| /* |
| * Serial Attached SCSI (SAS) Expander discovery and configuration |
| * |
| * Copyright (C) 2005 Adaptec, Inc. All rights reserved. |
| * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> |
| * |
| * This file is licensed under GPLv2. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| */ |
| |
| #include <linux/scatterlist.h> |
| #include <linux/blkdev.h> |
| #include <linux/slab.h> |
| |
| #include "sas_internal.h" |
| |
| #include <scsi/sas_ata.h> |
| #include <scsi/scsi_transport.h> |
| #include <scsi/scsi_transport_sas.h> |
| #include "../scsi_sas_internal.h" |
| |
| static int sas_discover_expander(struct domain_device *dev); |
| static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); |
| static int sas_configure_phy(struct domain_device *dev, int phy_id, |
| u8 *sas_addr, int include); |
| static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); |
| |
| /* ---------- SMP task management ---------- */ |
| |
| static void smp_task_timedout(struct timer_list *t) |
| { |
| struct sas_task_slow *slow = from_timer(slow, t, timer); |
| struct sas_task *task = slow->task; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&task->task_state_lock, flags); |
| if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) |
| task->task_state_flags |= SAS_TASK_STATE_ABORTED; |
| spin_unlock_irqrestore(&task->task_state_lock, flags); |
| |
| complete(&task->slow_task->completion); |
| } |
| |
| static void smp_task_done(struct sas_task *task) |
| { |
| if (!del_timer(&task->slow_task->timer)) |
| return; |
| complete(&task->slow_task->completion); |
| } |
| |
| /* Give it some long enough timeout. In seconds. */ |
| #define SMP_TIMEOUT 10 |
| |
| static int smp_execute_task_sg(struct domain_device *dev, |
| struct scatterlist *req, struct scatterlist *resp) |
| { |
| int res, retry; |
| struct sas_task *task = NULL; |
| struct sas_internal *i = |
| to_sas_internal(dev->port->ha->core.shost->transportt); |
| |
| mutex_lock(&dev->ex_dev.cmd_mutex); |
| for (retry = 0; retry < 3; retry++) { |
| if (test_bit(SAS_DEV_GONE, &dev->state)) { |
| res = -ECOMM; |
| break; |
| } |
| |
| task = sas_alloc_slow_task(GFP_KERNEL); |
| if (!task) { |
| res = -ENOMEM; |
| break; |
| } |
| task->dev = dev; |
| task->task_proto = dev->tproto; |
| task->smp_task.smp_req = *req; |
| task->smp_task.smp_resp = *resp; |
| |
| task->task_done = smp_task_done; |
| |
| task->slow_task->timer.function = smp_task_timedout; |
| task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ; |
| add_timer(&task->slow_task->timer); |
| |
| res = i->dft->lldd_execute_task(task, GFP_KERNEL); |
| |
| if (res) { |
| del_timer(&task->slow_task->timer); |
| SAS_DPRINTK("executing SMP task failed:%d\n", res); |
| break; |
| } |
| |
| wait_for_completion(&task->slow_task->completion); |
| res = -ECOMM; |
| if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { |
| SAS_DPRINTK("smp task timed out or aborted\n"); |
| i->dft->lldd_abort_task(task); |
| if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { |
| SAS_DPRINTK("SMP task aborted and not done\n"); |
| break; |
| } |
| } |
| if (task->task_status.resp == SAS_TASK_COMPLETE && |
| task->task_status.stat == SAM_STAT_GOOD) { |
| res = 0; |
| break; |
| } |
| if (task->task_status.resp == SAS_TASK_COMPLETE && |
| task->task_status.stat == SAS_DATA_UNDERRUN) { |
| /* no error, but return the number of bytes of |
| * underrun */ |
| res = task->task_status.residual; |
| break; |
| } |
| if (task->task_status.resp == SAS_TASK_COMPLETE && |
| task->task_status.stat == SAS_DATA_OVERRUN) { |
| res = -EMSGSIZE; |
| break; |
| } |
| if (task->task_status.resp == SAS_TASK_UNDELIVERED && |
| task->task_status.stat == SAS_DEVICE_UNKNOWN) |
| break; |
| else { |
| SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " |
| "status 0x%x\n", __func__, |
| SAS_ADDR(dev->sas_addr), |
| task->task_status.resp, |
| task->task_status.stat); |
| sas_free_task(task); |
| task = NULL; |
| } |
| } |
| mutex_unlock(&dev->ex_dev.cmd_mutex); |
| |
| BUG_ON(retry == 3 && task != NULL); |
| sas_free_task(task); |
| return res; |
| } |
| |
| static int smp_execute_task(struct domain_device *dev, void *req, int req_size, |
| void *resp, int resp_size) |
| { |
| struct scatterlist req_sg; |
| struct scatterlist resp_sg; |
| |
| sg_init_one(&req_sg, req, req_size); |
| sg_init_one(&resp_sg, resp, resp_size); |
| return smp_execute_task_sg(dev, &req_sg, &resp_sg); |
| } |
| |
| /* ---------- Allocations ---------- */ |
| |
| static inline void *alloc_smp_req(int size) |
| { |
| u8 *p = kzalloc(size, GFP_KERNEL); |
| if (p) |
| p[0] = SMP_REQUEST; |
| return p; |
| } |
| |
| static inline void *alloc_smp_resp(int size) |
| { |
| return kzalloc(size, GFP_KERNEL); |
| } |
| |
| static char sas_route_char(struct domain_device *dev, struct ex_phy *phy) |
| { |
| switch (phy->routing_attr) { |
| case TABLE_ROUTING: |
| if (dev->ex_dev.t2t_supp) |
| return 'U'; |
| else |
| return 'T'; |
| case DIRECT_ROUTING: |
| return 'D'; |
| case SUBTRACTIVE_ROUTING: |
| return 'S'; |
| default: |
| return '?'; |
| } |
| } |
| |
| static enum sas_device_type to_dev_type(struct discover_resp *dr) |
| { |
| /* This is detecting a failure to transmit initial dev to host |
| * FIS as described in section J.5 of sas-2 r16 |
| */ |
| if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev && |
| dr->linkrate >= SAS_LINK_RATE_1_5_GBPS) |
| return SAS_SATA_PENDING; |
| else |
| return dr->attached_dev_type; |
| } |
| |
| static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp) |
| { |
| enum sas_device_type dev_type; |
| enum sas_linkrate linkrate; |
| u8 sas_addr[SAS_ADDR_SIZE]; |
| struct smp_resp *resp = rsp; |
| struct discover_resp *dr = &resp->disc; |
| struct sas_ha_struct *ha = dev->port->ha; |
| struct expander_device *ex = &dev->ex_dev; |
| struct ex_phy *phy = &ex->ex_phy[phy_id]; |
| struct sas_rphy *rphy = dev->rphy; |
| bool new_phy = !phy->phy; |
| char *type; |
| |
| if (new_phy) { |
| if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))) |
| return; |
| phy->phy = sas_phy_alloc(&rphy->dev, phy_id); |
| |
| /* FIXME: error_handling */ |
| BUG_ON(!phy->phy); |
| } |
| |
| switch (resp->result) { |
| case SMP_RESP_PHY_VACANT: |
| phy->phy_state = PHY_VACANT; |
| break; |
| default: |
| phy->phy_state = PHY_NOT_PRESENT; |
| break; |
| case SMP_RESP_FUNC_ACC: |
| phy->phy_state = PHY_EMPTY; /* do not know yet */ |
| break; |
| } |
| |
| /* check if anything important changed to squelch debug */ |
| dev_type = phy->attached_dev_type; |
| linkrate = phy->linkrate; |
| memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); |
| |
| /* Handle vacant phy - rest of dr data is not valid so skip it */ |
| if (phy->phy_state == PHY_VACANT) { |
| memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); |
| phy->attached_dev_type = SAS_PHY_UNUSED; |
| if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) { |
| phy->phy_id = phy_id; |
| goto skip; |
| } else |
| goto out; |
| } |
| |
| phy->attached_dev_type = to_dev_type(dr); |
| if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) |
| goto out; |
| phy->phy_id = phy_id; |
| phy->linkrate = dr->linkrate; |
| phy->attached_sata_host = dr->attached_sata_host; |
| phy->attached_sata_dev = dr->attached_sata_dev; |
| phy->attached_sata_ps = dr->attached_sata_ps; |
| phy->attached_iproto = dr->iproto << 1; |
| phy->attached_tproto = dr->tproto << 1; |
| /* help some expanders that fail to zero sas_address in the 'no |
| * device' case |
| */ |
| if (phy->attached_dev_type == SAS_PHY_UNUSED || |
| phy->linkrate < SAS_LINK_RATE_1_5_GBPS) |
| memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); |
| else |
| memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); |
| phy->attached_phy_id = dr->attached_phy_id; |
| phy->phy_change_count = dr->change_count; |
| phy->routing_attr = dr->routing_attr; |
| phy->virtual = dr->virtual; |
| phy->last_da_index = -1; |
| |
| phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr); |
| phy->phy->identify.device_type = dr->attached_dev_type; |
| phy->phy->identify.initiator_port_protocols = phy->attached_iproto; |
| phy->phy->identify.target_port_protocols = phy->attached_tproto; |
| if (!phy->attached_tproto && dr->attached_sata_dev) |
| phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; |
| phy->phy->identify.phy_identifier = phy_id; |
| phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; |
| phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; |
| phy->phy->minimum_linkrate = dr->pmin_linkrate; |
| phy->phy->maximum_linkrate = dr->pmax_linkrate; |
| phy->phy->negotiated_linkrate = phy->linkrate; |
| |
| skip: |
| if (new_phy) |
| if (sas_phy_add(phy->phy)) { |
| sas_phy_free(phy->phy); |
| return; |
| } |
| |
| out: |
| switch (phy->attached_dev_type) { |
| case SAS_SATA_PENDING: |
| type = "stp pending"; |
| break; |
| case SAS_PHY_UNUSED: |
| type = "no device"; |
| break; |
| case SAS_END_DEVICE: |
| if (phy->attached_iproto) { |
| if (phy->attached_tproto) |
| type = "host+target"; |
| else |
| type = "host"; |
| } else { |
| if (dr->attached_sata_dev) |
| type = "stp"; |
| else |
| type = "ssp"; |
| } |
| break; |
| case SAS_EDGE_EXPANDER_DEVICE: |
| case SAS_FANOUT_EXPANDER_DEVICE: |
| type = "smp"; |
| break; |
| default: |
| type = "unknown"; |
| } |
| |
| /* this routine is polled by libata error recovery so filter |
| * unimportant messages |
| */ |
| if (new_phy || phy->attached_dev_type != dev_type || |
| phy->linkrate != linkrate || |
| SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr)) |
| /* pass */; |
| else |
| return; |
| |
| /* if the attached device type changed and ata_eh is active, |
| * make sure we run revalidation when eh completes (see: |
| * sas_enable_revalidation) |
| */ |
| if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) |
| set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending); |
| |
| SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n", |
| test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "", |
| SAS_ADDR(dev->sas_addr), phy->phy_id, |
| sas_route_char(dev, phy), phy->linkrate, |
| SAS_ADDR(phy->attached_sas_addr), type); |
| } |
| |
| /* check if we have an existing attached ata device on this expander phy */ |
| struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id) |
| { |
| struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id]; |
| struct domain_device *dev; |
| struct sas_rphy *rphy; |
| |
| if (!ex_phy->port) |
| return NULL; |
| |
| rphy = ex_phy->port->rphy; |
| if (!rphy) |
| return NULL; |
| |
| dev = sas_find_dev_by_rphy(rphy); |
| |
| if (dev && dev_is_sata(dev)) |
| return dev; |
| |
| return NULL; |
| } |
| |
| #define DISCOVER_REQ_SIZE 16 |
| #define DISCOVER_RESP_SIZE 56 |
| |
| static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, |
| u8 *disc_resp, int single) |
| { |
| struct discover_resp *dr; |
| int res; |
| |
| disc_req[9] = single; |
| |
| res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, |
| disc_resp, DISCOVER_RESP_SIZE); |
| if (res) |
| return res; |
| dr = &((struct smp_resp *)disc_resp)->disc; |
| if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) { |
| sas_printk("Found loopback topology, just ignore it!\n"); |
| return 0; |
| } |
| sas_set_ex_phy(dev, single, disc_resp); |
| return 0; |
| } |
| |
| int sas_ex_phy_discover(struct domain_device *dev, int single) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| int res = 0; |
| u8 *disc_req; |
| u8 *disc_resp; |
| |
| disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); |
| if (!disc_req) |
| return -ENOMEM; |
| |
| disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); |
| if (!disc_resp) { |
| kfree(disc_req); |
| return -ENOMEM; |
| } |
| |
| disc_req[1] = SMP_DISCOVER; |
| |
| if (0 <= single && single < ex->num_phys) { |
| res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); |
| } else { |
| int i; |
| |
| for (i = 0; i < ex->num_phys; i++) { |
| res = sas_ex_phy_discover_helper(dev, disc_req, |
| disc_resp, i); |
| if (res) |
| goto out_err; |
| } |
| } |
| out_err: |
| kfree(disc_resp); |
| kfree(disc_req); |
| return res; |
| } |
| |
| static int sas_expander_discover(struct domain_device *dev) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| int res = -ENOMEM; |
| |
| ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL); |
| if (!ex->ex_phy) |
| return -ENOMEM; |
| |
| res = sas_ex_phy_discover(dev, -1); |
| if (res) |
| goto out_err; |
| |
| return 0; |
| out_err: |
| kfree(ex->ex_phy); |
| ex->ex_phy = NULL; |
| return res; |
| } |
| |
| #define MAX_EXPANDER_PHYS 128 |
| |
| static void ex_assign_report_general(struct domain_device *dev, |
| struct smp_resp *resp) |
| { |
| struct report_general_resp *rg = &resp->rg; |
| |
| dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); |
| dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); |
| dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); |
| dev->ex_dev.t2t_supp = rg->t2t_supp; |
| dev->ex_dev.conf_route_table = rg->conf_route_table; |
| dev->ex_dev.configuring = rg->configuring; |
| memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); |
| } |
| |
| #define RG_REQ_SIZE 8 |
| #define RG_RESP_SIZE 32 |
| |
| static int sas_ex_general(struct domain_device *dev) |
| { |
| u8 *rg_req; |
| struct smp_resp *rg_resp; |
| int res; |
| int i; |
| |
| rg_req = alloc_smp_req(RG_REQ_SIZE); |
| if (!rg_req) |
| return -ENOMEM; |
| |
| rg_resp = alloc_smp_resp(RG_RESP_SIZE); |
| if (!rg_resp) { |
| kfree(rg_req); |
| return -ENOMEM; |
| } |
| |
| rg_req[1] = SMP_REPORT_GENERAL; |
| |
| for (i = 0; i < 5; i++) { |
| res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, |
| RG_RESP_SIZE); |
| |
| if (res) { |
| SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", |
| SAS_ADDR(dev->sas_addr), res); |
| goto out; |
| } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { |
| SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", |
| SAS_ADDR(dev->sas_addr), rg_resp->result); |
| res = rg_resp->result; |
| goto out; |
| } |
| |
| ex_assign_report_general(dev, rg_resp); |
| |
| if (dev->ex_dev.configuring) { |
| SAS_DPRINTK("RG: ex %llx self-configuring...\n", |
| SAS_ADDR(dev->sas_addr)); |
| schedule_timeout_interruptible(5*HZ); |
| } else |
| break; |
| } |
| out: |
| kfree(rg_req); |
| kfree(rg_resp); |
| return res; |
| } |
| |
| static void ex_assign_manuf_info(struct domain_device *dev, void |
| *_mi_resp) |
| { |
| u8 *mi_resp = _mi_resp; |
| struct sas_rphy *rphy = dev->rphy; |
| struct sas_expander_device *edev = rphy_to_expander_device(rphy); |
| |
| memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); |
| memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); |
| memcpy(edev->product_rev, mi_resp + 36, |
| SAS_EXPANDER_PRODUCT_REV_LEN); |
| |
| if (mi_resp[8] & 1) { |
| memcpy(edev->component_vendor_id, mi_resp + 40, |
| SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); |
| edev->component_id = mi_resp[48] << 8 | mi_resp[49]; |
| edev->component_revision_id = mi_resp[50]; |
| } |
| } |
| |
| #define MI_REQ_SIZE 8 |
| #define MI_RESP_SIZE 64 |
| |
| static int sas_ex_manuf_info(struct domain_device *dev) |
| { |
| u8 *mi_req; |
| u8 *mi_resp; |
| int res; |
| |
| mi_req = alloc_smp_req(MI_REQ_SIZE); |
| if (!mi_req) |
| return -ENOMEM; |
| |
| mi_resp = alloc_smp_resp(MI_RESP_SIZE); |
| if (!mi_resp) { |
| kfree(mi_req); |
| return -ENOMEM; |
| } |
| |
| mi_req[1] = SMP_REPORT_MANUF_INFO; |
| |
| res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); |
| if (res) { |
| SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", |
| SAS_ADDR(dev->sas_addr), res); |
| goto out; |
| } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { |
| SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", |
| SAS_ADDR(dev->sas_addr), mi_resp[2]); |
| goto out; |
| } |
| |
| ex_assign_manuf_info(dev, mi_resp); |
| out: |
| kfree(mi_req); |
| kfree(mi_resp); |
| return res; |
| } |
| |
| #define PC_REQ_SIZE 44 |
| #define PC_RESP_SIZE 8 |
| |
| int sas_smp_phy_control(struct domain_device *dev, int phy_id, |
| enum phy_func phy_func, |
| struct sas_phy_linkrates *rates) |
| { |
| u8 *pc_req; |
| u8 *pc_resp; |
| int res; |
| |
| pc_req = alloc_smp_req(PC_REQ_SIZE); |
| if (!pc_req) |
| return -ENOMEM; |
| |
| pc_resp = alloc_smp_resp(PC_RESP_SIZE); |
| if (!pc_resp) { |
| kfree(pc_req); |
| return -ENOMEM; |
| } |
| |
| pc_req[1] = SMP_PHY_CONTROL; |
| pc_req[9] = phy_id; |
| pc_req[10]= phy_func; |
| if (rates) { |
| pc_req[32] = rates->minimum_linkrate << 4; |
| pc_req[33] = rates->maximum_linkrate << 4; |
| } |
| |
| res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); |
| |
| kfree(pc_resp); |
| kfree(pc_req); |
| return res; |
| } |
| |
| static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| struct ex_phy *phy = &ex->ex_phy[phy_id]; |
| |
| sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); |
| phy->linkrate = SAS_PHY_DISABLED; |
| } |
| |
| static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| int i; |
| |
| for (i = 0; i < ex->num_phys; i++) { |
| struct ex_phy *phy = &ex->ex_phy[i]; |
| |
| if (phy->phy_state == PHY_VACANT || |
| phy->phy_state == PHY_NOT_PRESENT) |
| continue; |
| |
| if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) |
| sas_ex_disable_phy(dev, i); |
| } |
| } |
| |
| static int sas_dev_present_in_domain(struct asd_sas_port *port, |
| u8 *sas_addr) |
| { |
| struct domain_device *dev; |
| |
| if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) |
| return 1; |
| list_for_each_entry(dev, &port->dev_list, dev_list_node) { |
| if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| #define RPEL_REQ_SIZE 16 |
| #define RPEL_RESP_SIZE 32 |
| int sas_smp_get_phy_events(struct sas_phy *phy) |
| { |
| int res; |
| u8 *req; |
| u8 *resp; |
| struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); |
| struct domain_device *dev = sas_find_dev_by_rphy(rphy); |
| |
| req = alloc_smp_req(RPEL_REQ_SIZE); |
| if (!req) |
| return -ENOMEM; |
| |
| resp = alloc_smp_resp(RPEL_RESP_SIZE); |
| if (!resp) { |
| kfree(req); |
| return -ENOMEM; |
| } |
| |
| req[1] = SMP_REPORT_PHY_ERR_LOG; |
| req[9] = phy->number; |
| |
| res = smp_execute_task(dev, req, RPEL_REQ_SIZE, |
| resp, RPEL_RESP_SIZE); |
| |
| if (!res) |
| goto out; |
| |
| phy->invalid_dword_count = scsi_to_u32(&resp[12]); |
| phy->running_disparity_error_count = scsi_to_u32(&resp[16]); |
| phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); |
| phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); |
| |
| out: |
| kfree(resp); |
| return res; |
| |
| } |
| |
| #ifdef CONFIG_SCSI_SAS_ATA |
| |
| #define RPS_REQ_SIZE 16 |
| #define RPS_RESP_SIZE 60 |
| |
| int sas_get_report_phy_sata(struct domain_device *dev, int phy_id, |
| struct smp_resp *rps_resp) |
| { |
| int res; |
| u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); |
| u8 *resp = (u8 *)rps_resp; |
| |
| if (!rps_req) |
| return -ENOMEM; |
| |
| rps_req[1] = SMP_REPORT_PHY_SATA; |
| rps_req[9] = phy_id; |
| |
| res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, |
| rps_resp, RPS_RESP_SIZE); |
| |
| /* 0x34 is the FIS type for the D2H fis. There's a potential |
| * standards cockup here. sas-2 explicitly specifies the FIS |
| * should be encoded so that FIS type is in resp[24]. |
| * However, some expanders endian reverse this. Undo the |
| * reversal here */ |
| if (!res && resp[27] == 0x34 && resp[24] != 0x34) { |
| int i; |
| |
| for (i = 0; i < 5; i++) { |
| int j = 24 + (i*4); |
| u8 a, b; |
| a = resp[j + 0]; |
| b = resp[j + 1]; |
| resp[j + 0] = resp[j + 3]; |
| resp[j + 1] = resp[j + 2]; |
| resp[j + 2] = b; |
| resp[j + 3] = a; |
| } |
| } |
| |
| kfree(rps_req); |
| return res; |
| } |
| #endif |
| |
| static void sas_ex_get_linkrate(struct domain_device *parent, |
| struct domain_device *child, |
| struct ex_phy *parent_phy) |
| { |
| struct expander_device *parent_ex = &parent->ex_dev; |
| struct sas_port *port; |
| int i; |
| |
| child->pathways = 0; |
| |
| port = parent_phy->port; |
| |
| for (i = 0; i < parent_ex->num_phys; i++) { |
| struct ex_phy *phy = &parent_ex->ex_phy[i]; |
| |
| if (phy->phy_state == PHY_VACANT || |
| phy->phy_state == PHY_NOT_PRESENT) |
| continue; |
| |
| if (SAS_ADDR(phy->attached_sas_addr) == |
| SAS_ADDR(child->sas_addr)) { |
| |
| child->min_linkrate = min(parent->min_linkrate, |
| phy->linkrate); |
| child->max_linkrate = max(parent->max_linkrate, |
| phy->linkrate); |
| child->pathways++; |
| sas_port_add_phy(port, phy->phy); |
| } |
| } |
| child->linkrate = min(parent_phy->linkrate, child->max_linkrate); |
| child->pathways = min(child->pathways, parent->pathways); |
| } |
| |
| static struct domain_device *sas_ex_discover_end_dev( |
| struct domain_device *parent, int phy_id) |
| { |
| struct expander_device *parent_ex = &parent->ex_dev; |
| struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; |
| struct domain_device *child = NULL; |
| struct sas_rphy *rphy; |
| int res; |
| |
| if (phy->attached_sata_host || phy->attached_sata_ps) |
| return NULL; |
| |
| child = sas_alloc_device(); |
| if (!child) |
| return NULL; |
| |
| kref_get(&parent->kref); |
| child->parent = parent; |
| child->port = parent->port; |
| child->iproto = phy->attached_iproto; |
| memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); |
| sas_hash_addr(child->hashed_sas_addr, child->sas_addr); |
| if (!phy->port) { |
| phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); |
| if (unlikely(!phy->port)) |
| goto out_err; |
| if (unlikely(sas_port_add(phy->port) != 0)) { |
| sas_port_free(phy->port); |
| goto out_err; |
| } |
| } |
| sas_ex_get_linkrate(parent, child, phy); |
| sas_device_set_phy(child, phy->port); |
| |
| #ifdef CONFIG_SCSI_SAS_ATA |
| if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) { |
| res = sas_get_ata_info(child, phy); |
| if (res) |
| goto out_free; |
| |
| sas_init_dev(child); |
| res = sas_ata_init(child); |
| if (res) |
| goto out_free; |
| rphy = sas_end_device_alloc(phy->port); |
| if (!rphy) |
| goto out_free; |
| |
| child->rphy = rphy; |
| get_device(&rphy->dev); |
| |
| list_add_tail(&child->disco_list_node, &parent->port->disco_list); |
| |
| res = sas_discover_sata(child); |
| if (res) { |
| SAS_DPRINTK("sas_discover_sata() for device %16llx at " |
| "%016llx:0x%x returned 0x%x\n", |
| SAS_ADDR(child->sas_addr), |
| SAS_ADDR(parent->sas_addr), phy_id, res); |
| goto out_list_del; |
| } |
| } else |
| #endif |
| if (phy->attached_tproto & SAS_PROTOCOL_SSP) { |
| child->dev_type = SAS_END_DEVICE; |
| rphy = sas_end_device_alloc(phy->port); |
| /* FIXME: error handling */ |
| if (unlikely(!rphy)) |
| goto out_free; |
| child->tproto = phy->attached_tproto; |
| sas_init_dev(child); |
| |
| child->rphy = rphy; |
| get_device(&rphy->dev); |
| sas_fill_in_rphy(child, rphy); |
| |
| list_add_tail(&child->disco_list_node, &parent->port->disco_list); |
| |
| res = sas_discover_end_dev(child); |
| if (res) { |
| SAS_DPRINTK("sas_discover_end_dev() for device %16llx " |
| "at %016llx:0x%x returned 0x%x\n", |
| SAS_ADDR(child->sas_addr), |
| SAS_ADDR(parent->sas_addr), phy_id, res); |
| goto out_list_del; |
| } |
| } else { |
| SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", |
| phy->attached_tproto, SAS_ADDR(parent->sas_addr), |
| phy_id); |
| goto out_free; |
| } |
| |
| list_add_tail(&child->siblings, &parent_ex->children); |
| return child; |
| |
| out_list_del: |
| sas_rphy_free(child->rphy); |
| list_del(&child->disco_list_node); |
| spin_lock_irq(&parent->port->dev_list_lock); |
| list_del(&child->dev_list_node); |
| spin_unlock_irq(&parent->port->dev_list_lock); |
| out_free: |
| sas_port_delete(phy->port); |
| out_err: |
| phy->port = NULL; |
| sas_put_device(child); |
| return NULL; |
| } |
| |
| /* See if this phy is part of a wide port */ |
| static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id) |
| { |
| struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; |
| int i; |
| |
| for (i = 0; i < parent->ex_dev.num_phys; i++) { |
| struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; |
| |
| if (ephy == phy) |
| continue; |
| |
| if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, |
| SAS_ADDR_SIZE) && ephy->port) { |
| sas_port_add_phy(ephy->port, phy->phy); |
| phy->port = ephy->port; |
| phy->phy_state = PHY_DEVICE_DISCOVERED; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static struct domain_device *sas_ex_discover_expander( |
| struct domain_device *parent, int phy_id) |
| { |
| struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); |
| struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; |
| struct domain_device *child = NULL; |
| struct sas_rphy *rphy; |
| struct sas_expander_device *edev; |
| struct asd_sas_port *port; |
| int res; |
| |
| if (phy->routing_attr == DIRECT_ROUTING) { |
| SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " |
| "allowed\n", |
| SAS_ADDR(parent->sas_addr), phy_id, |
| SAS_ADDR(phy->attached_sas_addr), |
| phy->attached_phy_id); |
| return NULL; |
| } |
| child = sas_alloc_device(); |
| if (!child) |
| return NULL; |
| |
| phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); |
| /* FIXME: better error handling */ |
| BUG_ON(sas_port_add(phy->port) != 0); |
| |
| |
| switch (phy->attached_dev_type) { |
| case SAS_EDGE_EXPANDER_DEVICE: |
| rphy = sas_expander_alloc(phy->port, |
| SAS_EDGE_EXPANDER_DEVICE); |
| break; |
| case SAS_FANOUT_EXPANDER_DEVICE: |
| rphy = sas_expander_alloc(phy->port, |
| SAS_FANOUT_EXPANDER_DEVICE); |
| break; |
| default: |
| rphy = NULL; /* shut gcc up */ |
| BUG(); |
| } |
| port = parent->port; |
| child->rphy = rphy; |
| get_device(&rphy->dev); |
| edev = rphy_to_expander_device(rphy); |
| child->dev_type = phy->attached_dev_type; |
| kref_get(&parent->kref); |
| child->parent = parent; |
| child->port = port; |
| child->iproto = phy->attached_iproto; |
| child->tproto = phy->attached_tproto; |
| memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); |
| sas_hash_addr(child->hashed_sas_addr, child->sas_addr); |
| sas_ex_get_linkrate(parent, child, phy); |
| edev->level = parent_ex->level + 1; |
| parent->port->disc.max_level = max(parent->port->disc.max_level, |
| edev->level); |
| sas_init_dev(child); |
| sas_fill_in_rphy(child, rphy); |
| sas_rphy_add(rphy); |
| |
| spin_lock_irq(&parent->port->dev_list_lock); |
| list_add_tail(&child->dev_list_node, &parent->port->dev_list); |
| spin_unlock_irq(&parent->port->dev_list_lock); |
| |
| res = sas_discover_expander(child); |
| if (res) { |
| sas_rphy_delete(rphy); |
| spin_lock_irq(&parent->port->dev_list_lock); |
| list_del(&child->dev_list_node); |
| spin_unlock_irq(&parent->port->dev_list_lock); |
| sas_put_device(child); |
| return NULL; |
| } |
| list_add_tail(&child->siblings, &parent->ex_dev.children); |
| return child; |
| } |
| |
| static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; |
| struct domain_device *child = NULL; |
| int res = 0; |
| |
| /* Phy state */ |
| if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { |
| if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) |
| res = sas_ex_phy_discover(dev, phy_id); |
| if (res) |
| return res; |
| } |
| |
| /* Parent and domain coherency */ |
| if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == |
| SAS_ADDR(dev->port->sas_addr))) { |
| sas_add_parent_port(dev, phy_id); |
| return 0; |
| } |
| if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == |
| SAS_ADDR(dev->parent->sas_addr))) { |
| sas_add_parent_port(dev, phy_id); |
| if (ex_phy->routing_attr == TABLE_ROUTING) |
| sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); |
| return 0; |
| } |
| |
| if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) |
| sas_ex_disable_port(dev, ex_phy->attached_sas_addr); |
| |
| if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) { |
| if (ex_phy->routing_attr == DIRECT_ROUTING) { |
| memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); |
| sas_configure_routing(dev, ex_phy->attached_sas_addr); |
| } |
| return 0; |
| } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) |
| return 0; |
| |
| if (ex_phy->attached_dev_type != SAS_END_DEVICE && |
| ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE && |
| ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE && |
| ex_phy->attached_dev_type != SAS_SATA_PENDING) { |
| SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " |
| "phy 0x%x\n", ex_phy->attached_dev_type, |
| SAS_ADDR(dev->sas_addr), |
| phy_id); |
| return 0; |
| } |
| |
| res = sas_configure_routing(dev, ex_phy->attached_sas_addr); |
| if (res) { |
| SAS_DPRINTK("configure routing for dev %016llx " |
| "reported 0x%x. Forgotten\n", |
| SAS_ADDR(ex_phy->attached_sas_addr), res); |
| sas_disable_routing(dev, ex_phy->attached_sas_addr); |
| return res; |
| } |
| |
| if (sas_ex_join_wide_port(dev, phy_id)) { |
| SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", |
| phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); |
| return res; |
| } |
| |
| switch (ex_phy->attached_dev_type) { |
| case SAS_END_DEVICE: |
| case SAS_SATA_PENDING: |
| child = sas_ex_discover_end_dev(dev, phy_id); |
| break; |
| case SAS_FANOUT_EXPANDER_DEVICE: |
| if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { |
| SAS_DPRINTK("second fanout expander %016llx phy 0x%x " |
| "attached to ex %016llx phy 0x%x\n", |
| SAS_ADDR(ex_phy->attached_sas_addr), |
| ex_phy->attached_phy_id, |
| SAS_ADDR(dev->sas_addr), |
| phy_id); |
| sas_ex_disable_phy(dev, phy_id); |
| break; |
| } else |
| memcpy(dev->port->disc.fanout_sas_addr, |
| ex_phy->attached_sas_addr, SAS_ADDR_SIZE); |
| /* fallthrough */ |
| case SAS_EDGE_EXPANDER_DEVICE: |
| child = sas_ex_discover_expander(dev, phy_id); |
| break; |
| default: |
| break; |
| } |
| |
| if (child) { |
| int i; |
| |
| for (i = 0; i < ex->num_phys; i++) { |
| if (ex->ex_phy[i].phy_state == PHY_VACANT || |
| ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) |
| continue; |
| /* |
| * Due to races, the phy might not get added to the |
| * wide port, so we add the phy to the wide port here. |
| */ |
| if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == |
| SAS_ADDR(child->sas_addr)) { |
| ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; |
| if (sas_ex_join_wide_port(dev, i)) |
| SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", |
| i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr)); |
| |
| } |
| } |
| } |
| |
| return res; |
| } |
| |
| static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| int i; |
| |
| for (i = 0; i < ex->num_phys; i++) { |
| struct ex_phy *phy = &ex->ex_phy[i]; |
| |
| if (phy->phy_state == PHY_VACANT || |
| phy->phy_state == PHY_NOT_PRESENT) |
| continue; |
| |
| if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE || |
| phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) && |
| phy->routing_attr == SUBTRACTIVE_ROUTING) { |
| |
| memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); |
| |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static int sas_check_level_subtractive_boundary(struct domain_device *dev) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| struct domain_device *child; |
| u8 sub_addr[8] = {0, }; |
| |
| list_for_each_entry(child, &ex->children, siblings) { |
| if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE && |
| child->dev_type != SAS_FANOUT_EXPANDER_DEVICE) |
| continue; |
| if (sub_addr[0] == 0) { |
| sas_find_sub_addr(child, sub_addr); |
| continue; |
| } else { |
| u8 s2[8]; |
| |
| if (sas_find_sub_addr(child, s2) && |
| (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { |
| |
| SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " |
| "diverges from subtractive " |
| "boundary %016llx\n", |
| SAS_ADDR(dev->sas_addr), |
| SAS_ADDR(child->sas_addr), |
| SAS_ADDR(s2), |
| SAS_ADDR(sub_addr)); |
| |
| sas_ex_disable_port(child, s2); |
| } |
| } |
| } |
| return 0; |
| } |
| /** |
| * sas_ex_discover_devices -- discover devices attached to this expander |
| * dev: pointer to the expander domain device |
| * single: if you want to do a single phy, else set to -1; |
| * |
| * Configure this expander for use with its devices and register the |
| * devices of this expander. |
| */ |
| static int sas_ex_discover_devices(struct domain_device *dev, int single) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| int i = 0, end = ex->num_phys; |
| int res = 0; |
| |
| if (0 <= single && single < end) { |
| i = single; |
| end = i+1; |
| } |
| |
| for ( ; i < end; i++) { |
| struct ex_phy *ex_phy = &ex->ex_phy[i]; |
| |
| if (ex_phy->phy_state == PHY_VACANT || |
| ex_phy->phy_state == PHY_NOT_PRESENT || |
| ex_phy->phy_state == PHY_DEVICE_DISCOVERED) |
| continue; |
| |
| switch (ex_phy->linkrate) { |
| case SAS_PHY_DISABLED: |
| case SAS_PHY_RESET_PROBLEM: |
| case SAS_SATA_PORT_SELECTOR: |
| continue; |
| default: |
| res = sas_ex_discover_dev(dev, i); |
| if (res) |
| break; |
| continue; |
| } |
| } |
| |
| if (!res) |
| sas_check_level_subtractive_boundary(dev); |
| |
| return res; |
| } |
| |
| static int sas_check_ex_subtractive_boundary(struct domain_device *dev) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| int i; |
| u8 *sub_sas_addr = NULL; |
| |
| if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE) |
| return 0; |
| |
| for (i = 0; i < ex->num_phys; i++) { |
| struct ex_phy *phy = &ex->ex_phy[i]; |
| |
| if (phy->phy_state == PHY_VACANT || |
| phy->phy_state == PHY_NOT_PRESENT) |
| continue; |
| |
| if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE || |
| phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) && |
| phy->routing_attr == SUBTRACTIVE_ROUTING) { |
| |
| if (!sub_sas_addr) |
| sub_sas_addr = &phy->attached_sas_addr[0]; |
| else if (SAS_ADDR(sub_sas_addr) != |
| SAS_ADDR(phy->attached_sas_addr)) { |
| |
| SAS_DPRINTK("ex %016llx phy 0x%x " |
| "diverges(%016llx) on subtractive " |
| "boundary(%016llx). Disabled\n", |
| SAS_ADDR(dev->sas_addr), i, |
| SAS_ADDR(phy->attached_sas_addr), |
| SAS_ADDR(sub_sas_addr)); |
| sas_ex_disable_phy(dev, i); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static void sas_print_parent_topology_bug(struct domain_device *child, |
| struct ex_phy *parent_phy, |
| struct ex_phy *child_phy) |
| { |
| static const char *ex_type[] = { |
| [SAS_EDGE_EXPANDER_DEVICE] = "edge", |
| [SAS_FANOUT_EXPANDER_DEVICE] = "fanout", |
| }; |
| struct domain_device *parent = child->parent; |
| |
| sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx " |
| "phy 0x%x has %c:%c routing link!\n", |
| |
| ex_type[parent->dev_type], |
| SAS_ADDR(parent->sas_addr), |
| parent_phy->phy_id, |
| |
| ex_type[child->dev_type], |
| SAS_ADDR(child->sas_addr), |
| child_phy->phy_id, |
| |
| sas_route_char(parent, parent_phy), |
| sas_route_char(child, child_phy)); |
| } |
| |
| static int sas_check_eeds(struct domain_device *child, |
| struct ex_phy *parent_phy, |
| struct ex_phy *child_phy) |
| { |
| int res = 0; |
| struct domain_device *parent = child->parent; |
| |
| if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { |
| res = -ENODEV; |
| SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " |
| "phy S:0x%x, while there is a fanout ex %016llx\n", |
| SAS_ADDR(parent->sas_addr), |
| parent_phy->phy_id, |
| SAS_ADDR(child->sas_addr), |
| child_phy->phy_id, |
| SAS_ADDR(parent->port->disc.fanout_sas_addr)); |
| } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { |
| memcpy(parent->port->disc.eeds_a, parent->sas_addr, |
| SAS_ADDR_SIZE); |
| memcpy(parent->port->disc.eeds_b, child->sas_addr, |
| SAS_ADDR_SIZE); |
| } else if (((SAS_ADDR(parent->port->disc.eeds_a) == |
| SAS_ADDR(parent->sas_addr)) || |
| (SAS_ADDR(parent->port->disc.eeds_a) == |
| SAS_ADDR(child->sas_addr))) |
| && |
| ((SAS_ADDR(parent->port->disc.eeds_b) == |
| SAS_ADDR(parent->sas_addr)) || |
| (SAS_ADDR(parent->port->disc.eeds_b) == |
| SAS_ADDR(child->sas_addr)))) |
| ; |
| else { |
| res = -ENODEV; |
| SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " |
| "phy 0x%x link forms a third EEDS!\n", |
| SAS_ADDR(parent->sas_addr), |
| parent_phy->phy_id, |
| SAS_ADDR(child->sas_addr), |
| child_phy->phy_id); |
| } |
| |
| return res; |
| } |
| |
| /* Here we spill over 80 columns. It is intentional. |
| */ |
| static int sas_check_parent_topology(struct domain_device *child) |
| { |
| struct expander_device *child_ex = &child->ex_dev; |
| struct expander_device *parent_ex; |
| int i; |
| int res = 0; |
| |
| if (!child->parent) |
| return 0; |
| |
| if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE && |
| child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE) |
| return 0; |
| |
| parent_ex = &child->parent->ex_dev; |
| |
| for (i = 0; i < parent_ex->num_phys; i++) { |
| struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; |
| struct ex_phy *child_phy; |
| |
| if (parent_phy->phy_state == PHY_VACANT || |
| parent_phy->phy_state == PHY_NOT_PRESENT) |
| continue; |
| |
| if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) |
| continue; |
| |
| child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; |
| |
| switch (child->parent->dev_type) { |
| case SAS_EDGE_EXPANDER_DEVICE: |
| if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { |
| if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || |
| child_phy->routing_attr != TABLE_ROUTING) { |
| sas_print_parent_topology_bug(child, parent_phy, child_phy); |
| res = -ENODEV; |
| } |
| } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { |
| if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { |
| res = sas_check_eeds(child, parent_phy, child_phy); |
| } else if (child_phy->routing_attr != TABLE_ROUTING) { |
| sas_print_parent_topology_bug(child, parent_phy, child_phy); |
| res = -ENODEV; |
| } |
| } else if (parent_phy->routing_attr == TABLE_ROUTING) { |
| if (child_phy->routing_attr == SUBTRACTIVE_ROUTING || |
| (child_phy->routing_attr == TABLE_ROUTING && |
| child_ex->t2t_supp && parent_ex->t2t_supp)) { |
| /* All good */; |
| } else { |
| sas_print_parent_topology_bug(child, parent_phy, child_phy); |
| res = -ENODEV; |
| } |
| } |
| break; |
| case SAS_FANOUT_EXPANDER_DEVICE: |
| if (parent_phy->routing_attr != TABLE_ROUTING || |
| child_phy->routing_attr != SUBTRACTIVE_ROUTING) { |
| sas_print_parent_topology_bug(child, parent_phy, child_phy); |
| res = -ENODEV; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return res; |
| } |
| |
| #define RRI_REQ_SIZE 16 |
| #define RRI_RESP_SIZE 44 |
| |
| static int sas_configure_present(struct domain_device *dev, int phy_id, |
| u8 *sas_addr, int *index, int *present) |
| { |
| int i, res = 0; |
| struct expander_device *ex = &dev->ex_dev; |
| struct ex_phy *phy = &ex->ex_phy[phy_id]; |
| u8 *rri_req; |
| u8 *rri_resp; |
| |
| *present = 0; |
| *index = 0; |
| |
| rri_req = alloc_smp_req(RRI_REQ_SIZE); |
| if (!rri_req) |
| return -ENOMEM; |
| |
| rri_resp = alloc_smp_resp(RRI_RESP_SIZE); |
| if (!rri_resp) { |
| kfree(rri_req); |
| return -ENOMEM; |
| } |
| |
| rri_req[1] = SMP_REPORT_ROUTE_INFO; |
| rri_req[9] = phy_id; |
| |
| for (i = 0; i < ex->max_route_indexes ; i++) { |
| *(__be16 *)(rri_req+6) = cpu_to_be16(i); |
| res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, |
| RRI_RESP_SIZE); |
| if (res) |
| goto out; |
| res = rri_resp[2]; |
| if (res == SMP_RESP_NO_INDEX) { |
| SAS_DPRINTK("overflow of indexes: dev %016llx " |
| "phy 0x%x index 0x%x\n", |
| SAS_ADDR(dev->sas_addr), phy_id, i); |
| goto out; |
| } else if (res != SMP_RESP_FUNC_ACC) { |
| SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " |
| "result 0x%x\n", __func__, |
| SAS_ADDR(dev->sas_addr), phy_id, i, res); |
| goto out; |
| } |
| if (SAS_ADDR(sas_addr) != 0) { |
| if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { |
| *index = i; |
| if ((rri_resp[12] & 0x80) == 0x80) |
| *present = 0; |
| else |
| *present = 1; |
| goto out; |
| } else if (SAS_ADDR(rri_resp+16) == 0) { |
| *index = i; |
| *present = 0; |
| goto out; |
| } |
| } else if (SAS_ADDR(rri_resp+16) == 0 && |
| phy->last_da_index < i) { |
| phy->last_da_index = i; |
| *index = i; |
| *present = 0; |
| goto out; |
| } |
| } |
| res = -1; |
| out: |
| kfree(rri_req); |
| kfree(rri_resp); |
| return res; |
| } |
| |
| #define CRI_REQ_SIZE 44 |
| #define CRI_RESP_SIZE 8 |
| |
| static int sas_configure_set(struct domain_device *dev, int phy_id, |
| u8 *sas_addr, int index, int include) |
| { |
| int res; |
| u8 *cri_req; |
| u8 *cri_resp; |
| |
| cri_req = alloc_smp_req(CRI_REQ_SIZE); |
| if (!cri_req) |
| return -ENOMEM; |
| |
| cri_resp = alloc_smp_resp(CRI_RESP_SIZE); |
| if (!cri_resp) { |
| kfree(cri_req); |
| return -ENOMEM; |
| } |
| |
| cri_req[1] = SMP_CONF_ROUTE_INFO; |
| *(__be16 *)(cri_req+6) = cpu_to_be16(index); |
| cri_req[9] = phy_id; |
| if (SAS_ADDR(sas_addr) == 0 || !include) |
| cri_req[12] |= 0x80; |
| memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); |
| |
| res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, |
| CRI_RESP_SIZE); |
| if (res) |
| goto out; |
| res = cri_resp[2]; |
| if (res == SMP_RESP_NO_INDEX) { |
| SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " |
| "index 0x%x\n", |
| SAS_ADDR(dev->sas_addr), phy_id, index); |
| } |
| out: |
| kfree(cri_req); |
| kfree(cri_resp); |
| return res; |
| } |
| |
| static int sas_configure_phy(struct domain_device *dev, int phy_id, |
| u8 *sas_addr, int include) |
| { |
| int index; |
| int present; |
| int res; |
| |
| res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); |
| if (res) |
| return res; |
| if (include ^ present) |
| return sas_configure_set(dev, phy_id, sas_addr, index,include); |
| |
| return res; |
| } |
| |
| /** |
| * sas_configure_parent -- configure routing table of parent |
| * parent: parent expander |
| * child: child expander |
| * sas_addr: SAS port identifier of device directly attached to child |
| */ |
| static int sas_configure_parent(struct domain_device *parent, |
| struct domain_device *child, |
| u8 *sas_addr, int include) |
| { |
| struct expander_device *ex_parent = &parent->ex_dev; |
| int res = 0; |
| int i; |
| |
| if (parent->parent) { |
| res = sas_configure_parent(parent->parent, parent, sas_addr, |
| include); |
| if (res) |
| return res; |
| } |
| |
| if (ex_parent->conf_route_table == 0) { |
| SAS_DPRINTK("ex %016llx has self-configuring routing table\n", |
| SAS_ADDR(parent->sas_addr)); |
| return 0; |
| } |
| |
| for (i = 0; i < ex_parent->num_phys; i++) { |
| struct ex_phy *phy = &ex_parent->ex_phy[i]; |
| |
| if ((phy->routing_attr == TABLE_ROUTING) && |
| (SAS_ADDR(phy->attached_sas_addr) == |
| SAS_ADDR(child->sas_addr))) { |
| res = sas_configure_phy(parent, i, sas_addr, include); |
| if (res) |
| return res; |
| } |
| } |
| |
| return res; |
| } |
| |
| /** |
| * sas_configure_routing -- configure routing |
| * dev: expander device |
| * sas_addr: port identifier of device directly attached to the expander device |
| */ |
| static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) |
| { |
| if (dev->parent) |
| return sas_configure_parent(dev->parent, dev, sas_addr, 1); |
| return 0; |
| } |
| |
| static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) |
| { |
| if (dev->parent) |
| return sas_configure_parent(dev->parent, dev, sas_addr, 0); |
| return 0; |
| } |
| |
| /** |
| * sas_discover_expander -- expander discovery |
| * @ex: pointer to expander domain device |
| * |
| * See comment in sas_discover_sata(). |
| */ |
| static int sas_discover_expander(struct domain_device *dev) |
| { |
| int res; |
| |
| res = sas_notify_lldd_dev_found(dev); |
| if (res) |
| return res; |
| |
| res = sas_ex_general(dev); |
| if (res) |
| goto out_err; |
| res = sas_ex_manuf_info(dev); |
| if (res) |
| goto out_err; |
| |
| res = sas_expander_discover(dev); |
| if (res) { |
| SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", |
| SAS_ADDR(dev->sas_addr), res); |
| goto out_err; |
| } |
| |
| sas_check_ex_subtractive_boundary(dev); |
| res = sas_check_parent_topology(dev); |
| if (res) |
| goto out_err; |
| return 0; |
| out_err: |
| sas_notify_lldd_dev_gone(dev); |
| return res; |
| } |
| |
| static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) |
| { |
| int res = 0; |
| struct domain_device *dev; |
| |
| list_for_each_entry(dev, &port->dev_list, dev_list_node) { |
| if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE || |
| dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { |
| struct sas_expander_device *ex = |
| rphy_to_expander_device(dev->rphy); |
| |
| if (level == ex->level) |
| res = sas_ex_discover_devices(dev, -1); |
| else if (level > 0) |
| res = sas_ex_discover_devices(port->port_dev, -1); |
| |
| } |
| } |
| |
| return res; |
| } |
| |
| static int sas_ex_bfs_disc(struct asd_sas_port *port) |
| { |
| int res; |
| int level; |
| |
| do { |
| level = port->disc.max_level; |
| res = sas_ex_level_discovery(port, level); |
| mb(); |
| } while (level < port->disc.max_level); |
| |
| return res; |
| } |
| |
| int sas_discover_root_expander(struct domain_device *dev) |
| { |
| int res; |
| struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); |
| |
| res = sas_rphy_add(dev->rphy); |
| if (res) |
| goto out_err; |
| |
| ex->level = dev->port->disc.max_level; /* 0 */ |
| res = sas_discover_expander(dev); |
| if (res) |
| goto out_err2; |
| |
| sas_ex_bfs_disc(dev->port); |
| |
| return res; |
| |
| out_err2: |
| sas_rphy_remove(dev->rphy); |
| out_err: |
| return res; |
| } |
| |
| /* ---------- Domain revalidation ---------- */ |
| |
| static int sas_get_phy_discover(struct domain_device *dev, |
| int phy_id, struct smp_resp *disc_resp) |
| { |
| int res; |
| u8 *disc_req; |
| |
| disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); |
| if (!disc_req) |
| return -ENOMEM; |
| |
| disc_req[1] = SMP_DISCOVER; |
| disc_req[9] = phy_id; |
| |
| res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, |
| disc_resp, DISCOVER_RESP_SIZE); |
| if (res) |
| goto out; |
| else if (disc_resp->result != SMP_RESP_FUNC_ACC) { |
| res = disc_resp->result; |
| goto out; |
| } |
| out: |
| kfree(disc_req); |
| return res; |
| } |
| |
| static int sas_get_phy_change_count(struct domain_device *dev, |
| int phy_id, int *pcc) |
| { |
| int res; |
| struct smp_resp *disc_resp; |
| |
| disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); |
| if (!disc_resp) |
| return -ENOMEM; |
| |
| res = sas_get_phy_discover(dev, phy_id, disc_resp); |
| if (!res) |
| *pcc = disc_resp->disc.change_count; |
| |
| kfree(disc_resp); |
| return res; |
| } |
| |
| static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id, |
| u8 *sas_addr, enum sas_device_type *type) |
| { |
| int res; |
| struct smp_resp *disc_resp; |
| struct discover_resp *dr; |
| |
| disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); |
| if (!disc_resp) |
| return -ENOMEM; |
| dr = &disc_resp->disc; |
| |
| res = sas_get_phy_discover(dev, phy_id, disc_resp); |
| if (res == 0) { |
| memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8); |
| *type = to_dev_type(dr); |
| if (*type == 0) |
| memset(sas_addr, 0, 8); |
| } |
| kfree(disc_resp); |
| return res; |
| } |
| |
| static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, |
| int from_phy, bool update) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| int res = 0; |
| int i; |
| |
| for (i = from_phy; i < ex->num_phys; i++) { |
| int phy_change_count = 0; |
| |
| res = sas_get_phy_change_count(dev, i, &phy_change_count); |
| switch (res) { |
| case SMP_RESP_PHY_VACANT: |
| case SMP_RESP_NO_PHY: |
| continue; |
| case SMP_RESP_FUNC_ACC: |
| break; |
| default: |
| return res; |
| } |
| |
| if (phy_change_count != ex->ex_phy[i].phy_change_count) { |
| if (update) |
| ex->ex_phy[i].phy_change_count = |
| phy_change_count; |
| *phy_id = i; |
| return 0; |
| } |
| } |
| return 0; |
| } |
| |
| static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) |
| { |
| int res; |
| u8 *rg_req; |
| struct smp_resp *rg_resp; |
| |
| rg_req = alloc_smp_req(RG_REQ_SIZE); |
| if (!rg_req) |
| return -ENOMEM; |
| |
| rg_resp = alloc_smp_resp(RG_RESP_SIZE); |
| if (!rg_resp) { |
| kfree(rg_req); |
| return -ENOMEM; |
| } |
| |
| rg_req[1] = SMP_REPORT_GENERAL; |
| |
| res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, |
| RG_RESP_SIZE); |
| if (res) |
| goto out; |
| if (rg_resp->result != SMP_RESP_FUNC_ACC) { |
| res = rg_resp->result; |
| goto out; |
| } |
| |
| *ecc = be16_to_cpu(rg_resp->rg.change_count); |
| out: |
| kfree(rg_resp); |
| kfree(rg_req); |
| return res; |
| } |
| /** |
| * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE). |
| * @dev:domain device to be detect. |
| * @src_dev: the device which originated BROADCAST(CHANGE). |
| * |
| * Add self-configuration expander support. Suppose two expander cascading, |
| * when the first level expander is self-configuring, hotplug the disks in |
| * second level expander, BROADCAST(CHANGE) will not only be originated |
| * in the second level expander, but also be originated in the first level |
| * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say, |
| * expander changed count in two level expanders will all increment at least |
| * once, but the phy which chang count has changed is the source device which |
| * we concerned. |
| */ |
| |
| static int sas_find_bcast_dev(struct domain_device *dev, |
| struct domain_device **src_dev) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| int ex_change_count = -1; |
| int phy_id = -1; |
| int res; |
| struct domain_device *ch; |
| |
| res = sas_get_ex_change_count(dev, &ex_change_count); |
| if (res) |
| goto out; |
| if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) { |
| /* Just detect if this expander phys phy change count changed, |
| * in order to determine if this expander originate BROADCAST, |
| * and do not update phy change count field in our structure. |
| */ |
| res = sas_find_bcast_phy(dev, &phy_id, 0, false); |
| if (phy_id != -1) { |
| *src_dev = dev; |
| ex->ex_change_count = ex_change_count; |
| SAS_DPRINTK("Expander phy change count has changed\n"); |
| return res; |
| } else |
| SAS_DPRINTK("Expander phys DID NOT change\n"); |
| } |
| list_for_each_entry(ch, &ex->children, siblings) { |
| if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { |
| res = sas_find_bcast_dev(ch, src_dev); |
| if (*src_dev) |
| return res; |
| } |
| } |
| out: |
| return res; |
| } |
| |
| static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| struct domain_device *child, *n; |
| |
| list_for_each_entry_safe(child, n, &ex->children, siblings) { |
| set_bit(SAS_DEV_GONE, &child->state); |
| if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || |
| child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) |
| sas_unregister_ex_tree(port, child); |
| else |
| sas_unregister_dev(port, child); |
| } |
| sas_unregister_dev(port, dev); |
| } |
| |
| static void sas_unregister_devs_sas_addr(struct domain_device *parent, |
| int phy_id, bool last) |
| { |
| struct expander_device *ex_dev = &parent->ex_dev; |
| struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; |
| struct domain_device *child, *n, *found = NULL; |
| if (last) { |
| list_for_each_entry_safe(child, n, |
| &ex_dev->children, siblings) { |
| if (SAS_ADDR(child->sas_addr) == |
| SAS_ADDR(phy->attached_sas_addr)) { |
| set_bit(SAS_DEV_GONE, &child->state); |
| if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || |
| child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) |
| sas_unregister_ex_tree(parent->port, child); |
| else |
| sas_unregister_dev(parent->port, child); |
| found = child; |
| break; |
| } |
| } |
| sas_disable_routing(parent, phy->attached_sas_addr); |
| } |
| memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); |
| if (phy->port) { |
| sas_port_delete_phy(phy->port, phy->phy); |
| sas_device_set_phy(found, phy->port); |
| if (phy->port->num_phys == 0) |
| sas_port_delete(phy->port); |
| phy->port = NULL; |
| } |
| } |
| |
| static int sas_discover_bfs_by_root_level(struct domain_device *root, |
| const int level) |
| { |
| struct expander_device *ex_root = &root->ex_dev; |
| struct domain_device *child; |
| int res = 0; |
| |
| list_for_each_entry(child, &ex_root->children, siblings) { |
| if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || |
| child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) { |
| struct sas_expander_device *ex = |
| rphy_to_expander_device(child->rphy); |
| |
| if (level > ex->level) |
| res = sas_discover_bfs_by_root_level(child, |
| level); |
| else if (level == ex->level) |
| res = sas_ex_discover_devices(child, -1); |
| } |
| } |
| return res; |
| } |
| |
| static int sas_discover_bfs_by_root(struct domain_device *dev) |
| { |
| int res; |
| struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); |
| int level = ex->level+1; |
| |
| res = sas_ex_discover_devices(dev, -1); |
| if (res) |
| goto out; |
| do { |
| res = sas_discover_bfs_by_root_level(dev, level); |
| mb(); |
| level += 1; |
| } while (level <= dev->port->disc.max_level); |
| out: |
| return res; |
| } |
| |
| static int sas_discover_new(struct domain_device *dev, int phy_id) |
| { |
| struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; |
| struct domain_device *child; |
| int res; |
| |
| SAS_DPRINTK("ex %016llx phy%d new device attached\n", |
| SAS_ADDR(dev->sas_addr), phy_id); |
| res = sas_ex_phy_discover(dev, phy_id); |
| if (res) |
| return res; |
| |
| if (sas_ex_join_wide_port(dev, phy_id)) |
| return 0; |
| |
| res = sas_ex_discover_devices(dev, phy_id); |
| if (res) |
| return res; |
| list_for_each_entry(child, &dev->ex_dev.children, siblings) { |
| if (SAS_ADDR(child->sas_addr) == |
| SAS_ADDR(ex_phy->attached_sas_addr)) { |
| if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE || |
| child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) |
| res = sas_discover_bfs_by_root(child); |
| break; |
| } |
| } |
| return res; |
| } |
| |
| static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old) |
| { |
| if (old == new) |
| return true; |
| |
| /* treat device directed resets as flutter, if we went |
| * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery |
| */ |
| if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) || |
| (old == SAS_END_DEVICE && new == SAS_SATA_PENDING)) |
| return true; |
| |
| return false; |
| } |
| |
| static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| struct ex_phy *phy = &ex->ex_phy[phy_id]; |
| enum sas_device_type type = SAS_PHY_UNUSED; |
| u8 sas_addr[8]; |
| int res; |
| |
| memset(sas_addr, 0, 8); |
| res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type); |
| switch (res) { |
| case SMP_RESP_NO_PHY: |
| phy->phy_state = PHY_NOT_PRESENT; |
| sas_unregister_devs_sas_addr(dev, phy_id, last); |
| return res; |
| case SMP_RESP_PHY_VACANT: |
| phy->phy_state = PHY_VACANT; |
| sas_unregister_devs_sas_addr(dev, phy_id, last); |
| return res; |
| case SMP_RESP_FUNC_ACC: |
| break; |
| case -ECOMM: |
| break; |
| default: |
| return res; |
| } |
| |
| if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) { |
| phy->phy_state = PHY_EMPTY; |
| sas_unregister_devs_sas_addr(dev, phy_id, last); |
| return res; |
| } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) && |
| dev_type_flutter(type, phy->attached_dev_type)) { |
| struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id); |
| char *action = ""; |
| |
| sas_ex_phy_discover(dev, phy_id); |
| |
| if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING) |
| action = ", needs recovery"; |
| SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n", |
| SAS_ADDR(dev->sas_addr), phy_id, action); |
| return res; |
| } |
| |
| /* delete the old link */ |
| if (SAS_ADDR(phy->attached_sas_addr) && |
| SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) { |
| SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n", |
| SAS_ADDR(dev->sas_addr), phy_id, |
| SAS_ADDR(phy->attached_sas_addr)); |
| sas_unregister_devs_sas_addr(dev, phy_id, last); |
| } |
| |
| return sas_discover_new(dev, phy_id); |
| } |
| |
| /** |
| * sas_rediscover - revalidate the domain. |
| * @dev:domain device to be detect. |
| * @phy_id: the phy id will be detected. |
| * |
| * NOTE: this process _must_ quit (return) as soon as any connection |
| * errors are encountered. Connection recovery is done elsewhere. |
| * Discover process only interrogates devices in order to discover the |
| * domain.For plugging out, we un-register the device only when it is |
| * the last phy in the port, for other phys in this port, we just delete it |
| * from the port.For inserting, we do discovery when it is the |
| * first phy,for other phys in this port, we add it to the port to |
| * forming the wide-port. |
| */ |
| static int sas_rediscover(struct domain_device *dev, const int phy_id) |
| { |
| struct expander_device *ex = &dev->ex_dev; |
| struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; |
| int res = 0; |
| int i; |
| bool last = true; /* is this the last phy of the port */ |
| |
| SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", |
| SAS_ADDR(dev->sas_addr), phy_id); |
| |
| if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { |
| for (i = 0; i < ex->num_phys; i++) { |
| struct ex_phy *phy = &ex->ex_phy[i]; |
| |
| if (i == phy_id) |
| continue; |
| if (SAS_ADDR(phy->attached_sas_addr) == |
| SAS_ADDR(changed_phy->attached_sas_addr)) { |
| SAS_DPRINTK("phy%d part of wide port with " |
| "phy%d\n", phy_id, i); |
| last = false; |
| break; |
| } |
| } |
| res = sas_rediscover_dev(dev, phy_id, last); |
| } else |
| res = sas_discover_new(dev, phy_id); |
| return res; |
| } |
| |
| /** |
| * sas_revalidate_domain -- revalidate the domain |
| * @port: port to the domain of interest |
| * |
| * NOTE: this process _must_ quit (return) as soon as any connection |
| * errors are encountered. Connection recovery is done elsewhere. |
| * Discover process only interrogates devices in order to discover the |
| * domain. |
| */ |
| int sas_ex_revalidate_domain(struct domain_device *port_dev) |
| { |
| int res; |
| struct domain_device *dev = NULL; |
| |
| res = sas_find_bcast_dev(port_dev, &dev); |
| while (res == 0 && dev) { |
| struct expander_device *ex = &dev->ex_dev; |
| int i = 0, phy_id; |
| |
| do { |
| phy_id = -1; |
| res = sas_find_bcast_phy(dev, &phy_id, i, true); |
| if (phy_id == -1) |
| break; |
| res = sas_rediscover(dev, phy_id); |
| i = phy_id + 1; |
| } while (i < ex->num_phys); |
| |
| dev = NULL; |
| res = sas_find_bcast_dev(port_dev, &dev); |
| } |
| return res; |
| } |
| |
| void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost, |
| struct sas_rphy *rphy) |
| { |
| struct domain_device *dev; |
| unsigned int reslen = 0; |
| int ret = -EINVAL; |
| |
| /* no rphy means no smp target support (ie aic94xx host) */ |
| if (!rphy) |
| return sas_smp_host_handler(job, shost); |
| |
| switch (rphy->identify.device_type) { |
| case SAS_EDGE_EXPANDER_DEVICE: |
| case SAS_FANOUT_EXPANDER_DEVICE: |
| break; |
| default: |
| printk("%s: can we send a smp request to a device?\n", |
| __func__); |
| goto out; |
| } |
| |
| dev = sas_find_dev_by_rphy(rphy); |
| if (!dev) { |
| printk("%s: fail to find a domain_device?\n", __func__); |
| goto out; |
| } |
| |
| /* do we need to support multiple segments? */ |
| if (job->request_payload.sg_cnt > 1 || |
| job->reply_payload.sg_cnt > 1) { |
| printk("%s: multiple segments req %u, rsp %u\n", |
| __func__, job->request_payload.payload_len, |
| job->reply_payload.payload_len); |
| goto out; |
| } |
| |
| ret = smp_execute_task_sg(dev, job->request_payload.sg_list, |
| job->reply_payload.sg_list); |
| if (ret > 0) { |
| /* positive number is the untransferred residual */ |
| reslen = ret; |
| ret = 0; |
| } |
| |
| out: |
| bsg_job_done(job, ret, reslen); |
| } |