } |
| |
| static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) |
| { |
| struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); |
| |
| mutex_lock(&swhash->hlist_mutex); |
| |
| if (!--swhash->hlist_refcount) |
| swevent_hlist_release(swhash); |
| |
| mutex_unlock(&swhash->hlist_mutex); |
| } |
| |
| static void swevent_hlist_put(struct perf_event *event) |
| { |
| int cpu; |
| |
| if (event->cpu != -1) { |
| swevent_hlist_put_cpu(event, event->cpu); |
| return; |
| } |
| |
| for_each_possible_cpu(cpu) |
| swevent_hlist_put_cpu(event, cpu); |
| } |
| |
| static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) |
| { |
| struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); |
| int err = 0; |
| |
| mutex_lock(&swhash->hlist_mutex); |
| |
| if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { |
| struct swevent_hlist *hlist; |
| |
| hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); |
| if (!hlist) { |
| err = -ENOMEM; |
| goto exit; |
| } |
| rcu_assign_pointer(swhash->swevent_hlist, hlist); |
| } |
| swhash->hlist_refcount++; |
| exit: |
| mutex_unlock(&swhash->hlist_mutex); |
| |
| return err; |
| } |
| |
| static int swevent_hlist_get(struct perf_event *event) |
| { |
| int err; |
| int cpu, failed_cpu; |
| |
| if (event->cpu != -1) |
| return swevent_hlist_get_cpu(event, event->cpu); |
| |
| get_online_cpus(); |
| for_each_possible_cpu(cpu) { |
| err = swevent_hlist_get_cpu(event, cpu); |
| if (err) { |
| failed_cpu = cpu; |
| goto fail; |
| } |
| } |
| put_online_cpus(); |
| |
| return 0; |
| fail: |
| for_each_possible_cpu(cpu) { |
| if (cpu == failed_cpu) |
| break; |
| swevent_hlist_put_cpu(event, cpu); |
| } |
| |
| put_online_cpus(); |
| return err; |
| } |
| |
| atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; |
| |
| static void sw_perf_event_destroy(struct perf_event *event) |
| { |
| u64 event_id = event->attr.config; |
| |
| WARN_ON(event->parent); |
| |
| jump_label_dec(&perf_swevent_enabled[event_id]); |
| swevent_hlist_put(event); |
| } |
| |
| static int perf_swevent_init(struct perf_event *event) |
| { |
| int event_id = event->attr.config; |
| |
| if (event->attr.type != PERF_TYPE_SOFTWARE) |
| return -ENOENT; |
| |
| switch (event_id) { |
| case PERF_COUNT_SW_CPU_CLOCK: |
| case PERF_COUNT_SW_TASK_CLOCK: |
| return -ENOENT; |
| |
| default: |
| break; |
| } |
| |
| if (event_id >= PERF_COUNT_SW_MAX) |
| return -ENOENT; |
| |
| if (!event->parent) { |
| int err; |
| |
| err = swevent_hlist_get(event); |
| if (err) |
| return err; |
| |
| jump_label_inc(&perf_swevent_enabled[event_id]); |
| event->destroy = sw_perf_event_destroy; |
| } |
| |
| return 0; |
| } |
| |
| static struct pmu perf_swevent = { |
| .task_ctx_nr = perf_sw_context, |
| |
| .event_init = perf_swevent_init, |
| .add = perf_swevent_add, |
| .del = perf_swevent_del, |
| .start = perf_swevent_start, |
| .stop = perf_swevent_stop, |
| .read = perf_swevent_read, |
| }; |
| |
| #ifdef CONFIG_EVENT_TRACING |
| |
| static int perf_tp_filter_match(struct perf_event *event, |
| struct perf_sample_data *data) |
| { |
| void *record = data->raw->data; |
| |
| if (likely(!event->filter) || filter_match_preds(event->filter, record)) |
| return 1; |
| return 0; |
| } |
| |
| static int perf_tp_event_match(struct perf_event *event, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| /* |
| * All tracepoints are from kernel-space. |
| */ |
| if (event->attr.exclude_kernel) |
| return 0; |
| |
| if (!perf_tp_filter_match(event, data)) |
| return 0; |
| |
| return 1; |
| } |
| |
| void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, |
| struct pt_regs *regs, struct hlist_head *head, int rctx) |
| { |
| struct perf_sample_data data; |
| struct perf_event *event; |
| struct hlist_node *node; |
| |
| struct perf_raw_record raw = { |
| .size = entry_size, |
| .data = record, |
| }; |
| |
| perf_sample_data_init(&data, addr); |
| data.raw = &raw; |
| |
| hlist_for_each_entry_rcu(event, node, head, hlist_entry) { |
| if (perf_tp_event_match(event, &data, regs)) |
| perf_swevent_event(event, count, 1, &data, regs); |
| } |
| |
| perf_swevent_put_recursion_context(rctx); |
| } |
| EXPORT_SYMBOL_GPL(perf_tp_event); |
| |
| static void tp_perf_event_destroy(struct perf_event *event) |
| { |
| perf_trace_destroy(event); |
| } |
| |
| static int perf_tp_event_init(struct perf_event *event) |
| { |
| int err; |
| |
| if (event->attr.type != PERF_TYPE_TRACEPOINT) |
| return -ENOENT; |
| |
| err = perf_trace_init(event); |
| if (err) |
| return err; |
| |
| event->destroy = tp_perf_event_destroy; |
| |
| return 0; |
| } |
| |
| static struct pmu perf_tracepoint = { |
| .task_ctx_nr = perf_sw_context, |
| |
| .event_init = perf_tp_event_init, |
| .add = perf_trace_add, |
| .del = perf_trace_del, |
| .start = perf_swevent_start, |
| .stop = perf_swevent_stop, |
| .read = perf_swevent_read, |
| }; |
| |
| static inline void perf_tp_register(void) |
| { |
| perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); |
| } |
| |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg) |
| { |
| char *filter_str; |
| int ret; |
| |
| if (event->attr.type != PERF_TYPE_TRACEPOINT) |
| return -EINVAL; |
| |
| filter_str = strndup_user(arg, PAGE_SIZE); |
| if (IS_ERR(filter_str)) |
| return PTR_ERR(filter_str); |
| |
| ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); |
| |
| kfree(filter_str); |
| return ret; |
| } |
| |
| static void perf_event_free_filter(struct perf_event *event) |
| { |
| ftrace_profile_free_filter(event); |
| } |
| |
| #else |
| |
| static inline void perf_tp_register(void) |
| { |
| } |
| |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg) |
| { |
| return -ENOENT; |
| } |
| |
| static void perf_event_free_filter(struct perf_event *event) |
| { |
| } |
| |
| #endif /* CONFIG_EVENT_TRACING */ |
| |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| void perf_bp_event(struct perf_event *bp, void *data) |
| { |
| struct perf_sample_data sample; |
| struct pt_regs *regs = data; |
| |
| perf_sample_data_init(&sample, bp->attr.bp_addr); |
| |
| if (!bp->hw.state && !perf_exclude_event(bp, regs)) |
| perf_swevent_event(bp, 1, 1, &sample, regs); |
| } |
| #endif |
| |
| /* |
| * hrtimer based swevent callback |
| */ |
| |
| static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) |
| { |
| enum hrtimer_restart ret = HRTIMER_RESTART; |
| struct perf_sample_data data; |
| struct pt_regs *regs; |
| struct perf_event *event; |
| u64 period; |
| |
| event = container_of(hrtimer, struct perf_event, hw.hrtimer); |
| event->pmu->read(event); |
| |
| perf_sample_data_init(&data, 0); |
| data.period = event->hw.last_period; |
| regs = get_irq_regs(); |
| |
| if (regs && !perf_exclude_event(event, regs)) { |
| if (!(event->attr.exclude_idle && current->pid == 0)) |
| if (perf_event_overflow(event, 0, &data, regs)) |
| ret = HRTIMER_NORESTART; |
| } |
| |
| period = max_t(u64, 10000, event->hw.sample_period); |
| hrtimer_forward_now(hrtimer, ns_to_ktime(period)); |
| |
| return ret; |
| } |
| |
| static void perf_swevent_start_hrtimer(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| s64 period; |
| |
| if (!is_sampling_event(event)) |
| return; |
| |
| hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| hwc->hrtimer.function = perf_swevent_hrtimer; |
| |
| period = local64_read(&hwc->period_left); |
| if (period) { |
| if (period < 0) |
| period = 10000; |
| |
| local64_set(&hwc->period_left, 0); |
| } else { |
| period = max_t(u64, 10000, hwc->sample_period); |
| } |
| __hrtimer_start_range_ns(&hwc->hrtimer, |
| ns_to_ktime(period), 0, |
| HRTIMER_MODE_REL_PINNED, 0); |
| } |
| |
| static void perf_swevent_cancel_hrtimer(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (is_sampling_event(event)) { |
| ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); |
| local64_set(&hwc->period_left, ktime_to_ns(remaining)); |
| |
| hrtimer_cancel(&hwc->hrtimer); |
| } |
| } |
| |
| /* |
| * Software event: cpu wall time clock |
| */ |
| |
| static void cpu_clock_event_update(struct perf_event *event) |
| { |
| s64 prev; |
| u64 now; |
| |
| now = local_clock(); |
| prev = local64_xchg(&event->hw.prev_count, now); |
| local64_add(now - prev, &event->count); |
| } |
| |
| static void cpu_clock_event_start(struct perf_event *event, int flags) |
| { |
| local64_set(&event->hw.prev_count, local_clock()); |
| perf_swevent_start_hrtimer(event); |
| } |
| |
| static void cpu_clock_event_stop(struct perf_event *event, int flags) |
| { |
| perf_swevent_cancel_hrtimer(event); |
| cpu_clock_event_update(event); |
| } |
| |
| static int cpu_clock_event_add(struct perf_event *event, int flags) |
| { |
| if (flags & PERF_EF_START) |
| cpu_clock_event_start(event, flags); |
| |
| return 0; |
| } |
| |
| static void cpu_clock_event_del(struct perf_event *event, int flags) |
| { |
| cpu_clock_event_stop(event, flags); |
| } |
| |
| static void cpu_clock_event_read(struct perf_event *event) |
| { |
| cpu_clock_event_update(event); |
| } |
| |
| static int cpu_clock_event_init(struct perf_event *event) |
| { |
| if (event->attr.type != PERF_TYPE_SOFTWARE) |
| return -ENOENT; |
| |
| if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) |
| return -ENOENT; |
| |
| return 0; |
| } |
| |
| static struct pmu perf_cpu_clock = { |
| .task_ctx_nr = perf_sw_context, |
| |
| .event_init = cpu_clock_event_init, |
| .add = cpu_clock_event_add, |
| .del = cpu_clock_event_del, |
| .start = cpu_clock_event_start, |
| .stop = cpu_clock_event_stop, |
| .read = cpu_clock_event_read, |
| }; |
| |
| /* |
| * Software event: task time clock |
| */ |
| |
| static void task_clock_event_update(struct perf_event *event, u64 now) |
| { |
| u64 prev; |
| s64 delta; |
| |
| prev = local64_xchg(&event->hw.prev_count, now); |
| delta = now - prev; |
| local64_add(delta, &event->count); |
| } |
| |
| static void task_clock_event_start(struct perf_event *event, int flags) |
| { |
| local64_set(&event->hw.prev_count, event->ctx->time); |
| perf_swevent_start_hrtimer(event); |
| } |
| |
| static void task_clock_event_stop(struct perf_event *event, int flags) |
| { |
| perf_swevent_cancel_hrtimer(event); |
| task_clock_event_update(event, event->ctx->time); |
| } |
| |
| static int task_clock_event_add(struct perf_event *event, int flags) |
| { |
| if (flags & PERF_EF_START) |
| task_clock_event_start(event, flags); |
| |
| return 0; |
| } |
| |
| static void task_clock_event_del(struct perf_event *event, int flags) |
| { |
| task_clock_event_stop(event, PERF_EF_UPDATE); |
| } |
| |
| static void task_clock_event_read(struct perf_event *event) |
| { |
| u64 time; |
| |
| if (!in_nmi()) { |
| update_context_time(event->ctx); |
| time = event->ctx->time; |
| } else { |
| u64 now = perf_clock(); |
| u64 delta = now - event->ctx->timestamp; |
| time = event->ctx->time + delta; |
| } |
| |
| task_clock_event_update(event, time); |
| } |
| |
| static int task_clock_event_init(struct perf_event *event) |
| { |
| if (event->attr.type != PERF_TYPE_SOFTWARE) |
| return -ENOENT; |
| |
| if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) |
| return -ENOENT; |
| |
| return 0; |
| } |
| |
| static struct pmu perf_task_clock = { |
| .task_ctx_nr = perf_sw_context, |
| |
| .event_init = task_clock_event_init, |
| .add = task_clock_event_add, |
| .del = task_clock_event_del, |
| .start = task_clock_event_start, |
| .stop = task_clock_event_stop, |
| .read = task_clock_event_read, |
| }; |
| |
| static void perf_pmu_nop_void(struct pmu *pmu) |
| { |
| } |
| |
| static int perf_pmu_nop_int(struct pmu *pmu) |
| { |
| return 0; |
| } |
| |
| static void perf_pmu_start_txn(struct pmu *pmu) |
| { |
| perf_pmu_disable(pmu); |
| } |
| |
| static int perf_pmu_commit_txn(struct pmu *pmu) |
| { |
| perf_pmu_enable(pmu); |
| return 0; |
| } |
| |
| static void perf_pmu_cancel_txn(struct pmu *pmu) |
| { |
| perf_pmu_enable(pmu); |
| } |
| |
| /* |
| * Ensures all contexts with the same task_ctx_nr have the same |
| * pmu_cpu_context too. |
| */ |
| static void *find_pmu_context(int ctxn) |
| { |
| struct pmu *pmu; |
| |
| if (ctxn < 0) |
| return NULL; |
| |
| list_for_each_entry(pmu, &pmus, entry) { |
| if (pmu->task_ctx_nr == ctxn) |
| return pmu->pmu_cpu_context; |
| } |
| |
| return NULL; |
| } |
| |
| static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct perf_cpu_context *cpuctx; |
| |
| cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); |
| |
| if (cpuctx->active_pmu == old_pmu) |
| cpuctx->active_pmu = pmu; |
| } |
| } |
| |
| static void free_pmu_context(struct pmu *pmu) |
| { |
| struct pmu *i; |
| |
| mutex_lock(&pmus_lock); |
| /* |
| * Like a real lame refcount. |
| */ |
| list_for_each_entry(i, &pmus, entry) { |
| if (i->pmu_cpu_context == pmu->pmu_cpu_context) { |
| update_pmu_context(i, pmu); |
| goto out; |
| } |
| } |
| |
| free_percpu(pmu->pmu_cpu_context); |
| out: |
| mutex_unlock(&pmus_lock); |
| } |
| static struct idr pmu_idr; |
| |
| static ssize_t |
| type_show(struct device *dev, struct device_attribute *attr, char *page) |
| { |
| struct pmu *pmu = dev_get_drvdata(dev); |
| |
| return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); |
| } |
| |
| static struct device_attribute pmu_dev_attrs[] = { |
| __ATTR_RO(type), |
| __ATTR_NULL, |
| }; |
| |
| static int pmu_bus_running; |
| static struct bus_type pmu_bus = { |
| .name = "event_source", |
| .dev_attrs = pmu_dev_attrs, |
| }; |
| |
| static void pmu_dev_release(struct device *dev) |
| { |
| kfree(dev); |
| } |
| |
| static int pmu_dev_alloc(struct pmu *pmu) |
| { |
| int ret = -ENOMEM; |
| |
| pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); |
| if (!pmu->dev) |
| goto out; |
| |
| device_initialize(pmu->dev); |
| ret = dev_set_name(pmu->dev, "%s", pmu->name); |
| if (ret) |
| goto free_dev; |
| |
| dev_set_drvdata(pmu->dev, pmu); |
| pmu->dev->bus = &pmu_bus; |
| pmu->dev->release = pmu_dev_release; |
| ret = device_add(pmu->dev); |
| if (ret) |
| goto free_dev; |
| |
| out: |
| return ret; |
| |
| free_dev: |
| put_device(pmu->dev); |
| goto out; |
| } |
| |
| static struct lock_class_key cpuctx_mutex; |
| |
| int perf_pmu_register(struct pmu *pmu, char *name, int type) |
| { |
| int cpu, ret; |
| |
| mutex_lock(&pmus_lock); |
| ret = -ENOMEM; |
| pmu->pmu_disable_count = alloc_percpu(int); |
| if (!pmu->pmu_disable_count) |
| goto unlock; |
| |
| pmu->type = -1; |
| if (!name) |
| goto skip_type; |
| pmu->name = name; |
| |
| if (type < 0) { |
| int err = idr_pre_get(&pmu_idr, GFP_KERNEL); |
| if (!err) |
| goto free_pdc; |
| |
| err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); |
| if (err) { |
| ret = err; |
| goto free_pdc; |
| } |
| } |
| pmu->type = type; |
| |
| if (pmu_bus_running) { |
| ret = pmu_dev_alloc(pmu); |
| if (ret) |
| goto free_idr; |
| } |
| |
| skip_type: |
| pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); |
| if (pmu->pmu_cpu_context) |
| goto got_cpu_context; |
| |
| pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); |
| if (!pmu->pmu_cpu_context) |
| goto free_dev; |
| |
| for_each_possible_cpu(cpu) { |
| struct perf_cpu_context *cpuctx; |
| |
| cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); |
| __perf_event_init_context(&cpuctx->ctx); |
| lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); |
| cpuctx->ctx.type = cpu_context; |
| cpuctx->ctx.pmu = pmu; |
| cpuctx->jiffies_interval = 1; |
| INIT_LIST_HEAD(&cpuctx->rotation_list); |
| cpuctx->active_pmu = pmu; |
| } |
| |
| got_cpu_context: |
| if (!pmu->start_txn) { |
| if (pmu->pmu_enable) { |
| /* |
| * If we have pmu_enable/pmu_disable calls, install |
| * transaction stubs that use that to try and batch |
| * hardware accesses. |
| */ |
| pmu->start_txn = perf_pmu_start_txn; |
| pmu->commit_txn = perf_pmu_commit_txn; |
| pmu->cancel_txn = perf_pmu_cancel_txn; |
| } else { |
| pmu->start_txn = perf_pmu_nop_void; |
| pmu->commit_txn = perf_pmu_nop_int; |
| pmu->cancel_txn = perf_pmu_nop_void; |
| } |
| } |
| |
| if (!pmu->pmu_enable) { |
| pmu->pmu_enable = perf_pmu_nop_void; |
| pmu->pmu_disable = perf_pmu_nop_void; |
| } |
| |
| list_add_rcu(&pmu->entry, &pmus); |
| ret = 0; |
| unlock: |
| mutex_unlock(&pmus_lock); |
| |
| return ret; |
| |
| free_dev: |
| device_del(pmu->dev); |
| put_device(pmu->dev); |
| |
| free_idr: |
| if (pmu->type >= PERF_TYPE_MAX) |
| idr_remove(&pmu_idr, pmu->type); |
| |
| free_pdc: |
| free_percpu(pmu->pmu_disable_count); |
| goto unlock; |
| } |
| |
| void perf_pmu_unregister(struct pmu *pmu) |
| { |
| mutex_lock(&pmus_lock); |
| list_del_rcu(&pmu->entry); |
| mutex_unlock(&pmus_lock); |
| |
| /* |
| * We dereference the pmu list under both SRCU and regular RCU, so |
| * synchronize against both of those. |
| */ |
| synchronize_srcu(&pmus_srcu); |
| synchronize_rcu(); |
| |
| free_percpu(pmu->pmu_disable_count); |
| if (pmu->type >= PERF_TYPE_MAX) |
| idr_remove(&pmu_idr, pmu->type); |
| device_del(pmu->dev); |
| put_device(pmu->dev); |
| free_pmu_context(pmu); |
| } |
| |
| struct pmu *perf_init_event(struct perf_event *event) |
| { |
| struct pmu *pmu = NULL; |
| int idx; |
| |
| idx = srcu_read_lock(&pmus_srcu); |
| |
| rcu_read_lock(); |
| pmu = idr_find(&pmu_idr, event->attr.type); |
| rcu_read_unlock(); |
| if (pmu) |
| goto unlock; |
| |
| list_for_each_entry_rcu(pmu, &pmus, entry) { |
| int ret = pmu->event_init(event); |
| if (!ret) |
| goto unlock; |
| |
| if (ret != -ENOENT) { |
| pmu = ERR_PTR(ret); |
| goto unlock; |
| } |
| } |
| pmu = ERR_PTR(-ENOENT); |
| unlock: |
| srcu_read_unlock(&pmus_srcu, idx); |
| |
| return pmu; |
| } |
| |
| /* |
| * Allocate and initialize a event structure |
| */ |
| static struct perf_event * |
| perf_event_alloc(struct perf_event_attr *attr, int cpu, |
| struct task_struct *task, |
| struct perf_event *group_leader, |
| struct perf_event *parent_event, |
| perf_overflow_handler_t overflow_handler) |
| { |
| struct pmu *pmu; |
| struct perf_event *event; |
| struct hw_perf_event *hwc; |
| long err; |
| |
| if ((unsigned)cpu >= nr_cpu_ids) { |
| if (!task || cpu != -1) |
| return ERR_PTR(-EINVAL); |
| } |
| |
| event = kzalloc(sizeof(*event), GFP_KERNEL); |
| if (!event) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * Single events are their own group leaders, with an |
| * empty sibling list: |
| */ |
| if (!group_leader) |
| group_leader = event; |
| |
| mutex_init(&event->child_mutex); |
| INIT_LIST_HEAD(&event->child_list); |
| |
| INIT_LIST_HEAD(&event->group_entry); |
| INIT_LIST_HEAD(&event->event_entry); |
| INIT_LIST_HEAD(&event->sibling_list); |
| init_waitqueue_head(&event->waitq); |
| init_irq_work(&event->pending, perf_pending_event); |
| |
| mutex_init(&event->mmap_mutex); |
| |
| event->cpu = cpu; |
| event->attr = *attr; |
| event->group_leader = group_leader; |
| event->pmu = NULL; |
| event->oncpu = -1; |
| |
| event->parent = parent_event; |
| |
| event->ns = get_pid_ns(current->nsproxy->pid_ns); |
| event->id = atomic64_inc_return(&perf_event_id); |
| |
| event->state = PERF_EVENT_STATE_INACTIVE; |
| |
| if (task) { |
| event->attach_state = PERF_ATTACH_TASK; |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| /* |
| * hw_breakpoint is a bit difficult here.. |
| */ |
| if (attr->type == PERF_TYPE_BREAKPOINT) |
| event->hw.bp_target = task; |
| #endif |
| } |
| |
| if (!overflow_handler && parent_event) |
| overflow_handler = parent_event->overflow_handler; |
| |
| event->overflow_handler = overflow_handler; |
| |
| if (attr->disabled) |
| event->state = PERF_EVENT_STATE_OFF; |
| |
| pmu = NULL; |
| |
| hwc = &event->hw; |
| hwc->sample_period = attr->sample_period; |
| if (attr->freq && attr->sample_freq) |
| hwc->sample_period = 1; |
| hwc->last_period = hwc->sample_period; |
| |
| local64_set(&hwc->period_left, hwc->sample_period); |
| |
| /* |
| * we currently do not support PERF_FORMAT_GROUP on inherited events |
| */ |
| if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) |
| goto done; |
| |
| pmu = perf_init_event(event); |
| |
| done: |
| err = 0; |
| if (!pmu) |
| err = -EINVAL; |
| else if (IS_ERR(pmu)) |
| err = PTR_ERR(pmu); |
| |
| if (err) { |
| if (event->ns) |
| put_pid_ns(event->ns); |
| kfree(event); |
| return ERR_PTR(err); |
| } |
| |
| event->pmu = pmu; |
| |
| if (!event->parent) { |
| if (event->attach_state & PERF_ATTACH_TASK) |
| jump_label_inc(&perf_task_events); |
| if (event->attr.mmap || event->attr.mmap_data) |
| atomic_inc(&nr_mmap_events); |
| if (event->attr.comm) |
| atomic_inc(&nr_comm_events); |
| if (event->attr.task) |
| atomic_inc(&nr_task_events); |
| if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { |
| err = get_callchain_buffers(); |
| if (err) { |
| free_event(event); |
| return ERR_PTR(err); |
| } |
| } |
| } |
| |
| return event; |
| } |
| |
| static int perf_copy_attr(struct perf_event_attr __user *uattr, |
| struct perf_event_attr *attr) |
| { |
| u32 size; |
| int ret; |
| |
| if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) |
| return -EFAULT; |
| |
| /* |
| * zero the full structure, so that a short copy will be nice. |
| */ |
| memset(attr, 0, sizeof(*attr)); |
| |
| ret = get_user(size, &uattr->size); |
| if (ret) |
| return ret; |
| |
| if (size > PAGE_SIZE) /* silly large */ |
| goto err_size; |
| |
| if (!size) /* abi compat */ |
| size = PERF_ATTR_SIZE_VER0; |
| |
| if (size < PERF_ATTR_SIZE_VER0) |
| goto err_size; |
| |
| /* |
| * If we're handed a bigger struct than we know of, |
| * ensure all the unknown bits are 0 - i.e. new |
| * user-space does not rely on any kernel feature |
| * extensions we dont know about yet. |
| */ |
| if (size > sizeof(*attr)) { |
| unsigned char __user *addr; |
| unsigned char __user *end; |
| unsigned char val; |
| |
| addr = (void __user *)uattr + sizeof(*attr); |
| end = (void __user *)uattr + size; |
| |
| for (; addr < end; addr++) { |
| ret = get_user(val, addr); |
| if (ret) |
| return ret; |
| if (val) |
| goto err_size; |
| } |
| size = sizeof(*attr); |
| } |
| |
| ret = copy_from_user(attr, uattr, size); |
| if (ret) |
| return -EFAULT; |
| |
| /* |
| * If the type exists, the corresponding creation will verify |
| * the attr->config. |
| */ |
| if (attr->type >= PERF_TYPE_MAX) |
| return -EINVAL; |
| |
| if (attr->__reserved_1) |
| return -EINVAL; |
| |
| if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) |
| return -EINVAL; |
| |
| if (attr->read_format & ~(PERF_FORMAT_MAX-1)) |
| return -EINVAL; |
| |
| out: |
| return ret; |
| |
| err_size: |
| put_user(sizeof(*attr), &uattr->size); |
| ret = -E2BIG; |
| goto out; |
| } |
| |
| static int |
| perf_event_set_output(struct perf_event *event, struct perf_event *output_event) |
| { |
| struct perf_buffer *buffer = NULL, *old_buffer = NULL; |
| int ret = -EINVAL; |
| |
| if (!output_event) |
| goto set; |
| |
| /* don't allow circular references */ |
| if (event == output_event) |
| goto out; |
| |
| /* |
| * Don't allow cross-cpu buffers |
| */ |
| if (output_event->cpu != event->cpu) |
| goto out; |
| |
| /* |
| * If its not a per-cpu buffer, it must be the same task. |
| */ |
| if (output_event->cpu == -1 && output_event->ctx != event->ctx) |
| goto out; |
| |
| set: |
| mutex_lock(&event->mmap_mutex); |
| /* Can't redirect output if we've got an active mmap() */ |
| if (atomic_read(&event->mmap_count)) |
| goto unlock; |
| |
| if (output_event) { |
| /* get the buffer we want to redirect to */ |
| buffer = perf_buffer_get(output_event); |
| if (!buffer) |
| goto unlock; |
| } |
| |
| old_buffer = event->buffer; |
| rcu_assign_pointer(event->buffer, buffer); |
| ret = 0; |
| unlock: |
| mutex_unlock(&event->mmap_mutex); |
| |
| if (old_buffer) |
| perf_buffer_put(old_buffer); |
| out: |
| return ret; |
| } |
| |
| /** |
| * sys_perf_event_open - open a performance event, associate it to a task/cpu |
| * |
| * @attr_uptr: event_id type attributes for monitoring/sampling |
| * @pid: target pid |
| * @cpu: target cpu |
| * @group_fd: group leader event fd |
| */ |
| SYSCALL_DEFINE5(perf_event_open, |
| struct perf_event_attr __user *, attr_uptr, |
| pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) |
| { |
| struct perf_event *group_leader = NULL, *output_event = NULL; |
| struct perf_event *event, *sibling; |
| struct perf_event_attr attr; |
| struct perf_event_context *ctx; |
| struct file *event_file = NULL; |
| struct file *group_file = NULL; |
| struct task_struct *task = NULL; |
| struct pmu *pmu; |
| int event_fd; |
| int move_group = 0; |
| int fput_needed = 0; |
| int err; |
| |
| /* for future expandability... */ |
| if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) |
| return -EINVAL; |
| |
| err = perf_copy_attr(attr_uptr, &attr); |
| if (err) |
| return err; |
| |
| if (!attr.exclude_kernel) { |
| if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| } |
| |
| if (attr.freq) { |
| if (attr.sample_freq > sysctl_perf_event_sample_rate) |
| return -EINVAL; |
| } |
| |
| event_fd = get_unused_fd_flags(O_RDWR); |
| if (event_fd < 0) |
| return event_fd; |
| |
| if (group_fd != -1) { |
| group_leader = perf_fget_light(group_fd, &fput_needed); |
| if (IS_ERR(group_leader)) { |
| err = PTR_ERR(group_leader); |
| goto err_fd; |
| } |
| group_file = group_leader->filp; |
| if (flags & PERF_FLAG_FD_OUTPUT) |
| output_event = group_leader; |
| if (flags & PERF_FLAG_FD_NO_GROUP) |
| group_leader = NULL; |
| } |
| |
| if (pid != -1) { |
| task = find_lively_task_by_vpid(pid); |
| if (IS_ERR(task)) { |
| err = PTR_ERR(task); |
| goto err_group_fd; |
| } |
| } |
| |
| event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL); |
| if (IS_ERR(event)) { |
| err = PTR_ERR(event); |
| goto err_task; |
| } |
| |
| /* |
| * Special case software events and allow them to be part of |
| * any hardware group. |
| */ |
| pmu = event->pmu; |
| |
| if (group_leader && |
| (is_software_event(event) != is_software_event(group_leader))) { |
| if (is_software_event(event)) { |
| /* |
| * If event and group_leader are not both a software |
| * event, and event is, then group leader is not. |
| * |
| * Allow the addition of software events to !software |
| * groups, this is safe because software events never |
| * fail to schedule. |
| */ |
| pmu = group_leader->pmu; |
| } else if (is_software_event(group_leader) && |
| (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { |
| /* |
| * In case the group is a pure software group, and we |
| * try to add a hardware event, move the whole group to |
| * the hardware context. |
| */ |
| move_group = 1; |
| } |
| } |
| |
| /* |
| * Get the target context (task or percpu): |
| */ |
| ctx = find_get_context(pmu, task, cpu); |
| if (IS_ERR(ctx)) { |
| err = PTR_ERR(ctx); |
| goto err_alloc; |
| } |
| |
| /* |
| * Look up the group leader (we will attach this event to it): |
| */ |
| if (group_leader) { |
| err = -EINVAL; |
| |
| /* |
| * Do not allow a recursive hierarchy (this new sibling |
| * becoming part of another group-sibling): |
| */ |
| if (group_leader->group_leader != group_leader) |
| goto err_context; |
| /* |
| * Do not allow to attach to a group in a different |
| * task or CPU context: |
| */ |
| if (move_group) { |
| if (group_leader->ctx->type != ctx->type) |
| goto err_context; |
| } else { |
| if (group_leader->ctx != ctx) |
| goto err_context; |
| } |
| |
| /* |
| * Only a group leader can be exclusive or pinned |
| */ |
| if (attr.exclusive || attr.pinned) |
| goto err_context; |
| } |
| |
| if (output_event) { |
| err = perf_event_set_output(event, output_event); |
| if (err) |
| goto err_context; |
| } |
| |
| event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); |
| if (IS_ERR(event_file)) { |
| err = PTR_ERR(event_file); |
| goto err_context; |
| } |
| |
| if (move_group) { |
| struct perf_event_context *gctx = group_leader->ctx; |
| |
| mutex_lock(&gctx->mutex); |
| perf_event_remove_from_context(group_leader); |
| list_for_each_entry(sibling, &group_leader->sibling_list, |
| group_entry) { |
| perf_event_remove_from_context(sibling); |
| put_ctx(gctx); |
| } |
| mutex_unlock(&gctx->mutex); |
| put_ctx(gctx); |
| } |
| |
| event->filp = event_file; |
| WARN_ON_ONCE(ctx->parent_ctx); |
| mutex_lock(&ctx->mutex); |
| |
| if (move_group) { |
| perf_install_in_context(ctx, group_leader, cpu); |
| get_ctx(ctx); |
| list_for_each_entry(sibling, &group_leader->sibling_list, |
| group_entry) { |
| perf_install_in_context(ctx, sibling, cpu); |
| get_ctx(ctx); |
| } |
| } |
| |
| perf_install_in_context(ctx, event, cpu); |
| ++ctx->generation; |
| mutex_unlock(&ctx->mutex); |
| |
| event->owner = current; |
| |
| mutex_lock(¤t->perf_event_mutex); |
| list_add_tail(&event->owner_entry, ¤t->perf_event_list); |
| mutex_unlock(¤t->perf_event_mutex); |
| |
| /* |
| * Precalculate sample_data sizes |
| */ |
| perf_event__header_size(event); |
| perf_event__id_header_size(event); |
| |
| /* |
| * Drop the reference on the group_event after placing the |
| * new event on the sibling_list. This ensures destruction |
| * of the group leader will find the pointer to itself in |
| * perf_group_detach(). |
| */ |
| fput_light(group_file, fput_needed); |
| fd_install(event_fd, event_file); |
| return event_fd; |
| |
| err_context: |
| put_ctx(ctx); |
| err_alloc: |
| free_event(event); |
| err_task: |
| if (task) |
| put_task_struct(task); |
| err_group_fd: |
| fput_light(group_file, fput_needed); |
| err_fd: |
| put_unused_fd(event_fd); |
| return err; |
| } |
| |
| /** |
| * perf_event_create_kernel_counter |
| * |
| * @attr: attributes of the counter to create |
| * @cpu: cpu in which the counter is bound |
| * @task: task to profile (NULL for percpu) |
| */ |
| struct perf_event * |
| perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, |
| struct task_struct *task, |
| perf_overflow_handler_t overflow_handler) |
| { |
| struct perf_event_context *ctx; |
| struct perf_event *event; |
| int err; |
| |
| /* |
| * Get the target context (task or percpu): |
| */ |
| |
| event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler); |
| if (IS_ERR(event)) { |
| err = PTR_ERR(event); |
| goto err; |
| } |
| |
| ctx = find_get_context(event->pmu, task, cpu); |
| if (IS_ERR(ctx)) { |
| err = PTR_ERR(ctx); |
| goto err_free; |
| } |
| |
| event->filp = NULL; |
| WARN_ON_ONCE(ctx->parent_ctx); |
| mutex_lock(&ctx->mutex); |
| perf_install_in_context(ctx, event, cpu); |
| ++ctx->generation; |
| mutex_unlock(&ctx->mutex); |
| |
| return event; |
| |
| err_free: |
| free_event(event); |
| err: |
| return ERR_PTR(err); |
| } |
| EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); |
| |
| static void sync_child_event(struct perf_event *child_event, |
| struct task_struct *child) |
| { |
| struct perf_event *parent_event = child_event->parent; |
| u64 child_val; |
| |
| if (child_event->attr.inherit_stat) |
| perf_event_read_event(child_event, child); |
| |
| child_val = perf_event_count(child_event); |
| |
| /* |
| * Add back the child's count to the parent's count: |
| */ |
| atomic64_add(child_val, &parent_event->child_count); |
| atomic64_add(child_event->total_time_enabled, |
| &parent_event->child_total_time_enabled); |
| atomic64_add(child_event->total_time_running, |
| &parent_event->child_total_time_running); |
| |
| /* |
| * Remove this event from the parent's list |
| */ |
| WARN_ON_ONCE(parent_event->ctx->parent_ctx); |
| mutex_lock(&parent_event->child_mutex); |
| list_del_init(&child_event->child_list); |
| mutex_unlock(&parent_event->child_mutex); |
| |
| /* |
| * Release the parent event, if this was the last |
| * reference to it. |
| */ |
| fput(parent_event->filp); |
| } |
| |
| static void |
| __perf_event_exit_task(struct perf_event *child_event, |
| struct perf_event_context *child_ctx, |
| struct task_struct *child) |
| { |
| struct perf_event *parent_event; |
| |
| perf_event_remove_from_context(child_event); |
| |
| parent_event = child_event->parent; |
| /* |
| * It can happen that parent exits first, and has events |
| * that are still around due to the child reference. These |
| * events need to be zapped - but otherwise linger. |
| */ |
| if (parent_event) { |
| sync_child_event(child_event, child); |
| free_event(child_event); |
| } |
| } |
| |
| static void perf_event_exit_task_context(struct task_struct *child, int ctxn) |
| { |
| struct perf_event *child_event, *tmp; |
| struct perf_event_context *child_ctx; |
| unsigned long flags; |
| |
| if (likely(!child->perf_event_ctxp[ctxn])) { |
| perf_event_task(child, NULL, 0); |
| return; |
| } |
| |
| local_irq_save(flags); |
| /* |
| * We can't reschedule here because interrupts are disabled, |
| * and either child is current or it is a task that can't be |
| * scheduled, so we are now safe from rescheduling changing |
| * our context. |
| */ |
| child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); |
| task_ctx_sched_out(child_ctx, EVENT_ALL); |
| |
| /* |
| * Take the context lock here so that if find_get_context is |
| * reading child->perf_event_ctxp, we wait until it has |
| * incremented the context's refcount before we do put_ctx below. |
| */ |
| raw_spin_lock(&child_ctx->lock); |
| child->perf_event_ctxp[ctxn] = NULL; |
| /* |
| * If this context is a clone; unclone it so it can't get |
| * swapped to another process while we're removing all |
| * the events from it. |
| */ |
| unclone_ctx(child_ctx); |
| update_context_time(child_ctx); |
| raw_spin_unlock_irqrestore(&child_ctx->lock, flags); |
| |
| /* |
| * Report the task dead after unscheduling the events so that we |
| * won't get any samples after PERF_RECORD_EXIT. We can however still |
| * get a few PERF_RECORD_READ events. |
| */ |
| perf_event_task(child, child_ctx, 0); |
| |
| /* |
| * We can recurse on the same lock type through: |
| * |
| * __perf_event_exit_task() |
| * sync_child_event() |
| * fput(parent_event->filp) |
| * perf_release() |
| * mutex_lock(&ctx->mutex) |
| * |
| * But since its the parent context it won't be the same instance. |
| */ |
| mutex_lock(&child_ctx->mutex); |
| |
| again: |
| list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, |
| group_entry) |
| __perf_event_exit_task(child_event, child_ctx, child); |
| |
| list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, |
| group_entry) |
| __perf_event_exit_task(child_event, child_ctx, child); |
| |
| /* |
| * If the last event was a group event, it will have appended all |
| * its siblings to the list, but we obtained 'tmp' before that which |
| * will still point to the list head terminating the iteration. |
| */ |
| if (!list_empty(&child_ctx->pinned_groups) || |
| !list_empty(&child_ctx->flexible_groups)) |
| goto again; |
| |
| mutex_unlock(&child_ctx->mutex); |
| |
| put_ctx(child_ctx); |
| } |
| |
| /* |
| * When a child task exits, feed back event values to parent events. |
| */ |
| void perf_event_exit_task(struct task_struct *child) |
| { |
| struct perf_event *event, *tmp; |
| int ctxn; |
| |
| mutex_lock(&child->perf_event_mutex); |
| list_for_each_entry_safe(event, tmp, &child->perf_event_list, |
| owner_entry) { |
| list_del_init(&event->owner_entry); |
| |
| /* |
| * Ensure the list deletion is visible before we clear |
| * the owner, closes a race against perf_release() where |
| * we need to serialize on the owner->perf_event_mutex. |
| */ |
| smp_wmb(); |
| event->owner = NULL; |
| } |
| mutex_unlock(&child->perf_event_mutex); |
| |
| for_each_task_context_nr(ctxn) |
| perf_event_exit_task_context(child, ctxn); |
| } |
| |
| static void perf_free_event(struct perf_event *event, |
| struct perf_event_context *ctx) |
| { |
| struct perf_event *parent = event->parent; |
| |
| if (WARN_ON_ONCE(!parent)) |
| return; |
| |
| mutex_lock(&parent->child_mutex); |
| list_del_init(&event->child_list); |
| mutex_unlock(&parent->child_mutex); |
| |
| fput(parent->filp); |
| |
| perf_group_detach(event); |
| list_del_event(event, ctx); |
| free_event(event); |
| } |
| |
| /* |
| * free an unexposed, unused context as created by inheritance by |
| * perf_event_init_task below, used by fork() in case of fail. |
| */ |
| void perf_event_free_task(struct task_struct *task) |
| { |
| struct perf_event_context *ctx; |
| struct perf_event *event, *tmp; |
| int ctxn; |
| |
| for_each_task_context_nr(ctxn) { |
| ctx = task->perf_event_ctxp[ctxn]; |
| if (!ctx) |
| continue; |
| |
| mutex_lock(&ctx->mutex); |
| again: |
| list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, |
| group_entry) |
| perf_free_event(event, ctx); |
| |
| list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, |
| group_entry) |
| perf_free_event(event, ctx); |
| |
| if (!list_empty(&ctx->pinned_groups) || |
| !list_empty(&ctx->flexible_groups)) |
| goto again; |
| |
| mutex_unlock(&ctx->mutex); |
| |
| put_ctx(ctx); |
| } |
| } |
| |
| void perf_event_delayed_put(struct task_struct *task) |
| { |
| int ctxn; |
| |
| for_each_task_context_nr(ctxn) |
| WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); |
| } |
| |
| /* |
| * inherit a event from parent task to child task: |
| */ |
| static struct perf_event * |
| inherit_event(struct perf_event *parent_event, |
| struct task_struct *parent, |
| struct perf_event_context *parent_ctx, |
| struct task_struct *child, |
| struct perf_event *group_leader, |
| struct perf_event_context *child_ctx) |
| { |
| struct perf_event *child_event; |
| unsigned long flags; |
| |
| /* |
| * Instead of creating recursive hierarchies of events, |
| * we link inherited events back to the original parent, |
| * which has a filp for sure, which we use as the reference |
| * count: |
| */ |
| if (parent_event->parent) |
| parent_event = parent_event->parent; |
| |
| child_event = perf_event_alloc(&parent_event->attr, |
| parent_event->cpu, |
| child, |
| group_leader, parent_event, |
| NULL); |
| if (IS_ERR(child_event)) |
| return child_event; |
| get_ctx(child_ctx); |
| |
| /* |
| * Make the child state follow the state of the parent event, |
| * not its attr.disabled bit. We hold the parent's mutex, |
| * so we won't race with perf_event_{en, dis}able_family. |
| */ |
| if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) |
| child_event->state = PERF_EVENT_STATE_INACTIVE; |
| else |
| child_event->state = PERF_EVENT_STATE_OFF; |
| |
| if (parent_event->attr.freq) { |
| u64 sample_period = parent_event->hw.sample_period; |
| struct hw_perf_event *hwc = &child_event->hw; |
| |
| hwc->sample_period = sample_period; |
| hwc->last_period = sample_period; |
| |
| local64_set(&hwc->period_left, sample_period); |
| } |
| |
| child_event->ctx = child_ctx; |
| child_event->overflow_handler = parent_event->overflow_handler; |
| |
| /* |
| * Precalculate sample_data sizes |
| */ |
| perf_event__header_size(child_event); |
| perf_event__id_header_size(child_event); |
| |
| /* |
| * Link it up in the child's context: |
| */ |
| raw_spin_lock_irqsave(&child_ctx->lock, flags); |
| add_event_to_ctx(child_event, child_ctx); |
| raw_spin_unlock_irqrestore(&child_ctx->lock, flags); |
| |
| /* |
| * Get a reference to the parent filp - we will fput it |
| * when the child event exits. This is safe to do because |
| * we are in the parent and we know that the filp still |
| * exists and has a nonzero count: |
| */ |
| atomic_long_inc(&parent_event->filp->f_count); |
| |
| /* |
| * Link this into the parent event's child list |
| */ |
| WARN_ON_ONCE(parent_event->ctx->parent_ctx); |
| mutex_lock(&parent_event->child_mutex); |
| list_add_tail(&child_event->child_list, &parent_event->child_list); |
| mutex_unlock(&parent_event->child_mutex); |
| |
| return child_event; |
| } |
| |
| static int inherit_group(struct perf_event *parent_event, |
| struct task_struct *parent, |
| struct perf_event_context *parent_ctx, |
| struct task_struct *child, |
| struct perf_event_context *child_ctx) |
| { |
| struct perf_event *leader; |
| struct perf_event *sub; |
| struct perf_event *child_ctr; |
| |
| leader = inherit_event(parent_event, parent, parent_ctx, |
| child, NULL, child_ctx); |
| if (IS_ERR(leader)) |
| return PTR_ERR(leader); |
| list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { |
| child_ctr = inherit_event(sub, parent, parent_ctx, |
| child, leader, child_ctx); |
| if (IS_ERR(child_ctr)) |
| return PTR_ERR(child_ctr); |
| } |
| return 0; |
| } |
| |
| static int |
| inherit_task_group(struct perf_event *event, struct task_struct *parent, |
| struct perf_event_context *parent_ctx, |
| struct task_struct *child, int ctxn, |
| int *inherited_all) |
| { |
| int ret; |
| struct perf_event_context *child_ctx; |
| |
| if (!event->attr.inherit) { |
| *inherited_all = 0; |
| return 0; |
| } |
| |
| child_ctx = child->perf_event_ctxp[ctxn]; |
| if (!child_ctx) { |
| /* |
| * This is executed from the parent task context, so |
| * inherit events that have been marked for cloning. |
| * First allocate and initialize a context for the |
| * child. |
| */ |
| |
| child_ctx = alloc_perf_context(event->pmu, child); |
| if (!child_ctx) |
| return -ENOMEM; |
| |
| child->perf_event_ctxp[ctxn] = child_ctx; |
| } |
| |
| ret = inherit_group(event, parent, parent_ctx, |
| child, child_ctx); |
| |
| if (ret) |
| *inherited_all = 0; |
| |
| return ret; |
| } |
| |
| /* |
| * Initialize the perf_event context in task_struct |
| */ |
| int perf_event_init_context(struct task_struct *child, int ctxn) |
| { |
| struct perf_event_context *child_ctx, *parent_ctx; |
| struct perf_event_context *cloned_ctx; |
| struct perf_event *event; |
| struct task_struct *parent = current; |
| int inherited_all = 1; |
| unsigned long flags; |
| int ret = 0; |
| |
| if (likely(!parent->perf_event_ctxp[ctxn])) |
| return 0; |
| |
| /* |
| * If the parent's context is a clone, pin it so it won't get |
| * swapped under us. |
| */ |
| parent_ctx = perf_pin_task_context(parent, ctxn); |
| |
| /* |
| * No need to check if parent_ctx != NULL here; since we saw |
| * it non-NULL earlier, the only reason for it to become NULL |
| * is if we exit, and since we're currently in the middle of |
| * a fork we can't be exiting at the same time. |
| */ |
| |
| /* |
| * Lock the parent list. No need to lock the child - not PID |
| * hashed yet and not running, so nobody can access it. |
| */ |
| mutex_lock(&parent_ctx->mutex); |
| |
| /* |
| * We dont have to disable NMIs - we are only looking at |
| * the list, not manipulating it: |
| */ |
| list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { |
| ret = inherit_task_group(event, parent, parent_ctx, |
| child, ctxn, &inherited_all); |
| if (ret) |
| break; |
| } |
| |
| /* |
| * We can't hold ctx->lock when iterating the ->flexible_group list due |
| * to allocations, but we need to prevent rotation because |
| * rotate_ctx() will change the list from interrupt context. |
| */ |
| raw_spin_lock_irqsave(&parent_ctx->lock, flags); |
| parent_ctx->rotate_disable = 1; |
| raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); |
| |
| list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { |
| ret = inherit_task_group(event, parent, parent_ctx, |
| child, ctxn, &inherited_all); |
| if (ret) |
| break; |
| } |
| |
| raw_spin_lock_irqsave(&parent_ctx->lock, flags); |
| parent_ctx->rotate_disable = 0; |
| |
| child_ctx = child->perf_event_ctxp[ctxn]; |
| |
| if (child_ctx && inherited_all) { |
| /* |
| * Mark the child context as a clone of the parent |
| * context, or of whatever the parent is a clone of. |
| * |
| * Note that if the parent is a clone, the holding of |
| * parent_ctx->lock avoids it from being uncloned. |
| */ |
| cloned_ctx = parent_ctx->parent_ctx; |
| if (cloned_ctx) { |
| child_ctx->parent_ctx = cloned_ctx; |
| child_ctx->parent_gen = parent_ctx->parent_gen; |
| } else { |
| child_ctx->parent_ctx = parent_ctx; |
| child_ctx->parent_gen = parent_ctx->generation; |
| } |
| get_ctx(child_ctx->parent_ctx); |
| } |
| |
| raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); |
| mutex_unlock(&parent_ctx->mutex); |
| |
| perf_unpin_context(parent_ctx); |
| |
| return ret; |
| } |
| |
| /* |
| * Initialize the perf_event context in task_struct |
| */ |
| int perf_event_init_task(struct task_struct *child) |
| { |
| int ctxn, ret; |
| |
| memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); |
| mutex_init(&child->perf_event_mutex); |
| INIT_LIST_HEAD(&child->perf_event_list); |
| |
| for_each_task_context_nr(ctxn) { |
| ret = perf_event_init_context(child, ctxn); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void __init perf_event_init_all_cpus(void) |
| { |
| struct swevent_htable *swhash; |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| swhash = &per_cpu(swevent_htable, cpu); |
| mutex_init(&swhash->hlist_mutex); |
| INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); |
| } |
| } |
| |
| static void __cpuinit perf_event_init_cpu(int cpu) |
| { |
| struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); |
| |
| mutex_lock(&swhash->hlist_mutex); |
| if (swhash->hlist_refcount > 0) { |
| struct swevent_hlist *hlist; |
| |
| hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); |
| WARN_ON(!hlist); |
| rcu_assign_pointer(swhash->swevent_hlist, hlist); |
| } |
| mutex_unlock(&swhash->hlist_mutex); |
| } |
| |
| #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC |
| static void perf_pmu_rotate_stop(struct pmu *pmu) |
| { |
| struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); |
| |
| WARN_ON(!irqs_disabled()); |
| |
| list_del_init(&cpuctx->rotation_list); |
| } |
| |
| static void __perf_event_exit_context(void *__info) |
| { |
| struct perf_event_context *ctx = __info; |
| struct perf_event *event, *tmp; |
| |
| perf_pmu_rotate_stop(ctx->pmu); |
| |
| list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) |
| __perf_event_remove_from_context(event); |
| list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) |
| __perf_event_remove_from_context(event); |
| } |
| |
| static void perf_event_exit_cpu_context(int cpu) |
| { |
| struct perf_event_context *ctx; |
| struct pmu *pmu; |
| int idx; |
| |
| idx = srcu_read_lock(&pmus_srcu); |
| list_for_each_entry_rcu(pmu, &pmus, entry) { |
| ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; |
| |
| mutex_lock(&ctx->mutex); |
| smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); |
| mutex_unlock(&ctx->mutex); |
| } |
| srcu_read_unlock(&pmus_srcu, idx); |
| } |
| |
| static void perf_event_exit_cpu(int cpu) |
| { |
| struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); |
| |
| mutex_lock(&swhash->hlist_mutex); |
| swevent_hlist_release(swhash); |
| mutex_unlock(&swhash->hlist_mutex); |
| |
| perf_event_exit_cpu_context(cpu); |
| } |
| #else |
| static inline void perf_event_exit_cpu(int cpu) { } |
| #endif |
| |
| static int |
| perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) |
| perf_event_exit_cpu(cpu); |
| |
| return NOTIFY_OK; |
| } |
| |
| /* |
| * Run the perf reboot notifier at the very last possible moment so that |
| * the generic watchdog code runs as long as possible. |
| */ |
| static struct notifier_block perf_reboot_notifier = { |
| .notifier_call = perf_reboot, |
| .priority = INT_MIN, |
| }; |
| |
| static int __cpuinit |
| perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (long)hcpu; |
| |
| switch (action & ~CPU_TASKS_FROZEN) { |
| |
| case CPU_UP_PREPARE: |
| case CPU_DOWN_FAILED: |
| perf_event_init_cpu(cpu); |
| break; |
| |
| case CPU_UP_CANCELED: |
| case CPU_DOWN_PREPARE: |
| perf_event_exit_cpu(cpu); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| void __init perf_event_init(void) |
| { |
| int ret; |
| |
| idr_init(&pmu_idr); |
| |
| perf_event_init_all_cpus(); |
| init_srcu_struct(&pmus_srcu); |
| perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); |
| perf_pmu_register(&perf_cpu_clock, NULL, -1); |
| perf_pmu_register(&perf_task_clock, NULL, -1); |
| perf_tp_register(); |
| perf_cpu_notifier(perf_cpu_notify); |
| register_reboot_notifier(&perf_reboot_notifier); |
| |
| ret = init_hw_breakpoint(); |
| WARN(ret, "hw_breakpoint initialization failed with: %d", ret); |
| } |
| |
| static int __init perf_event_sysfs_init(void) |
| { |
| struct pmu *pmu; |
| int ret; |
| |
| mutex_lock(&pmus_lock); |
| |
| ret = bus_register(&pmu_bus); |
| if (ret) |
| goto unlock; |
| |
| list_for_each_entry(pmu, &pmus, entry) { |
| if (!pmu->name || pmu->type < 0) |
| continue; |
| |
| ret = pmu_dev_alloc(pmu); |
| WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); |
| } |
| pmu_bus_running = 1; |
| ret = 0; |
| |
| unlock: |
| mutex_unlock(&pmus_lock); |
| |
| return ret; |
| } |
| device_initcall(perf_event_sysfs_init); |