| /* |
| * This file is part of UBIFS. |
| * |
| * Copyright (C) 2006-2008 Nokia Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published by |
| * the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 51 |
| * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| * Authors: Artem Bityutskiy (Битюцкий Артём) |
| * Adrian Hunter |
| */ |
| |
| /* |
| * This file implements most of the debugging stuff which is compiled in only |
| * when it is enabled. But some debugging check functions are implemented in |
| * corresponding subsystem, just because they are closely related and utilize |
| * various local functions of those subsystems. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/debugfs.h> |
| #include <linux/math64.h> |
| #include <linux/uaccess.h> |
| #include <linux/random.h> |
| #include <linux/ctype.h> |
| #include "ubifs.h" |
| |
| static DEFINE_SPINLOCK(dbg_lock); |
| |
| static const char *get_key_fmt(int fmt) |
| { |
| switch (fmt) { |
| case UBIFS_SIMPLE_KEY_FMT: |
| return "simple"; |
| default: |
| return "unknown/invalid format"; |
| } |
| } |
| |
| static const char *get_key_hash(int hash) |
| { |
| switch (hash) { |
| case UBIFS_KEY_HASH_R5: |
| return "R5"; |
| case UBIFS_KEY_HASH_TEST: |
| return "test"; |
| default: |
| return "unknown/invalid name hash"; |
| } |
| } |
| |
| static const char *get_key_type(int type) |
| { |
| switch (type) { |
| case UBIFS_INO_KEY: |
| return "inode"; |
| case UBIFS_DENT_KEY: |
| return "direntry"; |
| case UBIFS_XENT_KEY: |
| return "xentry"; |
| case UBIFS_DATA_KEY: |
| return "data"; |
| case UBIFS_TRUN_KEY: |
| return "truncate"; |
| default: |
| return "unknown/invalid key"; |
| } |
| } |
| |
| static const char *get_dent_type(int type) |
| { |
| switch (type) { |
| case UBIFS_ITYPE_REG: |
| return "file"; |
| case UBIFS_ITYPE_DIR: |
| return "dir"; |
| case UBIFS_ITYPE_LNK: |
| return "symlink"; |
| case UBIFS_ITYPE_BLK: |
| return "blkdev"; |
| case UBIFS_ITYPE_CHR: |
| return "char dev"; |
| case UBIFS_ITYPE_FIFO: |
| return "fifo"; |
| case UBIFS_ITYPE_SOCK: |
| return "socket"; |
| default: |
| return "unknown/invalid type"; |
| } |
| } |
| |
| const char *dbg_snprintf_key(const struct ubifs_info *c, |
| const union ubifs_key *key, char *buffer, int len) |
| { |
| char *p = buffer; |
| int type = key_type(c, key); |
| |
| if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { |
| switch (type) { |
| case UBIFS_INO_KEY: |
| len -= snprintf(p, len, "(%lu, %s)", |
| (unsigned long)key_inum(c, key), |
| get_key_type(type)); |
| break; |
| case UBIFS_DENT_KEY: |
| case UBIFS_XENT_KEY: |
| len -= snprintf(p, len, "(%lu, %s, %#08x)", |
| (unsigned long)key_inum(c, key), |
| get_key_type(type), key_hash(c, key)); |
| break; |
| case UBIFS_DATA_KEY: |
| len -= snprintf(p, len, "(%lu, %s, %u)", |
| (unsigned long)key_inum(c, key), |
| get_key_type(type), key_block(c, key)); |
| break; |
| case UBIFS_TRUN_KEY: |
| len -= snprintf(p, len, "(%lu, %s)", |
| (unsigned long)key_inum(c, key), |
| get_key_type(type)); |
| break; |
| default: |
| len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", |
| key->u32[0], key->u32[1]); |
| } |
| } else |
| len -= snprintf(p, len, "bad key format %d", c->key_fmt); |
| ubifs_assert(len > 0); |
| return p; |
| } |
| |
| const char *dbg_ntype(int type) |
| { |
| switch (type) { |
| case UBIFS_PAD_NODE: |
| return "padding node"; |
| case UBIFS_SB_NODE: |
| return "superblock node"; |
| case UBIFS_MST_NODE: |
| return "master node"; |
| case UBIFS_REF_NODE: |
| return "reference node"; |
| case UBIFS_INO_NODE: |
| return "inode node"; |
| case UBIFS_DENT_NODE: |
| return "direntry node"; |
| case UBIFS_XENT_NODE: |
| return "xentry node"; |
| case UBIFS_DATA_NODE: |
| return "data node"; |
| case UBIFS_TRUN_NODE: |
| return "truncate node"; |
| case UBIFS_IDX_NODE: |
| return "indexing node"; |
| case UBIFS_CS_NODE: |
| return "commit start node"; |
| case UBIFS_ORPH_NODE: |
| return "orphan node"; |
| default: |
| return "unknown node"; |
| } |
| } |
| |
| static const char *dbg_gtype(int type) |
| { |
| switch (type) { |
| case UBIFS_NO_NODE_GROUP: |
| return "no node group"; |
| case UBIFS_IN_NODE_GROUP: |
| return "in node group"; |
| case UBIFS_LAST_OF_NODE_GROUP: |
| return "last of node group"; |
| default: |
| return "unknown"; |
| } |
| } |
| |
| const char *dbg_cstate(int cmt_state) |
| { |
| switch (cmt_state) { |
| case COMMIT_RESTING: |
| return "commit resting"; |
| case COMMIT_BACKGROUND: |
| return "background commit requested"; |
| case COMMIT_REQUIRED: |
| return "commit required"; |
| case COMMIT_RUNNING_BACKGROUND: |
| return "BACKGROUND commit running"; |
| case COMMIT_RUNNING_REQUIRED: |
| return "commit running and required"; |
| case COMMIT_BROKEN: |
| return "broken commit"; |
| default: |
| return "unknown commit state"; |
| } |
| } |
| |
| const char *dbg_jhead(int jhead) |
| { |
| switch (jhead) { |
| case GCHD: |
| return "0 (GC)"; |
| case BASEHD: |
| return "1 (base)"; |
| case DATAHD: |
| return "2 (data)"; |
| default: |
| return "unknown journal head"; |
| } |
| } |
| |
| static void dump_ch(const struct ubifs_ch *ch) |
| { |
| pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); |
| pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); |
| pr_err("\tnode_type %d (%s)\n", ch->node_type, |
| dbg_ntype(ch->node_type)); |
| pr_err("\tgroup_type %d (%s)\n", ch->group_type, |
| dbg_gtype(ch->group_type)); |
| pr_err("\tsqnum %llu\n", |
| (unsigned long long)le64_to_cpu(ch->sqnum)); |
| pr_err("\tlen %u\n", le32_to_cpu(ch->len)); |
| } |
| |
| void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) |
| { |
| const struct ubifs_inode *ui = ubifs_inode(inode); |
| struct fscrypt_name nm = {0}; |
| union ubifs_key key; |
| struct ubifs_dent_node *dent, *pdent = NULL; |
| int count = 2; |
| |
| pr_err("Dump in-memory inode:"); |
| pr_err("\tinode %lu\n", inode->i_ino); |
| pr_err("\tsize %llu\n", |
| (unsigned long long)i_size_read(inode)); |
| pr_err("\tnlink %u\n", inode->i_nlink); |
| pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); |
| pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); |
| pr_err("\tatime %u.%u\n", |
| (unsigned int)inode->i_atime.tv_sec, |
| (unsigned int)inode->i_atime.tv_nsec); |
| pr_err("\tmtime %u.%u\n", |
| (unsigned int)inode->i_mtime.tv_sec, |
| (unsigned int)inode->i_mtime.tv_nsec); |
| pr_err("\tctime %u.%u\n", |
| (unsigned int)inode->i_ctime.tv_sec, |
| (unsigned int)inode->i_ctime.tv_nsec); |
| pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); |
| pr_err("\txattr_size %u\n", ui->xattr_size); |
| pr_err("\txattr_cnt %u\n", ui->xattr_cnt); |
| pr_err("\txattr_names %u\n", ui->xattr_names); |
| pr_err("\tdirty %u\n", ui->dirty); |
| pr_err("\txattr %u\n", ui->xattr); |
| pr_err("\tbulk_read %u\n", ui->bulk_read); |
| pr_err("\tsynced_i_size %llu\n", |
| (unsigned long long)ui->synced_i_size); |
| pr_err("\tui_size %llu\n", |
| (unsigned long long)ui->ui_size); |
| pr_err("\tflags %d\n", ui->flags); |
| pr_err("\tcompr_type %d\n", ui->compr_type); |
| pr_err("\tlast_page_read %lu\n", ui->last_page_read); |
| pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); |
| pr_err("\tdata_len %d\n", ui->data_len); |
| |
| if (!S_ISDIR(inode->i_mode)) |
| return; |
| |
| pr_err("List of directory entries:\n"); |
| ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); |
| |
| lowest_dent_key(c, &key, inode->i_ino); |
| while (1) { |
| dent = ubifs_tnc_next_ent(c, &key, &nm); |
| if (IS_ERR(dent)) { |
| if (PTR_ERR(dent) != -ENOENT) |
| pr_err("error %ld\n", PTR_ERR(dent)); |
| break; |
| } |
| |
| pr_err("\t%d: inode %llu, type %s, len %d\n", |
| count++, (unsigned long long) le64_to_cpu(dent->inum), |
| get_dent_type(dent->type), |
| le16_to_cpu(dent->nlen)); |
| |
| fname_name(&nm) = dent->name; |
| fname_len(&nm) = le16_to_cpu(dent->nlen); |
| kfree(pdent); |
| pdent = dent; |
| key_read(c, &dent->key, &key); |
| } |
| kfree(pdent); |
| } |
| |
| void ubifs_dump_node(const struct ubifs_info *c, const void *node) |
| { |
| int i, n; |
| union ubifs_key key; |
| const struct ubifs_ch *ch = node; |
| char key_buf[DBG_KEY_BUF_LEN]; |
| |
| /* If the magic is incorrect, just hexdump the first bytes */ |
| if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { |
| pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); |
| print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, |
| (void *)node, UBIFS_CH_SZ, 1); |
| return; |
| } |
| |
| spin_lock(&dbg_lock); |
| dump_ch(node); |
| |
| switch (ch->node_type) { |
| case UBIFS_PAD_NODE: |
| { |
| const struct ubifs_pad_node *pad = node; |
| |
| pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); |
| break; |
| } |
| case UBIFS_SB_NODE: |
| { |
| const struct ubifs_sb_node *sup = node; |
| unsigned int sup_flags = le32_to_cpu(sup->flags); |
| |
| pr_err("\tkey_hash %d (%s)\n", |
| (int)sup->key_hash, get_key_hash(sup->key_hash)); |
| pr_err("\tkey_fmt %d (%s)\n", |
| (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); |
| pr_err("\tflags %#x\n", sup_flags); |
| pr_err("\tbig_lpt %u\n", |
| !!(sup_flags & UBIFS_FLG_BIGLPT)); |
| pr_err("\tspace_fixup %u\n", |
| !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); |
| pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); |
| pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); |
| pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); |
| pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); |
| pr_err("\tmax_bud_bytes %llu\n", |
| (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); |
| pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); |
| pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); |
| pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); |
| pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); |
| pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); |
| pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); |
| pr_err("\tdefault_compr %u\n", |
| (int)le16_to_cpu(sup->default_compr)); |
| pr_err("\trp_size %llu\n", |
| (unsigned long long)le64_to_cpu(sup->rp_size)); |
| pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); |
| pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); |
| pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); |
| pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); |
| pr_err("\tUUID %pUB\n", sup->uuid); |
| break; |
| } |
| case UBIFS_MST_NODE: |
| { |
| const struct ubifs_mst_node *mst = node; |
| |
| pr_err("\thighest_inum %llu\n", |
| (unsigned long long)le64_to_cpu(mst->highest_inum)); |
| pr_err("\tcommit number %llu\n", |
| (unsigned long long)le64_to_cpu(mst->cmt_no)); |
| pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); |
| pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); |
| pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); |
| pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); |
| pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); |
| pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); |
| pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); |
| pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); |
| pr_err("\tindex_size %llu\n", |
| (unsigned long long)le64_to_cpu(mst->index_size)); |
| pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); |
| pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); |
| pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); |
| pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); |
| pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); |
| pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); |
| pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); |
| pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); |
| pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); |
| pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); |
| pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); |
| pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); |
| pr_err("\ttotal_free %llu\n", |
| (unsigned long long)le64_to_cpu(mst->total_free)); |
| pr_err("\ttotal_dirty %llu\n", |
| (unsigned long long)le64_to_cpu(mst->total_dirty)); |
| pr_err("\ttotal_used %llu\n", |
| (unsigned long long)le64_to_cpu(mst->total_used)); |
| pr_err("\ttotal_dead %llu\n", |
| (unsigned long long)le64_to_cpu(mst->total_dead)); |
| pr_err("\ttotal_dark %llu\n", |
| (unsigned long long)le64_to_cpu(mst->total_dark)); |
| break; |
| } |
| case UBIFS_REF_NODE: |
| { |
| const struct ubifs_ref_node *ref = node; |
| |
| pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); |
| pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); |
| pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); |
| break; |
| } |
| case UBIFS_INO_NODE: |
| { |
| const struct ubifs_ino_node *ino = node; |
| |
| key_read(c, &ino->key, &key); |
| pr_err("\tkey %s\n", |
| dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); |
| pr_err("\tcreat_sqnum %llu\n", |
| (unsigned long long)le64_to_cpu(ino->creat_sqnum)); |
| pr_err("\tsize %llu\n", |
| (unsigned long long)le64_to_cpu(ino->size)); |
| pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); |
| pr_err("\tatime %lld.%u\n", |
| (long long)le64_to_cpu(ino->atime_sec), |
| le32_to_cpu(ino->atime_nsec)); |
| pr_err("\tmtime %lld.%u\n", |
| (long long)le64_to_cpu(ino->mtime_sec), |
| le32_to_cpu(ino->mtime_nsec)); |
| pr_err("\tctime %lld.%u\n", |
| (long long)le64_to_cpu(ino->ctime_sec), |
| le32_to_cpu(ino->ctime_nsec)); |
| pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); |
| pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); |
| pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); |
| pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); |
| pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); |
| pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); |
| pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); |
| pr_err("\tcompr_type %#x\n", |
| (int)le16_to_cpu(ino->compr_type)); |
| pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); |
| break; |
| } |
| case UBIFS_DENT_NODE: |
| case UBIFS_XENT_NODE: |
| { |
| const struct ubifs_dent_node *dent = node; |
| int nlen = le16_to_cpu(dent->nlen); |
| |
| key_read(c, &dent->key, &key); |
| pr_err("\tkey %s\n", |
| dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); |
| pr_err("\tinum %llu\n", |
| (unsigned long long)le64_to_cpu(dent->inum)); |
| pr_err("\ttype %d\n", (int)dent->type); |
| pr_err("\tnlen %d\n", nlen); |
| pr_err("\tname "); |
| |
| if (nlen > UBIFS_MAX_NLEN) |
| pr_err("(bad name length, not printing, bad or corrupted node)"); |
| else { |
| for (i = 0; i < nlen && dent->name[i]; i++) |
| pr_cont("%c", isprint(dent->name[i]) ? |
| dent->name[i] : '?'); |
| } |
| pr_cont("\n"); |
| |
| break; |
| } |
| case UBIFS_DATA_NODE: |
| { |
| const struct ubifs_data_node *dn = node; |
| int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; |
| |
| key_read(c, &dn->key, &key); |
| pr_err("\tkey %s\n", |
| dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); |
| pr_err("\tsize %u\n", le32_to_cpu(dn->size)); |
| pr_err("\tcompr_typ %d\n", |
| (int)le16_to_cpu(dn->compr_type)); |
| pr_err("\tdata size %d\n", dlen); |
| pr_err("\tdata:\n"); |
| print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, |
| (void *)&dn->data, dlen, 0); |
| break; |
| } |
| case UBIFS_TRUN_NODE: |
| { |
| const struct ubifs_trun_node *trun = node; |
| |
| pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); |
| pr_err("\told_size %llu\n", |
| (unsigned long long)le64_to_cpu(trun->old_size)); |
| pr_err("\tnew_size %llu\n", |
| (unsigned long long)le64_to_cpu(trun->new_size)); |
| break; |
| } |
| case UBIFS_IDX_NODE: |
| { |
| const struct ubifs_idx_node *idx = node; |
| |
| n = le16_to_cpu(idx->child_cnt); |
| pr_err("\tchild_cnt %d\n", n); |
| pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); |
| pr_err("\tBranches:\n"); |
| |
| for (i = 0; i < n && i < c->fanout - 1; i++) { |
| const struct ubifs_branch *br; |
| |
| br = ubifs_idx_branch(c, idx, i); |
| key_read(c, &br->key, &key); |
| pr_err("\t%d: LEB %d:%d len %d key %s\n", |
| i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), |
| le32_to_cpu(br->len), |
| dbg_snprintf_key(c, &key, key_buf, |
| DBG_KEY_BUF_LEN)); |
| } |
| break; |
| } |
| case UBIFS_CS_NODE: |
| break; |
| case UBIFS_ORPH_NODE: |
| { |
| const struct ubifs_orph_node *orph = node; |
| |
| pr_err("\tcommit number %llu\n", |
| (unsigned long long) |
| le64_to_cpu(orph->cmt_no) & LLONG_MAX); |
| pr_err("\tlast node flag %llu\n", |
| (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); |
| n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; |
| pr_err("\t%d orphan inode numbers:\n", n); |
| for (i = 0; i < n; i++) |
| pr_err("\t ino %llu\n", |
| (unsigned long long)le64_to_cpu(orph->inos[i])); |
| break; |
| } |
| default: |
| pr_err("node type %d was not recognized\n", |
| (int)ch->node_type); |
| } |
| spin_unlock(&dbg_lock); |
| } |
| |
| void ubifs_dump_budget_req(const struct ubifs_budget_req *req) |
| { |
| spin_lock(&dbg_lock); |
| pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", |
| req->new_ino, req->dirtied_ino); |
| pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", |
| req->new_ino_d, req->dirtied_ino_d); |
| pr_err("\tnew_page %d, dirtied_page %d\n", |
| req->new_page, req->dirtied_page); |
| pr_err("\tnew_dent %d, mod_dent %d\n", |
| req->new_dent, req->mod_dent); |
| pr_err("\tidx_growth %d\n", req->idx_growth); |
| pr_err("\tdata_growth %d dd_growth %d\n", |
| req->data_growth, req->dd_growth); |
| spin_unlock(&dbg_lock); |
| } |
| |
| void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) |
| { |
| spin_lock(&dbg_lock); |
| pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", |
| current->pid, lst->empty_lebs, lst->idx_lebs); |
| pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", |
| lst->taken_empty_lebs, lst->total_free, lst->total_dirty); |
| pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", |
| lst->total_used, lst->total_dark, lst->total_dead); |
| spin_unlock(&dbg_lock); |
| } |
| |
| void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) |
| { |
| int i; |
| struct rb_node *rb; |
| struct ubifs_bud *bud; |
| struct ubifs_gced_idx_leb *idx_gc; |
| long long available, outstanding, free; |
| |
| spin_lock(&c->space_lock); |
| spin_lock(&dbg_lock); |
| pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", |
| current->pid, bi->data_growth + bi->dd_growth, |
| bi->data_growth + bi->dd_growth + bi->idx_growth); |
| pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", |
| bi->data_growth, bi->dd_growth, bi->idx_growth); |
| pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", |
| bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); |
| pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", |
| bi->page_budget, bi->inode_budget, bi->dent_budget); |
| pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); |
| pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", |
| c->dark_wm, c->dead_wm, c->max_idx_node_sz); |
| |
| if (bi != &c->bi) |
| /* |
| * If we are dumping saved budgeting data, do not print |
| * additional information which is about the current state, not |
| * the old one which corresponded to the saved budgeting data. |
| */ |
| goto out_unlock; |
| |
| pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", |
| c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); |
| pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", |
| atomic_long_read(&c->dirty_pg_cnt), |
| atomic_long_read(&c->dirty_zn_cnt), |
| atomic_long_read(&c->clean_zn_cnt)); |
| pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); |
| |
| /* If we are in R/O mode, journal heads do not exist */ |
| if (c->jheads) |
| for (i = 0; i < c->jhead_cnt; i++) |
| pr_err("\tjhead %s\t LEB %d\n", |
| dbg_jhead(c->jheads[i].wbuf.jhead), |
| c->jheads[i].wbuf.lnum); |
| for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { |
| bud = rb_entry(rb, struct ubifs_bud, rb); |
| pr_err("\tbud LEB %d\n", bud->lnum); |
| } |
| list_for_each_entry(bud, &c->old_buds, list) |
| pr_err("\told bud LEB %d\n", bud->lnum); |
| list_for_each_entry(idx_gc, &c->idx_gc, list) |
| pr_err("\tGC'ed idx LEB %d unmap %d\n", |
| idx_gc->lnum, idx_gc->unmap); |
| pr_err("\tcommit state %d\n", c->cmt_state); |
| |
| /* Print budgeting predictions */ |
| available = ubifs_calc_available(c, c->bi.min_idx_lebs); |
| outstanding = c->bi.data_growth + c->bi.dd_growth; |
| free = ubifs_get_free_space_nolock(c); |
| pr_err("Budgeting predictions:\n"); |
| pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", |
| available, outstanding, free); |
| out_unlock: |
| spin_unlock(&dbg_lock); |
| spin_unlock(&c->space_lock); |
| } |
| |
| void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) |
| { |
| int i, spc, dark = 0, dead = 0; |
| struct rb_node *rb; |
| struct ubifs_bud *bud; |
| |
| spc = lp->free + lp->dirty; |
| if (spc < c->dead_wm) |
| dead = spc; |
| else |
| dark = ubifs_calc_dark(c, spc); |
| |
| if (lp->flags & LPROPS_INDEX) |
| pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", |
| lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, |
| lp->flags); |
| else |
| pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", |
| lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, |
| dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); |
| |
| if (lp->flags & LPROPS_TAKEN) { |
| if (lp->flags & LPROPS_INDEX) |
| pr_cont("index, taken"); |
| else |
| pr_cont("taken"); |
| } else { |
| const char *s; |
| |
| if (lp->flags & LPROPS_INDEX) { |
| switch (lp->flags & LPROPS_CAT_MASK) { |
| case LPROPS_DIRTY_IDX: |
| s = "dirty index"; |
| break; |
| case LPROPS_FRDI_IDX: |
| s = "freeable index"; |
| break; |
| default: |
| s = "index"; |
| } |
| } else { |
| switch (lp->flags & LPROPS_CAT_MASK) { |
| case LPROPS_UNCAT: |
| s = "not categorized"; |
| break; |
| case LPROPS_DIRTY: |
| s = "dirty"; |
| break; |
| case LPROPS_FREE: |
| s = "free"; |
| break; |
| case LPROPS_EMPTY: |
| s = "empty"; |
| break; |
| case LPROPS_FREEABLE: |
| s = "freeable"; |
| break; |
| default: |
| s = NULL; |
| break; |
| } |
| } |
| pr_cont("%s", s); |
| } |
| |
| for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { |
| bud = rb_entry(rb, struct ubifs_bud, rb); |
| if (bud->lnum == lp->lnum) { |
| int head = 0; |
| for (i = 0; i < c->jhead_cnt; i++) { |
| /* |
| * Note, if we are in R/O mode or in the middle |
| * of mounting/re-mounting, the write-buffers do |
| * not exist. |
| */ |
| if (c->jheads && |
| lp->lnum == c->jheads[i].wbuf.lnum) { |
| pr_cont(", jhead %s", dbg_jhead(i)); |
| head = 1; |
| } |
| } |
| if (!head) |
| pr_cont(", bud of jhead %s", |
| dbg_jhead(bud->jhead)); |
| } |
| } |
| if (lp->lnum == c->gc_lnum) |
| pr_cont(", GC LEB"); |
| pr_cont(")\n"); |
| } |
| |
| void ubifs_dump_lprops(struct ubifs_info *c) |
| { |
| int lnum, err; |
| struct ubifs_lprops lp; |
| struct ubifs_lp_stats lst; |
| |
| pr_err("(pid %d) start dumping LEB properties\n", current->pid); |
| ubifs_get_lp_stats(c, &lst); |
| ubifs_dump_lstats(&lst); |
| |
| for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { |
| err = ubifs_read_one_lp(c, lnum, &lp); |
| if (err) { |
| ubifs_err(c, "cannot read lprops for LEB %d", lnum); |
| continue; |
| } |
| |
| ubifs_dump_lprop(c, &lp); |
| } |
| pr_err("(pid %d) finish dumping LEB properties\n", current->pid); |
| } |
| |
| void ubifs_dump_lpt_info(struct ubifs_info *c) |
| { |
| int i; |
| |
| spin_lock(&dbg_lock); |
| pr_err("(pid %d) dumping LPT information\n", current->pid); |
| pr_err("\tlpt_sz: %lld\n", c->lpt_sz); |
| pr_err("\tpnode_sz: %d\n", c->pnode_sz); |
| pr_err("\tnnode_sz: %d\n", c->nnode_sz); |
| pr_err("\tltab_sz: %d\n", c->ltab_sz); |
| pr_err("\tlsave_sz: %d\n", c->lsave_sz); |
| pr_err("\tbig_lpt: %d\n", c->big_lpt); |
| pr_err("\tlpt_hght: %d\n", c->lpt_hght); |
| pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); |
| pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); |
| pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); |
| pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); |
| pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); |
| pr_err("\tspace_bits: %d\n", c->space_bits); |
| pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); |
| pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); |
| pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); |
| pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); |
| pr_err("\tlnum_bits: %d\n", c->lnum_bits); |
| pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); |
| pr_err("\tLPT head is at %d:%d\n", |
| c->nhead_lnum, c->nhead_offs); |
| pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); |
| if (c->big_lpt) |
| pr_err("\tLPT lsave is at %d:%d\n", |
| c->lsave_lnum, c->lsave_offs); |
| for (i = 0; i < c->lpt_lebs; i++) |
| pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", |
| i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, |
| c->ltab[i].tgc, c->ltab[i].cmt); |
| spin_unlock(&dbg_lock); |
| } |
| |
| void ubifs_dump_sleb(const struct ubifs_info *c, |
| const struct ubifs_scan_leb *sleb, int offs) |
| { |
| struct ubifs_scan_node *snod; |
| |
| pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", |
| current->pid, sleb->lnum, offs); |
| |
| list_for_each_entry(snod, &sleb->nodes, list) { |
| cond_resched(); |
| pr_err("Dumping node at LEB %d:%d len %d\n", |
| sleb->lnum, snod->offs, snod->len); |
| ubifs_dump_node(c, snod->node); |
| } |
| } |
| |
| void ubifs_dump_leb(const struct ubifs_info *c, int lnum) |
| { |
| struct ubifs_scan_leb *sleb; |
| struct ubifs_scan_node *snod; |
| void *buf; |
| |
| pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); |
| |
| buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); |
| if (!buf) { |
| ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); |
| return; |
| } |
| |
| sleb = ubifs_scan(c, lnum, 0, buf, 0); |
| if (IS_ERR(sleb)) { |
| ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); |
| goto out; |
| } |
| |
| pr_err("LEB %d has %d nodes ending at %d\n", lnum, |
| sleb->nodes_cnt, sleb->endpt); |
| |
| list_for_each_entry(snod, &sleb->nodes, list) { |
| cond_resched(); |
| pr_err("Dumping node at LEB %d:%d len %d\n", lnum, |
| snod->offs, snod->len); |
| ubifs_dump_node(c, snod->node); |
| } |
| |
| pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); |
| ubifs_scan_destroy(sleb); |
| |
| out: |
| vfree(buf); |
| return; |
| } |
| |
| void ubifs_dump_znode(const struct ubifs_info *c, |
| const struct ubifs_znode *znode) |
| { |
| int n; |
| const struct ubifs_zbranch *zbr; |
| char key_buf[DBG_KEY_BUF_LEN]; |
| |
| spin_lock(&dbg_lock); |
| if (znode->parent) |
| zbr = &znode->parent->zbranch[znode->iip]; |
| else |
| zbr = &c->zroot; |
| |
| pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", |
| znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, |
| znode->level, znode->child_cnt, znode->flags); |
| |
| if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { |
| spin_unlock(&dbg_lock); |
| return; |
| } |
| |
| pr_err("zbranches:\n"); |
| for (n = 0; n < znode->child_cnt; n++) { |
| zbr = &znode->zbranch[n]; |
| if (znode->level > 0) |
| pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", |
| n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, |
| dbg_snprintf_key(c, &zbr->key, key_buf, |
| DBG_KEY_BUF_LEN)); |
| else |
| pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", |
| n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, |
| dbg_snprintf_key(c, &zbr->key, key_buf, |
| DBG_KEY_BUF_LEN)); |
| } |
| spin_unlock(&dbg_lock); |
| } |
| |
| void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) |
| { |
| int i; |
| |
| pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", |
| current->pid, cat, heap->cnt); |
| for (i = 0; i < heap->cnt; i++) { |
| struct ubifs_lprops *lprops = heap->arr[i]; |
| |
| pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", |
| i, lprops->lnum, lprops->hpos, lprops->free, |
| lprops->dirty, lprops->flags); |
| } |
| pr_err("(pid %d) finish dumping heap\n", current->pid); |
| } |
| |
| void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, |
| struct ubifs_nnode *parent, int iip) |
| { |
| int i; |
| |
| pr_err("(pid %d) dumping pnode:\n", current->pid); |
| pr_err("\taddress %zx parent %zx cnext %zx\n", |
| (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); |
| pr_err("\tflags %lu iip %d level %d num %d\n", |
| pnode->flags, iip, pnode->level, pnode->num); |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| struct ubifs_lprops *lp = &pnode->lprops[i]; |
| |
| pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", |
| i, lp->free, lp->dirty, lp->flags, lp->lnum); |
| } |
| } |
| |
| void ubifs_dump_tnc(struct ubifs_info *c) |
| { |
| struct ubifs_znode *znode; |
| int level; |
| |
| pr_err("\n"); |
| pr_err("(pid %d) start dumping TNC tree\n", current->pid); |
| znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); |
| level = znode->level; |
| pr_err("== Level %d ==\n", level); |
| while (znode) { |
| if (level != znode->level) { |
| level = znode->level; |
| pr_err("== Level %d ==\n", level); |
| } |
| ubifs_dump_znode(c, znode); |
| znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); |
| } |
| pr_err("(pid %d) finish dumping TNC tree\n", current->pid); |
| } |
| |
| static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, |
| void *priv) |
| { |
| ubifs_dump_znode(c, znode); |
| return 0; |
| } |
| |
| /** |
| * ubifs_dump_index - dump the on-flash index. |
| * @c: UBIFS file-system description object |
| * |
| * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' |
| * which dumps only in-memory znodes and does not read znodes which from flash. |
| */ |
| void ubifs_dump_index(struct ubifs_info *c) |
| { |
| dbg_walk_index(c, NULL, dump_znode, NULL); |
| } |
| |
| /** |
| * dbg_save_space_info - save information about flash space. |
| * @c: UBIFS file-system description object |
| * |
| * This function saves information about UBIFS free space, dirty space, etc, in |
| * order to check it later. |
| */ |
| void dbg_save_space_info(struct ubifs_info *c) |
| { |
| struct ubifs_debug_info *d = c->dbg; |
| int freeable_cnt; |
| |
| spin_lock(&c->space_lock); |
| memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); |
| memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); |
| d->saved_idx_gc_cnt = c->idx_gc_cnt; |
| |
| /* |
| * We use a dirty hack here and zero out @c->freeable_cnt, because it |
| * affects the free space calculations, and UBIFS might not know about |
| * all freeable eraseblocks. Indeed, we know about freeable eraseblocks |
| * only when we read their lprops, and we do this only lazily, upon the |
| * need. So at any given point of time @c->freeable_cnt might be not |
| * exactly accurate. |
| * |
| * Just one example about the issue we hit when we did not zero |
| * @c->freeable_cnt. |
| * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the |
| * amount of free space in @d->saved_free |
| * 2. We re-mount R/W, which makes UBIFS to read the "lsave" |
| * information from flash, where we cache LEBs from various |
| * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' |
| * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' |
| * -> 'ubifs_get_pnode()' -> 'update_cats()' |
| * -> 'ubifs_add_to_cat()'). |
| * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt |
| * becomes %1. |
| * 4. We calculate the amount of free space when the re-mount is |
| * finished in 'dbg_check_space_info()' and it does not match |
| * @d->saved_free. |
| */ |
| freeable_cnt = c->freeable_cnt; |
| c->freeable_cnt = 0; |
| d->saved_free = ubifs_get_free_space_nolock(c); |
| c->freeable_cnt = freeable_cnt; |
| spin_unlock(&c->space_lock); |
| } |
| |
| /** |
| * dbg_check_space_info - check flash space information. |
| * @c: UBIFS file-system description object |
| * |
| * This function compares current flash space information with the information |
| * which was saved when the 'dbg_save_space_info()' function was called. |
| * Returns zero if the information has not changed, and %-EINVAL it it has |
| * changed. |
| */ |
| int dbg_check_space_info(struct ubifs_info *c) |
| { |
| struct ubifs_debug_info *d = c->dbg; |
| struct ubifs_lp_stats lst; |
| long long free; |
| int freeable_cnt; |
| |
| spin_lock(&c->space_lock); |
| freeable_cnt = c->freeable_cnt; |
| c->freeable_cnt = 0; |
| free = ubifs_get_free_space_nolock(c); |
| c->freeable_cnt = freeable_cnt; |
| spin_unlock(&c->space_lock); |
| |
| if (free != d->saved_free) { |
| ubifs_err(c, "free space changed from %lld to %lld", |
| d->saved_free, free); |
| goto out; |
| } |
| |
| return 0; |
| |
| out: |
| ubifs_msg(c, "saved lprops statistics dump"); |
| ubifs_dump_lstats(&d->saved_lst); |
| ubifs_msg(c, "saved budgeting info dump"); |
| ubifs_dump_budg(c, &d->saved_bi); |
| ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); |
| ubifs_msg(c, "current lprops statistics dump"); |
| ubifs_get_lp_stats(c, &lst); |
| ubifs_dump_lstats(&lst); |
| ubifs_msg(c, "current budgeting info dump"); |
| ubifs_dump_budg(c, &c->bi); |
| dump_stack(); |
| return -EINVAL; |
| } |
| |
| /** |
| * dbg_check_synced_i_size - check synchronized inode size. |
| * @c: UBIFS file-system description object |
| * @inode: inode to check |
| * |
| * If inode is clean, synchronized inode size has to be equivalent to current |
| * inode size. This function has to be called only for locked inodes (@i_mutex |
| * has to be locked). Returns %0 if synchronized inode size if correct, and |
| * %-EINVAL if not. |
| */ |
| int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) |
| { |
| int err = 0; |
| struct ubifs_inode *ui = ubifs_inode(inode); |
| |
| if (!dbg_is_chk_gen(c)) |
| return 0; |
| if (!S_ISREG(inode->i_mode)) |
| return 0; |
| |
| mutex_lock(&ui->ui_mutex); |
| spin_lock(&ui->ui_lock); |
| if (ui->ui_size != ui->synced_i_size && !ui->dirty) { |
| ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", |
| ui->ui_size, ui->synced_i_size); |
| ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, |
| inode->i_mode, i_size_read(inode)); |
| dump_stack(); |
| err = -EINVAL; |
| } |
| spin_unlock(&ui->ui_lock); |
| mutex_unlock(&ui->ui_mutex); |
| return err; |
| } |
| |
| /* |
| * dbg_check_dir - check directory inode size and link count. |
| * @c: UBIFS file-system description object |
| * @dir: the directory to calculate size for |
| * @size: the result is returned here |
| * |
| * This function makes sure that directory size and link count are correct. |
| * Returns zero in case of success and a negative error code in case of |
| * failure. |
| * |
| * Note, it is good idea to make sure the @dir->i_mutex is locked before |
| * calling this function. |
| */ |
| int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) |
| { |
| unsigned int nlink = 2; |
| union ubifs_key key; |
| struct ubifs_dent_node *dent, *pdent = NULL; |
| struct fscrypt_name nm = {0}; |
| loff_t size = UBIFS_INO_NODE_SZ; |
| |
| if (!dbg_is_chk_gen(c)) |
| return 0; |
| |
| if (!S_ISDIR(dir->i_mode)) |
| return 0; |
| |
| lowest_dent_key(c, &key, dir->i_ino); |
| while (1) { |
| int err; |
| |
| dent = ubifs_tnc_next_ent(c, &key, &nm); |
| if (IS_ERR(dent)) { |
| err = PTR_ERR(dent); |
| if (err == -ENOENT) |
| break; |
| return err; |
| } |
| |
| fname_name(&nm) = dent->name; |
| fname_len(&nm) = le16_to_cpu(dent->nlen); |
| size += CALC_DENT_SIZE(fname_len(&nm)); |
| if (dent->type == UBIFS_ITYPE_DIR) |
| nlink += 1; |
| kfree(pdent); |
| pdent = dent; |
| key_read(c, &dent->key, &key); |
| } |
| kfree(pdent); |
| |
| if (i_size_read(dir) != size) { |
| ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", |
| dir->i_ino, (unsigned long long)i_size_read(dir), |
| (unsigned long long)size); |
| ubifs_dump_inode(c, dir); |
| dump_stack(); |
| return -EINVAL; |
| } |
| if (dir->i_nlink != nlink) { |
| ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", |
| dir->i_ino, dir->i_nlink, nlink); |
| ubifs_dump_inode(c, dir); |
| dump_stack(); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dbg_check_key_order - make sure that colliding keys are properly ordered. |
| * @c: UBIFS file-system description object |
| * @zbr1: first zbranch |
| * @zbr2: following zbranch |
| * |
| * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of |
| * names of the direntries/xentries which are referred by the keys. This |
| * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes |
| * sure the name of direntry/xentry referred by @zbr1 is less than |
| * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, |
| * and a negative error code in case of failure. |
| */ |
| static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, |
| struct ubifs_zbranch *zbr2) |
| { |
| int err, nlen1, nlen2, cmp; |
| struct ubifs_dent_node *dent1, *dent2; |
| union ubifs_key key; |
| char key_buf[DBG_KEY_BUF_LEN]; |
| |
| ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); |
| dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); |
| if (!dent1) |
| return -ENOMEM; |
| dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); |
| if (!dent2) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| |
| err = ubifs_tnc_read_node(c, zbr1, dent1); |
| if (err) |
| goto out_free; |
| err = ubifs_validate_entry(c, dent1); |
| if (err) |
| goto out_free; |
| |
| err = ubifs_tnc_read_node(c, zbr2, dent2); |
| if (err) |
| goto out_free; |
| err = ubifs_validate_entry(c, dent2); |
| if (err) |
| goto out_free; |
| |
| /* Make sure node keys are the same as in zbranch */ |
| err = 1; |
| key_read(c, &dent1->key, &key); |
| if (keys_cmp(c, &zbr1->key, &key)) { |
| ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, |
| zbr1->offs, dbg_snprintf_key(c, &key, key_buf, |
| DBG_KEY_BUF_LEN)); |
| ubifs_err(c, "but it should have key %s according to tnc", |
| dbg_snprintf_key(c, &zbr1->key, key_buf, |
| DBG_KEY_BUF_LEN)); |
| ubifs_dump_node(c, dent1); |
| goto out_free; |
| } |
| |
| key_read(c, &dent2->key, &key); |
| if (keys_cmp(c, &zbr2->key, &key)) { |
| ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, |
| zbr1->offs, dbg_snprintf_key(c, &key, key_buf, |
| DBG_KEY_BUF_LEN)); |
| ubifs_err(c, "but it should have key %s according to tnc", |
| dbg_snprintf_key(c, &zbr2->key, key_buf, |
| DBG_KEY_BUF_LEN)); |
| ubifs_dump_node(c, dent2); |
| goto out_free; |
| } |
| |
| nlen1 = le16_to_cpu(dent1->nlen); |
| nlen2 = le16_to_cpu(dent2->nlen); |
| |
| cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); |
| if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { |
| err = 0; |
| goto out_free; |
| } |
| if (cmp == 0 && nlen1 == nlen2) |
| ubifs_err(c, "2 xent/dent nodes with the same name"); |
| else |
| ubifs_err(c, "bad order of colliding key %s", |
| dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); |
| |
| ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); |
| ubifs_dump_node(c, dent1); |
| ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); |
| ubifs_dump_node(c, dent2); |
| |
| out_free: |
| kfree(dent2); |
| kfree(dent1); |
| return err; |
| } |
| |
| /** |
| * dbg_check_znode - check if znode is all right. |
| * @c: UBIFS file-system description object |
| * @zbr: zbranch which points to this znode |
| * |
| * This function makes sure that znode referred to by @zbr is all right. |
| * Returns zero if it is, and %-EINVAL if it is not. |
| */ |
| static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) |
| { |
| struct ubifs_znode *znode = zbr->znode; |
| struct ubifs_znode *zp = znode->parent; |
| int n, err, cmp; |
| |
| if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { |
| err = 1; |
| goto out; |
| } |
| if (znode->level < 0) { |
| err = 2; |
| goto out; |
| } |
| if (znode->iip < 0 || znode->iip >= c->fanout) { |
| err = 3; |
| goto out; |
| } |
| |
| if (zbr->len == 0) |
| /* Only dirty zbranch may have no on-flash nodes */ |
| if (!ubifs_zn_dirty(znode)) { |
| err = 4; |
| goto out; |
| } |
| |
| if (ubifs_zn_dirty(znode)) { |
| /* |
| * If znode is dirty, its parent has to be dirty as well. The |
| * order of the operation is important, so we have to have |
| * memory barriers. |
| */ |
| smp_mb(); |
| if (zp && !ubifs_zn_dirty(zp)) { |
| /* |
| * The dirty flag is atomic and is cleared outside the |
| * TNC mutex, so znode's dirty flag may now have |
| * been cleared. The child is always cleared before the |
| * parent, so we just need to check again. |
| */ |
| smp_mb(); |
| if (ubifs_zn_dirty(znode)) { |
| err = 5; |
| goto out; |
| } |
| } |
| } |
| |
| if (zp) { |
| const union ubifs_key *min, *max; |
| |
| if (znode->level != zp->level - 1) { |
| err = 6; |
| goto out; |
| } |
| |
| /* Make sure the 'parent' pointer in our znode is correct */ |
| err = ubifs_search_zbranch(c, zp, &zbr->key, &n); |
| if (!err) { |
| /* This zbranch does not exist in the parent */ |
| err = 7; |
| goto out; |
| } |
| |
| if (znode->iip >= zp->child_cnt) { |
| err = 8; |
| goto out; |
| } |
| |
| if (znode->iip != n) { |
| /* This may happen only in case of collisions */ |
| if (keys_cmp(c, &zp->zbranch[n].key, |
| &zp->zbranch[znode->iip].key)) { |
| err = 9; |
| goto out; |
| } |
| n = znode->iip; |
| } |
| |
| /* |
| * Make sure that the first key in our znode is greater than or |
| * equal to the key in the pointing zbranch. |
| */ |
| min = &zbr->key; |
| cmp = keys_cmp(c, min, &znode->zbranch[0].key); |
| if (cmp == 1) { |
| err = 10; |
| goto out; |
| } |
| |
| if (n + 1 < zp->child_cnt) { |
| max = &zp->zbranch[n + 1].key; |
| |
| /* |
| * Make sure the last key in our znode is less or |
| * equivalent than the key in the zbranch which goes |
| * after our pointing zbranch. |
| */ |
| cmp = keys_cmp(c, max, |
| &znode->zbranch[znode->child_cnt - 1].key); |
| if (cmp == -1) { |
| err = 11; |
| goto out; |
| } |
| } |
| } else { |
| /* This may only be root znode */ |
| if (zbr != &c->zroot) { |
| err = 12; |
| goto out; |
| } |
| } |
| |
| /* |
| * Make sure that next key is greater or equivalent then the previous |
| * one. |
| */ |
| for (n = 1; n < znode->child_cnt; n++) { |
| cmp = keys_cmp(c, &znode->zbranch[n - 1].key, |
| &znode->zbranch[n].key); |
| if (cmp > 0) { |
| err = 13; |
| goto out; |
| } |
| if (cmp == 0) { |
| /* This can only be keys with colliding hash */ |
| if (!is_hash_key(c, &znode->zbranch[n].key)) { |
| err = 14; |
| goto out; |
| } |
| |
| if (znode->level != 0 || c->replaying) |
| continue; |
| |
| /* |
| * Colliding keys should follow binary order of |
| * corresponding xentry/dentry names. |
| */ |
| err = dbg_check_key_order(c, &znode->zbranch[n - 1], |
| &znode->zbranch[n]); |
| if (err < 0) |
| return err; |
| if (err) { |
| err = 15; |
| goto out; |
| } |
| } |
| } |
| |
| for (n = 0; n < znode->child_cnt; n++) { |
| if (!znode->zbranch[n].znode && |
| (znode->zbranch[n].lnum == 0 || |
| znode->zbranch[n].len == 0)) { |
| err = 16; |
| goto out; |
| } |
| |
| if (znode->zbranch[n].lnum != 0 && |
| znode->zbranch[n].len == 0) { |
| err = 17; |
| goto out; |
| } |
| |
| if (znode->zbranch[n].lnum == 0 && |
| znode->zbranch[n].len != 0) { |
| err = 18; |
| goto out; |
| } |
| |
| if (znode->zbranch[n].lnum == 0 && |
| znode->zbranch[n].offs != 0) { |
| err = 19; |
| goto out; |
| } |
| |
| if (znode->level != 0 && znode->zbranch[n].znode) |
| if (znode->zbranch[n].znode->parent != znode) { |
| err = 20; |
| goto out; |
| } |
| } |
| |
| return 0; |
| |
| out: |
| ubifs_err(c, "failed, error %d", err); |
| ubifs_msg(c, "dump of the znode"); |
| ubifs_dump_znode(c, znode); |
| if (zp) { |
| ubifs_msg(c, "dump of the parent znode"); |
| ubifs_dump_znode(c, zp); |
| } |
| dump_stack(); |
| return -EINVAL; |
| } |
| |
| /** |
| * dbg_check_tnc - check TNC tree. |
| * @c: UBIFS file-system description object |
| * @extra: do extra checks that are possible at start commit |
| * |
| * This function traverses whole TNC tree and checks every znode. Returns zero |
| * if everything is all right and %-EINVAL if something is wrong with TNC. |
| */ |
| int dbg_check_tnc(struct ubifs_info *c, int extra) |
| { |
| struct ubifs_znode *znode; |
| long clean_cnt = 0, dirty_cnt = 0; |
| int err, last; |
| |
| if (!dbg_is_chk_index(c)) |
| return 0; |
| |
| ubifs_assert(mutex_is_locked(&c->tnc_mutex)); |
| if (!c->zroot.znode) |
| return 0; |
| |
| znode = ubifs_tnc_postorder_first(c->zroot.znode); |
| while (1) { |
| struct ubifs_znode *prev; |
| struct ubifs_zbranch *zbr; |
| |
| if (!znode->parent) |
| zbr = &c->zroot; |
| else |
| zbr = &znode->parent->zbranch[znode->iip]; |
| |
| err = dbg_check_znode(c, zbr); |
| if (err) |
| return err; |
| |
| if (extra) { |
| if (ubifs_zn_dirty(znode)) |
| dirty_cnt += 1; |
| else |
| clean_cnt += 1; |
| } |
| |
| prev = znode; |
| znode = ubifs_tnc_postorder_next(znode); |
| if (!znode) |
| break; |
| |
| /* |
| * If the last key of this znode is equivalent to the first key |
| * of the next znode (collision), then check order of the keys. |
| */ |
| last = prev->child_cnt - 1; |
| if (prev->level == 0 && znode->level == 0 && !c->replaying && |
| !keys_cmp(c, &prev->zbranch[last].key, |
| &znode->zbranch[0].key)) { |
| err = dbg_check_key_order(c, &prev->zbranch[last], |
| &znode->zbranch[0]); |
| if (err < 0) |
| return err; |
| if (err) { |
| ubifs_msg(c, "first znode"); |
| ubifs_dump_znode(c, prev); |
| ubifs_msg(c, "second znode"); |
| ubifs_dump_znode(c, znode); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| if (extra) { |
| if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { |
| ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", |
| atomic_long_read(&c->clean_zn_cnt), |
| clean_cnt); |
| return -EINVAL; |
| } |
| if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { |
| ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", |
| atomic_long_read(&c->dirty_zn_cnt), |
| dirty_cnt); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dbg_walk_index - walk the on-flash index. |
| * @c: UBIFS file-system description object |
| * @leaf_cb: called for each leaf node |
| * @znode_cb: called for each indexing node |
| * @priv: private data which is passed to callbacks |
| * |
| * This function walks the UBIFS index and calls the @leaf_cb for each leaf |
| * node and @znode_cb for each indexing node. Returns zero in case of success |
| * and a negative error code in case of failure. |
| * |
| * It would be better if this function removed every znode it pulled to into |
| * the TNC, so that the behavior more closely matched the non-debugging |
| * behavior. |
| */ |
| int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, |
| dbg_znode_callback znode_cb, void *priv) |
| { |
| int err; |
| struct ubifs_zbranch *zbr; |
| struct ubifs_znode *znode, *child; |
| |
| mutex_lock(&c->tnc_mutex); |
| /* If the root indexing node is not in TNC - pull it */ |
| if (!c->zroot.znode) { |
| c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); |
| if (IS_ERR(c->zroot.znode)) { |
| err = PTR_ERR(c->zroot.znode); |
| c->zroot.znode = NULL; |
| goto out_unlock; |
| } |
| } |
| |
| /* |
| * We are going to traverse the indexing tree in the postorder manner. |
| * Go down and find the leftmost indexing node where we are going to |
| * start from. |
| */ |
| znode = c->zroot.znode; |
| while (znode->level > 0) { |
| zbr = &znode->zbranch[0]; |
| child = zbr->znode; |
| if (!child) { |
| child = ubifs_load_znode(c, zbr, znode, 0); |
| if (IS_ERR(child)) { |
| err = PTR_ERR(child); |
| goto out_unlock; |
| } |
| zbr->znode = child; |
| } |
| |
| znode = child; |
| } |
| |
| /* Iterate over all indexing nodes */ |
| while (1) { |
| int idx; |
| |
| cond_resched(); |
| |
| if (znode_cb) { |
| err = znode_cb(c, znode, priv); |
| if (err) { |
| ubifs_err(c, "znode checking function returned error %d", |
| err); |
| ubifs_dump_znode(c, znode); |
| goto out_dump; |
| } |
| } |
| if (leaf_cb && znode->level == 0) { |
| for (idx = 0; idx < znode->child_cnt; idx++) { |
| zbr = &znode->zbranch[idx]; |
| err = leaf_cb(c, zbr, priv); |
| if (err) { |
| ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", |
| err, zbr->lnum, zbr->offs); |
| goto out_dump; |
| } |
| } |
| } |
| |
| if (!znode->parent) |
| break; |
| |
| idx = znode->iip + 1; |
| znode = znode->parent; |
| if (idx < znode->child_cnt) { |
| /* Switch to the next index in the parent */ |
| zbr = &znode->zbranch[idx]; |
| child = zbr->znode; |
| if (!child) { |
| child = ubifs_load_znode(c, zbr, znode, idx); |
| if (IS_ERR(child)) { |
| err = PTR_ERR(child); |
| goto out_unlock; |
| } |
| zbr->znode = child; |
| } |
| znode = child; |
| } else |
| /* |
| * This is the last child, switch to the parent and |
| * continue. |
| */ |
| continue; |
| |
| /* Go to the lowest leftmost znode in the new sub-tree */ |
| while (znode->level > 0) { |
| zbr = &znode->zbranch[0]; |
| child = zbr->znode; |
| if (!child) { |
| child = ubifs_load_znode(c, zbr, znode, 0); |
| if (IS_ERR(child)) { |
| err = PTR_ERR(child); |
| goto out_unlock; |
| } |
| zbr->znode = child; |
| } |
| znode = child; |
| } |
| } |
| |
| mutex_unlock(&c->tnc_mutex); |
| return 0; |
| |
| out_dump: |
| if (znode->parent) |
| zbr = &znode->parent->zbranch[znode->iip]; |
| else |
| zbr = &c->zroot; |
| ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); |
| ubifs_dump_znode(c, znode); |
| out_unlock: |
| mutex_unlock(&c->tnc_mutex); |
| return err; |
| } |
| |
| /** |
| * add_size - add znode size to partially calculated index size. |
| * @c: UBIFS file-system description object |
| * @znode: znode to add size for |
| * @priv: partially calculated index size |
| * |
| * This is a helper function for 'dbg_check_idx_size()' which is called for |
| * every indexing node and adds its size to the 'long long' variable pointed to |
| * by @priv. |
| */ |
| static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) |
| { |
| long long *idx_size = priv; |
| int add; |
| |
| add = ubifs_idx_node_sz(c, znode->child_cnt); |
| add = ALIGN(add, 8); |
| *idx_size += add; |
| return 0; |
| } |
| |
| /** |
| * dbg_check_idx_size - check index size. |
| * @c: UBIFS file-system description object |
| * @idx_size: size to check |
| * |
| * This function walks the UBIFS index, calculates its size and checks that the |
| * size is equivalent to @idx_size. Returns zero in case of success and a |
| * negative error code in case of failure. |
| */ |
| int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) |
| { |
| int err; |
| long long calc = 0; |
| |
| if (!dbg_is_chk_index(c)) |
| return 0; |
| |
| err = dbg_walk_index(c, NULL, add_size, &calc); |
| if (err) { |
| ubifs_err(c, "error %d while walking the index", err); |
| return err; |
| } |
| |
| if (calc != idx_size) { |
| ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", |
| calc, idx_size); |
| dump_stack(); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * struct fsck_inode - information about an inode used when checking the file-system. |
| * @rb: link in the RB-tree of inodes |
| * @inum: inode number |
| * @mode: inode type, permissions, etc |
| * @nlink: inode link count |
| * @xattr_cnt: count of extended attributes |
| * @references: how many directory/xattr entries refer this inode (calculated |
| * while walking the index) |
| * @calc_cnt: for directory inode count of child directories |
| * @size: inode size (read from on-flash inode) |
| * @xattr_sz: summary size of all extended attributes (read from on-flash |
| * inode) |
| * @calc_sz: for directories calculated directory size |
| * @calc_xcnt: count of extended attributes |
| * @calc_xsz: calculated summary size of all extended attributes |
| * @xattr_nms: sum of lengths of all extended attribute names belonging to this |
| * inode (read from on-flash inode) |
| * @calc_xnms: calculated sum of lengths of all extended attribute names |
| */ |
| struct fsck_inode { |
| struct rb_node rb; |
| ino_t inum; |
| umode_t mode; |
| unsigned int nlink; |
| unsigned int xattr_cnt; |
| int references; |
| int calc_cnt; |
| long long size; |
| unsigned int xattr_sz; |
| long long calc_sz; |
| long long calc_xcnt; |
| long long calc_xsz; |
| unsigned int xattr_nms; |
| long long calc_xnms; |
| }; |
| |
| /** |
| * struct fsck_data - private FS checking information. |
| * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) |
| */ |
| struct fsck_data { |
| struct rb_root inodes; |
| }; |
| |
| /** |
| * add_inode - add inode information to RB-tree of inodes. |
| * @c: UBIFS file-system description object |
| * @fsckd: FS checking information |
| * @ino: raw UBIFS inode to add |
| * |
| * This is a helper function for 'check_leaf()' which adds information about |
| * inode @ino to the RB-tree of inodes. Returns inode information pointer in |
| * case of success and a negative error code in case of failure. |
| */ |
| static struct fsck_inode *add_inode(struct ubifs_info *c, |
| struct fsck_data *fsckd, |
| struct ubifs_ino_node *ino) |
| { |
| struct rb_node **p, *parent = NULL; |
| struct fsck_inode *fscki; |
| ino_t inum = key_inum_flash(c, &ino->key); |
| struct inode *inode; |
| struct ubifs_inode *ui; |
| |
| p = &fsckd->inodes.rb_node; |
| while (*p) { |
| parent = *p; |
| fscki = rb_entry(parent, struct fsck_inode, rb); |
| if (inum < fscki->inum) |
| p = &(*p)->rb_left; |
| else if (inum > fscki->inum) |
| p = &(*p)->rb_right; |
| else |
| return fscki; |
| } |
| |
| if (inum > c->highest_inum) { |
| ubifs_err(c, "too high inode number, max. is %lu", |
| (unsigned long)c->highest_inum); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); |
| if (!fscki) |
| return ERR_PTR(-ENOMEM); |
| |
| inode = ilookup(c->vfs_sb, inum); |
| |
| fscki->inum = inum; |
| /* |
| * If the inode is present in the VFS inode cache, use it instead of |
| * the on-flash inode which might be out-of-date. E.g., the size might |
| * be out-of-date. If we do not do this, the following may happen, for |
| * example: |
| * 1. A power cut happens |
| * 2. We mount the file-system R/O, the replay process fixes up the |
| * inode size in the VFS cache, but on on-flash. |
| * 3. 'check_leaf()' fails because it hits a data node beyond inode |
| * size. |
| */ |
| if (!inode) { |
| fscki->nlink = le32_to_cpu(ino->nlink); |
| fscki->size = le64_to_cpu(ino->size); |
| fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); |
| fscki->xattr_sz = le32_to_cpu(ino->xattr_size); |
| fscki->xattr_nms = le32_to_cpu(ino->xattr_names); |
| fscki->mode = le32_to_cpu(ino->mode); |
| } else { |
| ui = ubifs_inode(inode); |
| fscki->nlink = inode->i_nlink; |
| fscki->size = inode->i_size; |
| fscki->xattr_cnt = ui->xattr_cnt; |
| fscki->xattr_sz = ui->xattr_size; |
| fscki->xattr_nms = ui->xattr_names; |
| fscki->mode = inode->i_mode; |
| iput(inode); |
| } |
| |
| if (S_ISDIR(fscki->mode)) { |
| fscki->calc_sz = UBIFS_INO_NODE_SZ; |
| fscki->calc_cnt = 2; |
| } |
| |
| rb_link_node(&fscki->rb, parent, p); |
| rb_insert_color(&fscki->rb, &fsckd->inodes); |
| |
| return fscki; |
| } |
| |
| /** |
| * search_inode - search inode in the RB-tree of inodes. |
| * @fsckd: FS checking information |
| * @inum: inode number to search |
| * |
| * This is a helper function for 'check_leaf()' which searches inode @inum in |
| * the RB-tree of inodes and returns an inode information pointer or %NULL if |
| * the inode was not found. |
| */ |
| static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) |
| { |
| struct rb_node *p; |
| struct fsck_inode *fscki; |
| |
| p = fsckd->inodes.rb_node; |
| while (p) { |
| fscki = rb_entry(p, struct fsck_inode, rb); |
| if (inum < fscki->inum) |
| p = p->rb_left; |
| else if (inum > fscki->inum) |
| p = p->rb_right; |
| else |
| return fscki; |
| } |
| return NULL; |
| } |
| |
| /** |
| * read_add_inode - read inode node and add it to RB-tree of inodes. |
| * @c: UBIFS file-system description object |
| * @fsckd: FS checking information |
| * @inum: inode number to read |
| * |
| * This is a helper function for 'check_leaf()' which finds inode node @inum in |
| * the index, reads it, and adds it to the RB-tree of inodes. Returns inode |
| * information pointer in case of success and a negative error code in case of |
| * failure. |
| */ |
| static struct fsck_inode *read_add_inode(struct ubifs_info *c, |
| struct fsck_data *fsckd, ino_t inum) |
| { |
| int n, err; |
| union ubifs_key key; |
| struct ubifs_znode *znode; |
| struct ubifs_zbranch *zbr; |
| struct ubifs_ino_node *ino; |
| struct fsck_inode *fscki; |
| |
| fscki = search_inode(fsckd, inum); |
| if (fscki) |
| return fscki; |
| |
| ino_key_init(c, &key, inum); |
| err = ubifs_lookup_level0(c, &key, &znode, &n); |
| if (!err) { |
| ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); |
| return ERR_PTR(-ENOENT); |
| } else if (err < 0) { |
| ubifs_err(c, "error %d while looking up inode %lu", |
| err, (unsigned long)inum); |
| return ERR_PTR(err); |
| } |
| |
| zbr = &znode->zbranch[n]; |
| if (zbr->len < UBIFS_INO_NODE_SZ) { |
| ubifs_err(c, "bad node %lu node length %d", |
| (unsigned long)inum, zbr->len); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| ino = kmalloc(zbr->len, GFP_NOFS); |
| if (!ino) |
| return ERR_PTR(-ENOMEM); |
| |
| err = ubifs_tnc_read_node(c, zbr, ino); |
| if (err) { |
| ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", |
| zbr->lnum, zbr->offs, err); |
| kfree(ino); |
| return ERR_PTR(err); |
| } |
| |
| fscki = add_inode(c, fsckd, ino); |
| kfree(ino); |
| if (IS_ERR(fscki)) { |
| ubifs_err(c, "error %ld while adding inode %lu node", |
| PTR_ERR(fscki), (unsigned long)inum); |
| return fscki; |
| } |
| |
| return fscki; |
| } |
| |
| /** |
| * check_leaf - check leaf node. |
| * @c: UBIFS file-system description object |
| * @zbr: zbranch of the leaf node to check |
| * @priv: FS checking information |
| * |
| * This is a helper function for 'dbg_check_filesystem()' which is called for |
| * every single leaf node while walking the indexing tree. It checks that the |
| * leaf node referred from the indexing tree exists, has correct CRC, and does |
| * some other basic validation. This function is also responsible for building |
| * an RB-tree of inodes - it adds all inodes into the RB-tree. It also |
| * calculates reference count, size, etc for each inode in order to later |
| * compare them to the information stored inside the inodes and detect possible |
| * inconsistencies. Returns zero in case of success and a negative error code |
| * in case of failure. |
| */ |
| static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, |
| void *priv) |
| { |
| ino_t inum; |
| void *node; |
| struct ubifs_ch *ch; |
| int err, type = key_type(c, &zbr->key); |
| struct fsck_inode *fscki; |
| |
| if (zbr->len < UBIFS_CH_SZ) { |
| ubifs_err(c, "bad leaf length %d (LEB %d:%d)", |
| zbr->len, zbr->lnum, zbr->offs); |
| return -EINVAL; |
| } |
| |
| node = kmalloc(zbr->len, GFP_NOFS); |
| if (!node) |
| return -ENOMEM; |
| |
| err = ubifs_tnc_read_node(c, zbr, node); |
| if (err) { |
| ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", |
| zbr->lnum, zbr->offs, err); |
| goto out_free; |
| } |
| |
| /* If this is an inode node, add it to RB-tree of inodes */ |
| if (type == UBIFS_INO_KEY) { |
| fscki = add_inode(c, priv, node); |
| if (IS_ERR(fscki)) { |
| err = PTR_ERR(fscki); |
| ubifs_err(c, "error %d while adding inode node", err); |
| goto out_dump; |
| } |
| goto out; |
| } |
| |
| if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && |
| type != UBIFS_DATA_KEY) { |
| ubifs_err(c, "unexpected node type %d at LEB %d:%d", |
| type, zbr->lnum, zbr->offs); |
| err = -EINVAL; |
| goto out_free; |
| } |
| |
| ch = node; |
| if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { |
| ubifs_err(c, "too high sequence number, max. is %llu", |
| c->max_sqnum); |
| err = -EINVAL; |
| goto out_dump; |
| } |
| |
| if (type == UBIFS_DATA_KEY) { |
| long long blk_offs; |
| struct ubifs_data_node *dn = node; |
| |
| ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ); |
| |
| /* |
| * Search the inode node this data node belongs to and insert |
| * it to the RB-tree of inodes. |
| */ |
| inum = key_inum_flash(c, &dn->key); |
| fscki = read_add_inode(c, priv, inum); |
| if (IS_ERR(fscki)) { |
| err = PTR_ERR(fscki); |
| ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", |
| err, (unsigned long)inum); |
| goto out_dump; |
| } |
| |
| /* Make sure the data node is within inode size */ |
| blk_offs = key_block_flash(c, &dn->key); |
| blk_offs <<= UBIFS_BLOCK_SHIFT; |
| blk_offs += le32_to_cpu(dn->size); |
| if (blk_offs > fscki->size) { |
| ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", |
| zbr->lnum, zbr->offs, fscki->size); |
| err = -EINVAL; |
| goto out_dump; |
| } |
| } else { |
| int nlen; |
| struct ubifs_dent_node *dent = node; |
| struct fsck_inode *fscki1; |
| |
| ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ); |
| |
| err = ubifs_validate_entry(c, dent); |
| if (err) |
| goto out_dump; |
| |
| /* |
| * Search the inode node this entry refers to and the parent |
| * inode node and insert them to the RB-tree of inodes. |
| */ |
| inum = le64_to_cpu(dent->inum); |
| fscki = read_add_inode(c, priv, inum); |
| if (IS_ERR(fscki)) { |
| err = PTR_ERR(fscki); |
| ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", |
| err, (unsigned long)inum); |
| goto out_dump; |
| } |
| |
| /* Count how many direntries or xentries refers this inode */ |
| fscki->references += 1; |
| |
| inum = key_inum_flash(c, &dent->key); |
| fscki1 = read_add_inode(c, priv, inum); |
| if (IS_ERR(fscki1)) { |
| err = PTR_ERR(fscki1); |
| ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", |
| err, (unsigned long)inum); |
| goto out_dump; |
| } |
| |
| nlen = le16_to_cpu(dent->nlen); |
| if (type == UBIFS_XENT_KEY) { |
| fscki1->calc_xcnt += 1; |
| fscki1->calc_xsz += CALC_DENT_SIZE(nlen); |
| fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); |
| fscki1->calc_xnms += nlen; |
| } else { |
| fscki1->calc_sz += CALC_DENT_SIZE(nlen); |
| if (dent->type == UBIFS_ITYPE_DIR) |
| fscki1->calc_cnt += 1; |
| } |
| } |
| |
| out: |
| kfree(node); |
| return 0; |
| |
| out_dump: |
| ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); |
| ubifs_dump_node(c, node); |
| out_free: |
| kfree(node); |
| return err; |
| } |
| |
| /** |
| * free_inodes - free RB-tree of inodes. |
| * @fsckd: FS checking information |
| */ |
| static void free_inodes(struct fsck_data *fsckd) |
| { |
| struct fsck_inode *fscki, *n; |
| |
| rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) |
| kfree(fscki); |
| } |
| |
| /** |
| * check_inodes - checks all inodes. |
| * @c: UBIFS file-system description object |
| * @fsckd: FS checking information |
| * |
| * This is a helper function for 'dbg_check_filesystem()' which walks the |
| * RB-tree of inodes after the index scan has been finished, and checks that |
| * inode nlink, size, etc are correct. Returns zero if inodes are fine, |
| * %-EINVAL if not, and a negative error code in case of failure. |
| */ |
| static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) |
| { |
| int n, err; |
| union ubifs_key key; |
| struct ubifs_znode *znode; |
| struct ubifs_zbranch *zbr; |
| struct ubifs_ino_node *ino; |
| struct fsck_inode *fscki; |
| struct rb_node *this = rb_first(&fsckd->inodes); |
| |
| while (this) { |
| fscki = rb_entry(this, struct fsck_inode, rb); |
| this = rb_next(this); |
| |
| if (S_ISDIR(fscki->mode)) { |
| /* |
| * Directories have to have exactly one reference (they |
| * cannot have hardlinks), although root inode is an |
| * exception. |
| */ |
| if (fscki->inum != UBIFS_ROOT_INO && |
| fscki->references != 1) { |
| ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", |
| (unsigned long)fscki->inum, |
| fscki->references); |
| goto out_dump; |
| } |
| if (fscki->inum == UBIFS_ROOT_INO && |
| fscki->references != 0) { |
| ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", |
| (unsigned long)fscki->inum, |
| fscki->references); |
| goto out_dump; |
| } |
| if (fscki->calc_sz != fscki->size) { |
| ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", |
| (unsigned long)fscki->inum, |
| fscki->size, fscki->calc_sz); |
| goto out_dump; |
| } |
| if (fscki->calc_cnt != fscki->nlink) { |
| ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", |
| (unsigned long)fscki->inum, |
| fscki->nlink, fscki->calc_cnt); |
| goto out_dump; |
| } |
| } else { |
| if (fscki->references != fscki->nlink) { |
| ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", |
| (unsigned long)fscki->inum, |
| fscki->nlink, fscki->references); |
| goto out_dump; |
| } |
| } |
| if (fscki->xattr_sz != fscki->calc_xsz) { |
| ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", |
| (unsigned long)fscki->inum, fscki->xattr_sz, |
| fscki->calc_xsz); |
| goto out_dump; |
| } |
| if (fscki->xattr_cnt != fscki->calc_xcnt) { |
| ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", |
| (unsigned long)fscki->inum, |
| fscki->xattr_cnt, fscki->calc_xcnt); |
| goto out_dump; |
| } |
| if (fscki->xattr_nms != fscki->calc_xnms) { |
| ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", |
| (unsigned long)fscki->inum, fscki->xattr_nms, |
| fscki->calc_xnms); |
| goto out_dump; |
| } |
| } |
| |
| return 0; |
| |
| out_dump: |
| /* Read the bad inode and dump it */ |
| ino_key_init(c, &key, fscki->inum); |
| err = ubifs_lookup_level0(c, &key, &znode, &n); |
| if (!err) { |
| ubifs_err(c, "inode %lu not found in index", |
| (unsigned long)fscki->inum); |
| return -ENOENT; |
| } else if (err < 0) { |
| ubifs_err(c, "error %d while looking up inode %lu", |
| err, (unsigned long)fscki->inum); |
| return err; |
| } |
| |
| zbr = &znode->zbranch[n]; |
| ino = kmalloc(zbr->len, GFP_NOFS); |
| if (!ino) |
| return -ENOMEM; |
| |
| err = ubifs_tnc_read_node(c, zbr, ino); |
| if (err) { |
| ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", |
| zbr->lnum, zbr->offs, err); |
| kfree(ino); |
| return err; |
| } |
| |
| ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", |
| (unsigned long)fscki->inum, zbr->lnum, zbr->offs); |
| ubifs_dump_node(c, ino); |
| kfree(ino); |
| return -EINVAL; |
| } |
| |
| /** |
| * dbg_check_filesystem - check the file-system. |
| * @c: UBIFS file-system description object |
| * |
| * This function checks the file system, namely: |
| * o makes sure that all leaf nodes exist and their CRCs are correct; |
| * o makes sure inode nlink, size, xattr size/count are correct (for all |
| * inodes). |
| * |
| * The function reads whole indexing tree and all nodes, so it is pretty |
| * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if |
| * not, and a negative error code in case of failure. |
| */ |
| int dbg_check_filesystem(struct ubifs_info *c) |
| { |
| int err; |
| struct fsck_data fsckd; |
| |
| if (!dbg_is_chk_fs(c)) |
| return 0; |
| |
| fsckd.inodes = RB_ROOT; |
| err = dbg_walk_index(c, check_leaf, NULL, &fsckd); |
| if (err) |
| goto out_free; |
| |
| err = check_inodes(c, &fsckd); |
| if (err) |
| goto out_free; |
| |
| free_inodes(&fsckd); |
| return 0; |
| |
| out_free: |
| ubifs_err(c, "file-system check failed with error %d", err); |
| dump_stack(); |
| free_inodes(&fsckd); |
| return err; |
| } |
| |
| /** |
| * dbg_check_data_nodes_order - check that list of data nodes is sorted. |
| * @c: UBIFS file-system description object |
| * @head: the list of nodes ('struct ubifs_scan_node' objects) |
| * |
| * This function returns zero if the list of data nodes is sorted correctly, |
| * and %-EINVAL if not. |
| */ |
| int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) |
| { |
| struct list_head *cur; |
| struct ubifs_scan_node *sa, *sb; |
| |
| if (!dbg_is_chk_gen(c)) |
| return 0; |
| |
| for (cur = head->next; cur->next != head; cur = cur->next) { |
| ino_t inuma, inumb; |
| uint32_t blka, blkb; |
| |
| cond_resched(); |
| sa = container_of(cur, struct ubifs_scan_node, list); |
| sb = container_of(cur->next, struct ubifs_scan_node, list); |
| |
| if (sa->type != UBIFS_DATA_NODE) { |
| ubifs_err(c, "bad node type %d", sa->type); |
| ubifs_dump_node(c, sa->node); |
| return -EINVAL; |
| } |
| if (sb->type != UBIFS_DATA_NODE) { |
| ubifs_err(c, "bad node type %d", sb->type); |
| ubifs_dump_node(c, sb->node); |
| return -EINVAL; |
| } |
| |
| inuma = key_inum(c, &sa->key); |
| inumb = key_inum(c, &sb->key); |
| |
| if (inuma < inumb) |
| continue; |
| if (inuma > inumb) { |
| ubifs_err(c, "larger inum %lu goes before inum %lu", |
| (unsigned long)inuma, (unsigned long)inumb); |
| goto error_dump; |
| } |
| |
| blka = key_block(c, &sa->key); |
| blkb = key_block(c, &sb->key); |
| |
| if (blka > blkb) { |
| ubifs_err(c, "larger block %u goes before %u", blka, blkb); |
| goto error_dump; |
| } |
| if (blka == blkb) { |
| ubifs_err(c, "two data nodes for the same block"); |
| goto error_dump; |
| } |
| } |
| |
| return 0; |
| |
| error_dump: |
| ubifs_dump_node(c, sa->node); |
| ubifs_dump_node(c, sb->node); |
| return -EINVAL; |
| } |
| |
| /** |
| * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. |
| * @c: UBIFS file-system description object |
| * @head: the list of nodes ('struct ubifs_scan_node' objects) |
| * |
| * This function returns zero if the list of non-data nodes is sorted correctly, |
| * and %-EINVAL if not. |
| */ |
| int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) |
| { |
| struct list_head *cur; |
| struct ubifs_scan_node *sa, *sb; |
| |
| if (!dbg_is_chk_gen(c)) |
| return 0; |
| |
| for (cur = head->next; cur->next != head; cur = cur->next) { |
| ino_t inuma, inumb; |
| uint32_t hasha, hashb; |
| |
| cond_resched(); |
| sa = container_of(cur, struct ubifs_scan_node, list); |
| sb = container_of(cur->next, struct ubifs_scan_node, list); |
| |
| if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && |
| sa->type != UBIFS_XENT_NODE) { |
| ubifs_err(c, "bad node type %d", sa->type); |
| ubifs_dump_node(c, sa->node); |
| return -EINVAL; |
| } |
| if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && |
| sa->type != UBIFS_XENT_NODE) { |
| ubifs_err(c, "bad node type %d", sb->type); |
| ubifs_dump_node(c, sb->node); |
| return -EINVAL; |
| } |
| |
| if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { |
| ubifs_err(c, "non-inode node goes before inode node"); |
| goto error_dump; |
| } |
| |
| if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) |
| continue; |
| |
| if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { |
| /* Inode nodes are sorted in descending size order */ |
| if (sa->len < sb->len) { |
| ubifs_err(c, "smaller inode node goes first"); |
| goto error_dump; |
| } |
| continue; |
| } |
| |
| /* |
| * This is either a dentry or xentry, which should be sorted in |
| * ascending (parent ino, hash) order. |
| */ |
| inuma = key_inum(c, &sa->key); |
| inumb = key_inum(c, &sb->key); |
| |
| if (inuma < inumb) |
| continue; |
| if (inuma > inumb) { |
| ubifs_err(c, "larger inum %lu goes before inum %lu", |
| (unsigned long)inuma, (unsigned long)inumb); |
| goto error_dump; |
| } |
| |
| hasha = key_block(c, &sa->key); |
| hashb = key_block(c, &sb->key); |
| |
| if (hasha > hashb) { |
| ubifs_err(c, "larger hash %u goes before %u", |
| hasha, hashb); |
| goto error_dump; |
| } |
| } |
| |
| return 0; |
| |
| error_dump: |
| ubifs_msg(c, "dumping first node"); |
| ubifs_dump_node(c, sa->node); |
| ubifs_msg(c, "dumping second node"); |
| ubifs_dump_node(c, sb->node); |
| return -EINVAL; |
| return 0; |
| } |
| |
| static inline int chance(unsigned int n, unsigned int out_of) |
| { |
| return !!((prandom_u32() % out_of) + 1 <= n); |
| |
| } |
| |
| static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) |
| { |
| struct ubifs_debug_info *d = c->dbg; |
| |
| ubifs_assert(dbg_is_tst_rcvry(c)); |
| |
| if (!d->pc_cnt) { |
| /* First call - decide delay to the power cut */ |
| if (chance(1, 2)) { |
| unsigned long delay; |
| |
| if (chance(1, 2)) { |
| d->pc_delay = 1; |
| /* Fail within 1 minute */ |
| delay = prandom_u32() % 60000; |
| d->pc_timeout = jiffies; |
| d->pc_timeout += msecs_to_jiffies(delay); |
| ubifs_warn(c, "failing after %lums", delay); |
| } else { |
| d->pc_delay = 2; |
| delay = prandom_u32() % 10000; |
| /* Fail within 10000 operations */ |
| d->pc_cnt_max = delay; |
| ubifs_warn(c, "failing after %lu calls", delay); |
| } |
| } |
| |
| d->pc_cnt += 1; |
| } |
| |
| /* Determine if failure delay has expired */ |
| if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) |
| return 0; |
| if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) |
| return 0; |
| |
| if (lnum == UBIFS_SB_LNUM) { |
| if (write && chance(1, 2)) |
| return 0; |
| if (chance(19, 20)) |
| return 0; |
| ubifs_warn(c, "failing in super block LEB %d", lnum); |
| } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { |
| if (chance(19, 20)) |
| return 0; |
| ubifs_warn(c, "failing in master LEB %d", lnum); |
| } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { |
| if (write && chance(99, 100)) |
| return 0; |
| if (chance(399, 400)) |
| return 0; |
| ubifs_warn(c, "failing in log LEB %d", lnum); |
| } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { |
| if (write && chance(7, 8)) |
| return 0; |
| if (chance(19, 20)) |
| return 0; |
| ubifs_warn(c, "failing in LPT LEB %d", lnum); |
| } else if (lnum >= c->orph_first && lnum <= c->orph_last) { |
| if (write && chance(1, 2)) |
| return 0; |
| if (chance(9, 10)) |
| return 0; |
| ubifs_warn(c, "failing in orphan LEB %d", lnum); |
| } else if (lnum == c->ihead_lnum) { |
| if (chance(99, 100)) |
| return 0; |
| ubifs_warn(c, "failing in index head LEB %d", lnum); |
| } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { |
| if (chance(9, 10)) |
| return 0; |
| ubifs_warn(c, "failing in GC head LEB %d", lnum); |
| } else if (write && !RB_EMPTY_ROOT(&c->buds) && |
| !ubifs_search_bud(c, lnum)) { |
| if (chance(19, 20)) |
| return 0; |
| ubifs_warn(c, "failing in non-bud LEB %d", lnum); |
| } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || |
| c->cmt_state == COMMIT_RUNNING_REQUIRED) { |
| if (chance(999, 1000)) |
| return 0; |
| ubifs_warn(c, "failing in bud LEB %d commit running", lnum); |
| } else { |
| if (chance(9999, 10000)) |
| return 0; |
| ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); |
| } |
| |
| d->pc_happened = 1; |
| ubifs_warn(c, "========== Power cut emulated =========="); |
| dump_stack(); |
| return 1; |
| } |
| |
| static int corrupt_data(const struct ubifs_info *c, const void *buf, |
| unsigned int len) |
| { |
| unsigned int from, to, ffs = chance(1, 2); |
| unsigned char *p = (void *)buf; |
| |
| from = prandom_u32() % len; |
| /* Corruption span max to end of write unit */ |
| to = min(len, ALIGN(from + 1, c->max_write_size)); |
| |
| ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, |
| ffs ? "0xFFs" : "random data"); |
| |
| if (ffs) |
| memset(p + from, 0xFF, to - from); |
| else |
| prandom_bytes(p + from, to - from); |
| |
| return to; |
| } |
| |
| int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, |
| int offs, int len) |
| { |
| int err, failing; |
| |
| if (dbg_is_power_cut(c)) |
| return -EROFS; |
| |
| failing = power_cut_emulated(c, lnum, 1); |
| if (failing) { |
| len = corrupt_data(c, buf, len); |
| ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", |
| len, lnum, offs); |
| } |
| err = ubi_leb_write(c->ubi, lnum, buf, offs, len); |
| if (err) |
| return err; |
| if (failing) |
| return -EROFS; |
| return 0; |
| } |
| |
| int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, |
| int len) |
| { |
| int err; |
| |
| if (dbg_is_power_cut(c)) |
| return -EROFS; |
| if (power_cut_emulated(c, lnum, 1)) |
| return -EROFS; |
| err = ubi_leb_change(c->ubi, lnum, buf, len); |
| if (err) |
| return err; |
| if (power_cut_emulated(c, lnum, 1)) |
| return -EROFS; |
| return 0; |
| } |
| |
| int dbg_leb_unmap(struct ubifs_info *c, int lnum) |
| { |
| int err; |
| |
| if (dbg_is_power_cut(c)) |
| return -EROFS; |
| if (power_cut_emulated(c, lnum, 0)) |
| return -EROFS; |
| err = ubi_leb_unmap(c->ubi, lnum); |
| if (err) |
| return err; |
| if (power_cut_emulated(c, lnum, 0)) |
| return -EROFS; |
| return 0; |
| } |
| |
| int dbg_leb_map(struct ubifs_info *c, int lnum) |
| { |
| int err; |
| |
| if (dbg_is_power_cut(c)) |
| return -EROFS; |
| if (power_cut_emulated(c, lnum, 0)) |
| return -EROFS; |
| err = ubi_leb_map(c->ubi, lnum); |
| if (err) |
| return err; |
| if (power_cut_emulated(c, lnum, 0)) |
| return -EROFS; |
| return 0; |
| } |
| |
| /* |
| * Root directory for UBIFS stuff in debugfs. Contains sub-directories which |
| * contain the stuff specific to particular file-system mounts. |
| */ |
| static struct dentry *dfs_rootdir; |
| |
| static int dfs_file_open(struct inode *inode, struct file *file) |
| { |
| file->private_data = inode->i_private; |
| return nonseekable_open(inode, file); |
| } |
| |
| /** |
| * provide_user_output - provide output to the user reading a debugfs file. |
| * @val: boolean value for the answer |
| * @u: the buffer to store the answer at |
| * @count: size of the buffer |
| * @ppos: position in the @u output buffer |
| * |
| * This is a simple helper function which stores @val boolean value in the user |
| * buffer when the user reads one of UBIFS debugfs files. Returns amount of |
| * bytes written to @u in case of success and a negative error code in case of |
| * failure. |
| */ |
| static int provide_user_output(int val, char __user *u, size_t count, |
| loff_t *ppos) |
| { |
| char buf[3]; |
| |
| if (val) |
| buf[0] = '1'; |
| else |
| buf[0] = '0'; |
| buf[1] = '\n'; |
| buf[2] = 0x00; |
| |
| return simple_read_from_buffer(u, count, ppos, buf, 2); |
| } |
| |
| static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, |
| loff_t *ppos) |
| { |
| struct dentry *dent = file->f_path.dentry; |
| struct ubifs_info *c = file->private_data; |
| struct ubifs_debug_info *d = c->dbg; |
| int val; |
| |
| if (dent == d->dfs_chk_gen) |
| val = d->chk_gen; |
| else if (dent == d->dfs_chk_index) |
| val = d->chk_index; |
| else if (dent == d->dfs_chk_orph) |
| val = d->chk_orph; |
| else if (dent == d->dfs_chk_lprops) |
| val = d->chk_lprops; |
| else if (dent == d->dfs_chk_fs) |
| val = d->chk_fs; |
| else if (dent == d->dfs_tst_rcvry) |
| val = d->tst_rcvry; |
| else if (dent == d->dfs_ro_error) |
| val = c->ro_error; |
| else |
| return -EINVAL; |
| |
| return provide_user_output(val, u, count, ppos); |
| } |
| |
| /** |
| * interpret_user_input - interpret user debugfs file input. |
| * @u: user-provided buffer with the input |
| * @count: buffer size |
| * |
| * This is a helper function which interpret user input to a boolean UBIFS |
| * debugfs file. Returns %0 or %1 in case of success and a negative error code |
| * in case of failure. |
| */ |
| static int interpret_user_input(const char __user *u, size_t count) |
| { |
| size_t buf_size; |
| char buf[8]; |
| |
| buf_size = min_t(size_t, count, (sizeof(buf) - 1)); |
| if (copy_from_user(buf, u, buf_size)) |
| return -EFAULT; |
| |
| if (buf[0] == '1') |
| return 1; |
| else if (buf[0] == '0') |
| return 0; |
| |
| return -EINVAL; |
| } |
| |
| static ssize_t dfs_file_write(struct file *file, const char __user *u, |
| size_t count, loff_t *ppos) |
| { |
| struct ubifs_info *c = file->private_data; |
| struct ubifs_debug_info *d = c->dbg; |
| struct dentry *dent = file->f_path.dentry; |
| int val; |
| |
| /* |
| * TODO: this is racy - the file-system might have already been |
| * unmounted and we'd oops in this case. The plan is to fix it with |
| * help of 'iterate_supers_type()' which we should have in v3.0: when |
| * a debugfs opened, we rember FS's UUID in file->private_data. Then |
| * whenever we access the FS via a debugfs file, we iterate all UBIFS |
| * superblocks and fine the one with the same UUID, and take the |
| * locking right. |
| * |
| * The other way to go suggested by Al Viro is to create a separate |
| * 'ubifs-debug' file-system instead. |
| */ |
| if (file->f_path.dentry == d->dfs_dump_lprops) { |
| ubifs_dump_lprops(c); |
| return count; |
| } |
| if (file->f_path.dentry == d->dfs_dump_budg) { |
| ubifs_dump_budg(c, &c->bi); |
| return count; |
| } |
| if (file->f_path.dentry == d->dfs_dump_tnc) { |
| mutex_lock(&c->tnc_mutex); |
| ubifs_dump_tnc(c); |
| mutex_unlock(&c->tnc_mutex); |
| return count; |
| } |
| |
| val = interpret_user_input(u, count); |
| if (val < 0) |
| return val; |
| |
| if (dent == d->dfs_chk_gen) |
| d->chk_gen = val; |
| else if (dent == d->dfs_chk_index) |
| d->chk_index = val; |
| else if (dent == d->dfs_chk_orph) |
| d->chk_orph = val; |
| else if (dent == d->dfs_chk_lprops) |
| d->chk_lprops = val; |
| else if (dent == d->dfs_chk_fs) |
| d->chk_fs = val; |
| else if (dent == d->dfs_tst_rcvry) |
| d->tst_rcvry = val; |
| else if (dent == d->dfs_ro_error) |
| c->ro_error = !!val; |
| else |
| return -EINVAL; |
| |
| return count; |
| } |
| |
| static const struct file_operations dfs_fops = { |
| .open = dfs_file_open, |
| .read = dfs_file_read, |
| .write = dfs_file_write, |
| .owner = THIS_MODULE, |
| .llseek = no_llseek, |
| }; |
| |
| /** |
| * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. |
| * @c: UBIFS file-system description object |
| * |
| * This function creates all debugfs files for this instance of UBIFS. Returns |
| * zero in case of success and a negative error code in case of failure. |
| * |
| * Note, the only reason we have not merged this function with the |
| * 'ubifs_debugging_init()' function is because it is better to initialize |
| * debugfs interfaces at the very end of the mount process, and remove them at |
| * the very beginning of the mount process. |
| */ |
| int dbg_debugfs_init_fs(struct ubifs_info *c) |
| { |
| int err, n; |
| const char *fname; |
| struct dentry *dent; |
| struct ubifs_debug_info *d = c->dbg; |
| |
| if (!IS_ENABLED(CONFIG_DEBUG_FS)) |
| return 0; |
| |
| n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, |
| c->vi.ubi_num, c->vi.vol_id); |
| if (n == UBIFS_DFS_DIR_LEN) { |
| /* The array size is too small */ |
| fname = UBIFS_DFS_DIR_NAME; |
| dent = ERR_PTR(-EINVAL); |
| goto out; |
| } |
| |
| fname = d->dfs_dir_name; |
| dent = debugfs_create_dir(fname, dfs_rootdir); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out; |
| d->dfs_dir = dent; |
| |
| fname = "dump_lprops"; |
| dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| d->dfs_dump_lprops = dent; |
| |
| fname = "dump_budg"; |
| dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| d->dfs_dump_budg = dent; |
| |
| fname = "dump_tnc"; |
| dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| d->dfs_dump_tnc = dent; |
| |
| fname = "chk_general"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, |
| &dfs_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| d->dfs_chk_gen = dent; |
| |
| fname = "chk_index"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, |
| &dfs_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| d->dfs_chk_index = dent; |
| |
| fname = "chk_orphans"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, |
| &dfs_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| d->dfs_chk_orph = dent; |
| |
| fname = "chk_lprops"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, |
| &dfs_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| d->dfs_chk_lprops = dent; |
| |
| fname = "chk_fs"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, |
| &dfs_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| d->dfs_chk_fs = dent; |
| |
| fname = "tst_recovery"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, |
| &dfs_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| d->dfs_tst_rcvry = dent; |
| |
| fname = "ro_error"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, |
| &dfs_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| d->dfs_ro_error = dent; |
| |
| return 0; |
| |
| out_remove: |
| debugfs_remove_recursive(d->dfs_dir); |
| out: |
| err = dent ? PTR_ERR(dent) : -ENODEV; |
| ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n", |
| fname, err); |
| return err; |
| } |
| |
| /** |
| * dbg_debugfs_exit_fs - remove all debugfs files. |
| * @c: UBIFS file-system description object |
| */ |
| void dbg_debugfs_exit_fs(struct ubifs_info *c) |
| { |
| if (IS_ENABLED(CONFIG_DEBUG_FS)) |
| debugfs_remove_recursive(c->dbg->dfs_dir); |
| } |
| |
| struct ubifs_global_debug_info ubifs_dbg; |
| |
| static struct dentry *dfs_chk_gen; |
| static struct dentry *dfs_chk_index; |
| static struct dentry *dfs_chk_orph; |
| static struct dentry *dfs_chk_lprops; |
| static struct dentry *dfs_chk_fs; |
| static struct dentry *dfs_tst_rcvry; |
| |
| static ssize_t dfs_global_file_read(struct file *file, char __user *u, |
| size_t count, loff_t *ppos) |
| { |
| struct dentry *dent = file->f_path.dentry; |
| int val; |
| |
| if (dent == dfs_chk_gen) |
| val = ubifs_dbg.chk_gen; |
| else if (dent == dfs_chk_index) |
| val = ubifs_dbg.chk_index; |
| else if (dent == dfs_chk_orph) |
| val = ubifs_dbg.chk_orph; |
| else if (dent == dfs_chk_lprops) |
| val = ubifs_dbg.chk_lprops; |
| else if (dent == dfs_chk_fs) |
| val = ubifs_dbg.chk_fs; |
| else if (dent == dfs_tst_rcvry) |
| val = ubifs_dbg.tst_rcvry; |
| else |
| return -EINVAL; |
| |
| return provide_user_output(val, u, count, ppos); |
| } |
| |
| static ssize_t dfs_global_file_write(struct file *file, const char __user *u, |
| size_t count, loff_t *ppos) |
| { |
| struct dentry *dent = file->f_path.dentry; |
| int val; |
| |
| val = interpret_user_input(u, count); |
| if (val < 0) |
| return val; |
| |
| if (dent == dfs_chk_gen) |
| ubifs_dbg.chk_gen = val; |
| else if (dent == dfs_chk_index) |
| ubifs_dbg.chk_index = val; |
| else if (dent == dfs_chk_orph) |
| ubifs_dbg.chk_orph = val; |
| else if (dent == dfs_chk_lprops) |
| ubifs_dbg.chk_lprops = val; |
| else if (dent == dfs_chk_fs) |
| ubifs_dbg.chk_fs = val; |
| else if (dent == dfs_tst_rcvry) |
| ubifs_dbg.tst_rcvry = val; |
| else |
| return -EINVAL; |
| |
| return count; |
| } |
| |
| static const struct file_operations dfs_global_fops = { |
| .read = dfs_global_file_read, |
| .write = dfs_global_file_write, |
| .owner = THIS_MODULE, |
| .llseek = no_llseek, |
| }; |
| |
| /** |
| * dbg_debugfs_init - initialize debugfs file-system. |
| * |
| * UBIFS uses debugfs file-system to expose various debugging knobs to |
| * user-space. This function creates "ubifs" directory in the debugfs |
| * file-system. Returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| int dbg_debugfs_init(void) |
| { |
| int err; |
| const char *fname; |
| struct dentry *dent; |
| |
| if (!IS_ENABLED(CONFIG_DEBUG_FS)) |
| return 0; |
| |
| fname = "ubifs"; |
| dent = debugfs_create_dir(fname, NULL); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out; |
| dfs_rootdir = dent; |
| |
| fname = "chk_general"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, |
| &dfs_global_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| dfs_chk_gen = dent; |
| |
| fname = "chk_index"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, |
| &dfs_global_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| dfs_chk_index = dent; |
| |
| fname = "chk_orphans"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, |
| &dfs_global_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| dfs_chk_orph = dent; |
| |
| fname = "chk_lprops"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, |
| &dfs_global_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| dfs_chk_lprops = dent; |
| |
| fname = "chk_fs"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, |
| &dfs_global_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| dfs_chk_fs = dent; |
| |
| fname = "tst_recovery"; |
| dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, |
| &dfs_global_fops); |
| if (IS_ERR_OR_NULL(dent)) |
| goto out_remove; |
| dfs_tst_rcvry = dent; |
| |
| return 0; |
| |
| out_remove: |
| debugfs_remove_recursive(dfs_rootdir); |
| out: |
| err = dent ? PTR_ERR(dent) : -ENODEV; |
| pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n", |
| current->pid, fname, err); |
| return err; |
| } |
| |
| /** |
| * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. |
| */ |
| void dbg_debugfs_exit(void) |
| { |
| if (IS_ENABLED(CONFIG_DEBUG_FS)) |
| debugfs_remove_recursive(dfs_rootdir); |
| } |
| |
| /** |
| * ubifs_debugging_init - initialize UBIFS debugging. |
| * @c: UBIFS file-system description object |
| * |
| * This function initializes debugging-related data for the file system. |
| * Returns zero in case of success and a negative error code in case of |
| * failure. |
| */ |
| int ubifs_debugging_init(struct ubifs_info *c) |
| { |
| c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); |
| if (!c->dbg) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /** |
| * ubifs_debugging_exit - free debugging data. |
| * @c: UBIFS file-system description object |
| */ |
| void ubifs_debugging_exit(struct ubifs_info *c) |
| { |
| kfree(c->dbg); |
| } |