blob: 6c20e811f9732ee7b1e432827070e36ede6eb688 [file] [log] [blame]
/*
* Driver for Marvell PPv2 network controller for Armada 375 SoC.
*
* Copyright (C) 2014 Marvell
*
* Marcin Wojtas <mw@semihalf.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <linux/inetdevice.h>
#include <linux/mbus.h>
#include <linux/module.h>
#include <linux/mfd/syscon.h>
#include <linux/interrupt.h>
#include <linux/cpumask.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/phy.h>
#include <linux/phy/phy.h>
#include <linux/clk.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>
#include <linux/regmap.h>
#include <uapi/linux/ppp_defs.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/tso.h>
/* Fifo Registers */
#define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
#define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
#define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
#define MVPP2_RX_FIFO_INIT_REG 0x64
#define MVPP22_TX_FIFO_SIZE_REG(port) (0x8860 + 4 * (port))
/* RX DMA Top Registers */
#define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
#define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
#define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
#define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
#define MVPP2_POOL_BUF_SIZE_OFFSET 5
#define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
#define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
#define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
#define MVPP2_RXQ_POOL_SHORT_OFFS 20
#define MVPP21_RXQ_POOL_SHORT_MASK 0x700000
#define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000
#define MVPP2_RXQ_POOL_LONG_OFFS 24
#define MVPP21_RXQ_POOL_LONG_MASK 0x7000000
#define MVPP22_RXQ_POOL_LONG_MASK 0xf000000
#define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
#define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
#define MVPP2_RXQ_DISABLE_MASK BIT(31)
/* Parser Registers */
#define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
#define MVPP2_PRS_PORT_LU_MAX 0xf
#define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
#define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
#define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
#define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
#define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
#define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
#define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
#define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
#define MVPP2_PRS_TCAM_IDX_REG 0x1100
#define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
#define MVPP2_PRS_TCAM_INV_MASK BIT(31)
#define MVPP2_PRS_SRAM_IDX_REG 0x1200
#define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
#define MVPP2_PRS_TCAM_CTRL_REG 0x1230
#define MVPP2_PRS_TCAM_EN_MASK BIT(0)
/* RSS Registers */
#define MVPP22_RSS_INDEX 0x1500
#define MVPP22_RSS_INDEX_TABLE_ENTRY(idx) ((idx) << 8)
#define MVPP22_RSS_INDEX_TABLE(idx) ((idx) << 8)
#define MVPP22_RSS_INDEX_QUEUE(idx) ((idx) << 16)
#define MVPP22_RSS_TABLE_ENTRY 0x1508
#define MVPP22_RSS_TABLE 0x1510
#define MVPP22_RSS_TABLE_POINTER(p) (p)
#define MVPP22_RSS_WIDTH 0x150c
/* Classifier Registers */
#define MVPP2_CLS_MODE_REG 0x1800
#define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
#define MVPP2_CLS_PORT_WAY_REG 0x1810
#define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
#define MVPP2_CLS_LKP_INDEX_REG 0x1814
#define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
#define MVPP2_CLS_LKP_TBL_REG 0x1818
#define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
#define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
#define MVPP2_CLS_FLOW_INDEX_REG 0x1820
#define MVPP2_CLS_FLOW_TBL0_REG 0x1824
#define MVPP2_CLS_FLOW_TBL1_REG 0x1828
#define MVPP2_CLS_FLOW_TBL2_REG 0x182c
#define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
#define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
#define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
#define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
#define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
#define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
/* Descriptor Manager Top Registers */
#define MVPP2_RXQ_NUM_REG 0x2040
#define MVPP2_RXQ_DESC_ADDR_REG 0x2044
#define MVPP22_DESC_ADDR_OFFS 8
#define MVPP2_RXQ_DESC_SIZE_REG 0x2048
#define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
#define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
#define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
#define MVPP2_RXQ_NUM_NEW_OFFSET 16
#define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
#define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
#define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
#define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
#define MVPP2_RXQ_THRESH_REG 0x204c
#define MVPP2_OCCUPIED_THRESH_OFFSET 0
#define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
#define MVPP2_RXQ_INDEX_REG 0x2050
#define MVPP2_TXQ_NUM_REG 0x2080
#define MVPP2_TXQ_DESC_ADDR_REG 0x2084
#define MVPP2_TXQ_DESC_SIZE_REG 0x2088
#define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
#define MVPP2_TXQ_THRESH_REG 0x2094
#define MVPP2_TXQ_THRESH_OFFSET 16
#define MVPP2_TXQ_THRESH_MASK 0x3fff
#define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
#define MVPP2_TXQ_INDEX_REG 0x2098
#define MVPP2_TXQ_PREF_BUF_REG 0x209c
#define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
#define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
#define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
#define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
#define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
#define MVPP2_TXQ_PENDING_REG 0x20a0
#define MVPP2_TXQ_PENDING_MASK 0x3fff
#define MVPP2_TXQ_INT_STATUS_REG 0x20a4
#define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
#define MVPP2_TRANSMITTED_COUNT_OFFSET 16
#define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
#define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
#define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
#define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
#define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
#define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
#define MVPP2_TXQ_RSVD_CLR_OFFSET 16
#define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
#define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8
#define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
#define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
#define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
#define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
#define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
/* MBUS bridge registers */
#define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
#define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
#define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
#define MVPP2_BASE_ADDR_ENABLE 0x4060
/* AXI Bridge Registers */
#define MVPP22_AXI_BM_WR_ATTR_REG 0x4100
#define MVPP22_AXI_BM_RD_ATTR_REG 0x4104
#define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110
#define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114
#define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118
#define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c
#define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120
#define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130
#define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150
#define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154
#define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160
#define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164
/* Values for AXI Bridge registers */
#define MVPP22_AXI_ATTR_CACHE_OFFS 0
#define MVPP22_AXI_ATTR_DOMAIN_OFFS 12
#define MVPP22_AXI_CODE_CACHE_OFFS 0
#define MVPP22_AXI_CODE_DOMAIN_OFFS 4
#define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3
#define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7
#define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb
#define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2
#define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3
/* Interrupt Cause and Mask registers */
#define MVPP2_ISR_TX_THRESHOLD_REG(port) (0x5140 + 4 * (port))
#define MVPP2_MAX_ISR_TX_THRESHOLD 0xfffff0
#define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
#define MVPP2_MAX_ISR_RX_THRESHOLD 0xfffff0
#define MVPP21_ISR_RXQ_GROUP_REG(port) (0x5400 + 4 * (port))
#define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400
#define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
#define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
#define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404
#define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f
#define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00
#define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8
#define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
#define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
#define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
#define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
#define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
#define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
#define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET 16
#define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
#define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
#define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
#define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
#define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
#define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
#define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
#define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
#define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
#define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
#define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
#define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
/* Buffer Manager registers */
#define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
#define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
#define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
#define MVPP2_BM_POOL_SIZE_MASK 0xfff0
#define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
#define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
#define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
#define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
#define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
#define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
#define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
#define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
#define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
#define MVPP2_BM_START_MASK BIT(0)
#define MVPP2_BM_STOP_MASK BIT(1)
#define MVPP2_BM_STATE_MASK BIT(4)
#define MVPP2_BM_LOW_THRESH_OFFS 8
#define MVPP2_BM_LOW_THRESH_MASK 0x7f00
#define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
MVPP2_BM_LOW_THRESH_OFFS)
#define MVPP2_BM_HIGH_THRESH_OFFS 16
#define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
#define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
MVPP2_BM_HIGH_THRESH_OFFS)
#define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
#define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
#define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
#define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
#define MVPP2_BM_BPPE_FULL_MASK BIT(3)
#define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
#define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
#define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
#define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
#define MVPP2_BM_VIRT_ALLOC_REG 0x6440
#define MVPP22_BM_ADDR_HIGH_ALLOC 0x6444
#define MVPP22_BM_ADDR_HIGH_PHYS_MASK 0xff
#define MVPP22_BM_ADDR_HIGH_VIRT_MASK 0xff00
#define MVPP22_BM_ADDR_HIGH_VIRT_SHIFT 8
#define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
#define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
#define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
#define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
#define MVPP2_BM_VIRT_RLS_REG 0x64c0
#define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4
#define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff
#define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00
#define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8
/* TX Scheduler registers */
#define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
#define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
#define MVPP2_TXP_SCHED_ENQ_MASK 0xff
#define MVPP2_TXP_SCHED_DISQ_OFFSET 8
#define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
#define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
#define MVPP2_TXP_SCHED_MTU_REG 0x801c
#define MVPP2_TXP_MTU_MAX 0x7FFFF
#define MVPP2_TXP_SCHED_REFILL_REG 0x8020
#define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
#define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
#define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
#define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
#define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
#define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
#define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
#define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
#define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
#define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
#define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
#define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
#define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
/* TX general registers */
#define MVPP2_TX_SNOOP_REG 0x8800
#define MVPP2_TX_PORT_FLUSH_REG 0x8810
#define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
/* LMS registers */
#define MVPP2_SRC_ADDR_MIDDLE 0x24
#define MVPP2_SRC_ADDR_HIGH 0x28
#define MVPP2_PHY_AN_CFG0_REG 0x34
#define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
#define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
#define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
/* Per-port registers */
#define MVPP2_GMAC_CTRL_0_REG 0x0
#define MVPP2_GMAC_PORT_EN_MASK BIT(0)
#define MVPP2_GMAC_PORT_TYPE_MASK BIT(1)
#define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
#define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
#define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
#define MVPP2_GMAC_CTRL_1_REG 0x4
#define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
#define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
#define MVPP2_GMAC_PCS_LB_EN_BIT 6
#define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
#define MVPP2_GMAC_SA_LOW_OFFS 7
#define MVPP2_GMAC_CTRL_2_REG 0x8
#define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
#define MVPP2_GMAC_FLOW_CTRL_MASK GENMASK(2, 1)
#define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
#define MVPP2_GMAC_INTERNAL_CLK_MASK BIT(4)
#define MVPP2_GMAC_DISABLE_PADDING BIT(5)
#define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
#define MVPP2_GMAC_AUTONEG_CONFIG 0xc
#define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
#define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
#define MVPP2_GMAC_IN_BAND_AUTONEG BIT(2)
#define MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS BIT(3)
#define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
#define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
#define MVPP2_GMAC_AN_SPEED_EN BIT(7)
#define MVPP2_GMAC_FC_ADV_EN BIT(9)
#define MVPP2_GMAC_FLOW_CTRL_AUTONEG BIT(11)
#define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
#define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
#define MVPP2_GMAC_STATUS0 0x10
#define MVPP2_GMAC_STATUS0_LINK_UP BIT(0)
#define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
#define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
#define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
#define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
#define MVPP22_GMAC_INT_STAT 0x20
#define MVPP22_GMAC_INT_STAT_LINK BIT(1)
#define MVPP22_GMAC_INT_MASK 0x24
#define MVPP22_GMAC_INT_MASK_LINK_STAT BIT(1)
#define MVPP22_GMAC_CTRL_4_REG 0x90
#define MVPP22_CTRL4_EXT_PIN_GMII_SEL BIT(0)
#define MVPP22_CTRL4_DP_CLK_SEL BIT(5)
#define MVPP22_CTRL4_SYNC_BYPASS_DIS BIT(6)
#define MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE BIT(7)
#define MVPP22_GMAC_INT_SUM_MASK 0xa4
#define MVPP22_GMAC_INT_SUM_MASK_LINK_STAT BIT(1)
/* Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
* relative to port->base.
*/
#define MVPP22_XLG_CTRL0_REG 0x100
#define MVPP22_XLG_CTRL0_PORT_EN BIT(0)
#define MVPP22_XLG_CTRL0_MAC_RESET_DIS BIT(1)
#define MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN BIT(7)
#define MVPP22_XLG_CTRL0_MIB_CNT_DIS BIT(14)
#define MVPP22_XLG_CTRL1_REG 0x104
#define MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS 0
#define MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK 0x1fff
#define MVPP22_XLG_STATUS 0x10c
#define MVPP22_XLG_STATUS_LINK_UP BIT(0)
#define MVPP22_XLG_INT_STAT 0x114
#define MVPP22_XLG_INT_STAT_LINK BIT(1)
#define MVPP22_XLG_INT_MASK 0x118
#define MVPP22_XLG_INT_MASK_LINK BIT(1)
#define MVPP22_XLG_CTRL3_REG 0x11c
#define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13)
#define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13)
#define MVPP22_XLG_CTRL3_MACMODESELECT_10G (1 << 13)
#define MVPP22_XLG_EXT_INT_MASK 0x15c
#define MVPP22_XLG_EXT_INT_MASK_XLG BIT(1)
#define MVPP22_XLG_EXT_INT_MASK_GIG BIT(2)
#define MVPP22_XLG_CTRL4_REG 0x184
#define MVPP22_XLG_CTRL4_FWD_FC BIT(5)
#define MVPP22_XLG_CTRL4_FWD_PFC BIT(6)
#define MVPP22_XLG_CTRL4_MACMODSELECT_GMAC BIT(12)
/* SMI registers. PPv2.2 only, relative to priv->iface_base. */
#define MVPP22_SMI_MISC_CFG_REG 0x1204
#define MVPP22_SMI_POLLING_EN BIT(10)
#define MVPP22_GMAC_BASE(port) (0x7000 + (port) * 0x1000 + 0xe00)
#define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
/* Descriptor ring Macros */
#define MVPP2_QUEUE_NEXT_DESC(q, index) \
(((index) < (q)->last_desc) ? ((index) + 1) : 0)
/* XPCS registers. PPv2.2 only */
#define MVPP22_MPCS_BASE(port) (0x7000 + (port) * 0x1000)
#define MVPP22_MPCS_CTRL 0x14
#define MVPP22_MPCS_CTRL_FWD_ERR_CONN BIT(10)
#define MVPP22_MPCS_CLK_RESET 0x14c
#define MAC_CLK_RESET_SD_TX BIT(0)
#define MAC_CLK_RESET_SD_RX BIT(1)
#define MAC_CLK_RESET_MAC BIT(2)
#define MVPP22_MPCS_CLK_RESET_DIV_RATIO(n) ((n) << 4)
#define MVPP22_MPCS_CLK_RESET_DIV_SET BIT(11)
/* XPCS registers. PPv2.2 only */
#define MVPP22_XPCS_BASE(port) (0x7400 + (port) * 0x1000)
#define MVPP22_XPCS_CFG0 0x0
#define MVPP22_XPCS_CFG0_PCS_MODE(n) ((n) << 3)
#define MVPP22_XPCS_CFG0_ACTIVE_LANE(n) ((n) << 5)
/* System controller registers. Accessed through a regmap. */
#define GENCONF_SOFT_RESET1 0x1108
#define GENCONF_SOFT_RESET1_GOP BIT(6)
#define GENCONF_PORT_CTRL0 0x1110
#define GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT BIT(1)
#define GENCONF_PORT_CTRL0_RX_DATA_SAMPLE BIT(29)
#define GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR BIT(31)
#define GENCONF_PORT_CTRL1 0x1114
#define GENCONF_PORT_CTRL1_EN(p) BIT(p)
#define GENCONF_PORT_CTRL1_RESET(p) (BIT(p) << 28)
#define GENCONF_CTRL0 0x1120
#define GENCONF_CTRL0_PORT0_RGMII BIT(0)
#define GENCONF_CTRL0_PORT1_RGMII_MII BIT(1)
#define GENCONF_CTRL0_PORT1_RGMII BIT(2)
/* Various constants */
/* Coalescing */
#define MVPP2_TXDONE_COAL_PKTS_THRESH 15
#define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
#define MVPP2_TXDONE_COAL_USEC 1000
#define MVPP2_RX_COAL_PKTS 32
#define MVPP2_RX_COAL_USEC 100
/* The two bytes Marvell header. Either contains a special value used
* by Marvell switches when a specific hardware mode is enabled (not
* supported by this driver) or is filled automatically by zeroes on
* the RX side. Those two bytes being at the front of the Ethernet
* header, they allow to have the IP header aligned on a 4 bytes
* boundary automatically: the hardware skips those two bytes on its
* own.
*/
#define MVPP2_MH_SIZE 2
#define MVPP2_ETH_TYPE_LEN 2
#define MVPP2_PPPOE_HDR_SIZE 8
#define MVPP2_VLAN_TAG_LEN 4
/* Lbtd 802.3 type */
#define MVPP2_IP_LBDT_TYPE 0xfffa
#define MVPP2_TX_CSUM_MAX_SIZE 9800
/* Timeout constants */
#define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
#define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
#define MVPP2_TX_MTU_MAX 0x7ffff
/* Maximum number of T-CONTs of PON port */
#define MVPP2_MAX_TCONT 16
/* Maximum number of supported ports */
#define MVPP2_MAX_PORTS 4
/* Maximum number of TXQs used by single port */
#define MVPP2_MAX_TXQ 8
/* MVPP2_MAX_TSO_SEGS is the maximum number of fragments to allow in the GSO
* skb. As we need a maxium of two descriptors per fragments (1 header, 1 data),
* multiply this value by two to count the maximum number of skb descs needed.
*/
#define MVPP2_MAX_TSO_SEGS 300
#define MVPP2_MAX_SKB_DESCS (MVPP2_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
/* Dfault number of RXQs in use */
#define MVPP2_DEFAULT_RXQ 4
/* Max number of Rx descriptors */
#define MVPP2_MAX_RXD 128
/* Max number of Tx descriptors */
#define MVPP2_MAX_TXD 1024
/* Amount of Tx descriptors that can be reserved at once by CPU */
#define MVPP2_CPU_DESC_CHUNK 64
/* Max number of Tx descriptors in each aggregated queue */
#define MVPP2_AGGR_TXQ_SIZE 256
/* Descriptor aligned size */
#define MVPP2_DESC_ALIGNED_SIZE 32
/* Descriptor alignment mask */
#define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
/* RX FIFO constants */
#define MVPP2_RX_FIFO_PORT_DATA_SIZE_32KB 0x8000
#define MVPP2_RX_FIFO_PORT_DATA_SIZE_8KB 0x2000
#define MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB 0x1000
#define MVPP2_RX_FIFO_PORT_ATTR_SIZE_32KB 0x200
#define MVPP2_RX_FIFO_PORT_ATTR_SIZE_8KB 0x80
#define MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB 0x40
#define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
/* TX FIFO constants */
#define MVPP22_TX_FIFO_DATA_SIZE_10KB 0xa
#define MVPP22_TX_FIFO_DATA_SIZE_3KB 0x3
/* RX buffer constants */
#define MVPP2_SKB_SHINFO_SIZE \
SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
#define MVPP2_RX_PKT_SIZE(mtu) \
ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
ETH_HLEN + ETH_FCS_LEN, cache_line_size())
#define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
#define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
#define MVPP2_RX_MAX_PKT_SIZE(total_size) \
((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
#define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
/* IPv6 max L3 address size */
#define MVPP2_MAX_L3_ADDR_SIZE 16
/* Port flags */
#define MVPP2_F_LOOPBACK BIT(0)
/* Marvell tag types */
enum mvpp2_tag_type {
MVPP2_TAG_TYPE_NONE = 0,
MVPP2_TAG_TYPE_MH = 1,
MVPP2_TAG_TYPE_DSA = 2,
MVPP2_TAG_TYPE_EDSA = 3,
MVPP2_TAG_TYPE_VLAN = 4,
MVPP2_TAG_TYPE_LAST = 5
};
/* Parser constants */
#define MVPP2_PRS_TCAM_SRAM_SIZE 256
#define MVPP2_PRS_TCAM_WORDS 6
#define MVPP2_PRS_SRAM_WORDS 4
#define MVPP2_PRS_FLOW_ID_SIZE 64
#define MVPP2_PRS_FLOW_ID_MASK 0x3f
#define MVPP2_PRS_TCAM_ENTRY_INVALID 1
#define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
#define MVPP2_PRS_IPV4_HEAD 0x40
#define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
#define MVPP2_PRS_IPV4_MC 0xe0
#define MVPP2_PRS_IPV4_MC_MASK 0xf0
#define MVPP2_PRS_IPV4_BC_MASK 0xff
#define MVPP2_PRS_IPV4_IHL 0x5
#define MVPP2_PRS_IPV4_IHL_MASK 0xf
#define MVPP2_PRS_IPV6_MC 0xff
#define MVPP2_PRS_IPV6_MC_MASK 0xff
#define MVPP2_PRS_IPV6_HOP_MASK 0xff
#define MVPP2_PRS_TCAM_PROTO_MASK 0xff
#define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
#define MVPP2_PRS_DBL_VLANS_MAX 100
/* Tcam structure:
* - lookup ID - 4 bits
* - port ID - 1 byte
* - additional information - 1 byte
* - header data - 8 bytes
* The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
*/
#define MVPP2_PRS_AI_BITS 8
#define MVPP2_PRS_PORT_MASK 0xff
#define MVPP2_PRS_LU_MASK 0xf
#define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
(((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
#define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
(((offs) * 2) - ((offs) % 2) + 2)
#define MVPP2_PRS_TCAM_AI_BYTE 16
#define MVPP2_PRS_TCAM_PORT_BYTE 17
#define MVPP2_PRS_TCAM_LU_BYTE 20
#define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
#define MVPP2_PRS_TCAM_INV_WORD 5
/* Tcam entries ID */
#define MVPP2_PE_DROP_ALL 0
#define MVPP2_PE_FIRST_FREE_TID 1
#define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
#define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
#define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
#define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
#define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
#define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
#define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
#define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
#define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
#define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
#define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
#define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
#define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
#define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
#define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
#define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
#define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
#define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
#define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
#define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
#define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
#define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
#define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
#define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
#define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
/* Sram structure
* The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
*/
#define MVPP2_PRS_SRAM_RI_OFFS 0
#define MVPP2_PRS_SRAM_RI_WORD 0
#define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
#define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
#define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
#define MVPP2_PRS_SRAM_SHIFT_OFFS 64
#define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
#define MVPP2_PRS_SRAM_UDF_OFFS 73
#define MVPP2_PRS_SRAM_UDF_BITS 8
#define MVPP2_PRS_SRAM_UDF_MASK 0xff
#define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
#define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
#define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
#define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
#define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
#define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
#define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
#define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
#define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
#define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
#define MVPP2_PRS_SRAM_AI_OFFS 90
#define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
#define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
#define MVPP2_PRS_SRAM_AI_MASK 0xff
#define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
#define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
#define MVPP2_PRS_SRAM_LU_DONE_BIT 110
#define MVPP2_PRS_SRAM_LU_GEN_BIT 111
/* Sram result info bits assignment */
#define MVPP2_PRS_RI_MAC_ME_MASK 0x1
#define MVPP2_PRS_RI_DSA_MASK 0x2
#define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3))
#define MVPP2_PRS_RI_VLAN_NONE 0x0
#define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
#define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
#define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
#define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
#define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
#define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10))
#define MVPP2_PRS_RI_L2_UCAST 0x0
#define MVPP2_PRS_RI_L2_MCAST BIT(9)
#define MVPP2_PRS_RI_L2_BCAST BIT(10)
#define MVPP2_PRS_RI_PPPOE_MASK 0x800
#define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14))
#define MVPP2_PRS_RI_L3_UN 0x0
#define MVPP2_PRS_RI_L3_IP4 BIT(12)
#define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
#define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
#define MVPP2_PRS_RI_L3_IP6 BIT(14)
#define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
#define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
#define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16))
#define MVPP2_PRS_RI_L3_UCAST 0x0
#define MVPP2_PRS_RI_L3_MCAST BIT(15)
#define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
#define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
#define MVPP2_PRS_RI_IP_FRAG_TRUE BIT(17)
#define MVPP2_PRS_RI_UDF3_MASK 0x300000
#define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
#define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
#define MVPP2_PRS_RI_L4_TCP BIT(22)
#define MVPP2_PRS_RI_L4_UDP BIT(23)
#define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
#define MVPP2_PRS_RI_UDF7_MASK 0x60000000
#define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
#define MVPP2_PRS_RI_DROP_MASK 0x80000000
/* Sram additional info bits assignment */
#define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
#define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
#define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
#define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
#define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
#define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
#define MVPP2_PRS_SINGLE_VLAN_AI 0
#define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
/* DSA/EDSA type */
#define MVPP2_PRS_TAGGED true
#define MVPP2_PRS_UNTAGGED false
#define MVPP2_PRS_EDSA true
#define MVPP2_PRS_DSA false
/* MAC entries, shadow udf */
enum mvpp2_prs_udf {
MVPP2_PRS_UDF_MAC_DEF,
MVPP2_PRS_UDF_MAC_RANGE,
MVPP2_PRS_UDF_L2_DEF,
MVPP2_PRS_UDF_L2_DEF_COPY,
MVPP2_PRS_UDF_L2_USER,
};
/* Lookup ID */
enum mvpp2_prs_lookup {
MVPP2_PRS_LU_MH,
MVPP2_PRS_LU_MAC,
MVPP2_PRS_LU_DSA,
MVPP2_PRS_LU_VLAN,
MVPP2_PRS_LU_L2,
MVPP2_PRS_LU_PPPOE,
MVPP2_PRS_LU_IP4,
MVPP2_PRS_LU_IP6,
MVPP2_PRS_LU_FLOWS,
MVPP2_PRS_LU_LAST,
};
/* L3 cast enum */
enum mvpp2_prs_l3_cast {
MVPP2_PRS_L3_UNI_CAST,
MVPP2_PRS_L3_MULTI_CAST,
MVPP2_PRS_L3_BROAD_CAST
};
/* Classifier constants */
#define MVPP2_CLS_FLOWS_TBL_SIZE 512
#define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
#define MVPP2_CLS_LKP_TBL_SIZE 64
#define MVPP2_CLS_RX_QUEUES 256
/* RSS constants */
#define MVPP22_RSS_TABLE_ENTRIES 32
/* BM constants */
#define MVPP2_BM_POOLS_NUM 8
#define MVPP2_BM_LONG_BUF_NUM 1024
#define MVPP2_BM_SHORT_BUF_NUM 2048
#define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
#define MVPP2_BM_POOL_PTR_ALIGN 128
#define MVPP2_BM_SWF_LONG_POOL(port) ((port > 2) ? 2 : port)
#define MVPP2_BM_SWF_SHORT_POOL 3
/* BM cookie (32 bits) definition */
#define MVPP2_BM_COOKIE_POOL_OFFS 8
#define MVPP2_BM_COOKIE_CPU_OFFS 24
/* BM short pool packet size
* These value assure that for SWF the total number
* of bytes allocated for each buffer will be 512
*/
#define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
#define MVPP21_ADDR_SPACE_SZ 0
#define MVPP22_ADDR_SPACE_SZ SZ_64K
#define MVPP2_MAX_THREADS 8
#define MVPP2_MAX_QVECS MVPP2_MAX_THREADS
enum mvpp2_bm_type {
MVPP2_BM_FREE,
MVPP2_BM_SWF_LONG,
MVPP2_BM_SWF_SHORT
};
/* GMAC MIB Counters register definitions */
#define MVPP21_MIB_COUNTERS_OFFSET 0x1000
#define MVPP21_MIB_COUNTERS_PORT_SZ 0x400
#define MVPP22_MIB_COUNTERS_OFFSET 0x0
#define MVPP22_MIB_COUNTERS_PORT_SZ 0x100
#define MVPP2_MIB_GOOD_OCTETS_RCVD 0x0
#define MVPP2_MIB_BAD_OCTETS_RCVD 0x8
#define MVPP2_MIB_CRC_ERRORS_SENT 0xc
#define MVPP2_MIB_UNICAST_FRAMES_RCVD 0x10
#define MVPP2_MIB_BROADCAST_FRAMES_RCVD 0x18
#define MVPP2_MIB_MULTICAST_FRAMES_RCVD 0x1c
#define MVPP2_MIB_FRAMES_64_OCTETS 0x20
#define MVPP2_MIB_FRAMES_65_TO_127_OCTETS 0x24
#define MVPP2_MIB_FRAMES_128_TO_255_OCTETS 0x28
#define MVPP2_MIB_FRAMES_256_TO_511_OCTETS 0x2c
#define MVPP2_MIB_FRAMES_512_TO_1023_OCTETS 0x30
#define MVPP2_MIB_FRAMES_1024_TO_MAX_OCTETS 0x34
#define MVPP2_MIB_GOOD_OCTETS_SENT 0x38
#define MVPP2_MIB_UNICAST_FRAMES_SENT 0x40
#define MVPP2_MIB_MULTICAST_FRAMES_SENT 0x48
#define MVPP2_MIB_BROADCAST_FRAMES_SENT 0x4c
#define MVPP2_MIB_FC_SENT 0x54
#define MVPP2_MIB_FC_RCVD 0x58
#define MVPP2_MIB_RX_FIFO_OVERRUN 0x5c
#define MVPP2_MIB_UNDERSIZE_RCVD 0x60
#define MVPP2_MIB_FRAGMENTS_RCVD 0x64
#define MVPP2_MIB_OVERSIZE_RCVD 0x68
#define MVPP2_MIB_JABBER_RCVD 0x6c
#define MVPP2_MIB_MAC_RCV_ERROR 0x70
#define MVPP2_MIB_BAD_CRC_EVENT 0x74
#define MVPP2_MIB_COLLISION 0x78
#define MVPP2_MIB_LATE_COLLISION 0x7c
#define MVPP2_MIB_COUNTERS_STATS_DELAY (1 * HZ)
/* Definitions */
/* Shared Packet Processor resources */
struct mvpp2 {
/* Shared registers' base addresses */
void __iomem *lms_base;
void __iomem *iface_base;
/* On PPv2.2, each "software thread" can access the base
* register through a separate address space, each 64 KB apart
* from each other. Typically, such address spaces will be
* used per CPU.
*/
void __iomem *swth_base[MVPP2_MAX_THREADS];
/* On PPv2.2, some port control registers are located into the system
* controller space. These registers are accessible through a regmap.
*/
struct regmap *sysctrl_base;
/* Common clocks */
struct clk *pp_clk;
struct clk *gop_clk;
struct clk *mg_clk;
struct clk *axi_clk;
/* List of pointers to port structures */
int port_count;
struct mvpp2_port **port_list;
/* Aggregated TXQs */
struct mvpp2_tx_queue *aggr_txqs;
/* BM pools */
struct mvpp2_bm_pool *bm_pools;
/* PRS shadow table */
struct mvpp2_prs_shadow *prs_shadow;
/* PRS auxiliary table for double vlan entries control */
bool *prs_double_vlans;
/* Tclk value */
u32 tclk;
/* HW version */
enum { MVPP21, MVPP22 } hw_version;
/* Maximum number of RXQs per port */
unsigned int max_port_rxqs;
/* Workqueue to gather hardware statistics */
char queue_name[30];
struct workqueue_struct *stats_queue;
};
struct mvpp2_pcpu_stats {
struct u64_stats_sync syncp;
u64 rx_packets;
u64 rx_bytes;
u64 tx_packets;
u64 tx_bytes;
};
/* Per-CPU port control */
struct mvpp2_port_pcpu {
struct hrtimer tx_done_timer;
bool timer_scheduled;
/* Tasklet for egress finalization */
struct tasklet_struct tx_done_tasklet;
};
struct mvpp2_queue_vector {
int irq;
struct napi_struct napi;
enum { MVPP2_QUEUE_VECTOR_SHARED, MVPP2_QUEUE_VECTOR_PRIVATE } type;
int sw_thread_id;
u16 sw_thread_mask;
int first_rxq;
int nrxqs;
u32 pending_cause_rx;
struct mvpp2_port *port;
};
struct mvpp2_port {
u8 id;
/* Index of the port from the "group of ports" complex point
* of view
*/
int gop_id;
int link_irq;
struct mvpp2 *priv;
/* Per-port registers' base address */
void __iomem *base;
void __iomem *stats_base;
struct mvpp2_rx_queue **rxqs;
unsigned int nrxqs;
struct mvpp2_tx_queue **txqs;
unsigned int ntxqs;
struct net_device *dev;
int pkt_size;
/* Per-CPU port control */
struct mvpp2_port_pcpu __percpu *pcpu;
/* Flags */
unsigned long flags;
u16 tx_ring_size;
u16 rx_ring_size;
struct mvpp2_pcpu_stats __percpu *stats;
u64 *ethtool_stats;
/* Per-port work and its lock to gather hardware statistics */
struct mutex gather_stats_lock;
struct delayed_work stats_work;
phy_interface_t phy_interface;
struct device_node *phy_node;
struct phy *comphy;
unsigned int link;
unsigned int duplex;
unsigned int speed;
struct mvpp2_bm_pool *pool_long;
struct mvpp2_bm_pool *pool_short;
/* Index of first port's physical RXQ */
u8 first_rxq;
struct mvpp2_queue_vector qvecs[MVPP2_MAX_QVECS];
unsigned int nqvecs;
bool has_tx_irqs;
u32 tx_time_coal;
};
/* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
* layout of the transmit and reception DMA descriptors, and their
* layout is therefore defined by the hardware design
*/
#define MVPP2_TXD_L3_OFF_SHIFT 0
#define MVPP2_TXD_IP_HLEN_SHIFT 8
#define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
#define MVPP2_TXD_L4_CSUM_NOT BIT(14)
#define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
#define MVPP2_TXD_PADDING_DISABLE BIT(23)
#define MVPP2_TXD_L4_UDP BIT(24)
#define MVPP2_TXD_L3_IP6 BIT(26)
#define MVPP2_TXD_L_DESC BIT(28)
#define MVPP2_TXD_F_DESC BIT(29)
#define MVPP2_RXD_ERR_SUMMARY BIT(15)
#define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
#define MVPP2_RXD_ERR_CRC 0x0
#define MVPP2_RXD_ERR_OVERRUN BIT(13)
#define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
#define MVPP2_RXD_BM_POOL_ID_OFFS 16
#define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
#define MVPP2_RXD_HWF_SYNC BIT(21)
#define MVPP2_RXD_L4_CSUM_OK BIT(22)
#define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
#define MVPP2_RXD_L4_TCP BIT(25)
#define MVPP2_RXD_L4_UDP BIT(26)
#define MVPP2_RXD_L3_IP4 BIT(28)
#define MVPP2_RXD_L3_IP6 BIT(30)
#define MVPP2_RXD_BUF_HDR BIT(31)
/* HW TX descriptor for PPv2.1 */
struct mvpp21_tx_desc {
u32 command; /* Options used by HW for packet transmitting.*/
u8 packet_offset; /* the offset from the buffer beginning */
u8 phys_txq; /* destination queue ID */
u16 data_size; /* data size of transmitted packet in bytes */
u32 buf_dma_addr; /* physical addr of transmitted buffer */
u32 buf_cookie; /* cookie for access to TX buffer in tx path */
u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
u32 reserved2; /* reserved (for future use) */
};
/* HW RX descriptor for PPv2.1 */
struct mvpp21_rx_desc {
u32 status; /* info about received packet */
u16 reserved1; /* parser_info (for future use, PnC) */
u16 data_size; /* size of received packet in bytes */
u32 buf_dma_addr; /* physical address of the buffer */
u32 buf_cookie; /* cookie for access to RX buffer in rx path */
u16 reserved2; /* gem_port_id (for future use, PON) */
u16 reserved3; /* csum_l4 (for future use, PnC) */
u8 reserved4; /* bm_qset (for future use, BM) */
u8 reserved5;
u16 reserved6; /* classify_info (for future use, PnC) */
u32 reserved7; /* flow_id (for future use, PnC) */
u32 reserved8;
};
/* HW TX descriptor for PPv2.2 */
struct mvpp22_tx_desc {
u32 command;
u8 packet_offset;
u8 phys_txq;
u16 data_size;
u64 reserved1;
u64 buf_dma_addr_ptp;
u64 buf_cookie_misc;
};
/* HW RX descriptor for PPv2.2 */
struct mvpp22_rx_desc {
u32 status;
u16 reserved1;
u16 data_size;
u32 reserved2;
u32 reserved3;
u64 buf_dma_addr_key_hash;
u64 buf_cookie_misc;
};
/* Opaque type used by the driver to manipulate the HW TX and RX
* descriptors
*/
struct mvpp2_tx_desc {
union {
struct mvpp21_tx_desc pp21;
struct mvpp22_tx_desc pp22;
};
};
struct mvpp2_rx_desc {
union {
struct mvpp21_rx_desc pp21;
struct mvpp22_rx_desc pp22;
};
};
struct mvpp2_txq_pcpu_buf {
/* Transmitted SKB */
struct sk_buff *skb;
/* Physical address of transmitted buffer */
dma_addr_t dma;
/* Size transmitted */
size_t size;
};
/* Per-CPU Tx queue control */
struct mvpp2_txq_pcpu {
int cpu;
/* Number of Tx DMA descriptors in the descriptor ring */
int size;
/* Number of currently used Tx DMA descriptor in the
* descriptor ring
*/
int count;
int wake_threshold;
int stop_threshold;
/* Number of Tx DMA descriptors reserved for each CPU */
int reserved_num;
/* Infos about transmitted buffers */
struct mvpp2_txq_pcpu_buf *buffs;
/* Index of last TX DMA descriptor that was inserted */
int txq_put_index;
/* Index of the TX DMA descriptor to be cleaned up */
int txq_get_index;
/* DMA buffer for TSO headers */
char *tso_headers;
dma_addr_t tso_headers_dma;
};
struct mvpp2_tx_queue {
/* Physical number of this Tx queue */
u8 id;
/* Logical number of this Tx queue */
u8 log_id;
/* Number of Tx DMA descriptors in the descriptor ring */
int size;
/* Number of currently used Tx DMA descriptor in the descriptor ring */
int count;
/* Per-CPU control of physical Tx queues */
struct mvpp2_txq_pcpu __percpu *pcpu;
u32 done_pkts_coal;
/* Virtual address of thex Tx DMA descriptors array */
struct mvpp2_tx_desc *descs;
/* DMA address of the Tx DMA descriptors array */
dma_addr_t descs_dma;
/* Index of the last Tx DMA descriptor */
int last_desc;
/* Index of the next Tx DMA descriptor to process */
int next_desc_to_proc;
};
struct mvpp2_rx_queue {
/* RX queue number, in the range 0-31 for physical RXQs */
u8 id;
/* Num of rx descriptors in the rx descriptor ring */
int size;
u32 pkts_coal;
u32 time_coal;
/* Virtual address of the RX DMA descriptors array */
struct mvpp2_rx_desc *descs;
/* DMA address of the RX DMA descriptors array */
dma_addr_t descs_dma;
/* Index of the last RX DMA descriptor */
int last_desc;
/* Index of the next RX DMA descriptor to process */
int next_desc_to_proc;
/* ID of port to which physical RXQ is mapped */
int port;
/* Port's logic RXQ number to which physical RXQ is mapped */
int logic_rxq;
};
union mvpp2_prs_tcam_entry {
u32 word[MVPP2_PRS_TCAM_WORDS];
u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
};
union mvpp2_prs_sram_entry {
u32 word[MVPP2_PRS_SRAM_WORDS];
u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
};
struct mvpp2_prs_entry {
u32 index;
union mvpp2_prs_tcam_entry tcam;
union mvpp2_prs_sram_entry sram;
};
struct mvpp2_prs_shadow {
bool valid;
bool finish;
/* Lookup ID */
int lu;
/* User defined offset */
int udf;
/* Result info */
u32 ri;
u32 ri_mask;
};
struct mvpp2_cls_flow_entry {
u32 index;
u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
};
struct mvpp2_cls_lookup_entry {
u32 lkpid;
u32 way;
u32 data;
};
struct mvpp2_bm_pool {
/* Pool number in the range 0-7 */
int id;
enum mvpp2_bm_type type;
/* Buffer Pointers Pool External (BPPE) size */
int size;
/* BPPE size in bytes */
int size_bytes;
/* Number of buffers for this pool */
int buf_num;
/* Pool buffer size */
int buf_size;
/* Packet size */
int pkt_size;
int frag_size;
/* BPPE virtual base address */
u32 *virt_addr;
/* BPPE DMA base address */
dma_addr_t dma_addr;
/* Ports using BM pool */
u32 port_map;
};
#define IS_TSO_HEADER(txq_pcpu, addr) \
((addr) >= (txq_pcpu)->tso_headers_dma && \
(addr) < (txq_pcpu)->tso_headers_dma + \
(txq_pcpu)->size * TSO_HEADER_SIZE)
/* Queue modes */
#define MVPP2_QDIST_SINGLE_MODE 0
#define MVPP2_QDIST_MULTI_MODE 1
static int queue_mode = MVPP2_QDIST_SINGLE_MODE;
module_param(queue_mode, int, 0444);
MODULE_PARM_DESC(queue_mode, "Set queue_mode (single=0, multi=1)");
#define MVPP2_DRIVER_NAME "mvpp2"
#define MVPP2_DRIVER_VERSION "1.0"
/* Utility/helper methods */
static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
{
writel(data, priv->swth_base[0] + offset);
}
static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
{
return readl(priv->swth_base[0] + offset);
}
/* These accessors should be used to access:
*
* - per-CPU registers, where each CPU has its own copy of the
* register.
*
* MVPP2_BM_VIRT_ALLOC_REG
* MVPP2_BM_ADDR_HIGH_ALLOC
* MVPP22_BM_ADDR_HIGH_RLS_REG
* MVPP2_BM_VIRT_RLS_REG
* MVPP2_ISR_RX_TX_CAUSE_REG
* MVPP2_ISR_RX_TX_MASK_REG
* MVPP2_TXQ_NUM_REG
* MVPP2_AGGR_TXQ_UPDATE_REG
* MVPP2_TXQ_RSVD_REQ_REG
* MVPP2_TXQ_RSVD_RSLT_REG
* MVPP2_TXQ_SENT_REG
* MVPP2_RXQ_NUM_REG
*
* - global registers that must be accessed through a specific CPU
* window, because they are related to an access to a per-CPU
* register
*
* MVPP2_BM_PHY_ALLOC_REG (related to MVPP2_BM_VIRT_ALLOC_REG)
* MVPP2_BM_PHY_RLS_REG (related to MVPP2_BM_VIRT_RLS_REG)
* MVPP2_RXQ_THRESH_REG (related to MVPP2_RXQ_NUM_REG)
* MVPP2_RXQ_DESC_ADDR_REG (related to MVPP2_RXQ_NUM_REG)
* MVPP2_RXQ_DESC_SIZE_REG (related to MVPP2_RXQ_NUM_REG)
* MVPP2_RXQ_INDEX_REG (related to MVPP2_RXQ_NUM_REG)
* MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
* MVPP2_TXQ_DESC_ADDR_REG (related to MVPP2_TXQ_NUM_REG)
* MVPP2_TXQ_DESC_SIZE_REG (related to MVPP2_TXQ_NUM_REG)
* MVPP2_TXQ_INDEX_REG (related to MVPP2_TXQ_NUM_REG)
* MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
* MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
* MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
*/
static void mvpp2_percpu_write(struct mvpp2 *priv, int cpu,
u32 offset, u32 data)
{
writel(data, priv->swth_base[cpu] + offset);
}
static u32 mvpp2_percpu_read(struct mvpp2 *priv, int cpu,
u32 offset)
{
return readl(priv->swth_base[cpu] + offset);
}
static dma_addr_t mvpp2_txdesc_dma_addr_get(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc)
{
if (port->priv->hw_version == MVPP21)
return tx_desc->pp21.buf_dma_addr;
else
return tx_desc->pp22.buf_dma_addr_ptp & GENMASK_ULL(40, 0);
}
static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
dma_addr_t dma_addr)
{
dma_addr_t addr, offset;
addr = dma_addr & ~MVPP2_TX_DESC_ALIGN;
offset = dma_addr & MVPP2_TX_DESC_ALIGN;
if (port->priv->hw_version == MVPP21) {
tx_desc->pp21.buf_dma_addr = addr;
tx_desc->pp21.packet_offset = offset;
} else {
u64 val = (u64)addr;
tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
tx_desc->pp22.buf_dma_addr_ptp |= val;
tx_desc->pp22.packet_offset = offset;
}
}
static size_t mvpp2_txdesc_size_get(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc)
{
if (port->priv->hw_version == MVPP21)
return tx_desc->pp21.data_size;
else
return tx_desc->pp22.data_size;
}
static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
size_t size)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.data_size = size;
else
tx_desc->pp22.data_size = size;
}
static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
unsigned int txq)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.phys_txq = txq;
else
tx_desc->pp22.phys_txq = txq;
}
static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
unsigned int command)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.command = command;
else
tx_desc->pp22.command = command;
}
static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc)
{
if (port->priv->hw_version == MVPP21)
return tx_desc->pp21.packet_offset;
else
return tx_desc->pp22.packet_offset;
}
static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return rx_desc->pp21.buf_dma_addr;
else
return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
}
static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return rx_desc->pp21.buf_cookie;
else
return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
}
static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return rx_desc->pp21.data_size;
else
return rx_desc->pp22.data_size;
}
static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return rx_desc->pp21.status;
else
return rx_desc->pp22.status;
}
static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
{
txq_pcpu->txq_get_index++;
if (txq_pcpu->txq_get_index == txq_pcpu->size)
txq_pcpu->txq_get_index = 0;
}
static void mvpp2_txq_inc_put(struct mvpp2_port *port,
struct mvpp2_txq_pcpu *txq_pcpu,
struct sk_buff *skb,
struct mvpp2_tx_desc *tx_desc)
{
struct mvpp2_txq_pcpu_buf *tx_buf =
txq_pcpu->buffs + txq_pcpu->txq_put_index;
tx_buf->skb = skb;
tx_buf->size = mvpp2_txdesc_size_get(port, tx_desc);
tx_buf->dma = mvpp2_txdesc_dma_addr_get(port, tx_desc) +
mvpp2_txdesc_offset_get(port, tx_desc);
txq_pcpu->txq_put_index++;
if (txq_pcpu->txq_put_index == txq_pcpu->size)
txq_pcpu->txq_put_index = 0;
}
/* Get number of physical egress port */
static inline int mvpp2_egress_port(struct mvpp2_port *port)
{
return MVPP2_MAX_TCONT + port->id;
}
/* Get number of physical TXQ */
static inline int mvpp2_txq_phys(int port, int txq)
{
return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
}
/* Parser configuration routines */
/* Update parser tcam and sram hw entries */
static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
{
int i;
if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
return -EINVAL;
/* Clear entry invalidation bit */
pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
/* Write tcam index - indirect access */
mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
/* Write sram index - indirect access */
mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
return 0;
}
/* Read tcam entry from hw */
static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
{
int i;
if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
return -EINVAL;
/* Write tcam index - indirect access */
mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
return MVPP2_PRS_TCAM_ENTRY_INVALID;
for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
/* Write sram index - indirect access */
mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
return 0;
}
/* Invalidate tcam hw entry */
static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
{
/* Write index - indirect access */
mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
MVPP2_PRS_TCAM_INV_MASK);
}
/* Enable shadow table entry and set its lookup ID */
static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
{
priv->prs_shadow[index].valid = true;
priv->prs_shadow[index].lu = lu;
}
/* Update ri fields in shadow table entry */
static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
unsigned int ri, unsigned int ri_mask)
{
priv->prs_shadow[index].ri_mask = ri_mask;
priv->prs_shadow[index].ri = ri;
}
/* Update lookup field in tcam sw entry */
static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
{
int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
}
/* Update mask for single port in tcam sw entry */
static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
unsigned int port, bool add)
{
int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
if (add)
pe->tcam.byte[enable_off] &= ~(1 << port);
else
pe->tcam.byte[enable_off] |= 1 << port;
}
/* Update port map in tcam sw entry */
static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
unsigned int ports)
{
unsigned char port_mask = MVPP2_PRS_PORT_MASK;
int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
pe->tcam.byte[enable_off] &= ~port_mask;
pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
}
/* Obtain port map from tcam sw entry */
static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
{
int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
}
/* Set byte of data and its enable bits in tcam sw entry */
static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
unsigned int offs, unsigned char byte,
unsigned char enable)
{
pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
}
/* Get byte of data and its enable bits from tcam sw entry */
static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
unsigned int offs, unsigned char *byte,
unsigned char *enable)
{
*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
}
/* Compare tcam data bytes with a pattern */
static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
u16 data)
{
int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
u16 tcam_data;
tcam_data = (pe->tcam.byte[off + 1] << 8) | pe->tcam.byte[off];
if (tcam_data != data)
return false;
return true;
}
/* Update ai bits in tcam sw entry */
static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
unsigned int bits, unsigned int enable)
{
int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
if (!(enable & BIT(i)))
continue;
if (bits & BIT(i))
pe->tcam.byte[ai_idx] |= 1 << i;
else
pe->tcam.byte[ai_idx] &= ~(1 << i);
}
pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
}
/* Get ai bits from tcam sw entry */
static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
{
return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
}
/* Set ethertype in tcam sw entry */
static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
unsigned short ethertype)
{
mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
}
/* Set bits in sram sw entry */
static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
int val)
{
pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
}
/* Clear bits in sram sw entry */
static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
int val)
{
pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
}
/* Update ri bits in sram sw entry */
static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
unsigned int bits, unsigned int mask)
{
unsigned int i;
for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
if (!(mask & BIT(i)))
continue;
if (bits & BIT(i))
mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
else
mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
}
}
/* Obtain ri bits from sram sw entry */
static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
{
return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
}
/* Update ai bits in sram sw entry */
static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
unsigned int bits, unsigned int mask)
{
unsigned int i;
int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
if (!(mask & BIT(i)))
continue;
if (bits & BIT(i))
mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
else
mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
}
}
/* Read ai bits from sram sw entry */
static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
{
u8 bits;
int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
int ai_en_off = ai_off + 1;
int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
bits = (pe->sram.byte[ai_off] >> ai_shift) |
(pe->sram.byte[ai_en_off] << (8 - ai_shift));
return bits;
}
/* In sram sw entry set lookup ID field of the tcam key to be used in the next
* lookup interation
*/
static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
unsigned int lu)
{
int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
mvpp2_prs_sram_bits_clear(pe, sram_next_off,
MVPP2_PRS_SRAM_NEXT_LU_MASK);
mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
}
/* In the sram sw entry set sign and value of the next lookup offset
* and the offset value generated to the classifier
*/
static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
unsigned int op)
{
/* Set sign */
if (shift < 0) {
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
shift = 0 - shift;
} else {
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
}
/* Set value */
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
(unsigned char)shift;
/* Reset and set operation */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
/* Set base offset as current */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
}
/* In the sram sw entry set sign and value of the user defined offset
* generated to the classifier
*/
static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
unsigned int type, int offset,
unsigned int op)
{
/* Set sign */
if (offset < 0) {
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
offset = 0 - offset;
} else {
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
}
/* Set value */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
MVPP2_PRS_SRAM_UDF_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
MVPP2_PRS_SRAM_UDF_BITS)] &=
~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
MVPP2_PRS_SRAM_UDF_BITS)] |=
(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
/* Set offset type */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
MVPP2_PRS_SRAM_UDF_TYPE_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
/* Set offset operation */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
(8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
(op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
/* Set base offset as current */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
}
/* Find parser flow entry */
static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
{
struct mvpp2_prs_entry *pe;
int tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return NULL;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
u8 bits;
if (!priv->prs_shadow[tid].valid ||
priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
continue;
pe->index = tid;
mvpp2_prs_hw_read(priv, pe);
bits = mvpp2_prs_sram_ai_get(pe);
/* Sram store classification lookup ID in AI bits [5:0] */
if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
return pe;
}
kfree(pe);
return NULL;
}
/* Return first free tcam index, seeking from start to end */
static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
unsigned char end)
{
int tid;
if (start > end)
swap(start, end);
if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
for (tid = start; tid <= end; tid++) {
if (!priv->prs_shadow[tid].valid)
return tid;
}
return -EINVAL;
}
/* Enable/disable dropping all mac da's */
static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
{
struct mvpp2_prs_entry pe;
if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
/* Entry exist - update port only */
pe.index = MVPP2_PE_DROP_ALL;
mvpp2_prs_hw_read(priv, &pe);
} else {
/* Entry doesn't exist - create new */
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
pe.index = MVPP2_PE_DROP_ALL;
/* Non-promiscuous mode for all ports - DROP unknown packets */
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
MVPP2_PRS_RI_DROP_MASK);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
/* Update shadow table */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(&pe, port, add);
mvpp2_prs_hw_write(priv, &pe);
}
/* Set port to promiscuous mode */
static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
{
struct mvpp2_prs_entry pe;
/* Promiscuous mode - Accept unknown packets */
if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
/* Entry exist - update port only */
pe.index = MVPP2_PE_MAC_PROMISCUOUS;
mvpp2_prs_hw_read(priv, &pe);
} else {
/* Entry doesn't exist - create new */
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
pe.index = MVPP2_PE_MAC_PROMISCUOUS;
/* Continue - set next lookup */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
/* Set result info bits */
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
MVPP2_PRS_RI_L2_CAST_MASK);
/* Shift to ethertype */
mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
/* Update shadow table */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(&pe, port, add);
mvpp2_prs_hw_write(priv, &pe);
}
/* Accept multicast */
static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
bool add)
{
struct mvpp2_prs_entry pe;
unsigned char da_mc;
/* Ethernet multicast address first byte is
* 0x01 for IPv4 and 0x33 for IPv6
*/
da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
if (priv->prs_shadow[index].valid) {
/* Entry exist - update port only */
pe.index = index;
mvpp2_prs_hw_read(priv, &pe);
} else {
/* Entry doesn't exist - create new */
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
pe.index = index;
/* Continue - set next lookup */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
/* Set result info bits */
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
MVPP2_PRS_RI_L2_CAST_MASK);
/* Update tcam entry data first byte */
mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
/* Shift to ethertype */
mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
/* Update shadow table */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(&pe, port, add);
mvpp2_prs_hw_write(priv, &pe);
}
/* Set entry for dsa packets */
static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
bool tagged, bool extend)
{
struct mvpp2_prs_entry pe;
int tid, shift;
if (extend) {
tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
shift = 8;
} else {
tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
shift = 4;
}
if (priv->prs_shadow[tid].valid) {
/* Entry exist - update port only */
pe.index = tid;
mvpp2_prs_hw_read(priv, &pe);
} else {
/* Entry doesn't exist - create new */
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
pe.index = tid;
/* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
mvpp2_prs_sram_shift_set(&pe, shift,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Update shadow table */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
if (tagged) {
/* Set tagged bit in DSA tag */
mvpp2_prs_tcam_data_byte_set(&pe, 0,
MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
/* Clear all ai bits for next iteration */
mvpp2_prs_sram_ai_update(&pe, 0,
MVPP2_PRS_SRAM_AI_MASK);
/* If packet is tagged continue check vlans */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
} else {
/* Set result info bits to 'no vlans' */
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
MVPP2_PRS_RI_VLAN_MASK);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
}
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(&pe, port, add);
mvpp2_prs_hw_write(priv, &pe);
}
/* Set entry for dsa ethertype */
static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
bool add, bool tagged, bool extend)
{
struct mvpp2_prs_entry pe;
int tid, shift, port_mask;
if (extend) {
tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
MVPP2_PE_ETYPE_EDSA_UNTAGGED;
port_mask = 0;
shift = 8;
} else {
tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
MVPP2_PE_ETYPE_DSA_UNTAGGED;
port_mask = MVPP2_PRS_PORT_MASK;
shift = 4;
}
if (priv->prs_shadow[tid].valid) {
/* Entry exist - update port only */
pe.index = tid;
mvpp2_prs_hw_read(priv, &pe);
} else {
/* Entry doesn't exist - create new */
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
pe.index = tid;
/* Set ethertype */
mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
mvpp2_prs_match_etype(&pe, 2, 0);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
MVPP2_PRS_RI_DSA_MASK);
/* Shift ethertype + 2 byte reserved + tag*/
mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Update shadow table */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
if (tagged) {
/* Set tagged bit in DSA tag */
mvpp2_prs_tcam_data_byte_set(&pe,
MVPP2_ETH_TYPE_LEN + 2 + 3,
MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
/* Clear all ai bits for next iteration */
mvpp2_prs_sram_ai_update(&pe, 0,
MVPP2_PRS_SRAM_AI_MASK);
/* If packet is tagged continue check vlans */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
} else {
/* Set result info bits to 'no vlans' */
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
MVPP2_PRS_RI_VLAN_MASK);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
}
/* Mask/unmask all ports, depending on dsa type */
mvpp2_prs_tcam_port_map_set(&pe, port_mask);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(&pe, port, add);
mvpp2_prs_hw_write(priv, &pe);
}
/* Search for existing single/triple vlan entry */
static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
unsigned short tpid, int ai)
{
struct mvpp2_prs_entry *pe;
int tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return NULL;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
/* Go through the all entries with MVPP2_PRS_LU_VLAN */
for (tid = MVPP2_PE_FIRST_FREE_TID;
tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
unsigned int ri_bits, ai_bits;
bool match;
if (!priv->prs_shadow[tid].valid ||
priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
continue;
pe->index = tid;
mvpp2_prs_hw_read(priv, pe);
match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
if (!match)
continue;
/* Get vlan type */
ri_bits = mvpp2_prs_sram_ri_get(pe);
ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
/* Get current ai value from tcam */
ai_bits = mvpp2_prs_tcam_ai_get(pe);
/* Clear double vlan bit */
ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
if (ai != ai_bits)
continue;
if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
return pe;
}
kfree(pe);
return NULL;
}
/* Add/update single/triple vlan entry */
static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
unsigned int port_map)
{
struct mvpp2_prs_entry *pe;
int tid_aux, tid;
int ret = 0;
pe = mvpp2_prs_vlan_find(priv, tpid, ai);
if (!pe) {
/* Create new tcam entry */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
MVPP2_PE_FIRST_FREE_TID);
if (tid < 0)
return tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return -ENOMEM;
/* Get last double vlan tid */
for (tid_aux = MVPP2_PE_LAST_FREE_TID;
tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
unsigned int ri_bits;
if (!priv->prs_shadow[tid_aux].valid ||
priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
continue;
pe->index = tid_aux;
mvpp2_prs_hw_read(priv, pe);
ri_bits = mvpp2_prs_sram_ri_get(pe);
if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
MVPP2_PRS_RI_VLAN_DOUBLE)
break;
}
if (tid <= tid_aux) {
ret = -EINVAL;
goto free_pe;
}
memset(pe, 0, sizeof(*pe));
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
pe->index = tid;
mvpp2_prs_match_etype(pe, 0, tpid);
mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
/* Shift 4 bytes - skip 1 vlan tag */
mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Clear all ai bits for next iteration */
mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
MVPP2_PRS_RI_VLAN_MASK);
} else {
ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
MVPP2_PRS_RI_VLAN_MASK);
}
mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
}
/* Update ports' mask */
mvpp2_prs_tcam_port_map_set(pe, port_map);
mvpp2_prs_hw_write(priv, pe);
free_pe:
kfree(pe);
return ret;
}
/* Get first free double vlan ai number */
static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
{
int i;
for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
if (!priv->prs_double_vlans[i])
return i;
}
return -EINVAL;
}
/* Search for existing double vlan entry */
static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
unsigned short tpid1,
unsigned short tpid2)
{
struct mvpp2_prs_entry *pe;
int tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return NULL;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
/* Go through the all entries with MVPP2_PRS_LU_VLAN */
for (tid = MVPP2_PE_FIRST_FREE_TID;
tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
unsigned int ri_mask;
bool match;
if (!priv->prs_shadow[tid].valid ||
priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
continue;
pe->index = tid;
mvpp2_prs_hw_read(priv, pe);
match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
&& mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
if (!match)
continue;
ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
return pe;
}
kfree(pe);
return NULL;
}
/* Add or update double vlan entry */
static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
unsigned short tpid2,
unsigned int port_map)
{
struct mvpp2_prs_entry *pe;
int tid_aux, tid, ai, ret = 0;
pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
if (!pe) {
/* Create new tcam entry */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return -ENOMEM;
/* Set ai value for new double vlan entry */
ai = mvpp2_prs_double_vlan_ai_free_get(priv);
if (ai < 0) {
ret = ai;
goto free_pe;
}
/* Get first single/triple vlan tid */
for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
unsigned int ri_bits;
if (!priv->prs_shadow[tid_aux].valid ||
priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
continue;
pe->index = tid_aux;
mvpp2_prs_hw_read(priv, pe);
ri_bits = mvpp2_prs_sram_ri_get(pe);
ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
break;
}
if (tid >= tid_aux) {
ret = -ERANGE;
goto free_pe;
}
memset(pe, 0, sizeof(*pe));
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
pe->index = tid;
priv->prs_double_vlans[ai] = true;
mvpp2_prs_match_etype(pe, 0, tpid1);
mvpp2_prs_match_etype(pe, 4, tpid2);
mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
/* Shift 8 bytes - skip 2 vlan tags */
mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
MVPP2_PRS_RI_VLAN_MASK);
mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
MVPP2_PRS_SRAM_AI_MASK);
mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
}
/* Update ports' mask */
mvpp2_prs_tcam_port_map_set(pe, port_map);
mvpp2_prs_hw_write(priv, pe);
free_pe:
kfree(pe);
return ret;
}
/* IPv4 header parsing for fragmentation and L4 offset */
static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
unsigned int ri, unsigned int ri_mask)
{
struct mvpp2_prs_entry pe;
int tid;
if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
(proto != IPPROTO_IGMP))
return -EINVAL;
/* Not fragmented packet */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
pe.index = tid;
/* Set next lu to IPv4 */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Set L4 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
sizeof(struct iphdr) - 4,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
MVPP2_PRS_IPV4_DIP_AI_BIT);
mvpp2_prs_sram_ri_update(&pe, ri, ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00,
MVPP2_PRS_TCAM_PROTO_MASK_L);
mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00,
MVPP2_PRS_TCAM_PROTO_MASK);
mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
mvpp2_prs_hw_write(priv, &pe);
/* Fragmented packet */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
pe.index = tid;
/* Clear ri before updating */
pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_TRUE,
ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, 0x0);
mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, 0x0);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
mvpp2_prs_hw_write(priv, &pe);
return 0;
}
/* IPv4 L3 multicast or broadcast */
static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
{
struct mvpp2_prs_entry pe;
int mask, tid;
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
pe.index = tid;
switch (l3_cast) {
case MVPP2_PRS_L3_MULTI_CAST:
mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
MVPP2_PRS_IPV4_MC_MASK);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
MVPP2_PRS_RI_L3_ADDR_MASK);
break;
case MVPP2_PRS_L3_BROAD_CAST:
mask = MVPP2_PRS_IPV4_BC_MASK;
mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
MVPP2_PRS_RI_L3_ADDR_MASK);
break;
default:
return -EINVAL;
}
/* Finished: go to flowid generation */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
MVPP2_PRS_IPV4_DIP_AI_BIT);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
mvpp2_prs_hw_write(priv, &pe);
return 0;
}
/* Set entries for protocols over IPv6 */
static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
unsigned int ri, unsigned int ri_mask)
{
struct mvpp2_prs_entry pe;
int tid;
if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
(proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
return -EINVAL;
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
pe.index = tid;
/* Finished: go to flowid generation */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
sizeof(struct ipv6hdr) - 6,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Write HW */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
mvpp2_prs_hw_write(priv, &pe);
return 0;
}
/* IPv6 L3 multicast entry */
static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
{
struct mvpp2_prs_entry pe;
int tid;
if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
return -EINVAL;
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
pe.index = tid;
/* Finished: go to flowid generation */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
MVPP2_PRS_RI_L3_ADDR_MASK);
mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
/* Shift back to IPv6 NH */
mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
MVPP2_PRS_IPV6_MC_MASK);
mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
mvpp2_prs_hw_write(priv, &pe);
return 0;
}
/* Parser per-port initialization */
static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
int lu_max, int offset)
{
u32 val;
/* Set lookup ID */
val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
val &= ~MVPP2_PRS_PORT_LU_MASK(port);
val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
/* Set maximum number of loops for packet received from port */
val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
/* Set initial offset for packet header extraction for the first
* searching loop
*/
val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
}
/* Default flow entries initialization for all ports */
static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
int port;
for (port = 0; port < MVPP2_MAX_PORTS; port++) {
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
/* Set flow ID*/
mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_hw_write(priv, &pe);
}
}
/* Set default entry for Marvell Header field */
static void mvpp2_prs_mh_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
memset(&pe, 0, sizeof(pe));
pe.index = MVPP2_PE_MH_DEFAULT;
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
mvpp2_prs_hw_write(priv, &pe);
}
/* Set default entires (place holder) for promiscuous, non-promiscuous and
* multicast MAC addresses
*/
static void mvpp2_prs_mac_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
memset(&pe, 0, sizeof(pe));
/* Non-promiscuous mode for all ports - DROP unknown packets */
pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
MVPP2_PRS_RI_DROP_MASK);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
mvpp2_prs_hw_write(priv, &pe);
/* place holders only - no ports */
mvpp2_prs_mac_drop_all_set(priv, 0, false);
mvpp2_prs_mac_promisc_set(priv, 0, false);
mvpp2_prs_mac_multi_set(priv, 0, MVPP2_PE_MAC_MC_ALL, false);
mvpp2_prs_mac_multi_set(priv, 0, MVPP2_PE_MAC_MC_IP6, false);
}
/* Set default entries for various types of dsa packets */
static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
/* None tagged EDSA entry - place holder */
mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
MVPP2_PRS_EDSA);
/* Tagged EDSA entry - place holder */
mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
/* None tagged DSA entry - place holder */
mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
MVPP2_PRS_DSA);
/* Tagged DSA entry - place holder */
mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
/* None tagged EDSA ethertype entry - place holder*/
mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
/* Tagged EDSA ethertype entry - place holder*/
mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
/* None tagged DSA ethertype entry */
mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
/* Tagged DSA ethertype entry */
mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
/* Set default entry, in case DSA or EDSA tag not found */
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
pe.index = MVPP2_PE_DSA_DEFAULT;
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
/* Shift 0 bytes */
mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
/* Clear all sram ai bits for next iteration */
mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
mvpp2_prs_hw_write(priv, &pe);
}
/* Match basic ethertypes */
static int mvpp2_prs_etype_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
int tid;
/* Ethertype: PPPoE */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
MVPP2_PRS_RI_PPPOE_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = false;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
MVPP2_PRS_RI_PPPOE_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: ARP */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
/* Generate flow in the next iteration*/
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = true;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: LBTD */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
/* Generate flow in the next iteration*/
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
MVPP2_PRS_RI_UDF3_RX_SPECIAL,
MVPP2_PRS_RI_CPU_CODE_MASK |
MVPP2_PRS_RI_UDF3_MASK);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = true;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
MVPP2_PRS_RI_UDF3_RX_SPECIAL,
MVPP2_PRS_RI_CPU_CODE_MASK |
MVPP2_PRS_RI_UDF3_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: IPv4 without options */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
MVPP2_PRS_IPV4_HEAD_MASK |
MVPP2_PRS_IPV4_IHL_MASK);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Skip eth_type + 4 bytes of IP header */
mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = false;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: IPv4 with options */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
pe.index = tid;
/* Clear tcam data before updating */
pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_IPV4_HEAD,
MVPP2_PRS_IPV4_HEAD_MASK);
/* Clear ri before updating */
pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = false;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: IPv6 without options */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
/* Skip DIP of IPV6 header */
mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
MVPP2_MAX_L3_ADDR_SIZE,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = false;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = MVPP2_PE_ETH_TYPE_UN;
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Generate flow in the next iteration*/
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Set L3 offset even it's unknown L3 */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = true;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
return 0;
}
/* Configure vlan entries and detect up to 2 successive VLAN tags.
* Possible options:
* 0x8100, 0x88A8
* 0x8100, 0x8100
* 0x8100
* 0x88A8
*/
static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
int err;
priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
MVPP2_PRS_DBL_VLANS_MAX,
GFP_KERNEL);
if (!priv->prs_double_vlans)
return -ENOMEM;
/* Double VLAN: 0x8100, 0x88A8 */
err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
MVPP2_PRS_PORT_MASK);
if (err)
return err;
/* Double VLAN: 0x8100, 0x8100 */
err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
MVPP2_PRS_PORT_MASK);
if (err)
return err;
/* Single VLAN: 0x88a8 */
err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
MVPP2_PRS_PORT_MASK);
if (err)
return err;
/* Single VLAN: 0x8100 */
err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
MVPP2_PRS_PORT_MASK);
if (err)
return err;
/* Set default double vlan entry */
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
pe.index = MVPP2_PE_VLAN_DBL;
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
/* Clear ai for next iterations */
mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
MVPP2_PRS_RI_VLAN_MASK);
mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
MVPP2_PRS_DBL_VLAN_AI_BIT);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
mvpp2_prs_hw_write(priv, &pe);
/* Set default vlan none entry */
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
pe.index = MVPP2_PE_VLAN_NONE;
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
MVPP2_PRS_RI_VLAN_MASK);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
mvpp2_prs_hw_write(priv, &pe);
return 0;
}
/* Set entries for PPPoE ethertype */
static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
int tid;
/* IPv4 over PPPoE with options */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, PPP_IP);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Skip eth_type + 4 bytes of IP header */
mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
mvpp2_prs_hw_write(priv, &pe);
/* IPv4 over PPPoE without options */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
pe.index = tid;
mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
MVPP2_PRS_IPV4_HEAD_MASK |
MVPP2_PRS_IPV4_IHL_MASK);
/* Clear ri before updating */
pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
mvpp2_prs_hw_write(priv, &pe);
/* IPv6 over PPPoE */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Skip eth_type + 4 bytes of IPv6 header */
mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
mvpp2_prs_hw_write(priv, &pe);
/* Non-IP over PPPoE */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
pe.index = tid;
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Finished: go to flowid generation */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
/* Set L3 offset even if it's unknown L3 */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
mvpp2_prs_hw_write(priv, &pe);
return 0;
}
/* Initialize entries for IPv4 */
static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
int err;
/* Set entries for TCP, UDP and IGMP over IPv4 */
err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_RI_L4_PROTO_MASK);
if (err)
return err;
err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_RI_L4_PROTO_MASK);
if (err)
return err;
err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
MVPP2_PRS_RI_UDF3_RX_SPECIAL,
MVPP2_PRS_RI_CPU_CODE_MASK |
MVPP2_PRS_RI_UDF3_MASK);
if (err)
return err;
/* IPv4 Broadcast */
err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
if (err)
return err;
/* IPv4 Multicast */
err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
if (err)
return err;
/* Default IPv4 entry for unknown protocols */
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
pe.index = MVPP2_PE_IP4_PROTO_UN;
/* Set next lu to IPv4 */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Set L4 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
sizeof(struct iphdr) - 4,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
MVPP2_PRS_IPV4_DIP_AI_BIT);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
MVPP2_PRS_RI_L4_PROTO_MASK);
mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
mvpp2_prs_hw_write(priv, &pe);
/* Default IPv4 entry for unicast address */
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
pe.index = MVPP2_PE_IP4_ADDR_UN;
/* Finished: go to flowid generation */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
MVPP2_PRS_RI_L3_ADDR_MASK);
mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
MVPP2_PRS_IPV4_DIP_AI_BIT);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
mvpp2_prs_hw_write(priv, &pe);
return 0;
}
/* Initialize entries for IPv6 */
static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
int tid, err;
/* Set entries for TCP, UDP and ICMP over IPv6 */
err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
MVPP2_PRS_RI_L4_TCP,
MVPP2_PRS_RI_L4_PROTO_MASK);
if (err)
return err;
err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
MVPP2_PRS_RI_L4_UDP,
MVPP2_PRS_RI_L4_PROTO_MASK);
if (err)
return err;
err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
MVPP2_PRS_RI_UDF3_RX_SPECIAL,
MVPP2_PRS_RI_CPU_CODE_MASK |
MVPP2_PRS_RI_UDF3_MASK);
if (err)
return err;
/* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
/* Result Info: UDF7=1, DS lite */
err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
MVPP2_PRS_RI_UDF7_IP6_LITE,
MVPP2_PRS_RI_UDF7_MASK);
if (err)
return err;
/* IPv6 multicast */
err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
if (err)
return err;
/* Entry for checking hop limit */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
pe.index = tid;
/* Finished: go to flowid generation */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
MVPP2_PRS_RI_DROP_MASK,
MVPP2_PRS_RI_L3_PROTO_MASK |
MVPP2_PRS_RI_DROP_MASK);
mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
mvpp2_prs_hw_write(priv, &pe);
/* Default IPv6 entry for unknown protocols */
memset(&pe, 0, sizeof(pe));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
pe.index = MVPP2_PE_IP6_PROTO_UN;
/* Finished: go to flowid generation */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
MVPP2_PRS_RI_L4_PROTO_MASK);
/* Set L4 offset relatively to our current place */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
sizeof(struct ipv6hdr) - 4,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
mvpp2_prs_hw_write(priv, &pe);
/* Default IPv6 entry for unknown ext protocols */
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
/* Finished: go to flowid generation */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
MVPP2_PRS_RI_L4_PROTO_MASK);
mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
MVPP2_PRS_IPV6_EXT_AI_BIT);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
mvpp2_prs_hw_write(priv, &pe);
/* Default IPv6 entry for unicast address */
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
pe.index = MVPP2_PE_IP6_ADDR_UN;
/* Finished: go to IPv6 again */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
MVPP2_PRS_RI_L3_ADDR_MASK);
mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
/* Shift back to IPV6 NH */
mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
mvpp2_prs_hw_write(priv, &pe);
return 0;
}
/* Parser default initialization */
static int mvpp2_prs_default_init(struct platform_device *pdev,
struct mvpp2 *priv)
{
int err, index, i;
/* Enable tcam table */
mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
/* Clear all tcam and sram entries */
for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
}
/* Invalidate all tcam entries */
for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
mvpp2_prs_hw_inv(priv, index);
priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
sizeof(*priv->prs_shadow),
GFP_KERNEL);
if (!priv->prs_shadow)
return -ENOMEM;
/* Always start from lookup = 0 */
for (index = 0; index < MVPP2_MAX_PORTS; index++)
mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
MVPP2_PRS_PORT_LU_MAX, 0);
mvpp2_prs_def_flow_init(priv);
mvpp2_prs_mh_init(priv);
mvpp2_prs_mac_init(priv);
mvpp2_prs_dsa_init(priv);
err = mvpp2_prs_etype_init(priv);
if (err)
return err;
err = mvpp2_prs_vlan_init(pdev, priv);
if (err)
return err;
err = mvpp2_prs_pppoe_init(priv);
if (err)
return err;
err = mvpp2_prs_ip6_init(priv);
if (err)
return err;
err = mvpp2_prs_ip4_init(priv);
if (err)
return err;
return 0;
}
/* Compare MAC DA with tcam entry data */
static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
const u8 *da, unsigned char *mask)
{
unsigned char tcam_byte, tcam_mask;
int index;
for (index = 0; index < ETH_ALEN; index++) {
mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
if (tcam_mask != mask[index])
return false;
if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
return false;
}
return true;
}
/* Find tcam entry with matched pair <MAC DA, port> */
static struct mvpp2_prs_entry *
mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
unsigned char *mask, int udf_type)
{
struct mvpp2_prs_entry *pe;
int tid;
pe = kzalloc(sizeof(*pe), GFP_ATOMIC);
if (!pe)
return NULL;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
/* Go through the all entires with MVPP2_PRS_LU_MAC */
for (tid = MVPP2_PE_FIRST_FREE_TID;
tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
unsigned int entry_pmap;
if (!priv->prs_shadow[tid].valid ||
(priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
(priv->prs_shadow[tid].udf != udf_type))
continue;
pe->index = tid;
mvpp2_prs_hw_read(priv, pe);
entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
entry_pmap == pmap)
return pe;
}
kfree(pe);
return NULL;
}
/* Update parser's mac da entry */
static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
const u8 *da, bool add)
{
struct mvpp2_prs_entry *pe;
unsigned int pmap, len, ri;
unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
int tid;
/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
MVPP2_PRS_UDF_MAC_DEF);
/* No such entry */
if (!pe) {
if (!add)
return 0;
/* Create new TCAM entry */
/* Find first range mac entry*/
for (tid = MVPP2_PE_FIRST_FREE_TID;
tid <= MVPP2_PE_LAST_FREE_TID; tid++)
if (priv->prs_shadow[tid].valid &&
(priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
(priv->prs_shadow[tid].udf ==
MVPP2_PRS_UDF_MAC_RANGE))
break;
/* Go through the all entries from first to last */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
tid - 1);
if (tid < 0)
return tid;
pe = kzalloc(sizeof(*pe), GFP_ATOMIC);
if (!pe)
return -ENOMEM;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
pe->index = tid;
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(pe, 0);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(pe, port, add);
/* Invalidate the entry if no ports are left enabled */
pmap = mvpp2_prs_tcam_port_map_get(pe);
if (pmap == 0) {
if (add) {
kfree(pe);
return -EINVAL;
}
mvpp2_prs_hw_inv(priv, pe->index);
priv->prs_shadow[pe->index].valid = false;
kfree(pe);
return 0;
}
/* Continue - set next lookup */
mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
/* Set match on DA */
len = ETH_ALEN;
while (len--)
mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
/* Set result info bits */
if (is_broadcast_ether_addr(da))
ri = MVPP2_PRS_RI_L2_BCAST;
else if (is_multicast_ether_addr(da))
ri = MVPP2_PRS_RI_L2_MCAST;
else
ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
MVPP2_PRS_RI_MAC_ME_MASK);
mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
MVPP2_PRS_RI_MAC_ME_MASK);
/* Shift to ethertype */
mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Update shadow table and hw entry */
priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
mvpp2_prs_hw_write(priv, pe);
kfree(pe);
return 0;
}
static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
{
struct mvpp2_port *port = netdev_priv(dev);
int err;
/* Remove old parser entry */
err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
false);
if (err)
return err;
/* Add new parser entry */
err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
if (err)
return err;
/* Set addr in the device */
ether_addr_copy(dev->dev_addr, da);
return 0;
}
/* Delete all port's multicast simple (not range) entries */
static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
{
struct mvpp2_prs_entry pe;
int index, tid;
for (tid = MVPP2_PE_FIRST_FREE_TID;
tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
if (!priv->prs_shadow[tid].valid ||
(priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
(priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
continue;
/* Only simple mac entries */
pe.index = tid;
mvpp2_prs_hw_read(priv, &pe);
/* Read mac addr from entry */
for (index = 0; index < ETH_ALEN; index++)
mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
&da_mask[index]);
if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
/* Delete this entry */
mvpp2_prs_mac_da_accept(priv, port, da, false);
}
}
static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
{
switch (type) {
case MVPP2_TAG_TYPE_EDSA:
/* Add port to EDSA entries */
mvpp2_prs_dsa_tag_set(priv, port, true,
MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
mvpp2_prs_dsa_tag_set(priv, port, true,
MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
/* Remove port from DSA entries */
mvpp2_prs_dsa_tag_set(priv, port, false,
MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
mvpp2_prs_dsa_tag_set(priv, port, false,
MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
break;
case MVPP2_TAG_TYPE_DSA:
/* Add port to DSA entries */
mvpp2_prs_dsa_tag_set(priv, port, true,
MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
mvpp2_prs_dsa_tag_set(priv, port, true,
MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
/* Remove port from EDSA entries */
mvpp2_prs_dsa_tag_set(priv, port, false,
MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
mvpp2_prs_dsa_tag_set(priv, port, false,
MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
break;
case MVPP2_TAG_TYPE_MH:
case MVPP2_TAG_TYPE_NONE:
/* Remove port form EDSA and DSA entries */
mvpp2_prs_dsa_tag_set(priv, port, false,
MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
mvpp2_prs_dsa_tag_set(priv, port, false,
MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
mvpp2_prs_dsa_tag_set(priv, port, false,
MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
mvpp2_prs_dsa_tag_set(priv, port, false,
MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
break;
default:
if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
return -EINVAL;
}
return 0;
}
/* Set prs flow for the port */
static int mvpp2_prs_def_flow(struct mvpp2_port *port)
{
struct mvpp2_prs_entry *pe;
int tid;
pe = mvpp2_prs_flow_find(port->priv, port->id);
/* Such entry not exist */
if (!pe) {
/* Go through the all entires from last to first */
tid = mvpp2_prs_tcam_first_free(port->priv,
MVPP2_PE_LAST_FREE_TID,
MVPP2_PE_FIRST_FREE_TID);
if (tid < 0)
return tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return -ENOMEM;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
pe->index = tid;
/* Set flow ID*/
mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
/* Update shadow table */
mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
}
mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
mvpp2_prs_hw_write(port->priv, pe);
kfree(pe);
return 0;
}
/* Classifier configuration routines */
/* Update classification flow table registers */
static void mvpp2_cls_flow_write(struct mvpp2 *priv,
struct mvpp2_cls_flow_entry *fe)
{
mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
}
/* Update classification lookup table register */
static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
struct mvpp2_cls_lookup_entry *le)
{
u32 val;
val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
}
/* Classifier default initialization */
static void mvpp2_cls_init(struct mvpp2 *priv)
{
struct mvpp2_cls_lookup_entry le;
struct mvpp2_cls_flow_entry fe;
int index;
/* Enable classifier */
mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
/* Clear classifier flow table */
memset(&fe.data, 0, sizeof(fe.data));
for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
fe.index = index;
mvpp2_cls_flow_write(priv, &fe);
}
/* Clear classifier lookup table */
le.data = 0;
for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
le.lkpid = index;
le.way = 0;
mvpp2_cls_lookup_write(priv, &le);
le.way = 1;
mvpp2_cls_lookup_write(priv, &le);
}
}
static void mvpp2_cls_port_config(struct mvpp2_port *port)
{
struct mvpp2_cls_lookup_entry le;
u32 val;
/* Set way for the port */
val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
/* Pick the entry to be accessed in lookup ID decoding table
* according to the way and lkpid.
*/
le.lkpid = port->id;
le.way = 0;
le.data = 0;
/* Set initial CPU queue for receiving packets */
le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
le.data |= port->first_rxq;
/* Disable classification engines */
le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
/* Update lookup ID table entry */
mvpp2_cls_lookup_write(port->priv, &le);
}
/* Set CPU queue number for oversize packets */
static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
{
u32 val;
mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
(port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
}
static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool *pool)
{
if (likely(pool->frag_size <= PAGE_SIZE))
return netdev_alloc_frag(pool->frag_size);
else
return kmalloc(pool->frag_size, GFP_ATOMIC);
}
static void mvpp2_frag_free(const struct mvpp2_bm_pool *pool, void *data)
{
if (likely(pool->frag_size <= PAGE_SIZE))
skb_free_frag(data);
else
kfree(data);
}
/* Buffer Manager configuration routines */
/* Create pool */
static int mvpp2_bm_pool_create(struct platform_device *pdev,
struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool, int size)
{
u32 val;
/* Number of buffer pointers must be a multiple of 16, as per
* hardware constraints
*/
if (!IS_ALIGNED(size, 16))
return -EINVAL;
/* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 needs 16
* bytes per buffer pointer
*/
if (priv->hw_version == MVPP21)
bm_pool->size_bytes = 2 * sizeof(u32) * size;
else
bm_pool->size_bytes = 2 * sizeof(u64) * size;
bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, bm_pool->size_bytes,
&bm_pool->dma_addr,
GFP_KERNEL);
if (!bm_pool->virt_addr)
return -ENOMEM;
if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
MVPP2_BM_POOL_PTR_ALIGN)) {
dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
bm_pool->virt_addr, bm_pool->dma_addr);
dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
return -ENOMEM;
}
mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
lower_32_bits(bm_pool->dma_addr));
mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
val |= MVPP2_BM_START_MASK;
mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
bm_pool->type = MVPP2_BM_FREE;
bm_pool->size = size;
bm_pool->pkt_size = 0;
bm_pool->buf_num = 0;
return 0;
}
/* Set pool buffer size */
static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool,
int buf_size)
{
u32 val;
bm_pool->buf_size = buf_size;
val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
}
static void mvpp2_bm_bufs_get_addrs(struct device *dev, struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool,
dma_addr_t *dma_addr,
phys_addr_t *phys_addr)
{
int cpu = get_cpu();
*dma_addr = mvpp2_percpu_read(priv, cpu,
MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
*phys_addr = mvpp2_percpu_read(priv, cpu, MVPP2_BM_VIRT_ALLOC_REG);
if (priv->hw_version == MVPP22) {
u32 val;
u32 dma_addr_highbits, phys_addr_highbits;
val = mvpp2_percpu_read(priv, cpu, MVPP22_BM_ADDR_HIGH_ALLOC);
dma_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_PHYS_MASK);
phys_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_VIRT_MASK) >>
MVPP22_BM_ADDR_HIGH_VIRT_SHIFT;
if (sizeof(dma_addr_t) == 8)
*dma_addr |= (u64)dma_addr_highbits << 32;
if (sizeof(phys_addr_t) == 8)
*phys_addr |= (u64)phys_addr_highbits << 32;
}
put_cpu();
}
/* Free all buffers from the pool */
static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool)
{
int i;
for (i = 0; i < bm_pool->buf_num; i++) {
dma_addr_t buf_dma_addr;
phys_addr_t buf_phys_addr;
void *data;
mvpp2_bm_bufs_get_addrs(dev, priv, bm_pool,
&buf_dma_addr, &buf_phys_addr);
dma_unmap_single(dev, buf_dma_addr,
bm_pool->buf_size, DMA_FROM_DEVICE);
data = (void *)phys_to_virt(buf_phys_addr);
if (!data)
break;
mvpp2_frag_free(bm_pool, data);
}
/* Update BM driver with number of buffers removed from pool */
bm_pool->buf_num -= i;
}
/* Cleanup pool */
static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool)
{
u32 val;
mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
if (bm_pool->buf_num) {
WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
return 0;
}
val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
val |= MVPP2_BM_STOP_MASK;
mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
bm_pool->virt_addr,
bm_pool->dma_addr);
return 0;
}
static int mvpp2_bm_pools_init(struct platform_device *pdev,
struct mvpp2 *priv)
{
int i, err, size;
struct mvpp2_bm_pool *bm_pool;
/* Create all pools with maximum size */
size = MVPP2_BM_POOL_SIZE_MAX;
for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
bm_pool = &priv->bm_pools[i];
bm_pool->id = i;
err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
if (err)
goto err_unroll_pools;
mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
}
return 0;
err_unroll_pools:
dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
for (i = i - 1; i >= 0; i--)
mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
return err;
}
static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
{
int i, err;
for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
/* Mask BM all interrupts */
mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
/* Clear BM cause register */
mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
}
/* Allocate and initialize BM pools */
priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
sizeof(*priv->bm_pools), GFP_KERNEL);
if (!priv->bm_pools)
return -ENOMEM;
err = mvpp2_bm_pools_init(pdev, priv);
if (err < 0)
return err;
return 0;
}
/* Attach long pool to rxq */
static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
int lrxq, int long_pool)
{
u32 val, mask;
int prxq;
/* Get queue physical ID */
prxq = port->rxqs[lrxq]->id;
if (port->priv->hw_version == MVPP21)
mask = MVPP21_RXQ_POOL_LONG_MASK;
else
mask = MVPP22_RXQ_POOL_LONG_MASK;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
val &= ~mask;
val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}
/* Attach short pool to rxq */
static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
int lrxq, int short_pool)
{
u32 val, mask;
int prxq;
/* Get queue physical ID */
prxq = port->rxqs[lrxq]->id;
if (port->priv->hw_version == MVPP21)
mask = MVPP21_RXQ_POOL_SHORT_MASK;
else
mask = MVPP22_RXQ_POOL_SHORT_MASK;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
val &= ~mask;
val |= (short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & mask;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}
static void *mvpp2_buf_alloc(struct mvpp2_port *port,
struct mvpp2_bm_pool *bm_pool,
dma_addr_t *buf_dma_addr,
phys_addr_t *buf_phys_addr,
gfp_t gfp_mask)
{
dma_addr_t dma_addr;
void *data;
data = mvpp2_frag_alloc(bm_pool);
if (!data)
return NULL;
dma_addr = dma_map_single(port->dev->dev.parent, data,
MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) {
mvpp2_frag_free(bm_pool, data);
return NULL;
}
*buf_dma_addr = dma_addr;
*buf_phys_addr = virt_to_phys(data);
return data;
}
/* Release buffer to BM */
static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
dma_addr_t buf_dma_addr,
phys_addr_t buf_phys_addr)
{
int cpu = get_cpu();
if (port->priv->hw_version == MVPP22) {
u32 val = 0;
if (sizeof(dma_addr_t) == 8)
val |= upper_32_bits(buf_dma_addr) &
MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
if (sizeof(phys_addr_t) == 8)
val |= (upper_32_bits(buf_phys_addr)
<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
mvpp2_percpu_write(port->priv, cpu,
MVPP22_BM_ADDR_HIGH_RLS_REG, val);
}
/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
* returned in the "cookie" field of the RX
* descriptor. Instead of storing the virtual address, we
* store the physical address
*/
mvpp2_percpu_write(port->priv, cpu,
MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
mvpp2_percpu_write(port->priv, cpu,
MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
put_cpu();
}
/* Allocate buffers for the pool */
static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
struct mvpp2_bm_pool *bm_pool, int buf_num)
{
int i, buf_size, total_size;
dma_addr_t dma_addr;
phys_addr_t phys_addr;
void *buf;
buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
if (buf_num < 0 ||
(buf_num + bm_pool->buf_num > bm_pool->size)) {
netdev_err(port->dev,
"cannot allocate %d buffers for pool %d\n",
buf_num, bm_pool->id);
return 0;
}
for (i = 0; i < buf_num; i++) {
buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr,
&phys_addr, GFP_KERNEL);
if (!buf)
break;
mvpp2_bm_pool_put(port, bm_pool->id, dma_addr,
phys_addr);
}
/* Update BM driver with number of buffers added to pool */
bm_pool->buf_num += i;
netdev_dbg(port->dev,
"%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
netdev_dbg(port->dev,
"%s pool %d: %d of %d buffers added\n",
bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
bm_pool->id, i, buf_num);
return i;
}
/* Notify the driver that BM pool is being used as specific type and return the
* pool pointer on success
*/
static struct mvpp2_bm_pool *
mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
int pkt_size)
{
struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
int num;
if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
netdev_err(port->dev, "mixing pool types is forbidden\n");
return NULL;
}
if (new_pool->type == MVPP2_BM_FREE)
new_pool->type = type;
/* Allocate buffers in case BM pool is used as long pool, but packet
* size doesn't match MTU or BM pool hasn't being used yet
*/
if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
(new_pool->pkt_size == 0)) {
int pkts_num;
/* Set default buffer number or free all the buffers in case
* the pool is not empty
*/
pkts_num = new_pool->buf_num;
if (pkts_num == 0)
pkts_num = type == MVPP2_BM_SWF_LONG ?
MVPP2_BM_LONG_BUF_NUM :
MVPP2_BM_SHORT_BUF_NUM;
else
mvpp2_bm_bufs_free(port->dev->dev.parent,
port->priv, new_pool);
new_pool->pkt_size = pkt_size;
new_pool->frag_size =
SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
MVPP2_SKB_SHINFO_SIZE;
/* Allocate buffers for this pool */
num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
if (num != pkts_num) {
WARN(1, "pool %d: %d of %d allocated\n",
new_pool->id, num, pkts_num);
return NULL;
}
}
mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
return new_pool;
}
/* Initialize pools for swf */
static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
{
int rxq;
if (!port->pool_long) {
port->pool_long =
mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
MVPP2_BM_SWF_LONG,
port->pkt_size);
if (!port->pool_long)
return -ENOMEM;
port->pool_long->port_map |= (1 << port->id);
for (rxq = 0; rxq < port->nrxqs; rxq++)
mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
}
if (!port->pool_short) {
port->pool_short =
mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
MVPP2_BM_SWF_SHORT,
MVPP2_BM_SHORT_PKT_SIZE);
if (!port->pool_short)
return -ENOMEM;
port->pool_short->port_map |= (1 << port->id);
for (rxq = 0; rxq < port->nrxqs; rxq++)
mvpp2_rxq_short_pool_set(port, rxq,
port->pool_short->id);
}
return 0;
}
static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
{
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2_bm_pool *port_pool = port->pool_long;
int num, pkts_num = port_pool->buf_num;
int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
/* Update BM pool with new buffer size */
mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
if (port_pool->buf_num) {
WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
return -EIO;
}
port_pool->pkt_size = pkt_size;
port_pool->frag_size = SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
MVPP2_SKB_SHINFO_SIZE;
num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
if (num != pkts_num) {
WARN(1, "pool %d: %d of %d allocated\n",
port_pool->id, num, pkts_num);
return -EIO;
}
mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
dev->mtu = mtu;
netdev_update_features(dev);
return 0;
}
static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
{
int i, sw_thread_mask = 0;
for (i = 0; i < port->nqvecs; i++)
sw_thread_mask |= port->qvecs[i].sw_thread_mask;
mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
MVPP2_ISR_ENABLE_INTERRUPT(sw_thread_mask));
}
static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
{
int i, sw_thread_mask = 0;
for (i = 0; i < port->nqvecs; i++)
sw_thread_mask |= port->qvecs[i].sw_thread_mask;
mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
MVPP2_ISR_DISABLE_INTERRUPT(sw_thread_mask));
}
static inline void mvpp2_qvec_interrupt_enable(struct mvpp2_queue_vector *qvec)
{
struct mvpp2_port *port = qvec->port;
mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
MVPP2_ISR_ENABLE_INTERRUPT(qvec->sw_thread_mask));
}
static inline void mvpp2_qvec_interrupt_disable(struct mvpp2_queue_vector *qvec)
{
struct mvpp2_port *port = qvec->port;
mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
MVPP2_ISR_DISABLE_INTERRUPT(qvec->sw_thread_mask));
}
/* Mask the current CPU's Rx/Tx interrupts
* Called by on_each_cpu(), guaranteed to run with migration disabled,
* using smp_processor_id() is OK.
*/
static void mvpp2_interrupts_mask(void *arg)
{
struct mvpp2_port *port = arg;
mvpp2_percpu_write(port->priv, smp_processor_id(),
MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
}
/* Unmask the current CPU's Rx/Tx interrupts.
* Called by on_each_cpu(), guaranteed to run with migration disabled,
* using smp_processor_id() is OK.
*/
static void mvpp2_interrupts_unmask(void *arg)
{
struct mvpp2_port *port = arg;
u32 val;
val = MVPP2_CAUSE_MISC_SUM_MASK |
MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
if (port->has_tx_irqs)
val |= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
mvpp2_percpu_write(port->priv, smp_processor_id(),
MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
}
static void
mvpp2_shared_interrupt_mask_unmask(struct mvpp2_port *port, bool mask)
{
u32 val;
int i;
if (port->priv->hw_version != MVPP22)
return;
if (mask)
val = 0;
else
val = MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
for (i = 0; i < port->nqvecs; i++) {
struct mvpp2_queue_vector *v = port->qvecs + i;
if (v->type != MVPP2_QUEUE_VECTOR_SHARED)
continue;
mvpp2_percpu_write(port->priv, v->sw_thread_id,
MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
}
}
/* Port configuration routines */
static void mvpp22_gop_init_rgmii(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
u32 val;
regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT;
regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
if (port->gop_id == 2)
val |= GENCONF_CTRL0_PORT0_RGMII | GENCONF_CTRL0_PORT1_RGMII;
else if (port->gop_id == 3)
val |= GENCONF_CTRL0_PORT1_RGMII_MII;
regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
}
static void mvpp22_gop_init_sgmii(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
u32 val;
regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT |
GENCONF_PORT_CTRL0_RX_DATA_SAMPLE;
regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
if (port->gop_id > 1) {
regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
if (port->gop_id == 2)
val &= ~GENCONF_CTRL0_PORT0_RGMII;
else if (port->gop_id == 3)
val &= ~GENCONF_CTRL0_PORT1_RGMII_MII;
regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
}
}
static void mvpp22_gop_init_10gkr(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
void __iomem *mpcs = priv->iface_base + MVPP22_MPCS_BASE(port->gop_id);
void __iomem *xpcs = priv->iface_base + MVPP22_XPCS_BASE(port->gop_id);
u32 val;
/* XPCS */
val = readl(xpcs + MVPP22_XPCS_CFG0);
val &= ~(MVPP22_XPCS_CFG0_PCS_MODE(0x3) |
MVPP22_XPCS_CFG0_ACTIVE_LANE(0x3));
val |= MVPP22_XPCS_CFG0_ACTIVE_LANE(2);
writel(val, xpcs + MVPP22_XPCS_CFG0);
/* MPCS */
val = readl(mpcs + MVPP22_MPCS_CTRL);
val &= ~MVPP22_MPCS_CTRL_FWD_ERR_CONN;
writel(val, mpcs + MVPP22_MPCS_CTRL);
val = readl(mpcs + MVPP22_MPCS_CLK_RESET);
val &= ~(MVPP22_MPCS_CLK_RESET_DIV_RATIO(0x7) | MAC_CLK_RESET_MAC |
MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX);
val |= MVPP22_MPCS_CLK_RESET_DIV_RATIO(1);
writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
val &= ~MVPP22_MPCS_CLK_RESET_DIV_SET;
val |= MAC_CLK_RESET_MAC | MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX;
writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
}
static int mvpp22_gop_init(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
u32 val;
if (!priv->sysctrl_base)
return 0;
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
if (port->gop_id == 0)
goto invalid_conf;
mvpp22_gop_init_rgmii(port);
break;
case PHY_INTERFACE_MODE_SGMII:
mvpp22_gop_init_sgmii(port);
break;
case PHY_INTERFACE_MODE_10GKR:
if (port->gop_id != 0)
goto invalid_conf;
mvpp22_gop_init_10gkr(port);
break;
default:
goto unsupported_conf;
}
regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL1, &val);
val |= GENCONF_PORT_CTRL1_RESET(port->gop_id) |
GENCONF_PORT_CTRL1_EN(port->gop_id);
regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL1, val);
regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
val |= GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR;
regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
regmap_read(priv->sysctrl_base, GENCONF_SOFT_RESET1, &val);
val |= GENCONF_SOFT_RESET1_GOP;
regmap_write(priv->sysctrl_base, GENCONF_SOFT_RESET1, val);
unsupported_conf:
return 0;
invalid_conf:
netdev_err(port->dev, "Invalid port configuration\n");
return -EINVAL;
}
static void mvpp22_gop_unmask_irq(struct mvpp2_port *port)
{
u32 val;
if (phy_interface_mode_is_rgmii(port->phy_interface) ||
port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
/* Enable the GMAC link status irq for this port */
val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
val |= MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
}
if (port->gop_id == 0) {
/* Enable the XLG/GIG irqs for this port */
val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
if (port->phy_interface == PHY_INTERFACE_MODE_10GKR)
val |= MVPP22_XLG_EXT_INT_MASK_XLG;
else
val |= MVPP22_XLG_EXT_INT_MASK_GIG;
writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
}
}
static void mvpp22_gop_mask_irq(struct mvpp2_port *port)
{
u32 val;
if (port->gop_id == 0) {
val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
val &= ~(MVPP22_XLG_EXT_INT_MASK_XLG |
MVPP22_XLG_EXT_INT_MASK_GIG);
writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
}
if (phy_interface_mode_is_rgmii(port->phy_interface) ||
port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
val &= ~MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
}
}
static void mvpp22_gop_setup_irq(struct mvpp2_port *port)
{
u32 val;
if (phy_interface_mode_is_rgmii(port->phy_interface) ||
port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
val = readl(port->base + MVPP22_GMAC_INT_MASK);
val |= MVPP22_GMAC_INT_MASK_LINK_STAT;
writel(val, port->base + MVPP22_GMAC_INT_MASK);
}
if (port->gop_id == 0) {
val = readl(port->base + MVPP22_XLG_INT_MASK);
val |= MVPP22_XLG_INT_MASK_LINK;
writel(val, port->base + MVPP22_XLG_INT_MASK);
}
mvpp22_gop_unmask_irq(port);
}
static int mvpp22_comphy_init(struct mvpp2_port *port)
{
enum phy_mode mode;
int ret;
if (!port->comphy)
return 0;
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_SGMII:
mode = PHY_MODE_SGMII;
break;
case PHY_INTERFACE_MODE_10GKR:
mode = PHY_MODE_10GKR;
break;
default:
return -EINVAL;
}
ret = phy_set_mode(port->comphy, mode);
if (ret)
return ret;
return phy_power_on(port->comphy);
}
static void mvpp2_port_mii_gmac_configure_mode(struct mvpp2_port *port)
{
u32 val;
if (port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
val = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
val |= MVPP22_CTRL4_SYNC_BYPASS_DIS | MVPP22_CTRL4_DP_CLK_SEL |
MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
val &= ~MVPP22_CTRL4_EXT_PIN_GMII_SEL;
writel(val, port->base + MVPP22_GMAC_CTRL_4_REG);
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
val |= MVPP2_GMAC_DISABLE_PADDING;
val &= ~MVPP2_GMAC_FLOW_CTRL_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
} else if (phy_interface_mode_is_rgmii(port->phy_interface)) {
val = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
val |= MVPP22_CTRL4_EXT_PIN_GMII_SEL |
MVPP22_CTRL4_SYNC_BYPASS_DIS |
MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
val &= ~MVPP22_CTRL4_DP_CLK_SEL;
writel(val, port->base + MVPP22_GMAC_CTRL_4_REG);
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
val &= ~MVPP2_GMAC_DISABLE_PADDING;
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
}
/* The port is connected to a copper PHY */
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val |= MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS |
MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_FLOW_CTRL_AUTONEG |
MVPP2_GMAC_AN_DUPLEX_EN;
if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
val |= MVPP2_GMAC_IN_BAND_AUTONEG;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
static void mvpp2_port_mii_gmac_configure(struct mvpp2_port *port)
{
u32 val;
/* Force link down */
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val &= ~MVPP2_GMAC_FORCE_LINK_PASS;
val |= MVPP2_GMAC_FORCE_LINK_DOWN;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
/* Set the GMAC in a reset state */
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
val |= MVPP2_GMAC_PORT_RESET_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
/* Configure the PCS and in-band AN */
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
if (port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
val |= MVPP2_GMAC_INBAND_AN_MASK | MVPP2_GMAC_PCS_ENABLE_MASK;
} else if (phy_interface_mode_is_rgmii(port->phy_interface)) {
val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
}
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
mvpp2_port_mii_gmac_configure_mode(port);
/* Unset the GMAC reset state */
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
val &= ~MVPP2_GMAC_PORT_RESET_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
/* Stop forcing link down */
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val &= ~MVPP2_GMAC_FORCE_LINK_DOWN;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
static void mvpp2_port_mii_xlg_configure(struct mvpp2_port *port)
{
u32 val;
if (port->gop_id != 0)
return;
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
val |= MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN;
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
val = readl(port->base + MVPP22_XLG_CTRL4_REG);
val &= ~MVPP22_XLG_CTRL4_MACMODSELECT_GMAC;
val |= MVPP22_XLG_CTRL4_FWD_FC | MVPP22_XLG_CTRL4_FWD_PFC;
writel(val, port->base + MVPP22_XLG_CTRL4_REG);
}
static void mvpp22_port_mii_set(struct mvpp2_port *port)
{
u32 val;
/* Only GOP port 0 has an XLG MAC */
if (port->gop_id == 0) {
val = readl(port->base + MVPP22_XLG_CTRL3_REG);
val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
if (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
port->phy_interface == PHY_INTERFACE_MODE_10GKR)
val |= MVPP22_XLG_CTRL3_MACMODESELECT_10G;
else
val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
writel(val, port->base + MVPP22_XLG_CTRL3_REG);
}
}
static void mvpp2_port_mii_set(struct mvpp2_port *port)
{
if (port->priv->hw_version == MVPP22)
mvpp22_port_mii_set(port);
if (phy_interface_mode_is_rgmii(port->phy_interface) ||
port->phy_interface == PHY_INTERFACE_MODE_SGMII)
mvpp2_port_mii_gmac_configure(port);
else if (port->phy_interface == PHY_INTERFACE_MODE_10GKR)
mvpp2_port_mii_xlg_configure(port);
}
static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val |= MVPP2_GMAC_FC_ADV_EN;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
static void mvpp2_port_enable(struct mvpp2_port *port)
{
u32 val;
/* Only GOP port 0 has an XLG MAC */
if (port->gop_id == 0 &&
(port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
port->phy_interface == PHY_INTERFACE_MODE_10GKR)) {
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
val |= MVPP22_XLG_CTRL0_PORT_EN |
MVPP22_XLG_CTRL0_MAC_RESET_DIS;
val &= ~MVPP22_XLG_CTRL0_MIB_CNT_DIS;
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
} else {
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val |= MVPP2_GMAC_PORT_EN_MASK;
val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}
}
static void mvpp2_port_disable(struct mvpp2_port *port)
{
u32 val;
/* Only GOP port 0 has an XLG MAC */
if (port->gop_id == 0 &&
(port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
port->phy_interface == PHY_INTERFACE_MODE_10GKR)) {
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
val &= ~(MVPP22_XLG_CTRL0_PORT_EN |
MVPP22_XLG_CTRL0_MAC_RESET_DIS);
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
} else {
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val &= ~(MVPP2_GMAC_PORT_EN_MASK);
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}
}
/* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
}
/* Configure loopback port */
static void mvpp2_port_loopback_set(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
if (port->speed == 1000)
val |= MVPP2_GMAC_GMII_LB_EN_MASK;
else
val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
val |= MVPP2_GMAC_PCS_LB_EN_MASK;
else
val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
}
struct mvpp2_ethtool_counter {
unsigned int offset;
const char string[ETH_GSTRING_LEN];
bool reg_is_64b;
};
static u64 mvpp2_read_count(struct mvpp2_port *port,
const struct mvpp2_ethtool_counter *counter)
{
u64 val;
val = readl(port->stats_base + counter->offset);
if (counter->reg_is_64b)
val += (u64)readl(port->stats_base + counter->offset + 4) << 32;
return val;
}
/* Due to the fact that software statistics and hardware statistics are, by
* design, incremented at different moments in the chain of packet processing,
* it is very likely that incoming packets could have been dropped after being
* counted by hardware but before reaching software statistics (most probably
* multicast packets), and in the oppposite way, during transmission, FCS bytes
* are added in between as well as TSO skb will be split and header bytes added.
* Hence, statistics gathered from userspace with ifconfig (software) and
* ethtool (hardware) cannot be compared.
*/
static const struct mvpp2_ethtool_counter mvpp2_ethtool_regs[] = {
{ MVPP2_MIB_GOOD_OCTETS_RCVD, "good_octets_received", true },
{ MVPP2_MIB_BAD_OCTETS_RCVD, "bad_octets_received" },
{ MVPP2_MIB_CRC_ERRORS_SENT, "crc_errors_sent" },
{ MVPP2_MIB_UNICAST_FRAMES_RCVD, "unicast_frames_received" },
{ MVPP2_MIB_BROADCAST_FRAMES_RCVD, "broadcast_frames_received" },
{ MVPP2_MIB_MULTICAST_FRAMES_RCVD, "multicast_frames_received" },
{ MVPP2_MIB_FRAMES_64_OCTETS, "frames_64_octets" },
{ MVPP2_MIB_FRAMES_65_TO_127_OCTETS, "frames_65_to_127_octet" },
{ MVPP2_MIB_FRAMES_128_TO_255_OCTETS, "frames_128_to_255_octet" },
{ MVPP2_MIB_FRAMES_256_TO_511_OCTETS, "frames_256_to_511_octet" },
{ MVPP2_MIB_FRAMES_512_TO_1023_OCTETS, "frames_512_to_1023_octet" },
{ MVPP2_MIB_FRAMES_1024_TO_MAX_OCTETS, "frames_1024_to_max_octet" },
{ MVPP2_MIB_GOOD_OCTETS_SENT, "good_octets_sent", true },
{ MVPP2_MIB_UNICAST_FRAMES_SENT, "unicast_frames_sent" },
{ MVPP2_MIB_MULTICAST_FRAMES_SENT, "multicast_frames_sent" },
{ MVPP2_MIB_BROADCAST_FRAMES_SENT, "broadcast_frames_sent" },
{ MVPP2_MIB_FC_SENT, "fc_sent" },
{ MVPP2_MIB_FC_RCVD, "fc_received" },
{ MVPP2_MIB_RX_FIFO_OVERRUN, "rx_fifo_overrun" },
{ MVPP2_MIB_UNDERSIZE_RCVD, "undersize_received" },
{ MVPP2_MIB_FRAGMENTS_RCVD, "fragments_received" },
{ MVPP2_MIB_OVERSIZE_RCVD, "oversize_received" },
{ MVPP2_MIB_JABBER_RCVD, "jabber_received" },
{ MVPP2_MIB_MAC_RCV_ERROR, "mac_receive_error" },
{ MVPP2_MIB_BAD_CRC_EVENT, "bad_crc_event" },
{ MVPP2_MIB_COLLISION, "collision" },
{ MVPP2_MIB_LATE_COLLISION, "late_collision" },
};
static void mvpp2_ethtool_get_strings(struct net_device *netdev, u32 sset,
u8 *data)
{
if (sset == ETH_SS_STATS) {
int i;
for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
memcpy(data + i * ETH_GSTRING_LEN,
&mvpp2_ethtool_regs[i].string, ETH_GSTRING_LEN);
}
}
static void mvpp2_gather_hw_statistics(struct work_struct *work)
{
struct delayed_work *del_work = to_delayed_work(work);
struct mvpp2_port *port = container_of(del_work, struct mvpp2_port,
stats_work);
u64 *pstats;
int i;
mutex_lock(&port->gather_stats_lock);
pstats = port->ethtool_stats;
for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
*pstats++ += mvpp2_read_count(port, &mvpp2_ethtool_regs[i]);
/* No need to read again the counters right after this function if it
* was called asynchronously by the user (ie. use of ethtool).
*/
cancel_delayed_work(&port->stats_work);
queue_delayed_work(port->priv->stats_queue, &port->stats_work,
MVPP2_MIB_COUNTERS_STATS_DELAY);
mutex_unlock(&port->gather_stats_lock);
}
static void mvpp2_ethtool_get_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct mvpp2_port *port = netdev_priv(dev);
/* Update statistics for the given port, then take the lock to avoid
* concurrent accesses on the ethtool_stats structure during its copy.
*/
mvpp2_gather_hw_statistics(&port->stats_work.work);
mutex_lock(&port->gather_stats_lock);
memcpy(data, port->ethtool_stats,
sizeof(u64) * ARRAY_SIZE(mvpp2_ethtool_regs));
mutex_unlock(&port->gather_stats_lock);
}
static int mvpp2_ethtool_get_sset_count(struct net_device *dev, int sset)
{
if (sset == ETH_SS_STATS)
return ARRAY_SIZE(mvpp2_ethtool_regs);
return -EOPNOTSUPP;
}
static void mvpp2_port_reset(struct mvpp2_port *port)
{
u32 val;
unsigned int i;
/* Read the GOP statistics to reset the hardware counters */
for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
mvpp2_read_count(port, &mvpp2_ethtool_regs[i]);
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
~MVPP2_GMAC_PORT_RESET_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
MVPP2_GMAC_PORT_RESET_MASK)
continue;
}
/* Change maximum receive size of the port */
static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
MVPP2_GMAC_MAX_RX_SIZE_OFFS);
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}
/* Change maximum receive size of the port */
static inline void mvpp2_xlg_max_rx_size_set(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP22_XLG_CTRL1_REG);
val &= ~MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK;
val |= ((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS;
writel(val, port->base + MVPP22_XLG_CTRL1_REG);
}
/* Set defaults to the MVPP2 port */
static void mvpp2_defaults_set(struct mvpp2_port *port)
{
int tx_port_num, val, queue, ptxq, lrxq;
if (port->priv->hw_version == MVPP21) {
/* Configure port to loopback if needed */
if (port->flags & MVPP2_F_LOOPBACK)
mvpp2_port_loopback_set(port);
/* Update TX FIFO MIN Threshold */
val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
/* Min. TX threshold must be less than minimal packet length */
val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
}
/* Disable Legacy WRR, Disable EJP, Release from reset */
tx_port_num = mvpp2_egress_port(port);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
tx_port_num);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
/* Close bandwidth for all queues */
for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
ptxq = mvpp2_txq_phys(port->id, queue);
mvpp2_write(port->priv,
MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
}
/* Set refill period to 1 usec, refill tokens
* and bucket size to maximum
*/
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
port->priv->tclk / USEC_PER_SEC);
val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
val = MVPP2_TXP_TOKEN_SIZE_MAX;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
/* Set MaximumLowLatencyPacketSize value to 256 */
mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
/* Enable Rx cache snoop */
for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
queue = port->rxqs[lrxq]->id;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
val |= MVPP2_SNOOP_PKT_SIZE_MASK |
MVPP2_SNOOP_BUF_HDR_MASK;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
}
/* At default, mask all interrupts to all present cpus */
mvpp2_interrupts_disable(port);
}
/* Enable/disable receiving packets */
static void mvpp2_ingress_enable(struct mvpp2_port *port)
{
u32 val;
int lrxq, queue;
for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
queue = port->rxqs[lrxq]->id;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
val &= ~MVPP2_RXQ_DISABLE_MASK;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
}
}
static void mvpp2_ingress_disable(struct mvpp2_port *port)
{
u32 val;
int lrxq, queue;
for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
queue = port->rxqs[lrxq]->id;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
val |= MVPP2_RXQ_DISABLE_MASK;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
}
}
/* Enable transmit via physical egress queue
* - HW starts take descriptors from DRAM
*/
static void mvpp2_egress_enable(struct mvpp2_port *port)
{
u32 qmap;
int queue;
int tx_port_num = mvpp2_egress_port(port);
/* Enable all initialized TXs. */
qmap = 0;
for (queue = 0; queue < port->ntxqs; queue++) {
struct mvpp2_tx_queue *txq = port->txqs[queue];
if (txq->descs)
qmap |= (1 << queue);
}
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
}
/* Disable transmit via physical egress queue
* - HW doesn't take descriptors from DRAM
*/
static void mvpp2_egress_disable(struct mvpp2_port *port)
{
u32 reg_data;
int delay;
int tx_port_num = mvpp2_egress_port(port);
/* Issue stop command for active channels only */
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
MVPP2_TXP_SCHED_ENQ_MASK;
if (reg_data != 0)
mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
(reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
/* Wait for all Tx activity to terminate. */
delay = 0;
do {
if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
netdev_warn(port->dev,
"Tx stop timed out, status=0x%08x\n",
reg_data);
break;
}
mdelay(1);
delay++;
/* Check port TX Command register that all
* Tx queues are stopped
*/
reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
}
/* Rx descriptors helper methods */
/* Get number of Rx descriptors occupied by received packets */
static inline int
mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
{
u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
return val & MVPP2_RXQ_OCCUPIED_MASK;
}
/* Update Rx queue status with the number of occupied and available
* Rx descriptor slots.
*/
static inline void
mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
int used_count, int free_count)
{
/* Decrement the number of used descriptors and increment count
* increment the number of free descriptors.
*/
u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
}
/* Get pointer to next RX descriptor to be processed by SW */
static inline struct mvpp2_rx_desc *
mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
{
int rx_desc = rxq->next_desc_to_proc;
rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
prefetch(rxq->descs + rxq->next_desc_to_proc);
return rxq->descs + rx_desc;
}
/* Set rx queue offset */
static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
int prxq, int offset)
{
u32 val;
/* Convert offset from bytes to units of 32 bytes */
offset = offset >> 5;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
/* Offset is in */
val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
MVPP2_RXQ_PACKET_OFFSET_MASK);
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}
/* Tx descriptors helper methods */
/* Get pointer to next Tx descriptor to be processed (send) by HW */
static struct mvpp2_tx_desc *
mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
{
int tx_desc = txq->next_desc_to_proc;
txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
return txq->descs + tx_desc;
}
/* Update HW with number of aggregated Tx descriptors to be sent
*
* Called only from mvpp2_tx(), so migration is disabled, using
* smp_processor_id() is OK.
*/
static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
{
/* aggregated access - relevant TXQ number is written in TX desc */
mvpp2_percpu_write(port->priv, smp_processor_id(),
MVPP2_AGGR_TXQ_UPDATE_REG, pending);
}
/* Check if there are enough free descriptors in aggregated txq.
* If not, update the number of occupied descriptors and repeat the check.
*
* Called only from mvpp2_tx(), so migration is disabled, using
* smp_processor_id() is OK.
*/
static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
struct mvpp2_tx_queue *aggr_txq, int num)
{
if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE) {
/* Update number of occupied aggregated Tx descriptors */
int cpu = smp_processor_id();
u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
}
if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE)
return -ENOMEM;
return 0;
}
/* Reserved Tx descriptors allocation request
*
* Called only from mvpp2_txq_reserved_desc_num_proc(), itself called
* only by mvpp2_tx(), so migration is disabled, using
* smp_processor_id() is OK.
*/
static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
struct mvpp2_tx_queue *txq, int num)
{
u32 val;
int cpu = smp_processor_id();
val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
mvpp2_percpu_write(priv, cpu, MVPP2_TXQ_RSVD_REQ_REG, val);
val = mvpp2_percpu_read(priv, cpu, MVPP2_TXQ_RSVD_RSLT_REG);
return val & MVPP2_TXQ_RSVD_RSLT_MASK;
}
/* Check if there are enough reserved descriptors for transmission.
* If not, request chunk of reserved descriptors and check again.
*/
static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
struct mvpp2_tx_queue *txq,
struct mvpp2_txq_pcpu *txq_pcpu,
int num)
{
int req, cpu, desc_count;
if (txq_pcpu->reserved_num >= num)
return 0;
/* Not enough descriptors reserved! Update the reserved descriptor
* count and check again.
*/
desc_count = 0;
/* Compute total of used descriptors */
for_each_present_cpu(cpu) {
struct mvpp2_txq_pcpu *txq_pcpu_aux;
txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
desc_count += txq_pcpu_aux->count;
desc_count += txq_pcpu_aux->reserved_num;
}
req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
desc_count += req;
if (desc_count >
(txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
return -ENOMEM;
txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
/* OK, the descriptor cound has been updated: check again. */
if (txq_pcpu->reserved_num < num)
return -ENOMEM;
return 0;
}
/* Release the last allocated Tx descriptor. Useful to handle DMA
* mapping failures in the Tx path.
*/
static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
{
if (txq->next_desc_to_proc == 0)
txq->next_desc_to_proc = txq->last_desc - 1;
else
txq->next_desc_to_proc--;
}
/* Set Tx descriptors fields relevant for CSUM calculation */
static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
int ip_hdr_len, int l4_proto)
{
u32 command;
/* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
* G_L4_chk, L4_type required only for checksum calculation
*/
command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
command |= MVPP2_TXD_IP_CSUM_DISABLE;
if (l3_proto == swab16(ETH_P_IP)) {
command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */
command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */
} else {
command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */
}
if (l4_proto == IPPROTO_TCP) {
command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */
command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
} else if (l4_proto == IPPROTO_UDP) {
command |= MVPP2_TXD_L4_UDP; /* enable UDP */
command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
} else {
command |= MVPP2_TXD_L4_CSUM_NOT;
}
return command;
}
/* Get number of sent descriptors and decrement counter.
* The number of sent descriptors is returned.
* Per-CPU access
*
* Called only from mvpp2_txq_done(), called from mvpp2_tx()
* (migration disabled) and from the TX completion tasklet (migration
* disabled) so using smp_processor_id() is OK.
*/
static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
u32 val;
/* Reading status reg resets transmitted descriptor counter */
val = mvpp2_percpu_read(port->priv, smp_processor_id(),
MVPP2_TXQ_SENT_REG(txq->id));
return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
MVPP2_TRANSMITTED_COUNT_OFFSET;
}
/* Called through on_each_cpu(), so runs on all CPUs, with migration
* disabled, therefore using smp_processor_id() is OK.
*/
static void mvpp2_txq_sent_counter_clear(void *arg)
{
struct mvpp2_port *port = arg;
int queue;
for (queue = 0; queue < port->ntxqs; queue++) {
int id = port->txqs[queue]->id;
mvpp2_percpu_read(port->priv, smp_processor_id(),
MVPP2_TXQ_SENT_REG(id));
}
}
/* Set max sizes for Tx queues */
static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
{
u32 val, size, mtu;
int txq, tx_port_num;
mtu = port->pkt_size * 8;
if (mtu > MVPP2_TXP_MTU_MAX)
mtu = MVPP2_TXP_MTU_MAX;
/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
mtu = 3 * mtu;
/* Indirect access to registers */
tx_port_num = mvpp2_egress_port(port);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
/* Set MTU */
val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
val &= ~MVPP2_TXP_MTU_MAX;
val |= mtu;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
/* TXP token size and all TXQs token size must be larger that MTU */
val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
if (size < mtu) {
size = mtu;
val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
val |= size;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
}
for (txq = 0; txq < port->ntxqs; txq++) {
val = mvpp2_read(port->priv,
MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
if (size < mtu) {
size = mtu;
val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
val |= size;
mvpp2_write(port->priv,
MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
val);
}
}
}
/* Set the number of packets that will be received before Rx interrupt
* will be generated by HW.
*/
static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
int cpu = get_cpu();
if (rxq->pkts_coal > MVPP2_OCCUPIED_THRESH_MASK)
rxq->pkts_coal = MVPP2_OCCUPIED_THRESH_MASK;
mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_THRESH_REG,
rxq->pkts_coal);
put_cpu();
}
/* For some reason in the LSP this is done on each CPU. Why ? */
static void mvpp2_tx_pkts_coal_set(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
int cpu = get_cpu();
u32 val;
if (txq->done_pkts_coal > MVPP2_TXQ_THRESH_MASK)
txq->done_pkts_coal = MVPP2_TXQ_THRESH_MASK;
val = (txq->done_pkts_coal << MVPP2_TXQ_THRESH_OFFSET);
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_THRESH_REG, val);
put_cpu();
}
static u32 mvpp2_usec_to_cycles(u32 usec, unsigned long clk_hz)
{
u64 tmp = (u64)clk_hz * usec;
do_div(tmp, USEC_PER_SEC);
return tmp > U32_MAX ? U32_MAX : tmp;
}
static u32 mvpp2_cycles_to_usec(u32 cycles, unsigned long clk_hz)
{
u64 tmp = (u64)cycles * USEC_PER_SEC;
do_div(tmp, clk_hz);
return tmp > U32_MAX ? U32_MAX : tmp;
}
/* Set the time delay in usec before Rx interrupt */
static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
unsigned long freq = port->priv->tclk;
u32 val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
if (val > MVPP2_MAX_ISR_RX_THRESHOLD) {
rxq->time_coal =
mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD, freq);
/* re-evaluate to get actual register value */
val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
}
mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
}
static void mvpp2_tx_time_coal_set(struct mvpp2_port *port)
{
unsigned long freq = port->priv->tclk;
u32 val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
if (val > MVPP2_MAX_ISR_TX_THRESHOLD) {
port->tx_time_coal =
mvpp2_cycles_to_usec(MVPP2_MAX_ISR_TX_THRESHOLD, freq);
/* re-evaluate to get actual register value */
val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
}
mvpp2_write(port->priv, MVPP2_ISR_TX_THRESHOLD_REG(port->id), val);
}
/* Free Tx queue skbuffs */
static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq,
struct mvpp2_txq_pcpu *txq_pcpu, int num)
{
int i;
for (i = 0; i < num; i++) {
struct mvpp2_txq_pcpu_buf *tx_buf =
txq_pcpu->buffs + txq_pcpu->txq_get_index;
if (!IS_TSO_HEADER(txq_pcpu, tx_buf->dma))
dma_unmap_single(port->dev->dev.parent, tx_buf->dma,
tx_buf->size, DMA_TO_DEVICE);
if (tx_buf->skb)
dev_kfree_skb_any(tx_buf->skb);
mvpp2_txq_inc_get(txq_pcpu);
}
}
static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
u32 cause)
{
int queue = fls(cause) - 1;
return port->rxqs[queue];
}
static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
u32 cause)
{
int queue = fls(cause) - 1;
return port->txqs[queue];
}
/* Handle end of transmission */
static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
struct mvpp2_txq_pcpu *txq_pcpu)
{
struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
int tx_done;
if (txq_pcpu->cpu != smp_processor_id())
netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
tx_done = mvpp2_txq_sent_desc_proc(port, txq);
if (!tx_done)
return;
mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
txq_pcpu->count -= tx_done;
if (netif_tx_queue_stopped(nq))
if (txq_pcpu->count <= txq_pcpu->wake_threshold)
netif_tx_wake_queue(nq);
}
static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause,
int cpu)
{
struct mvpp2_tx_queue *txq;
struct mvpp2_txq_pcpu *txq_pcpu;
unsigned int tx_todo = 0;
while (cause) {
txq = mvpp2_get_tx_queue(port, cause);
if (!txq)
break;
txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
if (txq_pcpu->count) {
mvpp2_txq_done(port, txq, txq_pcpu);
tx_todo += txq_pcpu->count;
}
cause &= ~(1 << txq->log_id);
}
return tx_todo;
}
/* Rx/Tx queue initialization/cleanup methods */
/* Allocate and initialize descriptors for aggr TXQ */
static int mvpp2_aggr_txq_init(struct platform_device *pdev,
struct mvpp2_tx_queue *aggr_txq, int cpu,
struct mvpp2 *priv)
{
u32 txq_dma;
/* Allocate memory for TX descriptors */
aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
&aggr_txq->descs_dma, GFP_KERNEL);
if (!aggr_txq->descs)
return -ENOMEM;
aggr_txq->last_desc = MVPP2_AGGR_TXQ_SIZE - 1;
/* Aggr TXQ no reset WA */
aggr_txq->next_desc_to_proc = mvpp2_read(priv,
MVPP2_AGGR_TXQ_INDEX_REG(cpu));
/* Set Tx descriptors queue starting address indirect
* access
*/
if (priv->hw_version == MVPP21)
txq_dma = aggr_txq->descs_dma;
else
txq_dma = aggr_txq->descs_dma >>
MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu),
MVPP2_AGGR_TXQ_SIZE);
return 0;
}
/* Create a specified Rx queue */
static int mvpp2_rxq_init(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
u32 rxq_dma;
int cpu;
rxq->size = port->rx_ring_size;
/* Allocate memory for RX descriptors */
rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
rxq->size * MVPP2_DESC_ALIGNED_SIZE,
&rxq->descs_dma, GFP_KERNEL);
if (!rxq->descs)
return -ENOMEM;
rxq->last_desc = rxq->size - 1;
/* Zero occupied and non-occupied counters - direct access */
mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
/* Set Rx descriptors queue starting address - indirect access */
cpu = get_cpu();
mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
if (port->priv->hw_version == MVPP21)
rxq_dma = rxq->descs_dma;
else
rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_INDEX_REG, 0);
put_cpu();
/* Set Offset */
mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
/* Set coalescing pkts and time */
mvpp2_rx_pkts_coal_set(port, rxq);
mvpp2_rx_time_coal_set(port, rxq);
/* Add number of descriptors ready for receiving packets */
mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
return 0;
}
/* Push packets received by the RXQ to BM pool */
static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
int rx_received, i;
rx_received = mvpp2_rxq_received(port, rxq->id);
if (!rx_received)
return;
for (i = 0; i < rx_received; i++) {
struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
int pool;
pool = (status & MVPP2_RXD_BM_POOL_ID_MASK) >>
MVPP2_RXD_BM_POOL_ID_OFFS;
mvpp2_bm_pool_put(port, pool,
mvpp2_rxdesc_dma_addr_get(port, rx_desc),
mvpp2_rxdesc_cookie_get(port, rx_desc));
}
mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
}
/* Cleanup Rx queue */
static void mvpp2_rxq_deinit(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
int cpu;
mvpp2_rxq_drop_pkts(port, rxq);
if (rxq->descs)
dma_free_coherent(port->dev->dev.parent,
rxq->size * MVPP2_DESC_ALIGNED_SIZE,
rxq->descs,
rxq->descs_dma);
rxq->descs = NULL;
rxq->last_desc = 0;
rxq->next_desc_to_proc = 0;
rxq->descs_dma = 0;
/* Clear Rx descriptors queue starting address and size;
* free descriptor number
*/
mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
cpu = get_cpu();
mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, 0);
mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, 0);
put_cpu();
}
/* Create and initialize a Tx queue */
static int mvpp2_txq_init(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
u32 val;
int cpu, desc, desc_per_txq, tx_port_num;
struct mvpp2_txq_pcpu *txq_pcpu;
txq->size = port->tx_ring_size;
/* Allocate memory for Tx descriptors */
txq->descs = dma_alloc_coherent(port->dev->dev.parent,
txq->size * MVPP2_DESC_ALIGNED_SIZE,
&txq->descs_dma, GFP_KERNEL);
if (!txq->descs)
return -ENOMEM;
txq->last_desc = txq->size - 1;
/* Set Tx descriptors queue starting address - indirect access */
cpu = get_cpu();
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG,
txq->descs_dma);
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG,
txq->size & MVPP2_TXQ_DESC_SIZE_MASK);
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_INDEX_REG, 0);
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_RSVD_CLR_REG,
txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PENDING_REG);
val &= ~MVPP2_TXQ_PENDING_MASK;
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PENDING_REG, val);
/* Calculate base address in prefetch buffer. We reserve 16 descriptors
* for each existing TXQ.
* TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
* GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
*/
desc_per_txq = 16;
desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
(txq->log_id * desc_per_txq);
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG,
MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
put_cpu();
/* WRR / EJP configuration - indirect access */
tx_port_num = mvpp2_egress_port(port);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
val = MVPP2_TXQ_TOKEN_SIZE_MAX;
mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
val);
for_each_present_cpu(cpu) {
txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
txq_pcpu->size = txq->size;
txq_pcpu->buffs = kmalloc_array(txq_pcpu->size,
sizeof(*txq_pcpu->buffs),
GFP_KERNEL);
if (!txq_pcpu->buffs)
goto cleanup;
txq_pcpu->count = 0;
txq_pcpu->reserved_num = 0;
txq_pcpu->txq_put_index = 0;
txq_pcpu->txq_get_index = 0;
txq_pcpu->stop_threshold = txq->size - MVPP2_MAX_SKB_DESCS;
txq_pcpu->wake_threshold = txq_pcpu->stop_threshold / 2;
txq_pcpu->tso_headers =
dma_alloc_coherent(port->dev->dev.parent,
txq_pcpu->size * TSO_HEADER_SIZE,
&txq_pcpu->tso_headers_dma,
GFP_KERNEL);
if (!txq_pcpu->tso_headers)
goto cleanup;
}
return 0;
cleanup:
for_each_present_cpu(cpu) {
txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
kfree(txq_pcpu->buffs);
dma_free_coherent(port->dev->dev.parent,
txq_pcpu->size * TSO_HEADER_SIZE,
txq_pcpu->tso_headers,
txq_pcpu->tso_headers_dma);
}
dma_free_coherent(port->dev->dev.parent,
txq->size * MVPP2_DESC_ALIGNED_SIZE,
txq->descs, txq->descs_dma);
return -ENOMEM;
}
/* Free allocated TXQ resources */
static void mvpp2_txq_deinit(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
struct mvpp2_txq_pcpu *txq_pcpu;
int cpu;
for_each_present_cpu(cpu) {
txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
kfree(txq_pcpu->buffs);
dma_free_coherent(port->dev->dev.parent,
txq_pcpu->size * TSO_HEADER_SIZE,
txq_pcpu->tso_headers,
txq_pcpu->tso_headers_dma);
}
if (txq->descs)
dma_free_coherent(port->dev->dev.parent,
txq->size * MVPP2_DESC_ALIGNED_SIZE,
txq->descs, txq->descs_dma);
txq->descs = NULL;
txq->last_desc = 0;
txq->next_desc_to_proc = 0;
txq->descs_dma = 0;
/* Set minimum bandwidth for disabled TXQs */
mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
/* Set Tx descriptors queue starting address and size */
cpu = get_cpu();
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG, 0);
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG, 0);
put_cpu();
}
/* Cleanup Tx ports */
static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
{
struct mvpp2_txq_pcpu *txq_pcpu;
int delay, pending, cpu;
u32 val;
cpu = get_cpu();
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG);
val |= MVPP2_TXQ_DRAIN_EN_MASK;
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
/* The napi queue has been stopped so wait for all packets
* to be transmitted.
*/
delay = 0;
do {
if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
netdev_warn(port->dev,
"port %d: cleaning queue %d timed out\n",
port->id, txq->log_id);
break;
}
mdelay(1);
delay++;
pending = mvpp2_percpu_read(port->priv, cpu,
MVPP2_TXQ_PENDING_REG);
pending &= MVPP2_TXQ_PENDING_MASK;
} while (pending);
val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
put_cpu();
for_each_present_cpu(cpu) {
txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
/* Release all packets */
mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
/* Reset queue */
txq_pcpu->count = 0;
txq_pcpu->txq_put_index = 0;
txq_pcpu->txq_get_index = 0;
}
}
/* Cleanup all Tx queues */
static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
{
struct mvpp2_tx_queue *txq;
int queue;
u32 val;
val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
/* Reset Tx ports and delete Tx queues */
val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
for (queue = 0; queue < port->ntxqs; queue++) {
txq = port->txqs[queue];
mvpp2_txq_clean(port, txq);
mvpp2_txq_deinit(port, txq);
}
on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
}
/* Cleanup all Rx queues */
static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
{
int queue;
for (queue = 0; queue < port->nrxqs; queue++)
mvpp2_rxq_deinit(port, port->rxqs[queue]);
}
/* Init all Rx queues for port */
static int mvpp2_setup_rxqs(struct mvpp2_port *port)
{
int queue, err;
for (queue = 0; queue < port->nrxqs; queue++) {
err = mvpp2_rxq_init(port, port->rxqs[queue]);
if (err)
goto err_cleanup;
}
return 0;
err_cleanup:
mvpp2_cleanup_rxqs(port);
return err;
}
/* Init all tx queues for port */
static int mvpp2_setup_txqs(struct mvpp2_port *port)
{
struct mvpp2_tx_queue *txq;
int queue, err;
for (queue = 0; queue < port->ntxqs; queue++) {
txq = port->txqs[queue];
err = mvpp2_txq_init(port, txq);
if (err)
goto err_cleanup;
}
if (port->has_tx_irqs) {
mvpp2_tx_time_coal_set(port);
for (queue = 0; queue < port->ntxqs; queue++) {
txq = port->txqs[queue];
mvpp2_tx_pkts_coal_set(port, txq);
}
}
on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
return 0;
err_cleanup:
mvpp2_cleanup_txqs(port);
return err;
}
/* The callback for per-port interrupt */
static irqreturn_t mvpp2_isr(int irq, void *dev_id)
{
struct mvpp2_queue_vector *qv = dev_id;
mvpp2_qvec_interrupt_disable(qv);
napi_schedule(&qv->napi);
return IRQ_HANDLED;
}
/* Per-port interrupt for link status changes */
static irqreturn_t mvpp2_link_status_isr(int irq, void *dev_id)
{
struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
struct net_device *dev = port->dev;
bool event = false, link = false;
u32 val;
mvpp22_gop_mask_irq(port);
if (port->gop_id == 0 &&
port->phy_interface == PHY_INTERFACE_MODE_10GKR) {
val = readl(port->base + MVPP22_XLG_INT_STAT);
if (val & MVPP22_XLG_INT_STAT_LINK) {
event = true;
val = readl(port->base + MVPP22_XLG_STATUS);
if (val & MVPP22_XLG_STATUS_LINK_UP)
link = true;
}
} else if (phy_interface_mode_is_rgmii(port->phy_interface) ||
port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
val = readl(port->base + MVPP22_GMAC_INT_STAT);
if (val & MVPP22_GMAC_INT_STAT_LINK) {
event = true;
val = readl(port->base + MVPP2_GMAC_STATUS0);
if (val & MVPP2_GMAC_STATUS0_LINK_UP)
link = true;
}
}
if (!netif_running(dev) || !event)
goto handled;
if (link) {
mvpp2_interrupts_enable(port);
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
netif_carrier_on(dev);
netif_tx_wake_all_queues(dev);
} else {
netif_tx_stop_all_queues(dev);
netif_carrier_off(dev);
mvpp2_ingress_disable(port);
mvpp2_egress_disable(port);
mvpp2_interrupts_disable(port);
}
handled:
mvpp22_gop_unmask_irq(port);
return IRQ_HANDLED;
}
static void mvpp2_gmac_set_autoneg(struct mvpp2_port *port,
struct phy_device *phydev)
{
u32 val;
if (port->phy_interface != PHY_INTERFACE_MODE_RGMII &&
port->phy_interface != PHY_INTERFACE_MODE_RGMII_ID &&
port->phy_interface != PHY_INTERFACE_MODE_RGMII_RXID &&
port->phy_interface != PHY_INTERFACE_MODE_RGMII_TXID &&
port->phy_interface != PHY_INTERFACE_MODE_SGMII)
return;
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
MVPP2_GMAC_CONFIG_GMII_SPEED |
MVPP2_GMAC_CONFIG_FULL_DUPLEX |
MVPP2_GMAC_AN_SPEED_EN |
MVPP2_GMAC_AN_DUPLEX_EN);
if (phydev->duplex)
val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
if (phydev->speed == SPEED_1000)
val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
else if (phydev->speed == SPEED_100)
val |= MVPP2_GMAC_CONFIG_MII_SPEED;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
/* Adjust link */
static void mvpp2_link_event(struct net_device *dev)
{
struct mvpp2_port *port = netdev_priv(dev);
struct phy_device *phydev = dev->phydev;
bool link_reconfigured = false;
u32 val;
if (phydev->link) {
if (port->phy_interface != phydev->interface && port->comphy) {
/* disable current port for reconfiguration */
mvpp2_interrupts_disable(port);
netif_carrier_off(port->dev);
mvpp2_port_disable(port);
phy_power_off(port->comphy);
/* comphy reconfiguration */
port->phy_interface = phydev->interface;
mvpp22_comphy_init(port);
/* gop/mac reconfiguration */
mvpp22_gop_init(port);
mvpp2_port_mii_set(port);
link_reconfigured = true;
}
if ((port->speed != phydev->speed) ||
(port->duplex != phydev->duplex)) {
mvpp2_gmac_set_autoneg(port, phydev);
port->duplex = phydev->duplex;
port->speed = phydev->speed;
}
}
if (phydev->link != port->link || link_reconfigured) {
port->link = phydev->link;
if (phydev->link) {
if (port->phy_interface == PHY_INTERFACE_MODE_RGMII ||
port->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
port->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
port->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID ||
port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val |= (MVPP2_GMAC_FORCE_LINK_PASS |
MVPP2_GMAC_FORCE_LINK_DOWN);
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
mvpp2_interrupts_enable(port);
mvpp2_port_enable(port);
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
netif_carrier_on(dev);
netif_tx_wake_all_queues(dev);
} else {
port->duplex = -1;
port->speed = 0;
netif_tx_stop_all_queues(dev);
netif_carrier_off(dev);
mvpp2_ingress_disable(port);
mvpp2_egress_disable(port);
mvpp2_port_disable(port);
mvpp2_interrupts_disable(port);
}
phy_print_status(phydev);
}
}
static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
{
ktime_t interval;
if (!port_pcpu->timer_scheduled) {
port_pcpu->timer_scheduled = true;
interval = MVPP2_TXDONE_HRTIMER_PERIOD_NS;
hrtimer_start(&port_pcpu->tx_done_timer, interval,
HRTIMER_MODE_REL_PINNED);
}
}
static void mvpp2_tx_proc_cb(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
unsigned int tx_todo, cause;
if (!netif_running(dev))
return;
port_pcpu->timer_scheduled = false;
/* Process all the Tx queues */
cause = (1 << port->ntxqs) - 1;
tx_todo = mvpp2_tx_done(port, cause, smp_processor_id());
/* Set the timer in case not all the packets were processed */
if (tx_todo)
mvpp2_timer_set(port_pcpu);
}
static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
{
struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
struct mvpp2_port_pcpu,
tx_done_timer);
tasklet_schedule(&port_pcpu->tx_done_tasklet);
return HRTIMER_NORESTART;
}
/* Main RX/TX processing routines */
/* Display more error info */
static void mvpp2_rx_error(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
switch (status & MVPP2_RXD_ERR_CODE_MASK) {
case MVPP2_RXD_ERR_CRC:
netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
status, sz);
break;
case MVPP2_RXD_ERR_OVERRUN:
netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
status, sz);
break;
case MVPP2_RXD_ERR_RESOURCE:
netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
status, sz);
break;
}
}
/* Handle RX checksum offload */
static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
struct sk_buff *skb)
{
if (((status & MVPP2_RXD_L3_IP4) &&
!(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
(status & MVPP2_RXD_L3_IP6))
if (((status & MVPP2_RXD_L4_UDP) ||
(status & MVPP2_RXD_L4_TCP)) &&
(status & MVPP2_RXD_L4_CSUM_OK)) {
skb->csum = 0;
skb->ip_summed = CHECKSUM_UNNECESSARY;
return;
}
skb->ip_summed = CHECKSUM_NONE;
}
/* Reuse skb if possible, or allocate a new skb and add it to BM pool */
static int mvpp2_rx_refill(struct mvpp2_port *port,
struct mvpp2_bm_pool *bm_pool, int pool)
{
dma_addr_t dma_addr;
phys_addr_t phys_addr;
void *buf;
/* No recycle or too many buffers are in use, so allocate a new skb */
buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr, &phys_addr,
GFP_ATOMIC);
if (!buf)
return -ENOMEM;
mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
return 0;
}
/* Handle tx checksum */
static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
{
if (skb->ip_summed == CHECKSUM_PARTIAL) {
int ip_hdr_len = 0;
u8 l4_proto;
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *ip4h = ip_hdr(skb);
/* Calculate IPv4 checksum and L4 checksum */
ip_hdr_len = ip4h->ihl;
l4_proto = ip4h->protocol;
} else if (skb->protocol == htons(ETH_P_IPV6)) {
struct ipv6hdr *ip6h = ipv6_hdr(skb);
/* Read l4_protocol from one of IPv6 extra headers */
if (skb_network_header_len(skb) > 0)
ip_hdr_len = (skb_network_header_len(skb) >> 2);
l4_proto = ip6h->nexthdr;
} else {
return MVPP2_TXD_L4_CSUM_NOT;
}
return mvpp2_txq_desc_csum(skb_network_offset(skb),
skb->protocol, ip_hdr_len, l4_proto);
}
return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
}
/* Main rx processing */
static int mvpp2_rx(struct mvpp2_port *port, struct napi_struct *napi,
int rx_todo, struct mvpp2_rx_queue *rxq)
{
struct net_device *dev = port->dev;
int rx_received;
int rx_done = 0;
u32 rcvd_pkts = 0;
u32 rcvd_bytes = 0;
/* Get number of received packets and clamp the to-do */
rx_received = mvpp2_rxq_received(port, rxq->id);
if (rx_todo > rx_received)
rx_todo = rx_received;
while (rx_done < rx_todo) {
struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
struct mvpp2_bm_pool *bm_pool;
struct sk_buff *skb;
unsigned int frag_size;
dma_addr_t dma_addr;
phys_addr_t phys_addr;
u32 rx_status;
int pool, rx_bytes, err;
void *data;
rx_done++;
rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
rx_bytes -= MVPP2_MH_SIZE;
dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
phys_addr = mvpp2_rxdesc_cookie_get(port, rx_desc);
data = (void *)phys_to_virt(phys_addr);
pool = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
MVPP2_RXD_BM_POOL_ID_OFFS;
bm_pool = &port->priv->bm_pools[pool];
/* In case of an error, release the requested buffer pointer
* to the Buffer Manager. This request process is controlled
* by the hardware, and the information about the buffer is
* comprised by the RX descriptor.
*/
if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
err_drop_frame:
dev->stats.rx_errors++;
mvpp2_rx_error(port, rx_desc);
/* Return the buffer to the pool */
mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
continue;
}
if (bm_pool->frag_size > PAGE_SIZE)
frag_size = 0;
else
frag_size = bm_pool->frag_size;
skb = build_skb(data, frag_size);
if (!skb) {
netdev_warn(port->dev, "skb build failed\n");
goto err_drop_frame;
}
err = mvpp2_rx_refill(port, bm_pool, pool);
if (err) {
netdev_err(port->dev, "failed to refill BM pools\n");
goto err_drop_frame;
}
dma_unmap_single(dev->dev.parent, dma_addr,
bm_pool->buf_size, DMA_FROM_DEVICE);
rcvd_pkts++;
rcvd_bytes += rx_bytes;
skb_reserve(skb, MVPP2_MH_SIZE + NET_SKB_PAD);
skb_put(skb, rx_bytes);
skb->protocol = eth_type_trans(skb, dev);
mvpp2_rx_csum(port, rx_status, skb);
napi_gro_receive(napi, skb);
}
if (rcvd_pkts) {
struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
u64_stats_update_begin(&stats->syncp);
stats->rx_packets += rcvd_pkts;
stats->rx_bytes += rcvd_bytes;
u64_stats_update_end(&stats->syncp);
}
/* Update Rx queue management counters */
wmb();
mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
return rx_todo;
}
static inline void
tx_desc_unmap_put(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
struct mvpp2_tx_desc *desc)
{
struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
dma_addr_t buf_dma_addr =
mvpp2_txdesc_dma_addr_get(port, desc);
size_t buf_sz =
mvpp2_txdesc_size_get(port, desc);
if (!IS_TSO_HEADER(txq_pcpu, buf_dma_addr))
dma_unmap_single(port->dev->dev.parent, buf_dma_addr,
buf_sz, DMA_TO_DEVICE);
mvpp2_txq_desc_put(txq);
}
/* Handle tx fragmentation processing */
static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
struct mvpp2_tx_queue *aggr_txq,
struct mvpp2_tx_queue *txq)
{
struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
struct mvpp2_tx_desc *tx_desc;
int i;
dma_addr_t buf_dma_addr;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
void *addr = page_address(frag->page.p) + frag->page_offset;
tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
mvpp2_txdesc_size_set(port, tx_desc, frag->size);
buf_dma_addr = dma_map_single(port->dev->dev.parent, addr,
frag->size,
DMA_TO_DEVICE);
if (dma_mapping_error(port->dev->dev.parent, buf_dma_addr)) {
mvpp2_txq_desc_put(txq);
goto cleanup;
}
mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
if (i == (skb_shinfo(skb)->nr_frags - 1)) {
/* Last descriptor */
mvpp2_txdesc_cmd_set(port, tx_desc,
MVPP2_TXD_L_DESC);
mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
} else {
/* Descriptor in the middle: Not First, Not Last */
mvpp2_txdesc_cmd_set(port, tx_desc, 0);
mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
}
}
return 0;
cleanup:
/* Release all descriptors that were used to map fragments of
* this packet, as well as the corresponding DMA mappings
*/
for (i = i - 1; i >= 0; i--) {
tx_desc = txq->descs + i;
tx_desc_unmap_put(port, txq, tx_desc);
}
return -ENOMEM;
}
static inline void mvpp2_tso_put_hdr(struct sk_buff *skb,
struct net_device *dev,
struct mvpp2_tx_queue *txq,
struct mvpp2_tx_queue *aggr_txq,
struct mvpp2_txq_pcpu *txq_pcpu,
int hdr_sz)
{
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
dma_addr_t addr;
mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
mvpp2_txdesc_size_set(port, tx_desc, hdr_sz);
addr = txq_pcpu->tso_headers_dma +
txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
mvpp2_txdesc_dma_addr_set(port, tx_desc, addr);
mvpp2_txdesc_cmd_set(port, tx_desc, mvpp2_skb_tx_csum(port, skb) |
MVPP2_TXD_F_DESC |
MVPP2_TXD_PADDING_DISABLE);
mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
}
static inline int mvpp2_tso_put_data(struct sk_buff *skb,
struct net_device *dev, struct tso_t *tso,
struct mvpp2_tx_queue *txq,
struct mvpp2_tx_queue *aggr_txq,
struct mvpp2_txq_pcpu *txq_pcpu,
int sz, bool left, bool last)
{
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
dma_addr_t buf_dma_addr;
mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
mvpp2_txdesc_size_set(port, tx_desc, sz);
buf_dma_addr = dma_map_single(dev->dev.parent, tso->data, sz,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
mvpp2_txq_desc_put(txq);
return -ENOMEM;
}
mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
if (!left) {
mvpp2_txdesc_cmd_set(port, tx_desc, MVPP2_TXD_L_DESC);
if (last) {
mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
return 0;
}
} else {
mvpp2_txdesc_cmd_set(port, tx_desc, 0);
}
mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
return 0;
}
static int mvpp2_tx_tso(struct sk_buff *skb, struct net_device *dev,
struct mvpp2_tx_queue *txq,
struct mvpp2_tx_queue *aggr_txq,
struct mvpp2_txq_pcpu *txq_pcpu)
{
struct mvpp2_port *port = netdev_priv(dev);
struct tso_t tso;
int hdr_sz = skb_transport_offset(skb) + tcp_hdrlen(skb);
int i, len, descs = 0;
/* Check number of available descriptors */
if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq,
tso_count_descs(skb)) ||
mvpp2_txq_reserved_desc_num_proc(port->priv, txq, txq_pcpu,
tso_count_descs(skb)))
return 0;
tso_start(skb, &tso);
len = skb->len - hdr_sz;
while (len > 0) {
int left = min_t(int, skb_shinfo(skb)->gso_size, len);
char *hdr = txq_pcpu->tso_headers +
txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
len -= left;
descs++;
tso_build_hdr(skb, hdr, &tso, left, len == 0);
mvpp2_tso_put_hdr(skb, dev, txq, aggr_txq, txq_pcpu, hdr_sz);
while (left > 0) {
int sz = min_t(int, tso.size, left);
left -= sz;
descs++;
if (mvpp2_tso_put_data(skb, dev, &tso, txq, aggr_txq,
txq_pcpu, sz, left, len == 0))
goto release;
tso_build_data(skb, &tso, sz);
}
}
return descs;
release:
for (i = descs - 1; i >= 0; i--) {
struct mvpp2_tx_desc *tx_desc = txq->descs + i;
tx_desc_unmap_put(port, txq, tx_desc);
}
return 0;
}
/* Main tx processing */
static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
{
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2_tx_queue *txq, *aggr_txq;
struct mvpp2_txq_pcpu *txq_pcpu;
struct mvpp2_tx_desc *tx_desc;
dma_addr_t buf_dma_addr;
int frags = 0;
u16 txq_id;
u32 tx_cmd;
txq_id = skb_get_queue_mapping(skb);
txq = port->txqs[txq_id];
txq_pcpu = this_cpu_ptr(txq->pcpu);
aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
if (skb_is_gso(skb)) {
frags = mvpp2_tx_tso(skb, dev, txq, aggr_txq, txq_pcpu);
goto out;
}
frags = skb_shinfo(skb)->nr_frags + 1;
/* Check number of available descriptors */
if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
txq_pcpu, frags)) {
frags = 0;
goto out;
}
/* Get a descriptor for the first part of the packet */
tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
mvpp2_txdesc_size_set(port, tx_desc, skb_headlen(skb));
buf_dma_addr = dma_map_single(dev->dev.parent, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
mvpp2_txq_desc_put(txq);
frags = 0;
goto out;
}
mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
tx_cmd = mvpp2_skb_tx_csum(port, skb);
if (frags == 1) {
/* First and Last descriptor */
tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
} else {
/* First but not Last */
tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
/* Continue with other skb fragments */
if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
tx_desc_unmap_put(port, txq, tx_desc);
frags = 0;
}
}
out:
if (frags > 0) {
struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
txq_pcpu->reserved_num -= frags;
txq_pcpu->count += frags;
aggr_txq->count += frags;
/* Enable transmit */
wmb();
mvpp2_aggr_txq_pend_desc_add(port, frags);
if (txq_pcpu->count >= txq_pcpu->stop_threshold)
netif_tx_stop_queue(nq);
u64_stats_update_begin(&stats->syncp);
stats->tx_packets++;
stats->tx_bytes += skb->len;
u64_stats_update_end(&stats->syncp);
} else {
dev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
}
/* Finalize TX processing */
if (!port->has_tx_irqs && txq_pcpu->count >= txq->done_pkts_coal)
mvpp2_txq_done(port, txq, txq_pcpu);
/* Set the timer in case not all frags were processed */
if (!port->has_tx_irqs && txq_pcpu->count <= frags &&
txq_pcpu->count > 0) {
struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
mvpp2_timer_set(port_pcpu);
}
return NETDEV_TX_OK;
}
static inline void mvpp2_cause_error(struct net_device *dev, int cause)
{
if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
netdev_err(dev, "FCS error\n");
if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
netdev_err(dev, "rx fifo overrun error\n");
if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
netdev_err(dev, "tx fifo underrun error\n");
}
static int mvpp2_poll(struct napi_struct *napi, int budget)
{
u32 cause_rx_tx, cause_rx, cause_tx, cause_misc;
int rx_done = 0;
struct mvpp2_port *port = netdev_priv(napi->dev);
struct mvpp2_queue_vector *qv;
int cpu = smp_processor_id();
qv = container_of(napi, struct mvpp2_queue_vector, napi);
/* Rx/Tx cause register
*
* Bits 0-15: each bit indicates received packets on the Rx queue
* (bit 0 is for Rx queue 0).
*
* Bits 16-23: each bit indicates transmitted packets on the Tx queue
* (bit 16 is for Tx queue 0).
*
* Each CPU has its own Rx/Tx cause register
*/
cause_rx_tx = mvpp2_percpu_read(port->priv, qv->sw_thread_id,
MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
if (cause_misc) {
mvpp2_cause_error(port->dev, cause_misc);
/* Clear the cause register */
mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
mvpp2_percpu_write(port->priv, cpu,
MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
}
cause_tx = cause_rx_tx & MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
if (cause_tx) {
cause_tx >>= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET;
mvpp2_tx_done(port, cause_tx, qv->sw_thread_id);
}
/* Process RX packets */
cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
cause_rx <<= qv->first_rxq;
cause_rx |= qv->pending_cause_rx;
while (cause_rx && budget > 0) {
int count;
struct mvpp2_rx_queue *rxq;
rxq = mvpp2_get_rx_queue(port, cause_rx);
if (!rxq)
break;
count = mvpp2_rx(port, napi, budget, rxq);
rx_done += count;
budget -= count;
if (budget > 0) {
/* Clear the bit associated to this Rx queue
* so that next iteration will continue from
* the next Rx queue.
*/
cause_rx &= ~(1 << rxq->logic_rxq);
}
}
if (budget > 0) {
cause_rx = 0;
napi_complete_done(napi, rx_done);
mvpp2_qvec_interrupt_enable(qv);
}
qv->pending_cause_rx = cause_rx;
return rx_done;
}
/* Set hw internals when starting port */
static void mvpp2_start_dev(struct mvpp2_port *port)
{
struct net_device *ndev = port->dev;
int i;
if (port->gop_id == 0 &&
(port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
port->phy_interface == PHY_INTERFACE_MODE_10GKR))
mvpp2_xlg_max_rx_size_set(port);
else
mvpp2_gmac_max_rx_size_set(port);
mvpp2_txp_max_tx_size_set(port);
for (i = 0; i < port->nqvecs; i++)
napi_enable(&port->qvecs[i].napi);
/* Enable interrupts on all CPUs */
mvpp2_interrupts_enable(port);
if (port->priv->hw_version == MVPP22) {
mvpp22_comphy_init(port);
mvpp22_gop_init(port);
}
mvpp2_port_mii_set(port);
mvpp2_port_enable(port);
if (ndev->phydev)
phy_start(ndev->phydev);
netif_tx_start_all_queues(port->dev);
}
/* Set hw internals when stopping port */
static void mvpp2_stop_dev(struct mvpp2_port *port)
{
struct net_device *ndev = port->dev;
int i;
/* Stop new packets from arriving to RXQs */
mvpp2_ingress_disable(port);
mdelay(10);
/* Disable interrupts on all CPUs */
mvpp2_interrupts_disable(port);
for (i = 0; i < port->nqvecs; i++)
napi_disable(&port->qvecs[i].napi);
netif_carrier_off(port->dev);
netif_tx_stop_all_queues(port->dev);
mvpp2_egress_disable(port);
mvpp2_port_disable(port);
if (ndev->phydev)
phy_stop(ndev->phydev);
phy_power_off(port->comphy);
}
static int mvpp2_check_ringparam_valid(struct net_device *dev,
struct ethtool_ringparam *ring)
{
u16 new_rx_pending = ring->rx_pending;
u16 new_tx_pending = ring->tx_pending;
if (ring->rx_pending == 0 || ring->tx_pending == 0)
return -EINVAL;
if (ring->rx_pending > MVPP2_MAX_RXD)
new_rx_pending = MVPP2_MAX_RXD;
else if (!IS_ALIGNED(ring->rx_pending, 16))
new_rx_pending = ALIGN(ring->rx_pending, 16);
if (ring->tx_pending > MVPP2_MAX_TXD)
new_tx_pending = MVPP2_MAX_TXD;
else if (!IS_ALIGNED(ring->tx_pending, 32))
new_tx_pending = ALIGN(ring->tx_pending, 32);
if (ring->rx_pending != new_rx_pending) {
netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
ring->rx_pending, new_rx_pending);
ring->rx_pending = new_rx_pending;
}
if (ring->tx_pending != new_tx_pending) {
netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
ring->tx_pending, new_tx_pending);
ring->tx_pending = new_tx_pending;
}
return 0;
}
static void mvpp21_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
{
u32 mac_addr_l, mac_addr_m, mac_addr_h;
mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
addr[0] = (mac_addr_h >> 24) & 0xFF;
addr[1] = (mac_addr_h >> 16) & 0xFF;
addr[2] = (mac_addr_h >> 8) & 0xFF;
addr[3] = mac_addr_h & 0xFF;
addr[4] = mac_addr_m & 0xFF;
addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
}
static int mvpp2_phy_connect(struct mvpp2_port *port)
{
struct phy_device *phy_dev;
/* No PHY is attached */
if (!port->phy_node)
return 0;
phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
port->phy_interface);
if (!phy_dev) {
netdev_err(port->dev, "cannot connect to phy\n");
return -ENODEV;
}
phy_dev->supported &= PHY_GBIT_FEATURES;
phy_dev->advertising = phy_dev->supported;
port->link = 0;
port->duplex = 0;
port->speed = 0;
return 0;
}
static void mvpp2_phy_disconnect(struct mvpp2_port *port)
{
struct net_device *ndev = port->dev;
if (!ndev->phydev)
return;
phy_disconnect(ndev->phydev);
}
static int mvpp2_irqs_init(struct mvpp2_port *port)
{
int err, i;
for (i = 0; i < port->nqvecs; i++) {
struct mvpp2_queue_vector *qv = port->qvecs + i;
if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE)
irq_set_status_flags(qv->irq, IRQ_NO_BALANCING);
err = request_irq(qv->irq, mvpp2_isr, 0, port->dev->name, qv);
if (err)
goto err;
if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE)
irq_set_affinity_hint(qv->irq,
cpumask_of(qv->sw_thread_id));
}
return 0;
err:
for (i = 0; i < port->nqvecs; i++) {
struct mvpp2_queue_vector *qv = port->qvecs + i;
irq_set_affinity_hint(qv->irq, NULL);
free_irq(qv->irq, qv);
}
return err;
}
static void mvpp2_irqs_deinit(struct mvpp2_port *port)
{
int i;
for (i = 0; i < port->nqvecs; i++) {
struct mvpp2_queue_vector *qv = port->qvecs + i;
irq_set_affinity_hint(qv->irq, NULL);
irq_clear_status_flags(qv->irq, IRQ_NO_BALANCING);
free_irq(qv->irq, qv);
}
}
static void mvpp22_init_rss(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
int i;
/* Set the table width: replace the whole classifier Rx queue number
* with the ones configured in RSS table entries.
*/
mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(0));
mvpp2_write(priv, MVPP22_RSS_WIDTH, 8);
/* Loop through the classifier Rx Queues and map them to a RSS table.
* Map them all to the first table (0) by default.
*/
for (i = 0; i < MVPP2_CLS_RX_QUEUES; i++) {
mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(i));
mvpp2_write(priv, MVPP22_RSS_TABLE,
MVPP22_RSS_TABLE_POINTER(0));
}
/* Configure the first table to evenly distribute the packets across
* real Rx Queues. The table entries map a hash to an port Rx Queue.
*/
for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) {
u32 sel = MVPP22_RSS_INDEX_TABLE(0) |
MVPP22_RSS_INDEX_TABLE_ENTRY(i);
mvpp2_write(priv, MVPP22_RSS_INDEX, sel);
mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY, i % port->nrxqs);
}
}
static int mvpp2_open(struct net_device *dev)
{
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2 *priv = port->priv;
unsigned char mac_bcast[ETH_ALEN] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
int err;
err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
if (err) {
netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
return err;
}
err = mvpp2_prs_mac_da_accept(port->priv, port->id,
dev->dev_addr, true);
if (err) {
netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
return err;
}
err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
if (err) {
netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
return err;
}
err = mvpp2_prs_def_flow(port);
if (err) {
netdev_err(dev, "mvpp2_prs_def_flow failed\n");
return err;
}
/* Allocate the Rx/Tx queues */
err = mvpp2_setup_rxqs(port);
if (err) {
netdev_err(port->dev, "cannot allocate Rx queues\n");
return err;
}
err = mvpp2_setup_txqs(port);
if (err) {
netdev_err(port->dev, "cannot allocate Tx queues\n");
goto err_cleanup_rxqs;
}
err = mvpp2_irqs_init(port);
if (err) {
netdev_err(port->dev, "cannot init IRQs\n");
goto err_cleanup_txqs;
}
if (priv->hw_version == MVPP22 && !port->phy_node && port->link_irq) {
err = request_irq(port->link_irq, mvpp2_link_status_isr, 0,
dev->name, port);
if (err) {
netdev_err(port->dev, "cannot request link IRQ %d\n",
port->link_irq);
goto err_free_irq;
}
mvpp22_gop_setup_irq(port);
}
/* In default link is down */
netif_carrier_off(port->dev);
err = mvpp2_phy_connect(port);
if (err < 0)
goto err_free_link_irq;
/* Unmask interrupts on all CPUs */
on_each_cpu(mvpp2_interrupts_unmask, port, 1);
mvpp2_shared_interrupt_mask_unmask(port, false);
mvpp2_start_dev(port);
if (priv->hw_version == MVPP22)
mvpp22_init_rss(port);
/* Start hardware statistics gathering */
queue_delayed_work(priv->stats_queue, &port->stats_work,
MVPP2_MIB_COUNTERS_STATS_DELAY);
return 0;
err_free_link_irq:
if (priv->hw_version == MVPP22 && !port->phy_node && port->link_irq)
free_irq(port->link_irq, port);
err_free_irq:
mvpp2_irqs_deinit(port);
err_cleanup_txqs:
mvpp2_cleanup_txqs(port);
err_cleanup_rxqs:
mvpp2_cleanup_rxqs(port);
return err;
}
static int mvpp2_stop(struct net_device *dev)
{
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2_port_pcpu *port_pcpu;
struct mvpp2 *priv = port->priv;
int cpu;
mvpp2_stop_dev(port);
mvpp2_phy_disconnect(port);
/* Mask interrupts on all CPUs */
on_each_cpu(mvpp2_interrupts_mask, port, 1);
mvpp2_shared_interrupt_mask_unmask(port, true);
if (priv->hw_version == MVPP22 && !port->phy_node && port->link_irq)
free_irq(port->link_irq, port);
mvpp2_irqs_deinit(port);
if (!port->has_tx_irqs) {
for_each_present_cpu(cpu) {
port_pcpu = per_cpu_ptr(port->pcpu, cpu);
hrtimer_cancel(&port_pcpu->tx_done_timer);
port_pcpu->timer_scheduled = false;
tasklet_kill(&port_pcpu->tx_done_tasklet);
}
}
mvpp2_cleanup_rxqs(port);
mvpp2_cleanup_txqs(port);
cancel_delayed_work_sync(&port->stats_work);
return 0;
}
static void mvpp2_set_rx_mode(struct net_device *dev)
{
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2 *priv = port->priv;
struct netdev_hw_addr *ha;
int id = port->id;
bool allmulti = dev->flags & IFF_ALLMULTI;
mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
/* Remove all port->id's mcast enries */
mvpp2_prs_mcast_del_all(priv, id);
if (allmulti && !netdev_mc_empty(dev)) {
netdev_for_each_mc_addr(ha, dev)
mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
}
}
static int mvpp2_set_mac_address(struct net_device *dev, void *p)
{
struct mvpp2_port *port = netdev_priv(dev);
const struct sockaddr *addr = p;
int err;
if (!is_valid_ether_addr(addr->sa_data)) {
err = -EADDRNOTAVAIL;
goto log_error;
}
if (!netif_running(dev)) {
err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
if (!err)
return 0;
/* Reconfigure parser to accept the original MAC address */
err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
if (err)
goto log_error;
}
mvpp2_stop_dev(port);
err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
if (!err)
goto out_start;
/* Reconfigure parser accept the original MAC address */
err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
if (err)
goto log_error;
out_start:
mvpp2_start_dev(port);
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
return 0;
log_error:
netdev_err(dev, "failed to change MAC address\n");
return err;
}
static int mvpp2_change_mtu(struct net_device *dev, int mtu)
{
struct mvpp2_port *port = netdev_priv(dev);
int err;
if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
}
if (!netif_running(dev)) {
err = mvpp2_bm_update_mtu(dev, mtu);
if (!err) {
port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
return 0;
}
/* Reconfigure BM to the original MTU */
err = mvpp2_bm_update_mtu(dev, dev->mtu);
if (err)
goto log_error;
}
mvpp2_stop_dev(port);
err = mvpp2_bm_update_mtu(dev, mtu);
if (!err) {
port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
goto out_start;
}
/* Reconfigure BM to the original MTU */
err = mvpp2_bm_update_mtu(dev, dev->mtu);
if (err)
goto log_error;
out_start:
mvpp2_start_dev(port);
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
return 0;
log_error:
netdev_err(dev, "failed to change MTU\n");
return err;
}
static void
mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
struct mvpp2_port *port = netdev_priv(dev);
unsigned int start;
int cpu;
for_each_possible_cpu(cpu) {
struct mvpp2_pcpu_stats *cpu_stats;
u64 rx_packets;
u64 rx_bytes;
u64 tx_packets;
u64 tx_bytes;
cpu_stats = per_cpu_ptr(port->stats, cpu);
do {
start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
rx_packets = cpu_stats->rx_packets;
rx_bytes = cpu_stats->rx_bytes;
tx_packets = cpu_stats->tx_packets;
tx_bytes = cpu_stats->tx_bytes;
} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
stats->rx_packets += rx_packets;
stats->rx_bytes += rx_bytes;
stats->tx_packets += tx_packets;
stats->tx_bytes += tx_bytes;
}
stats->rx_errors = dev->stats.rx_errors;
stats->rx_dropped = dev->stats.rx_dropped;
stats->tx_dropped = dev->stats.tx_dropped;
}
static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
int ret;
if (!dev->phydev)
return -ENOTSUPP;
ret = phy_mii_ioctl(dev->phydev, ifr, cmd);
if (!ret)
mvpp2_link_event(dev);
return ret;
}
/* Ethtool methods */
/* Set interrupt coalescing for ethtools */
static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *c)
{
struct mvpp2_port *port = netdev_priv(dev);
int queue;
for (queue = 0; queue < port->nrxqs; queue++) {
struct mvpp2_rx_queue *rxq = port->rxqs[queue];
rxq->time_coal = c->rx_coalesce_usecs;
rxq->pkts_coal = c->rx_max_coalesced_frames;
mvpp2_rx_pkts_coal_set(port, rxq);
mvpp2_rx_time_coal_set(port, rxq);
}
if (port->has_tx_irqs) {
port->tx_time_coal = c->tx_coalesce_usecs;
mvpp2_tx_time_coal_set(port);
}
for (queue = 0; queue < port->ntxqs; queue++) {
struct mvpp2_tx_queue *txq = port->txqs[queue];
txq->done_pkts_coal = c->tx_max_coalesced_frames;
if (port->has_tx_irqs)
mvpp2_tx_pkts_coal_set(port, txq);
}
return 0;
}
/* get coalescing for ethtools */
static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *c)
{
struct mvpp2_port *port = netdev_priv(dev);
c->rx_coalesce_usecs = port->rxqs[0]->time_coal;
c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
return 0;
}
static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *drvinfo)
{
strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
sizeof(drvinfo->driver));
strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
sizeof(drvinfo->version));
strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
sizeof(drvinfo->bus_info));
}
static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ring)
{
struct mvpp2_port *port = netdev_priv(dev);
ring->rx_max_pending = MVPP2_MAX_RXD;
ring->tx_max_pending = MVPP2_MAX_TXD;
ring->rx_pending = port->rx_ring_size;
ring->tx_pending = port->tx_ring_size;
}
static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ring)
{
struct mvpp2_port *port = netdev_priv(dev);
u16 prev_rx_ring_size = port->rx_ring_size;
u16 prev_tx_ring_size = port->tx_ring_size;
int err;
err = mvpp2_check_ringparam_valid(dev, ring);
if (err)
return err;
if (!netif_running(dev)) {
port->rx_ring_size = ring->rx_pending;
port->tx_ring_size = ring->tx_pending;
return 0;
}
/* The interface is running, so we have to force a
* reallocation of the queues
*/
mvpp2_stop_dev(port);
mvpp2_cleanup_rxqs(port);
mvpp2_cleanup_txqs(port);
port->rx_ring_size = ring->rx_pending;
port->tx_ring_size = ring->tx_pending;
err = mvpp2_setup_rxqs(port);
if (err) {
/* Reallocate Rx queues with the original ring size */
port->rx_ring_size = prev_rx_ring_size;
ring->rx_pending = prev_rx_ring_size;
err = mvpp2_setup_rxqs(port);
if (err)
goto err_out;
}
err = mvpp2_setup_txqs(port);
if (err) {
/* Reallocate Tx queues with the original ring size */
port->tx_ring_size = prev_tx_ring_size;
ring->tx_pending = prev_tx_ring_size;
err = mvpp2_setup_txqs(port);
if (err)
goto err_clean_rxqs;
}
mvpp2_start_dev(port);
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
return 0;
err_clean_rxqs:
mvpp2_cleanup_rxqs(port);
err_out:
netdev_err(dev, "failed to change ring parameters");
return err;
}
/* Device ops */
static const struct net_device_ops mvpp2_netdev_ops = {
.ndo_open = mvpp2_open,
.ndo_stop = mvpp2_stop,
.ndo_start_xmit = mvpp2_tx,
.ndo_set_rx_mode = mvpp2_set_rx_mode,
.ndo_set_mac_address = mvpp2_set_mac_address,
.ndo_change_mtu = mvpp2_change_mtu,
.ndo_get_stats64 = mvpp2_get_stats64,
.ndo_do_ioctl = mvpp2_ioctl,
};
static const struct ethtool_ops mvpp2_eth_tool_ops = {
.nway_reset = phy_ethtool_nway_reset,
.get_link = ethtool_op_get_link,
.set_coalesce = mvpp2_ethtool_set_coalesce,
.get_coalesce = mvpp2_ethtool_get_coalesce,
.get_drvinfo = mvpp2_ethtool_get_drvinfo,
.get_ringparam = mvpp2_ethtool_get_ringparam,
.set_ringparam = mvpp2_ethtool_set_ringparam,
.get_strings = mvpp2_ethtool_get_strings,
.get_ethtool_stats = mvpp2_ethtool_get_stats,
.get_sset_count = mvpp2_ethtool_get_sset_count,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
};
/* Used for PPv2.1, or PPv2.2 with the old Device Tree binding that
* had a single IRQ defined per-port.
*/
static int mvpp2_simple_queue_vectors_init(struct mvpp2_port *port,
struct device_node *port_node)
{
struct mvpp2_queue_vector *v = &port->qvecs[0];
v->first_rxq = 0;
v->nrxqs = port->nrxqs;
v->type = MVPP2_QUEUE_VECTOR_SHARED;
v->sw_thread_id = 0;
v->sw_thread_mask = *cpumask_bits(cpu_online_mask);
v->port = port;
v->irq = irq_of_parse_and_map(port_node, 0);
if (v->irq <= 0)
return -EINVAL;
netif_napi_add(port->dev, &v->napi, mvpp2_poll,
NAPI_POLL_WEIGHT);
port->nqvecs = 1;
return 0;
}
static int mvpp2_multi_queue_vectors_init(struct mvpp2_port *port,
struct device_node *port_node)
{
struct mvpp2_queue_vector *v;
int i, ret;
port->nqvecs = num_possible_cpus();
if (queue_mode == MVPP2_QDIST_SINGLE_MODE)
port->nqvecs += 1;
for (i = 0; i < port->nqvecs; i++) {
char irqname[16];
v = port->qvecs + i;
v->port = port;
v->type = MVPP2_QUEUE_VECTOR_PRIVATE;
v->sw_thread_id = i;
v->sw_thread_mask = BIT(i);
snprintf(irqname, sizeof(irqname), "tx-cpu%d", i);
if (queue_mode == MVPP2_QDIST_MULTI_MODE) {
v->first_rxq = i * MVPP2_DEFAULT_RXQ;
v->nrxqs = MVPP2_DEFAULT_RXQ;
} else if (queue_mode == MVPP2_QDIST_SINGLE_MODE &&
i == (port->nqvecs - 1)) {
v->first_rxq = 0;
v->nrxqs = port->nrxqs;
v->type = MVPP2_QUEUE_VECTOR_SHARED;
strncpy(irqname, "rx-shared", sizeof(irqname));
}
v->irq = of_irq_get_byname(port_node, irqname);
if (v->irq <= 0) {
ret = -EINVAL;
goto err;
}
netif_napi_add(port->dev, &v->napi, mvpp2_poll,
NAPI_POLL_WEIGHT);
}
return 0;
err:
for (i = 0; i < port->nqvecs; i++)
irq_dispose_mapping(port->qvecs[i].irq);
return ret;
}
static int mvpp2_queue_vectors_init(struct mvpp2_port *port,
struct device_node *port_node)
{
if (port->has_tx_irqs)
return mvpp2_multi_queue_vectors_init(port, port_node);
else
return mvpp2_simple_queue_vectors_init(port, port_node);
}
static void mvpp2_queue_vectors_deinit(struct mvpp2_port *port)
{
int i;
for (i = 0; i < port->nqvecs; i++)
irq_dispose_mapping(port->qvecs[i].irq);
}
/* Configure Rx queue group interrupt for this port */
static void mvpp2_rx_irqs_setup(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
u32 val;
int i;
if (priv->hw_version == MVPP21) {
mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
port->nrxqs);
return;
}
/* Handle the more complicated PPv2.2 case */
for (i = 0; i < port->nqvecs; i++) {
struct mvpp2_queue_vector *qv = port->qvecs + i;
if (!qv->nrxqs)
continue;
val = qv->sw_thread_id;
val |= port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET;
mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
val = qv->first_rxq;
val |= qv->nrxqs << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET;
mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
}
}
/* Initialize port HW */
static int mvpp2_port_init(struct mvpp2_port *port)
{
struct device *dev = port->dev->dev.parent;
struct mvpp2 *priv = port->priv;
struct mvpp2_txq_pcpu *txq_pcpu;
int queue, cpu, err;
/* Checks for hardware constraints */
if (port->first_rxq + port->nrxqs >
MVPP2_MAX_PORTS * priv->max_port_rxqs)
return -EINVAL;
if (port->nrxqs % 4 || (port->nrxqs > priv->max_port_rxqs) ||
(port->ntxqs > MVPP2_MAX_TXQ))
return -EINVAL;
/* Disable port */
mvpp2_egress_disable(port);
mvpp2_port_disable(port);
port->tx_time_coal = MVPP2_TXDONE_COAL_USEC;
port->txqs = devm_kcalloc(dev, port->ntxqs, sizeof(*port->txqs),
GFP_KERNEL);
if (!port->txqs)
return -ENOMEM;
/* Associate physical Tx queues to this port and initialize.
* The mapping is predefined.
*/
for (queue = 0; queue < port->ntxqs; queue++) {
int queue_phy_id = mvpp2_txq_phys(port->id, queue);
struct mvpp2_tx_queue *txq;
txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
if (!txq) {
err = -ENOMEM;
goto err_free_percpu;
}
txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
if (!txq->pcpu) {
err = -ENOMEM;
goto err_free_percpu;
}
txq->id = queue_phy_id;
txq->log_id = queue;
txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
for_each_present_cpu(cpu) {
txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
txq_pcpu->cpu = cpu;
}
port->txqs[queue] = txq;
}
port->rxqs = devm_kcalloc(dev, port->nrxqs, sizeof(*port->rxqs),
GFP_KERNEL);
if (!port->rxqs) {
err = -ENOMEM;
goto err_free_percpu;
}
/* Allocate and initialize Rx queue for this port */
for (queue = 0; queue < port->nrxqs; queue++) {
struct mvpp2_rx_queue *rxq;
/* Map physical Rx queue to port's logical Rx queue */
rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
if (!rxq) {
err = -ENOMEM;
goto err_free_percpu;
}
/* Map this Rx queue to a physical queue */
rxq->id = port->first_rxq + queue;
rxq->port = port->id;
rxq->logic_rxq = queue;
port->rxqs[queue] = rxq;
}
mvpp2_rx_irqs_setup(port);
/* Create Rx descriptor rings */
for (queue = 0; queue < port->nrxqs; queue++) {
struct mvpp2_rx_queue *rxq = port->rxqs[queue];
rxq->size = port->rx_ring_size;
rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
rxq->time_coal = MVPP2_RX_COAL_USEC;
}
mvpp2_ingress_disable(port);
/* Port default configuration */
mvpp2_defaults_set(port);
/* Port's classifier configuration */
mvpp2_cls_oversize_rxq_set(port);
mvpp2_cls_port_config(port);
/* Provide an initial Rx packet size */
port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
/* Initialize pools for swf */
err = mvpp2_swf_bm_pool_init(port);
if (err)
goto err_free_percpu;
return 0;
err_free_percpu:
for (queue = 0; queue < port->ntxqs; queue++) {
if (!port->txqs[queue])
continue;
free_percpu(port->txqs[queue]->pcpu);
}
return err;
}
/* Checks if the port DT description has the TX interrupts
* described. On PPv2.1, there are no such interrupts. On PPv2.2,
* there are available, but we need to keep support for old DTs.
*/
static bool mvpp2_port_has_tx_irqs(struct mvpp2 *priv,
struct device_node *port_node)
{
char *irqs[5] = { "rx-shared", "tx-cpu0", "tx-cpu1",
"tx-cpu2", "tx-cpu3" };
int ret, i;
if (priv->hw_version == MVPP21)
return false;
for (i = 0; i < 5; i++) {
ret = of_property_match_string(port_node, "interrupt-names",
irqs[i]);
if (ret < 0)
return false;
}
return true;
}
static void mvpp2_port_copy_mac_addr(struct net_device *dev, struct mvpp2 *priv,
struct device_node *port_node,
char **mac_from)
{
struct mvpp2_port *port = netdev_priv(dev);
char hw_mac_addr[ETH_ALEN] = {0};
const char *dt_mac_addr;
dt_mac_addr = of_get_mac_address(port_node);
if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
*mac_from = "device tree";
ether_addr_copy(dev->dev_addr, dt_mac_addr);
return;
}
if (priv->hw_version == MVPP21) {
mvpp21_get_mac_address(port, hw_mac_addr);
if (is_valid_ether_addr(hw_mac_addr)) {
*mac_from = "hardware";
ether_addr_copy(dev->dev_addr, hw_mac_addr);
return;
}
}
*mac_from = "random";
eth_hw_addr_random(dev);
}
/* Ports initialization */
static int mvpp2_port_probe(struct platform_device *pdev,
struct device_node *port_node,
struct mvpp2 *priv, int index)
{
struct device_node *phy_node;
struct phy *comphy;
struct mvpp2_port *port;
struct mvpp2_port_pcpu *port_pcpu;
struct net_device *dev;
struct resource *res;
char *mac_from = "";
unsigned int ntxqs, nrxqs;
bool has_tx_irqs;
u32 id;
int features;
int phy_mode;
int err, i, cpu;
has_tx_irqs = mvpp2_port_has_tx_irqs(priv, port_node);
if (!has_tx_irqs)
queue_mode = MVPP2_QDIST_SINGLE_MODE;
ntxqs = MVPP2_MAX_TXQ;
if (priv->hw_version == MVPP22 && queue_mode == MVPP2_QDIST_MULTI_MODE)
nrxqs = MVPP2_DEFAULT_RXQ * num_possible_cpus();
else
nrxqs = MVPP2_DEFAULT_RXQ;
dev = alloc_etherdev_mqs(sizeof(*port), ntxqs, nrxqs);
if (!dev)
return -ENOMEM;
phy_node = of_parse_phandle(port_node, "phy", 0);
phy_mode = of_get_phy_mode(port_node);
if (phy_mode < 0) {
dev_err(&pdev->dev, "incorrect phy mode\n");
err = phy_mode;
goto err_free_netdev;
}
comphy = devm_of_phy_get(&pdev->dev, port_node, NULL);
if (IS_ERR(comphy)) {
if (PTR_ERR(comphy) == -EPROBE_DEFER) {
err = -EPROBE_DEFER;
goto err_free_netdev;
}
comphy = NULL;
}
if (of_property_read_u32(port_node, "port-id", &id)) {
err = -EINVAL;
dev_err(&pdev->dev, "missing port-id value\n");
goto err_free_netdev;
}
dev->tx_queue_len = MVPP2_MAX_TXD;
dev->watchdog_timeo = 5 * HZ;
dev->netdev_ops = &mvpp2_netdev_ops;
dev->ethtool_ops = &mvpp2_eth_tool_ops;
port = netdev_priv(dev);
port->dev = dev;
port->ntxqs = ntxqs;
port->nrxqs = nrxqs;
port->priv = priv;
port->has_tx_irqs = has_tx_irqs;
err = mvpp2_queue_vectors_init(port, port_node);
if (err)
goto err_free_netdev;
port->link_irq = of_irq_get_byname(port_node, "link");
if (port->link_irq == -EPROBE_DEFER) {
err = -EPROBE_DEFER;
goto err_deinit_qvecs;
}
if (port->link_irq <= 0)
/* the link irq is optional */
port->link_irq = 0;
if (of_property_read_bool(port_node, "marvell,loopback"))
port->flags |= MVPP2_F_LOOPBACK;
port->id = id;
if (priv->hw_version == MVPP21)
port->first_rxq = port->id * port->nrxqs;
else
port->first_rxq = port->id * priv->max_port_rxqs;
port->phy_node = phy_node;
port->phy_interface = phy_mode;
port->comphy = comphy;
if (priv->hw_version == MVPP21) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 2 + id);
port->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(port->base)) {
err = PTR_ERR(port->base);
goto err_free_irq;
}
port->stats_base = port->priv->lms_base +
MVPP21_MIB_COUNTERS_OFFSET +
port->gop_id * MVPP21_MIB_COUNTERS_PORT_SZ;
} else {
if (of_property_read_u32(port_node, "gop-port-id",
&port->gop_id)) {
err = -EINVAL;
dev_err(&pdev->dev, "missing gop-port-id value\n");
goto err_deinit_qvecs;
}
port->base = priv->iface_base + MVPP22_GMAC_BASE(port->gop_id);
port->stats_base = port->priv->iface_base +
MVPP22_MIB_COUNTERS_OFFSET +
port->gop_id * MVPP22_MIB_COUNTERS_PORT_SZ;
}
/* Alloc per-cpu and ethtool stats */
port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
if (!port->stats) {
err = -ENOMEM;
goto err_free_irq;
}
port->ethtool_stats = devm_kcalloc(&pdev->dev,
ARRAY_SIZE(mvpp2_ethtool_regs),
sizeof(u64), GFP_KERNEL);
if (!port->ethtool_stats) {
err = -ENOMEM;
goto err_free_stats;
}
mutex_init(&port->gather_stats_lock);
INIT_DELAYED_WORK(&port->stats_work, mvpp2_gather_hw_statistics);
mvpp2_port_copy_mac_addr(dev, priv, port_node, &mac_from);
port->tx_ring_size = MVPP2_MAX_TXD;
port->rx_ring_size = MVPP2_MAX_RXD;
SET_NETDEV_DEV(dev, &pdev->dev);
err = mvpp2_port_init(port);
if (err < 0) {
dev_err(&pdev->dev, "failed to init port %d\n", id);
goto err_free_stats;
}
mvpp2_port_periodic_xon_disable(port);
if (priv->hw_version == MVPP21)
mvpp2_port_fc_adv_enable(port);
mvpp2_port_reset(port);
port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
if (!port->pcpu) {
err = -ENOMEM;
goto err_free_txq_pcpu;
}
if (!port->has_tx_irqs) {
for_each_present_cpu(cpu) {
port_pcpu = per_cpu_ptr(port->pcpu, cpu);
hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_PINNED);
port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
port_pcpu->timer_scheduled = false;
tasklet_init(&port_pcpu->tx_done_tasklet,
mvpp2_tx_proc_cb,
(unsigned long)dev);
}
}
features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
dev->features = features | NETIF_F_RXCSUM;
dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
dev->vlan_features |= features;
dev->gso_max_segs = MVPP2_MAX_TSO_SEGS;
/* MTU range: 68 - 9676 */
dev->min_mtu = ETH_MIN_MTU;
/* 9676 == 9700 - 20 and rounding to 8 */
dev->max_mtu = 9676;
err = register_netdev(dev);
if (err < 0) {
dev_err(&pdev->dev, "failed to register netdev\n");
goto err_free_port_pcpu;
}
netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
priv->port_list[index] = port;
return 0;
err_free_port_pcpu:
free_percpu(port->pcpu);
err_free_txq_pcpu:
for (i = 0; i < port->ntxqs; i++)
free_percpu(port->txqs[i]->pcpu);
err_free_stats:
free_percpu(port->stats);
err_free_irq:
if (port->link_irq)
irq_dispose_mapping(port->link_irq);
err_deinit_qvecs:
mvpp2_queue_vectors_deinit(port);
err_free_netdev:
of_node_put(phy_node);
free_netdev(dev);
return err;
}
/* Ports removal routine */
static void mvpp2_port_remove(struct mvpp2_port *port)
{
int i;
unregister_netdev(port->dev);
of_node_put(port->phy_node);
free_percpu(port->pcpu);
free_percpu(port->stats);
for (i = 0; i < port->ntxqs; i++)
free_percpu(port->txqs[i]->pcpu);
mvpp2_queue_vectors_deinit(port);
if (port->link_irq)
irq_dispose_mapping(port->link_irq);
free_netdev(port->dev);
}
/* Initialize decoding windows */
static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
struct mvpp2 *priv)
{
u32 win_enable;
int i;
for (i = 0; i < 6; i++) {
mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
if (i < 4)
mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
}
win_enable = 0;
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
mvpp2_write(priv, MVPP2_WIN_BASE(i),
(cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
dram->mbus_dram_target_id);
mvpp2_write(priv, MVPP2_WIN_SIZE(i),
(cs->size - 1) & 0xffff0000);
win_enable |= (1 << i);
}
mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
}
/* Initialize Rx FIFO's */
static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
{
int port;
for (port = 0; port < MVPP2_MAX_PORTS; port++) {
mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB);
mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB);
}
mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
MVPP2_RX_FIFO_PORT_MIN_PKT);
mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
}
static void mvpp22_rx_fifo_init(struct mvpp2 *priv)
{
int port;
/* The FIFO size parameters are set depending on the maximum speed a
* given port can handle:
* - Port 0: 10Gbps
* - Port 1: 2.5Gbps
* - Ports 2 and 3: 1Gbps
*/
mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(0),
MVPP2_RX_FIFO_PORT_DATA_SIZE_32KB);
mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(0),
MVPP2_RX_FIFO_PORT_ATTR_SIZE_32KB);
mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(1),
MVPP2_RX_FIFO_PORT_DATA_SIZE_8KB);
mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(1),
MVPP2_RX_FIFO_PORT_ATTR_SIZE_8KB);
for (port = 2; port < MVPP2_MAX_PORTS; port++) {
mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB);
mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB);
}
mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
MVPP2_RX_FIFO_PORT_MIN_PKT);
mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
}
/* Initialize Tx FIFO's */
static void mvpp22_tx_fifo_init(struct mvpp2 *priv)
{
int port;
for (port = 0; port < MVPP2_MAX_PORTS; port++)
mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port),
MVPP22_TX_FIFO_DATA_SIZE_3KB);
}
static void mvpp2_axi_init(struct mvpp2 *priv)
{
u32 val, rdval, wrval;
mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
/* AXI Bridge Configuration */
rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
<< MVPP22_AXI_ATTR_CACHE_OFFS;
rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
<< MVPP22_AXI_ATTR_CACHE_OFFS;
wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
/* BM */
mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
/* Descriptors */
mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
/* Buffer Data */
mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
val = MVPP22_AXI_CODE_CACHE_NON_CACHE
<< MVPP22_AXI_CODE_CACHE_OFFS;
val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
<< MVPP22_AXI_CODE_DOMAIN_OFFS;
mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
val = MVPP22_AXI_CODE_CACHE_RD_CACHE
<< MVPP22_AXI_CODE_CACHE_OFFS;
val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_CODE_DOMAIN_OFFS;
mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
val = MVPP22_AXI_CODE_CACHE_WR_CACHE
<< MVPP22_AXI_CODE_CACHE_OFFS;
val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_CODE_DOMAIN_OFFS;
mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
}
/* Initialize network controller common part HW */
static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
{
const struct mbus_dram_target_info *dram_target_info;
int err, i;
u32 val;
/* MBUS windows configuration */
dram_target_info = mv_mbus_dram_info();
if (dram_target_info)
mvpp2_conf_mbus_windows(dram_target_info, priv);
if (priv->hw_version == MVPP22)
mvpp2_axi_init(priv);
/* Disable HW PHY polling */
if (priv->hw_version == MVPP21) {
val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
} else {
val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
val &= ~MVPP22_SMI_POLLING_EN;
writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
}
/* Allocate and initialize aggregated TXQs */
priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
sizeof(*priv->aggr_txqs),
GFP_KERNEL);
if (!priv->aggr_txqs)
return -ENOMEM;
for_each_present_cpu(i) {
priv->aggr_txqs[i].id = i;
priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i], i, priv);
if (err < 0)
return err;
}
/* Fifo Init */
if (priv->hw_version == MVPP21) {
mvpp2_rx_fifo_init(priv);
} else {
mvpp22_rx_fifo_init(priv);
mvpp22_tx_fifo_init(priv);
}
if (priv->hw_version == MVPP21)
writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
/* Allow cache snoop when transmiting packets */
mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
/* Buffer Manager initialization */
err = mvpp2_bm_init(pdev, priv);
if (err < 0)
return err;
/* Parser default initialization */
err = mvpp2_prs_default_init(pdev, priv);
if (err < 0)
return err;
/* Classifier default initialization */
mvpp2_cls_init(priv);
return 0;
}
static int mvpp2_probe(struct platform_device *pdev)
{
struct device_node *dn = pdev->dev.of_node;
struct device_node *port_node;
struct mvpp2 *priv;
struct resource *res;
void __iomem *base;
int i;
int err;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->hw_version =
(unsigned long)of_device_get_match_data(&pdev->dev);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
if (priv->hw_version == MVPP21) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->lms_base))
return PTR_ERR(priv->lms_base);
} else {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
priv->iface_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->iface_base))
return PTR_ERR(priv->iface_base);
priv->sysctrl_base =
syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"marvell,system-controller");
if (IS_ERR(priv->sysctrl_base))
/* The system controller regmap is optional for dt
* compatibility reasons. When not provided, the
* configuration of the GoP relies on the
* firmware/bootloader.
*/
priv->sysctrl_base = NULL;
}
for (i = 0; i < MVPP2_MAX_THREADS; i++) {
u32 addr_space_sz;
addr_space_sz = (priv->hw_version == MVPP21 ?
MVPP21_ADDR_SPACE_SZ : MVPP22_ADDR_SPACE_SZ);
priv->swth_base[i] = base + i * addr_space_sz;
}
if (priv->hw_version == MVPP21)
priv->max_port_rxqs = 8;
else
priv->max_port_rxqs = 32;
priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
if (IS_ERR(priv->pp_clk))
return PTR_ERR(priv->pp_clk);
err = clk_prepare_enable(priv->pp_clk);
if (err < 0)
return err;
priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
if (IS_ERR(priv->gop_clk)) {
err = PTR_ERR(priv->gop_clk);
goto err_pp_clk;
}
err = clk_prepare_enable(priv->gop_clk);
if (err < 0)
goto err_pp_clk;
if (priv->hw_version == MVPP22) {
priv->mg_clk = devm_clk_get(&pdev->dev, "mg_clk");
if (IS_ERR(priv->mg_clk)) {
err = PTR_ERR(priv->mg_clk);
goto err_gop_clk;
}
err = clk_prepare_enable(priv->mg_clk);
if (err < 0)
goto err_gop_clk;
priv->axi_clk = devm_clk_get(&pdev->dev, "axi_clk");
if (IS_ERR(priv->axi_clk)) {
err = PTR_ERR(priv->axi_clk);
if (err == -EPROBE_DEFER)
goto err_gop_clk;
priv->axi_clk = NULL;
} else {
err = clk_prepare_enable(priv->axi_clk);
if (err < 0)
goto err_gop_clk;
}
}
/* Get system's tclk rate */
priv->tclk = clk_get_rate(priv->pp_clk);
if (priv->hw_version == MVPP22) {
err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(40));
if (err)
goto err_mg_clk;
/* Sadly, the BM pools all share the same register to
* store the high 32 bits of their address. So they
* must all have the same high 32 bits, which forces
* us to restrict coherent memory to DMA_BIT_MASK(32).
*/
err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
if (err)
goto err_mg_clk;
}
/* Initialize network controller */
err = mvpp2_init(pdev, priv);
if (err < 0) {
dev_err(&pdev->dev, "failed to initialize controller\n");
goto err_mg_clk;
}
priv->port_count = of_get_available_child_count(dn);
if (priv->port_count == 0) {
dev_err(&pdev->dev, "no ports enabled\n");
err = -ENODEV;
goto err_mg_clk;
}
priv->port_list = devm_kcalloc(&pdev->dev, priv->port_count,
sizeof(*priv->port_list),
GFP_KERNEL);
if (!priv->port_list) {
err = -ENOMEM;
goto err_mg_clk;
}
/* Initialize ports */
i = 0;
for_each_available_child_of_node(dn, port_node) {
err = mvpp2_port_probe(pdev, port_node, priv, i);
if (err < 0)
goto err_mg_clk;
i++;
}
/* Statistics must be gathered regularly because some of them (like
* packets counters) are 32-bit registers and could overflow quite
* quickly. For instance, a 10Gb link used at full bandwidth with the
* smallest packets (64B) will overflow a 32-bit counter in less than
* 30 seconds. Then, use a workqueue to fill 64-bit counters.
*/
snprintf(priv->queue_name, sizeof(priv->queue_name),
"stats-wq-%s%s", netdev_name(priv->port_list[0]->dev),
priv->port_count > 1 ? "+" : "");
priv->stats_queue = create_singlethread_workqueue(priv->queue_name);
if (!priv->stats_queue) {
err = -ENOMEM;
goto err_mg_clk;
}
platform_set_drvdata(pdev, priv);
return 0;
err_mg_clk:
clk_disable_unprepare(priv->axi_clk);
if (priv->hw_version == MVPP22)
clk_disable_unprepare(priv->mg_clk);
err_gop_clk:
clk_disable_unprepare(priv->gop_clk);
err_pp_clk:
clk_disable_unprepare(priv->pp_clk);
return err;
}
static int mvpp2_remove(struct platform_device *pdev)
{
struct mvpp2 *priv = platform_get_drvdata(pdev);
struct device_node *dn = pdev->dev.of_node;
struct device_node *port_node;
int i = 0;
flush_workqueue(priv->stats_queue);
destroy_workqueue(priv->stats_queue);
for_each_available_child_of_node(dn, port_node) {
if (priv->port_list[i]) {
mutex_destroy(&priv->port_list[i]->gather_stats_lock);
mvpp2_port_remove(priv->port_list[i]);
}
i++;
}
for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
}
for_each_present_cpu(i) {
struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
dma_free_coherent(&pdev->dev,
MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
aggr_txq->descs,
aggr_txq->descs_dma);
}
clk_disable_unprepare(priv->axi_clk);
clk_disable_unprepare(priv->mg_clk);
clk_disable_unprepare(priv->pp_clk);
clk_disable_unprepare(priv->gop_clk);
return 0;
}
static const struct of_device_id mvpp2_match[] = {
{
.compatible = "marvell,armada-375-pp2",
.data = (void *)MVPP21,
},
{
.compatible = "marvell,armada-7k-pp22",
.data = (void *)MVPP22,
},
{ }
};
MODULE_DEVICE_TABLE(of, mvpp2_match);
static struct platform_driver mvpp2_driver = {
.probe = mvpp2_probe,
.remove = mvpp2_remove,
.driver = {
.name = MVPP2_DRIVER_NAME,
.of_match_table = mvpp2_match,
},
};
module_platform_driver(mvpp2_driver);
MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
MODULE_LICENSE("GPL v2");