| /* |
| * Copyright (C) 2012 Freescale Semiconductor, Inc. |
| * |
| * Copyright (C) 2014 Linaro. |
| * Viresh Kumar <viresh.kumar@linaro.org> |
| * |
| * The OPP code in function set_target() is reused from |
| * drivers/cpufreq/omap-cpufreq.c |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/clk.h> |
| #include <linux/cpu.h> |
| #include <linux/cpu_cooling.h> |
| #include <linux/cpufreq.h> |
| #include <linux/cpufreq-dt.h> |
| #include <linux/cpumask.h> |
| #include <linux/err.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/pm_opp.h> |
| #include <linux/platform_device.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/slab.h> |
| #include <linux/thermal.h> |
| |
| struct private_data { |
| struct device *cpu_dev; |
| struct regulator *cpu_reg; |
| struct thermal_cooling_device *cdev; |
| unsigned int voltage_tolerance; /* in percentage */ |
| }; |
| |
| static int set_target(struct cpufreq_policy *policy, unsigned int index) |
| { |
| struct dev_pm_opp *opp; |
| struct cpufreq_frequency_table *freq_table = policy->freq_table; |
| struct clk *cpu_clk = policy->clk; |
| struct private_data *priv = policy->driver_data; |
| struct device *cpu_dev = priv->cpu_dev; |
| struct regulator *cpu_reg = priv->cpu_reg; |
| unsigned long volt = 0, volt_old = 0, tol = 0; |
| unsigned int old_freq, new_freq; |
| long freq_Hz, freq_exact; |
| int ret; |
| |
| freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000); |
| if (freq_Hz <= 0) |
| freq_Hz = freq_table[index].frequency * 1000; |
| |
| freq_exact = freq_Hz; |
| new_freq = freq_Hz / 1000; |
| old_freq = clk_get_rate(cpu_clk) / 1000; |
| |
| if (!IS_ERR(cpu_reg)) { |
| unsigned long opp_freq; |
| |
| rcu_read_lock(); |
| opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz); |
| if (IS_ERR(opp)) { |
| rcu_read_unlock(); |
| dev_err(cpu_dev, "failed to find OPP for %ld\n", |
| freq_Hz); |
| return PTR_ERR(opp); |
| } |
| volt = dev_pm_opp_get_voltage(opp); |
| opp_freq = dev_pm_opp_get_freq(opp); |
| rcu_read_unlock(); |
| tol = volt * priv->voltage_tolerance / 100; |
| volt_old = regulator_get_voltage(cpu_reg); |
| dev_dbg(cpu_dev, "Found OPP: %ld kHz, %ld uV\n", |
| opp_freq / 1000, volt); |
| } |
| |
| dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", |
| old_freq / 1000, (volt_old > 0) ? volt_old / 1000 : -1, |
| new_freq / 1000, volt ? volt / 1000 : -1); |
| |
| /* scaling up? scale voltage before frequency */ |
| if (!IS_ERR(cpu_reg) && new_freq > old_freq) { |
| ret = regulator_set_voltage_tol(cpu_reg, volt, tol); |
| if (ret) { |
| dev_err(cpu_dev, "failed to scale voltage up: %d\n", |
| ret); |
| return ret; |
| } |
| } |
| |
| ret = clk_set_rate(cpu_clk, freq_exact); |
| if (ret) { |
| dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); |
| if (!IS_ERR(cpu_reg) && volt_old > 0) |
| regulator_set_voltage_tol(cpu_reg, volt_old, tol); |
| return ret; |
| } |
| |
| /* scaling down? scale voltage after frequency */ |
| if (!IS_ERR(cpu_reg) && new_freq < old_freq) { |
| ret = regulator_set_voltage_tol(cpu_reg, volt, tol); |
| if (ret) { |
| dev_err(cpu_dev, "failed to scale voltage down: %d\n", |
| ret); |
| clk_set_rate(cpu_clk, old_freq * 1000); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int allocate_resources(int cpu, struct device **cdev, |
| struct regulator **creg, struct clk **cclk) |
| { |
| struct device *cpu_dev; |
| struct regulator *cpu_reg; |
| struct clk *cpu_clk; |
| int ret = 0; |
| char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg; |
| |
| cpu_dev = get_cpu_device(cpu); |
| if (!cpu_dev) { |
| pr_err("failed to get cpu%d device\n", cpu); |
| return -ENODEV; |
| } |
| |
| /* Try "cpu0" for older DTs */ |
| if (!cpu) |
| reg = reg_cpu0; |
| else |
| reg = reg_cpu; |
| |
| try_again: |
| cpu_reg = regulator_get_optional(cpu_dev, reg); |
| if (IS_ERR(cpu_reg)) { |
| /* |
| * If cpu's regulator supply node is present, but regulator is |
| * not yet registered, we should try defering probe. |
| */ |
| if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) { |
| dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n", |
| cpu); |
| return -EPROBE_DEFER; |
| } |
| |
| /* Try with "cpu-supply" */ |
| if (reg == reg_cpu0) { |
| reg = reg_cpu; |
| goto try_again; |
| } |
| |
| dev_dbg(cpu_dev, "no regulator for cpu%d: %ld\n", |
| cpu, PTR_ERR(cpu_reg)); |
| } |
| |
| cpu_clk = clk_get(cpu_dev, NULL); |
| if (IS_ERR(cpu_clk)) { |
| /* put regulator */ |
| if (!IS_ERR(cpu_reg)) |
| regulator_put(cpu_reg); |
| |
| ret = PTR_ERR(cpu_clk); |
| |
| /* |
| * If cpu's clk node is present, but clock is not yet |
| * registered, we should try defering probe. |
| */ |
| if (ret == -EPROBE_DEFER) |
| dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu); |
| else |
| dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", cpu, |
| ret); |
| } else { |
| *cdev = cpu_dev; |
| *creg = cpu_reg; |
| *cclk = cpu_clk; |
| } |
| |
| return ret; |
| } |
| |
| static int cpufreq_init(struct cpufreq_policy *policy) |
| { |
| struct cpufreq_dt_platform_data *pd; |
| struct cpufreq_frequency_table *freq_table; |
| struct device_node *np; |
| struct private_data *priv; |
| struct device *cpu_dev; |
| struct regulator *cpu_reg; |
| struct clk *cpu_clk; |
| unsigned long min_uV = ~0, max_uV = 0; |
| unsigned int transition_latency; |
| int ret; |
| |
| ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk); |
| if (ret) { |
| pr_err("%s: Failed to allocate resources: %d\n", __func__, ret); |
| return ret; |
| } |
| |
| np = of_node_get(cpu_dev->of_node); |
| if (!np) { |
| dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu); |
| ret = -ENOENT; |
| goto out_put_reg_clk; |
| } |
| |
| /* OPPs might be populated at runtime, don't check for error here */ |
| of_init_opp_table(cpu_dev); |
| |
| /* |
| * But we need OPP table to function so if it is not there let's |
| * give platform code chance to provide it for us. |
| */ |
| ret = dev_pm_opp_get_opp_count(cpu_dev); |
| if (ret <= 0) { |
| pr_debug("OPP table is not ready, deferring probe\n"); |
| ret = -EPROBE_DEFER; |
| goto out_free_opp; |
| } |
| |
| priv = kzalloc(sizeof(*priv), GFP_KERNEL); |
| if (!priv) { |
| ret = -ENOMEM; |
| goto out_free_opp; |
| } |
| |
| of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance); |
| |
| if (of_property_read_u32(np, "clock-latency", &transition_latency)) |
| transition_latency = CPUFREQ_ETERNAL; |
| |
| if (!IS_ERR(cpu_reg)) { |
| unsigned long opp_freq = 0; |
| |
| /* |
| * Disable any OPPs where the connected regulator isn't able to |
| * provide the specified voltage and record minimum and maximum |
| * voltage levels. |
| */ |
| while (1) { |
| struct dev_pm_opp *opp; |
| unsigned long opp_uV, tol_uV; |
| |
| rcu_read_lock(); |
| opp = dev_pm_opp_find_freq_ceil(cpu_dev, &opp_freq); |
| if (IS_ERR(opp)) { |
| rcu_read_unlock(); |
| break; |
| } |
| opp_uV = dev_pm_opp_get_voltage(opp); |
| rcu_read_unlock(); |
| |
| tol_uV = opp_uV * priv->voltage_tolerance / 100; |
| if (regulator_is_supported_voltage(cpu_reg, opp_uV, |
| opp_uV + tol_uV)) { |
| if (opp_uV < min_uV) |
| min_uV = opp_uV; |
| if (opp_uV > max_uV) |
| max_uV = opp_uV; |
| } else { |
| dev_pm_opp_disable(cpu_dev, opp_freq); |
| } |
| |
| opp_freq++; |
| } |
| |
| ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV); |
| if (ret > 0) |
| transition_latency += ret * 1000; |
| } |
| |
| ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table); |
| if (ret) { |
| pr_err("failed to init cpufreq table: %d\n", ret); |
| goto out_free_priv; |
| } |
| |
| priv->cpu_dev = cpu_dev; |
| priv->cpu_reg = cpu_reg; |
| policy->driver_data = priv; |
| |
| policy->clk = cpu_clk; |
| ret = cpufreq_table_validate_and_show(policy, freq_table); |
| if (ret) { |
| dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__, |
| ret); |
| goto out_free_cpufreq_table; |
| } |
| |
| policy->cpuinfo.transition_latency = transition_latency; |
| |
| pd = cpufreq_get_driver_data(); |
| if (!pd || !pd->independent_clocks) |
| cpumask_setall(policy->cpus); |
| |
| of_node_put(np); |
| |
| return 0; |
| |
| out_free_cpufreq_table: |
| dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); |
| out_free_priv: |
| kfree(priv); |
| out_free_opp: |
| of_free_opp_table(cpu_dev); |
| of_node_put(np); |
| out_put_reg_clk: |
| clk_put(cpu_clk); |
| if (!IS_ERR(cpu_reg)) |
| regulator_put(cpu_reg); |
| |
| return ret; |
| } |
| |
| static int cpufreq_exit(struct cpufreq_policy *policy) |
| { |
| struct private_data *priv = policy->driver_data; |
| |
| if (priv->cdev) |
| cpufreq_cooling_unregister(priv->cdev); |
| dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table); |
| of_free_opp_table(priv->cpu_dev); |
| clk_put(policy->clk); |
| if (!IS_ERR(priv->cpu_reg)) |
| regulator_put(priv->cpu_reg); |
| kfree(priv); |
| |
| return 0; |
| } |
| |
| static void cpufreq_ready(struct cpufreq_policy *policy) |
| { |
| struct private_data *priv = policy->driver_data; |
| struct device_node *np = of_node_get(priv->cpu_dev->of_node); |
| |
| if (WARN_ON(!np)) |
| return; |
| |
| /* |
| * For now, just loading the cooling device; |
| * thermal DT code takes care of matching them. |
| */ |
| if (of_find_property(np, "#cooling-cells", NULL)) { |
| priv->cdev = of_cpufreq_cooling_register(np, |
| policy->related_cpus); |
| if (IS_ERR(priv->cdev)) { |
| dev_err(priv->cpu_dev, |
| "running cpufreq without cooling device: %ld\n", |
| PTR_ERR(priv->cdev)); |
| |
| priv->cdev = NULL; |
| } |
| } |
| |
| of_node_put(np); |
| } |
| |
| static struct cpufreq_driver dt_cpufreq_driver = { |
| .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK, |
| .verify = cpufreq_generic_frequency_table_verify, |
| .target_index = set_target, |
| .get = cpufreq_generic_get, |
| .init = cpufreq_init, |
| .exit = cpufreq_exit, |
| .ready = cpufreq_ready, |
| .name = "cpufreq-dt", |
| .attr = cpufreq_generic_attr, |
| }; |
| |
| static int dt_cpufreq_probe(struct platform_device *pdev) |
| { |
| struct device *cpu_dev; |
| struct regulator *cpu_reg; |
| struct clk *cpu_clk; |
| int ret; |
| |
| /* |
| * All per-cluster (CPUs sharing clock/voltages) initialization is done |
| * from ->init(). In probe(), we just need to make sure that clk and |
| * regulators are available. Else defer probe and retry. |
| * |
| * FIXME: Is checking this only for CPU0 sufficient ? |
| */ |
| ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk); |
| if (ret) |
| return ret; |
| |
| clk_put(cpu_clk); |
| if (!IS_ERR(cpu_reg)) |
| regulator_put(cpu_reg); |
| |
| dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev); |
| |
| ret = cpufreq_register_driver(&dt_cpufreq_driver); |
| if (ret) |
| dev_err(cpu_dev, "failed register driver: %d\n", ret); |
| |
| return ret; |
| } |
| |
| static int dt_cpufreq_remove(struct platform_device *pdev) |
| { |
| cpufreq_unregister_driver(&dt_cpufreq_driver); |
| return 0; |
| } |
| |
| static struct platform_driver dt_cpufreq_platdrv = { |
| .driver = { |
| .name = "cpufreq-dt", |
| }, |
| .probe = dt_cpufreq_probe, |
| .remove = dt_cpufreq_remove, |
| }; |
| module_platform_driver(dt_cpufreq_platdrv); |
| |
| MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>"); |
| MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>"); |
| MODULE_DESCRIPTION("Generic cpufreq driver"); |
| MODULE_LICENSE("GPL"); |