| /* |
| * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved. |
| * |
| * Author: Yu Liu, yu.liu@freescale.com |
| * Scott Wood, scottwood@freescale.com |
| * Ashish Kalra, ashish.kalra@freescale.com |
| * Varun Sethi, varun.sethi@freescale.com |
| * Alexander Graf, agraf@suse.de |
| * |
| * Description: |
| * This file is based on arch/powerpc/kvm/44x_tlb.c, |
| * by Hollis Blanchard <hollisb@us.ibm.com>. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/highmem.h> |
| #include <linux/log2.h> |
| #include <linux/uaccess.h> |
| #include <linux/sched/mm.h> |
| #include <linux/rwsem.h> |
| #include <linux/vmalloc.h> |
| #include <linux/hugetlb.h> |
| #include <asm/kvm_ppc.h> |
| |
| #include "e500.h" |
| #include "timing.h" |
| #include "e500_mmu_host.h" |
| |
| #include "trace_booke.h" |
| |
| #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1) |
| |
| static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM]; |
| |
| static inline unsigned int tlb1_max_shadow_size(void) |
| { |
| /* reserve one entry for magic page */ |
| return host_tlb_params[1].entries - tlbcam_index - 1; |
| } |
| |
| static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode) |
| { |
| /* Mask off reserved bits. */ |
| mas3 &= MAS3_ATTRIB_MASK; |
| |
| #ifndef CONFIG_KVM_BOOKE_HV |
| if (!usermode) { |
| /* Guest is in supervisor mode, |
| * so we need to translate guest |
| * supervisor permissions into user permissions. */ |
| mas3 &= ~E500_TLB_USER_PERM_MASK; |
| mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; |
| } |
| mas3 |= E500_TLB_SUPER_PERM_MASK; |
| #endif |
| return mas3; |
| } |
| |
| /* |
| * writing shadow tlb entry to host TLB |
| */ |
| static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe, |
| uint32_t mas0, |
| uint32_t lpid) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| mtspr(SPRN_MAS0, mas0); |
| mtspr(SPRN_MAS1, stlbe->mas1); |
| mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2); |
| mtspr(SPRN_MAS3, (u32)stlbe->mas7_3); |
| mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32)); |
| #ifdef CONFIG_KVM_BOOKE_HV |
| mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid)); |
| #endif |
| asm volatile("isync; tlbwe" : : : "memory"); |
| |
| #ifdef CONFIG_KVM_BOOKE_HV |
| /* Must clear mas8 for other host tlbwe's */ |
| mtspr(SPRN_MAS8, 0); |
| isync(); |
| #endif |
| local_irq_restore(flags); |
| |
| trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1, |
| stlbe->mas2, stlbe->mas7_3); |
| } |
| |
| /* |
| * Acquire a mas0 with victim hint, as if we just took a TLB miss. |
| * |
| * We don't care about the address we're searching for, other than that it's |
| * in the right set and is not present in the TLB. Using a zero PID and a |
| * userspace address means we don't have to set and then restore MAS5, or |
| * calculate a proper MAS6 value. |
| */ |
| static u32 get_host_mas0(unsigned long eaddr) |
| { |
| unsigned long flags; |
| u32 mas0; |
| u32 mas4; |
| |
| local_irq_save(flags); |
| mtspr(SPRN_MAS6, 0); |
| mas4 = mfspr(SPRN_MAS4); |
| mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK); |
| asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET)); |
| mas0 = mfspr(SPRN_MAS0); |
| mtspr(SPRN_MAS4, mas4); |
| local_irq_restore(flags); |
| |
| return mas0; |
| } |
| |
| /* sesel is for tlb1 only */ |
| static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, |
| int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe) |
| { |
| u32 mas0; |
| |
| if (tlbsel == 0) { |
| mas0 = get_host_mas0(stlbe->mas2); |
| __write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid); |
| } else { |
| __write_host_tlbe(stlbe, |
| MAS0_TLBSEL(1) | |
| MAS0_ESEL(to_htlb1_esel(sesel)), |
| vcpu_e500->vcpu.kvm->arch.lpid); |
| } |
| } |
| |
| /* sesel is for tlb1 only */ |
| static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500, |
| struct kvm_book3e_206_tlb_entry *gtlbe, |
| struct kvm_book3e_206_tlb_entry *stlbe, |
| int stlbsel, int sesel) |
| { |
| int stid; |
| |
| preempt_disable(); |
| stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe); |
| |
| stlbe->mas1 |= MAS1_TID(stid); |
| write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe); |
| preempt_enable(); |
| } |
| |
| #ifdef CONFIG_KVM_E500V2 |
| /* XXX should be a hook in the gva2hpa translation */ |
| void kvmppc_map_magic(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| struct kvm_book3e_206_tlb_entry magic; |
| ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; |
| unsigned int stid; |
| kvm_pfn_t pfn; |
| |
| pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT; |
| get_page(pfn_to_page(pfn)); |
| |
| preempt_disable(); |
| stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0); |
| |
| magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) | |
| MAS1_TSIZE(BOOK3E_PAGESZ_4K); |
| magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M; |
| magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) | |
| MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR; |
| magic.mas8 = 0; |
| |
| __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0); |
| preempt_enable(); |
| } |
| #endif |
| |
| void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, |
| int esel) |
| { |
| struct kvm_book3e_206_tlb_entry *gtlbe = |
| get_entry(vcpu_e500, tlbsel, esel); |
| struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref; |
| |
| /* Don't bother with unmapped entries */ |
| if (!(ref->flags & E500_TLB_VALID)) { |
| WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0), |
| "%s: flags %x\n", __func__, ref->flags); |
| WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]); |
| } |
| |
| if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) { |
| u64 tmp = vcpu_e500->g2h_tlb1_map[esel]; |
| int hw_tlb_indx; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| while (tmp) { |
| hw_tlb_indx = __ilog2_u64(tmp & -tmp); |
| mtspr(SPRN_MAS0, |
| MAS0_TLBSEL(1) | |
| MAS0_ESEL(to_htlb1_esel(hw_tlb_indx))); |
| mtspr(SPRN_MAS1, 0); |
| asm volatile("tlbwe"); |
| vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0; |
| tmp &= tmp - 1; |
| } |
| mb(); |
| vcpu_e500->g2h_tlb1_map[esel] = 0; |
| ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID); |
| local_irq_restore(flags); |
| } |
| |
| if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) { |
| /* |
| * TLB1 entry is backed by 4k pages. This should happen |
| * rarely and is not worth optimizing. Invalidate everything. |
| */ |
| kvmppc_e500_tlbil_all(vcpu_e500); |
| ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID); |
| } |
| |
| /* |
| * If TLB entry is still valid then it's a TLB0 entry, and thus |
| * backed by at most one host tlbe per shadow pid |
| */ |
| if (ref->flags & E500_TLB_VALID) |
| kvmppc_e500_tlbil_one(vcpu_e500, gtlbe); |
| |
| /* Mark the TLB as not backed by the host anymore */ |
| ref->flags = 0; |
| } |
| |
| static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe) |
| { |
| return tlbe->mas7_3 & (MAS3_SW|MAS3_UW); |
| } |
| |
| static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref, |
| struct kvm_book3e_206_tlb_entry *gtlbe, |
| kvm_pfn_t pfn, unsigned int wimg) |
| { |
| ref->pfn = pfn; |
| ref->flags = E500_TLB_VALID; |
| |
| /* Use guest supplied MAS2_G and MAS2_E */ |
| ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg; |
| |
| /* Mark the page accessed */ |
| kvm_set_pfn_accessed(pfn); |
| |
| if (tlbe_is_writable(gtlbe)) |
| kvm_set_pfn_dirty(pfn); |
| } |
| |
| static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref) |
| { |
| if (ref->flags & E500_TLB_VALID) { |
| /* FIXME: don't log bogus pfn for TLB1 */ |
| trace_kvm_booke206_ref_release(ref->pfn, ref->flags); |
| ref->flags = 0; |
| } |
| } |
| |
| static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| if (vcpu_e500->g2h_tlb1_map) |
| memset(vcpu_e500->g2h_tlb1_map, 0, |
| sizeof(u64) * vcpu_e500->gtlb_params[1].entries); |
| if (vcpu_e500->h2g_tlb1_rmap) |
| memset(vcpu_e500->h2g_tlb1_rmap, 0, |
| sizeof(unsigned int) * host_tlb_params[1].entries); |
| } |
| |
| static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| int tlbsel; |
| int i; |
| |
| for (tlbsel = 0; tlbsel <= 1; tlbsel++) { |
| for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) { |
| struct tlbe_ref *ref = |
| &vcpu_e500->gtlb_priv[tlbsel][i].ref; |
| kvmppc_e500_ref_release(ref); |
| } |
| } |
| } |
| |
| void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| kvmppc_e500_tlbil_all(vcpu_e500); |
| clear_tlb_privs(vcpu_e500); |
| clear_tlb1_bitmap(vcpu_e500); |
| } |
| |
| /* TID must be supplied by the caller */ |
| static void kvmppc_e500_setup_stlbe( |
| struct kvm_vcpu *vcpu, |
| struct kvm_book3e_206_tlb_entry *gtlbe, |
| int tsize, struct tlbe_ref *ref, u64 gvaddr, |
| struct kvm_book3e_206_tlb_entry *stlbe) |
| { |
| kvm_pfn_t pfn = ref->pfn; |
| u32 pr = vcpu->arch.shared->msr & MSR_PR; |
| |
| BUG_ON(!(ref->flags & E500_TLB_VALID)); |
| |
| /* Force IPROT=0 for all guest mappings. */ |
| stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID; |
| stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR); |
| stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) | |
| e500_shadow_mas3_attrib(gtlbe->mas7_3, pr); |
| } |
| |
| static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, |
| u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, |
| int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe, |
| struct tlbe_ref *ref) |
| { |
| struct kvm_memory_slot *slot; |
| unsigned long pfn = 0; /* silence GCC warning */ |
| unsigned long hva; |
| int pfnmap = 0; |
| int tsize = BOOK3E_PAGESZ_4K; |
| int ret = 0; |
| unsigned long mmu_seq; |
| struct kvm *kvm = vcpu_e500->vcpu.kvm; |
| unsigned long tsize_pages = 0; |
| pte_t *ptep; |
| unsigned int wimg = 0; |
| pgd_t *pgdir; |
| unsigned long flags; |
| |
| /* used to check for invalidations in progress */ |
| mmu_seq = kvm->mmu_notifier_seq; |
| smp_rmb(); |
| |
| /* |
| * Translate guest physical to true physical, acquiring |
| * a page reference if it is normal, non-reserved memory. |
| * |
| * gfn_to_memslot() must succeed because otherwise we wouldn't |
| * have gotten this far. Eventually we should just pass the slot |
| * pointer through from the first lookup. |
| */ |
| slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn); |
| hva = gfn_to_hva_memslot(slot, gfn); |
| |
| if (tlbsel == 1) { |
| struct vm_area_struct *vma; |
| down_read(¤t->mm->mmap_sem); |
| |
| vma = find_vma(current->mm, hva); |
| if (vma && hva >= vma->vm_start && |
| (vma->vm_flags & VM_PFNMAP)) { |
| /* |
| * This VMA is a physically contiguous region (e.g. |
| * /dev/mem) that bypasses normal Linux page |
| * management. Find the overlap between the |
| * vma and the memslot. |
| */ |
| |
| unsigned long start, end; |
| unsigned long slot_start, slot_end; |
| |
| pfnmap = 1; |
| |
| start = vma->vm_pgoff; |
| end = start + |
| ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT); |
| |
| pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT); |
| |
| slot_start = pfn - (gfn - slot->base_gfn); |
| slot_end = slot_start + slot->npages; |
| |
| if (start < slot_start) |
| start = slot_start; |
| if (end > slot_end) |
| end = slot_end; |
| |
| tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> |
| MAS1_TSIZE_SHIFT; |
| |
| /* |
| * e500 doesn't implement the lowest tsize bit, |
| * or 1K pages. |
| */ |
| tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); |
| |
| /* |
| * Now find the largest tsize (up to what the guest |
| * requested) that will cover gfn, stay within the |
| * range, and for which gfn and pfn are mutually |
| * aligned. |
| */ |
| |
| for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) { |
| unsigned long gfn_start, gfn_end; |
| tsize_pages = 1UL << (tsize - 2); |
| |
| gfn_start = gfn & ~(tsize_pages - 1); |
| gfn_end = gfn_start + tsize_pages; |
| |
| if (gfn_start + pfn - gfn < start) |
| continue; |
| if (gfn_end + pfn - gfn > end) |
| continue; |
| if ((gfn & (tsize_pages - 1)) != |
| (pfn & (tsize_pages - 1))) |
| continue; |
| |
| gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); |
| pfn &= ~(tsize_pages - 1); |
| break; |
| } |
| } else if (vma && hva >= vma->vm_start && |
| (vma->vm_flags & VM_HUGETLB)) { |
| unsigned long psize = vma_kernel_pagesize(vma); |
| |
| tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> |
| MAS1_TSIZE_SHIFT; |
| |
| /* |
| * Take the largest page size that satisfies both host |
| * and guest mapping |
| */ |
| tsize = min(__ilog2(psize) - 10, tsize); |
| |
| /* |
| * e500 doesn't implement the lowest tsize bit, |
| * or 1K pages. |
| */ |
| tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); |
| } |
| |
| up_read(¤t->mm->mmap_sem); |
| } |
| |
| if (likely(!pfnmap)) { |
| tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT); |
| pfn = gfn_to_pfn_memslot(slot, gfn); |
| if (is_error_noslot_pfn(pfn)) { |
| if (printk_ratelimit()) |
| pr_err("%s: real page not found for gfn %lx\n", |
| __func__, (long)gfn); |
| return -EINVAL; |
| } |
| |
| /* Align guest and physical address to page map boundaries */ |
| pfn &= ~(tsize_pages - 1); |
| gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); |
| } |
| |
| spin_lock(&kvm->mmu_lock); |
| if (mmu_notifier_retry(kvm, mmu_seq)) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| |
| pgdir = vcpu_e500->vcpu.arch.pgdir; |
| /* |
| * We are just looking at the wimg bits, so we don't |
| * care much about the trans splitting bit. |
| * We are holding kvm->mmu_lock so a notifier invalidate |
| * can't run hence pfn won't change. |
| */ |
| local_irq_save(flags); |
| ptep = find_linux_pte_or_hugepte(pgdir, hva, NULL, NULL); |
| if (ptep) { |
| pte_t pte = READ_ONCE(*ptep); |
| |
| if (pte_present(pte)) { |
| wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) & |
| MAS2_WIMGE_MASK; |
| local_irq_restore(flags); |
| } else { |
| local_irq_restore(flags); |
| pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n", |
| __func__, (long)gfn, pfn); |
| ret = -EINVAL; |
| goto out; |
| } |
| } |
| kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg); |
| |
| kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize, |
| ref, gvaddr, stlbe); |
| |
| /* Clear i-cache for new pages */ |
| kvmppc_mmu_flush_icache(pfn); |
| |
| out: |
| spin_unlock(&kvm->mmu_lock); |
| |
| /* Drop refcount on page, so that mmu notifiers can clear it */ |
| kvm_release_pfn_clean(pfn); |
| |
| return ret; |
| } |
| |
| /* XXX only map the one-one case, for now use TLB0 */ |
| static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel, |
| struct kvm_book3e_206_tlb_entry *stlbe) |
| { |
| struct kvm_book3e_206_tlb_entry *gtlbe; |
| struct tlbe_ref *ref; |
| int stlbsel = 0; |
| int sesel = 0; |
| int r; |
| |
| gtlbe = get_entry(vcpu_e500, 0, esel); |
| ref = &vcpu_e500->gtlb_priv[0][esel].ref; |
| |
| r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe), |
| get_tlb_raddr(gtlbe) >> PAGE_SHIFT, |
| gtlbe, 0, stlbe, ref); |
| if (r) |
| return r; |
| |
| write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel); |
| |
| return 0; |
| } |
| |
| static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500, |
| struct tlbe_ref *ref, |
| int esel) |
| { |
| unsigned int sesel = vcpu_e500->host_tlb1_nv++; |
| |
| if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size())) |
| vcpu_e500->host_tlb1_nv = 0; |
| |
| if (vcpu_e500->h2g_tlb1_rmap[sesel]) { |
| unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1; |
| vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel); |
| } |
| |
| vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP; |
| vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel; |
| vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1; |
| WARN_ON(!(ref->flags & E500_TLB_VALID)); |
| |
| return sesel; |
| } |
| |
| /* Caller must ensure that the specified guest TLB entry is safe to insert into |
| * the shadow TLB. */ |
| /* For both one-one and one-to-many */ |
| static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, |
| u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, |
| struct kvm_book3e_206_tlb_entry *stlbe, int esel) |
| { |
| struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref; |
| int sesel; |
| int r; |
| |
| r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, |
| ref); |
| if (r) |
| return r; |
| |
| /* Use TLB0 when we can only map a page with 4k */ |
| if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) { |
| vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0; |
| write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0); |
| return 0; |
| } |
| |
| /* Otherwise map into TLB1 */ |
| sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel); |
| write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel); |
| |
| return 0; |
| } |
| |
| void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, |
| unsigned int index) |
| { |
| struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| struct tlbe_priv *priv; |
| struct kvm_book3e_206_tlb_entry *gtlbe, stlbe; |
| int tlbsel = tlbsel_of(index); |
| int esel = esel_of(index); |
| |
| gtlbe = get_entry(vcpu_e500, tlbsel, esel); |
| |
| switch (tlbsel) { |
| case 0: |
| priv = &vcpu_e500->gtlb_priv[tlbsel][esel]; |
| |
| /* Triggers after clear_tlb_privs or on initial mapping */ |
| if (!(priv->ref.flags & E500_TLB_VALID)) { |
| kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe); |
| } else { |
| kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K, |
| &priv->ref, eaddr, &stlbe); |
| write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0); |
| } |
| break; |
| |
| case 1: { |
| gfn_t gfn = gpaddr >> PAGE_SHIFT; |
| kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe, |
| esel); |
| break; |
| } |
| |
| default: |
| BUG(); |
| break; |
| } |
| } |
| |
| #ifdef CONFIG_KVM_BOOKE_HV |
| int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type, |
| u32 *instr) |
| { |
| gva_t geaddr; |
| hpa_t addr; |
| hfn_t pfn; |
| hva_t eaddr; |
| u32 mas1, mas2, mas3; |
| u64 mas7_mas3; |
| struct page *page; |
| unsigned int addr_space, psize_shift; |
| bool pr; |
| unsigned long flags; |
| |
| /* Search TLB for guest pc to get the real address */ |
| geaddr = kvmppc_get_pc(vcpu); |
| |
| addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG; |
| |
| local_irq_save(flags); |
| mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space); |
| mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu)); |
| asm volatile("tlbsx 0, %[geaddr]\n" : : |
| [geaddr] "r" (geaddr)); |
| mtspr(SPRN_MAS5, 0); |
| mtspr(SPRN_MAS8, 0); |
| mas1 = mfspr(SPRN_MAS1); |
| mas2 = mfspr(SPRN_MAS2); |
| mas3 = mfspr(SPRN_MAS3); |
| #ifdef CONFIG_64BIT |
| mas7_mas3 = mfspr(SPRN_MAS7_MAS3); |
| #else |
| mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3; |
| #endif |
| local_irq_restore(flags); |
| |
| /* |
| * If the TLB entry for guest pc was evicted, return to the guest. |
| * There are high chances to find a valid TLB entry next time. |
| */ |
| if (!(mas1 & MAS1_VALID)) |
| return EMULATE_AGAIN; |
| |
| /* |
| * Another thread may rewrite the TLB entry in parallel, don't |
| * execute from the address if the execute permission is not set |
| */ |
| pr = vcpu->arch.shared->msr & MSR_PR; |
| if (unlikely((pr && !(mas3 & MAS3_UX)) || |
| (!pr && !(mas3 & MAS3_SX)))) { |
| pr_err_ratelimited( |
| "%s: Instruction emulation from guest address %08lx without execute permission\n", |
| __func__, geaddr); |
| return EMULATE_AGAIN; |
| } |
| |
| /* |
| * The real address will be mapped by a cacheable, memory coherent, |
| * write-back page. Check for mismatches when LRAT is used. |
| */ |
| if (has_feature(vcpu, VCPU_FTR_MMU_V2) && |
| unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) { |
| pr_err_ratelimited( |
| "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n", |
| __func__, geaddr); |
| return EMULATE_AGAIN; |
| } |
| |
| /* Get pfn */ |
| psize_shift = MAS1_GET_TSIZE(mas1) + 10; |
| addr = (mas7_mas3 & (~0ULL << psize_shift)) | |
| (geaddr & ((1ULL << psize_shift) - 1ULL)); |
| pfn = addr >> PAGE_SHIFT; |
| |
| /* Guard against emulation from devices area */ |
| if (unlikely(!page_is_ram(pfn))) { |
| pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n", |
| __func__, addr); |
| return EMULATE_AGAIN; |
| } |
| |
| /* Map a page and get guest's instruction */ |
| page = pfn_to_page(pfn); |
| eaddr = (unsigned long)kmap_atomic(page); |
| *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK)); |
| kunmap_atomic((u32 *)eaddr); |
| |
| return EMULATE_DONE; |
| } |
| #else |
| int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, enum instruction_type type, |
| u32 *instr) |
| { |
| return EMULATE_AGAIN; |
| } |
| #endif |
| |
| /************* MMU Notifiers *************/ |
| |
| int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) |
| { |
| trace_kvm_unmap_hva(hva); |
| |
| /* |
| * Flush all shadow tlb entries everywhere. This is slow, but |
| * we are 100% sure that we catch the to be unmapped page |
| */ |
| kvm_flush_remote_tlbs(kvm); |
| |
| return 0; |
| } |
| |
| int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) |
| { |
| /* kvm_unmap_hva flushes everything anyways */ |
| kvm_unmap_hva(kvm, start); |
| |
| return 0; |
| } |
| |
| int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) |
| { |
| /* XXX could be more clever ;) */ |
| return 0; |
| } |
| |
| int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) |
| { |
| /* XXX could be more clever ;) */ |
| return 0; |
| } |
| |
| void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) |
| { |
| /* The page will get remapped properly on its next fault */ |
| kvm_unmap_hva(kvm, hva); |
| } |
| |
| /*****************************************/ |
| |
| int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY; |
| host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY; |
| |
| /* |
| * This should never happen on real e500 hardware, but is |
| * architecturally possible -- e.g. in some weird nested |
| * virtualization case. |
| */ |
| if (host_tlb_params[0].entries == 0 || |
| host_tlb_params[1].entries == 0) { |
| pr_err("%s: need to know host tlb size\n", __func__); |
| return -ENODEV; |
| } |
| |
| host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >> |
| TLBnCFG_ASSOC_SHIFT; |
| host_tlb_params[1].ways = host_tlb_params[1].entries; |
| |
| if (!is_power_of_2(host_tlb_params[0].entries) || |
| !is_power_of_2(host_tlb_params[0].ways) || |
| host_tlb_params[0].entries < host_tlb_params[0].ways || |
| host_tlb_params[0].ways == 0) { |
| pr_err("%s: bad tlb0 host config: %u entries %u ways\n", |
| __func__, host_tlb_params[0].entries, |
| host_tlb_params[0].ways); |
| return -ENODEV; |
| } |
| |
| host_tlb_params[0].sets = |
| host_tlb_params[0].entries / host_tlb_params[0].ways; |
| host_tlb_params[1].sets = 1; |
| |
| vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) * |
| host_tlb_params[1].entries, |
| GFP_KERNEL); |
| if (!vcpu_e500->h2g_tlb1_rmap) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) |
| { |
| kfree(vcpu_e500->h2g_tlb1_rmap); |
| } |