| /* |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| */ |
| |
| #include <linux/cpu_pm.h> |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/kvm_host.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/vmalloc.h> |
| #include <linux/fs.h> |
| #include <linux/mman.h> |
| #include <linux/sched.h> |
| #include <linux/kvm.h> |
| #include <trace/events/kvm.h> |
| #include <kvm/arm_pmu.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| |
| #include <asm/uaccess.h> |
| #include <asm/ptrace.h> |
| #include <asm/mman.h> |
| #include <asm/tlbflush.h> |
| #include <asm/cacheflush.h> |
| #include <asm/virt.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_coproc.h> |
| #include <asm/kvm_psci.h> |
| #include <asm/sections.h> |
| |
| #ifdef REQUIRES_VIRT |
| __asm__(".arch_extension virt"); |
| #endif |
| |
| static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); |
| static kvm_cpu_context_t __percpu *kvm_host_cpu_state; |
| static unsigned long hyp_default_vectors; |
| |
| /* Per-CPU variable containing the currently running vcpu. */ |
| static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu); |
| |
| /* The VMID used in the VTTBR */ |
| static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); |
| static u32 kvm_next_vmid; |
| static unsigned int kvm_vmid_bits __read_mostly; |
| static DEFINE_SPINLOCK(kvm_vmid_lock); |
| |
| static bool vgic_present; |
| |
| static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); |
| |
| static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu) |
| { |
| BUG_ON(preemptible()); |
| __this_cpu_write(kvm_arm_running_vcpu, vcpu); |
| } |
| |
| /** |
| * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU. |
| * Must be called from non-preemptible context |
| */ |
| struct kvm_vcpu *kvm_arm_get_running_vcpu(void) |
| { |
| BUG_ON(preemptible()); |
| return __this_cpu_read(kvm_arm_running_vcpu); |
| } |
| |
| /** |
| * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus. |
| */ |
| struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) |
| { |
| return &kvm_arm_running_vcpu; |
| } |
| |
| int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
| { |
| return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
| } |
| |
| int kvm_arch_hardware_setup(void) |
| { |
| return 0; |
| } |
| |
| void kvm_arch_check_processor_compat(void *rtn) |
| { |
| *(int *)rtn = 0; |
| } |
| |
| |
| /** |
| * kvm_arch_init_vm - initializes a VM data structure |
| * @kvm: pointer to the KVM struct |
| */ |
| int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
| { |
| int ret = 0; |
| |
| if (type) |
| return -EINVAL; |
| |
| ret = kvm_alloc_stage2_pgd(kvm); |
| if (ret) |
| goto out_fail_alloc; |
| |
| ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); |
| if (ret) |
| goto out_free_stage2_pgd; |
| |
| kvm_vgic_early_init(kvm); |
| kvm_timer_init(kvm); |
| |
| /* Mark the initial VMID generation invalid */ |
| kvm->arch.vmid_gen = 0; |
| |
| /* The maximum number of VCPUs is limited by the host's GIC model */ |
| kvm->arch.max_vcpus = vgic_present ? |
| kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; |
| |
| return ret; |
| out_free_stage2_pgd: |
| kvm_free_stage2_pgd(kvm); |
| out_fail_alloc: |
| return ret; |
| } |
| |
| int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
| { |
| return VM_FAULT_SIGBUS; |
| } |
| |
| |
| /** |
| * kvm_arch_destroy_vm - destroy the VM data structure |
| * @kvm: pointer to the KVM struct |
| */ |
| void kvm_arch_destroy_vm(struct kvm *kvm) |
| { |
| int i; |
| |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| if (kvm->vcpus[i]) { |
| kvm_arch_vcpu_free(kvm->vcpus[i]); |
| kvm->vcpus[i] = NULL; |
| } |
| } |
| |
| kvm_vgic_destroy(kvm); |
| } |
| |
| int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
| { |
| int r; |
| switch (ext) { |
| case KVM_CAP_IRQCHIP: |
| r = vgic_present; |
| break; |
| case KVM_CAP_IOEVENTFD: |
| case KVM_CAP_DEVICE_CTRL: |
| case KVM_CAP_USER_MEMORY: |
| case KVM_CAP_SYNC_MMU: |
| case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: |
| case KVM_CAP_ONE_REG: |
| case KVM_CAP_ARM_PSCI: |
| case KVM_CAP_ARM_PSCI_0_2: |
| case KVM_CAP_READONLY_MEM: |
| case KVM_CAP_MP_STATE: |
| r = 1; |
| break; |
| case KVM_CAP_COALESCED_MMIO: |
| r = KVM_COALESCED_MMIO_PAGE_OFFSET; |
| break; |
| case KVM_CAP_ARM_SET_DEVICE_ADDR: |
| r = 1; |
| break; |
| case KVM_CAP_NR_VCPUS: |
| r = num_online_cpus(); |
| break; |
| case KVM_CAP_MAX_VCPUS: |
| r = KVM_MAX_VCPUS; |
| break; |
| default: |
| r = kvm_arch_dev_ioctl_check_extension(kvm, ext); |
| break; |
| } |
| return r; |
| } |
| |
| long kvm_arch_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| return -EINVAL; |
| } |
| |
| |
| struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) |
| { |
| int err; |
| struct kvm_vcpu *vcpu; |
| |
| if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) { |
| err = -EBUSY; |
| goto out; |
| } |
| |
| if (id >= kvm->arch.max_vcpus) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| if (!vcpu) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| err = kvm_vcpu_init(vcpu, kvm, id); |
| if (err) |
| goto free_vcpu; |
| |
| err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); |
| if (err) |
| goto vcpu_uninit; |
| |
| return vcpu; |
| vcpu_uninit: |
| kvm_vcpu_uninit(vcpu); |
| free_vcpu: |
| kmem_cache_free(kvm_vcpu_cache, vcpu); |
| out: |
| return ERR_PTR(err); |
| } |
| |
| void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
| { |
| kvm_vgic_vcpu_early_init(vcpu); |
| } |
| |
| void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) |
| { |
| kvm_mmu_free_memory_caches(vcpu); |
| kvm_timer_vcpu_terminate(vcpu); |
| kvm_vgic_vcpu_destroy(vcpu); |
| kvm_pmu_vcpu_destroy(vcpu); |
| kvm_vcpu_uninit(vcpu); |
| kmem_cache_free(kvm_vcpu_cache, vcpu); |
| } |
| |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| kvm_arch_vcpu_free(vcpu); |
| } |
| |
| int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) |
| { |
| return kvm_timer_should_fire(vcpu); |
| } |
| |
| void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) |
| { |
| kvm_timer_schedule(vcpu); |
| } |
| |
| void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) |
| { |
| kvm_timer_unschedule(vcpu); |
| } |
| |
| int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| /* Force users to call KVM_ARM_VCPU_INIT */ |
| vcpu->arch.target = -1; |
| bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); |
| |
| /* Set up the timer */ |
| kvm_timer_vcpu_init(vcpu); |
| |
| kvm_arm_reset_debug_ptr(vcpu); |
| |
| return 0; |
| } |
| |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| vcpu->cpu = cpu; |
| vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state); |
| |
| kvm_arm_set_running_vcpu(vcpu); |
| } |
| |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * The arch-generic KVM code expects the cpu field of a vcpu to be -1 |
| * if the vcpu is no longer assigned to a cpu. This is used for the |
| * optimized make_all_cpus_request path. |
| */ |
| vcpu->cpu = -1; |
| |
| kvm_arm_set_running_vcpu(NULL); |
| kvm_timer_vcpu_put(vcpu); |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| if (vcpu->arch.power_off) |
| mp_state->mp_state = KVM_MP_STATE_STOPPED; |
| else |
| mp_state->mp_state = KVM_MP_STATE_RUNNABLE; |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| switch (mp_state->mp_state) { |
| case KVM_MP_STATE_RUNNABLE: |
| vcpu->arch.power_off = false; |
| break; |
| case KVM_MP_STATE_STOPPED: |
| vcpu->arch.power_off = true; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled |
| * @v: The VCPU pointer |
| * |
| * If the guest CPU is not waiting for interrupts or an interrupt line is |
| * asserted, the CPU is by definition runnable. |
| */ |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) |
| { |
| return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v)) |
| && !v->arch.power_off && !v->arch.pause); |
| } |
| |
| /* Just ensure a guest exit from a particular CPU */ |
| static void exit_vm_noop(void *info) |
| { |
| } |
| |
| void force_vm_exit(const cpumask_t *mask) |
| { |
| preempt_disable(); |
| smp_call_function_many(mask, exit_vm_noop, NULL, true); |
| preempt_enable(); |
| } |
| |
| /** |
| * need_new_vmid_gen - check that the VMID is still valid |
| * @kvm: The VM's VMID to check |
| * |
| * return true if there is a new generation of VMIDs being used |
| * |
| * The hardware supports only 256 values with the value zero reserved for the |
| * host, so we check if an assigned value belongs to a previous generation, |
| * which which requires us to assign a new value. If we're the first to use a |
| * VMID for the new generation, we must flush necessary caches and TLBs on all |
| * CPUs. |
| */ |
| static bool need_new_vmid_gen(struct kvm *kvm) |
| { |
| return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen)); |
| } |
| |
| /** |
| * update_vttbr - Update the VTTBR with a valid VMID before the guest runs |
| * @kvm The guest that we are about to run |
| * |
| * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the |
| * VM has a valid VMID, otherwise assigns a new one and flushes corresponding |
| * caches and TLBs. |
| */ |
| static void update_vttbr(struct kvm *kvm) |
| { |
| phys_addr_t pgd_phys; |
| u64 vmid; |
| |
| if (!need_new_vmid_gen(kvm)) |
| return; |
| |
| spin_lock(&kvm_vmid_lock); |
| |
| /* |
| * We need to re-check the vmid_gen here to ensure that if another vcpu |
| * already allocated a valid vmid for this vm, then this vcpu should |
| * use the same vmid. |
| */ |
| if (!need_new_vmid_gen(kvm)) { |
| spin_unlock(&kvm_vmid_lock); |
| return; |
| } |
| |
| /* First user of a new VMID generation? */ |
| if (unlikely(kvm_next_vmid == 0)) { |
| atomic64_inc(&kvm_vmid_gen); |
| kvm_next_vmid = 1; |
| |
| /* |
| * On SMP we know no other CPUs can use this CPU's or each |
| * other's VMID after force_vm_exit returns since the |
| * kvm_vmid_lock blocks them from reentry to the guest. |
| */ |
| force_vm_exit(cpu_all_mask); |
| /* |
| * Now broadcast TLB + ICACHE invalidation over the inner |
| * shareable domain to make sure all data structures are |
| * clean. |
| */ |
| kvm_call_hyp(__kvm_flush_vm_context); |
| } |
| |
| kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen); |
| kvm->arch.vmid = kvm_next_vmid; |
| kvm_next_vmid++; |
| kvm_next_vmid &= (1 << kvm_vmid_bits) - 1; |
| |
| /* update vttbr to be used with the new vmid */ |
| pgd_phys = virt_to_phys(kvm->arch.pgd); |
| BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK); |
| vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits); |
| kvm->arch.vttbr = pgd_phys | vmid; |
| |
| spin_unlock(&kvm_vmid_lock); |
| } |
| |
| static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| int ret = 0; |
| |
| if (likely(vcpu->arch.has_run_once)) |
| return 0; |
| |
| vcpu->arch.has_run_once = true; |
| |
| /* |
| * Map the VGIC hardware resources before running a vcpu the first |
| * time on this VM. |
| */ |
| if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) { |
| ret = kvm_vgic_map_resources(kvm); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Enable the arch timers only if we have an in-kernel VGIC |
| * and it has been properly initialized, since we cannot handle |
| * interrupts from the virtual timer with a userspace gic. |
| */ |
| if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) |
| ret = kvm_timer_enable(vcpu); |
| |
| return ret; |
| } |
| |
| bool kvm_arch_intc_initialized(struct kvm *kvm) |
| { |
| return vgic_initialized(kvm); |
| } |
| |
| void kvm_arm_halt_guest(struct kvm *kvm) |
| { |
| int i; |
| struct kvm_vcpu *vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| vcpu->arch.pause = true; |
| kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT); |
| } |
| |
| void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.pause = true; |
| kvm_vcpu_kick(vcpu); |
| } |
| |
| void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu) |
| { |
| struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu); |
| |
| vcpu->arch.pause = false; |
| swake_up(wq); |
| } |
| |
| void kvm_arm_resume_guest(struct kvm *kvm) |
| { |
| int i; |
| struct kvm_vcpu *vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_arm_resume_vcpu(vcpu); |
| } |
| |
| static void vcpu_sleep(struct kvm_vcpu *vcpu) |
| { |
| struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu); |
| |
| swait_event_interruptible(*wq, ((!vcpu->arch.power_off) && |
| (!vcpu->arch.pause))); |
| } |
| |
| static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.target >= 0; |
| } |
| |
| /** |
| * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code |
| * @vcpu: The VCPU pointer |
| * @run: The kvm_run structure pointer used for userspace state exchange |
| * |
| * This function is called through the VCPU_RUN ioctl called from user space. It |
| * will execute VM code in a loop until the time slice for the process is used |
| * or some emulation is needed from user space in which case the function will |
| * return with return value 0 and with the kvm_run structure filled in with the |
| * required data for the requested emulation. |
| */ |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| int ret; |
| sigset_t sigsaved; |
| |
| if (unlikely(!kvm_vcpu_initialized(vcpu))) |
| return -ENOEXEC; |
| |
| ret = kvm_vcpu_first_run_init(vcpu); |
| if (ret) |
| return ret; |
| |
| if (run->exit_reason == KVM_EXIT_MMIO) { |
| ret = kvm_handle_mmio_return(vcpu, vcpu->run); |
| if (ret) |
| return ret; |
| } |
| |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); |
| |
| ret = 1; |
| run->exit_reason = KVM_EXIT_UNKNOWN; |
| while (ret > 0) { |
| /* |
| * Check conditions before entering the guest |
| */ |
| cond_resched(); |
| |
| update_vttbr(vcpu->kvm); |
| |
| if (vcpu->arch.power_off || vcpu->arch.pause) |
| vcpu_sleep(vcpu); |
| |
| /* |
| * Preparing the interrupts to be injected also |
| * involves poking the GIC, which must be done in a |
| * non-preemptible context. |
| */ |
| preempt_disable(); |
| kvm_pmu_flush_hwstate(vcpu); |
| kvm_timer_flush_hwstate(vcpu); |
| kvm_vgic_flush_hwstate(vcpu); |
| |
| local_irq_disable(); |
| |
| /* |
| * Re-check atomic conditions |
| */ |
| if (signal_pending(current)) { |
| ret = -EINTR; |
| run->exit_reason = KVM_EXIT_INTR; |
| } |
| |
| if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) || |
| vcpu->arch.power_off || vcpu->arch.pause) { |
| local_irq_enable(); |
| kvm_pmu_sync_hwstate(vcpu); |
| kvm_timer_sync_hwstate(vcpu); |
| kvm_vgic_sync_hwstate(vcpu); |
| preempt_enable(); |
| continue; |
| } |
| |
| kvm_arm_setup_debug(vcpu); |
| |
| /************************************************************** |
| * Enter the guest |
| */ |
| trace_kvm_entry(*vcpu_pc(vcpu)); |
| guest_enter_irqoff(); |
| vcpu->mode = IN_GUEST_MODE; |
| |
| ret = kvm_call_hyp(__kvm_vcpu_run, vcpu); |
| |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| vcpu->stat.exits++; |
| /* |
| * Back from guest |
| *************************************************************/ |
| |
| kvm_arm_clear_debug(vcpu); |
| |
| /* |
| * We may have taken a host interrupt in HYP mode (ie |
| * while executing the guest). This interrupt is still |
| * pending, as we haven't serviced it yet! |
| * |
| * We're now back in SVC mode, with interrupts |
| * disabled. Enabling the interrupts now will have |
| * the effect of taking the interrupt again, in SVC |
| * mode this time. |
| */ |
| local_irq_enable(); |
| |
| /* |
| * We do local_irq_enable() before calling guest_exit() so |
| * that if a timer interrupt hits while running the guest we |
| * account that tick as being spent in the guest. We enable |
| * preemption after calling guest_exit() so that if we get |
| * preempted we make sure ticks after that is not counted as |
| * guest time. |
| */ |
| guest_exit(); |
| trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); |
| |
| /* |
| * We must sync the PMU and timer state before the vgic state so |
| * that the vgic can properly sample the updated state of the |
| * interrupt line. |
| */ |
| kvm_pmu_sync_hwstate(vcpu); |
| kvm_timer_sync_hwstate(vcpu); |
| |
| kvm_vgic_sync_hwstate(vcpu); |
| |
| preempt_enable(); |
| |
| ret = handle_exit(vcpu, run, ret); |
| } |
| |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| return ret; |
| } |
| |
| static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) |
| { |
| int bit_index; |
| bool set; |
| unsigned long *ptr; |
| |
| if (number == KVM_ARM_IRQ_CPU_IRQ) |
| bit_index = __ffs(HCR_VI); |
| else /* KVM_ARM_IRQ_CPU_FIQ */ |
| bit_index = __ffs(HCR_VF); |
| |
| ptr = (unsigned long *)&vcpu->arch.irq_lines; |
| if (level) |
| set = test_and_set_bit(bit_index, ptr); |
| else |
| set = test_and_clear_bit(bit_index, ptr); |
| |
| /* |
| * If we didn't change anything, no need to wake up or kick other CPUs |
| */ |
| if (set == level) |
| return 0; |
| |
| /* |
| * The vcpu irq_lines field was updated, wake up sleeping VCPUs and |
| * trigger a world-switch round on the running physical CPU to set the |
| * virtual IRQ/FIQ fields in the HCR appropriately. |
| */ |
| kvm_vcpu_kick(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, |
| bool line_status) |
| { |
| u32 irq = irq_level->irq; |
| unsigned int irq_type, vcpu_idx, irq_num; |
| int nrcpus = atomic_read(&kvm->online_vcpus); |
| struct kvm_vcpu *vcpu = NULL; |
| bool level = irq_level->level; |
| |
| irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; |
| vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; |
| irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; |
| |
| trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); |
| |
| switch (irq_type) { |
| case KVM_ARM_IRQ_TYPE_CPU: |
| if (irqchip_in_kernel(kvm)) |
| return -ENXIO; |
| |
| if (vcpu_idx >= nrcpus) |
| return -EINVAL; |
| |
| vcpu = kvm_get_vcpu(kvm, vcpu_idx); |
| if (!vcpu) |
| return -EINVAL; |
| |
| if (irq_num > KVM_ARM_IRQ_CPU_FIQ) |
| return -EINVAL; |
| |
| return vcpu_interrupt_line(vcpu, irq_num, level); |
| case KVM_ARM_IRQ_TYPE_PPI: |
| if (!irqchip_in_kernel(kvm)) |
| return -ENXIO; |
| |
| if (vcpu_idx >= nrcpus) |
| return -EINVAL; |
| |
| vcpu = kvm_get_vcpu(kvm, vcpu_idx); |
| if (!vcpu) |
| return -EINVAL; |
| |
| if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) |
| return -EINVAL; |
| |
| return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level); |
| case KVM_ARM_IRQ_TYPE_SPI: |
| if (!irqchip_in_kernel(kvm)) |
| return -ENXIO; |
| |
| if (irq_num < VGIC_NR_PRIVATE_IRQS) |
| return -EINVAL; |
| |
| return kvm_vgic_inject_irq(kvm, 0, irq_num, level); |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, |
| const struct kvm_vcpu_init *init) |
| { |
| unsigned int i; |
| int phys_target = kvm_target_cpu(); |
| |
| if (init->target != phys_target) |
| return -EINVAL; |
| |
| /* |
| * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must |
| * use the same target. |
| */ |
| if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) |
| return -EINVAL; |
| |
| /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ |
| for (i = 0; i < sizeof(init->features) * 8; i++) { |
| bool set = (init->features[i / 32] & (1 << (i % 32))); |
| |
| if (set && i >= KVM_VCPU_MAX_FEATURES) |
| return -ENOENT; |
| |
| /* |
| * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must |
| * use the same feature set. |
| */ |
| if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && |
| test_bit(i, vcpu->arch.features) != set) |
| return -EINVAL; |
| |
| if (set) |
| set_bit(i, vcpu->arch.features); |
| } |
| |
| vcpu->arch.target = phys_target; |
| |
| /* Now we know what it is, we can reset it. */ |
| return kvm_reset_vcpu(vcpu); |
| } |
| |
| |
| static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_init *init) |
| { |
| int ret; |
| |
| ret = kvm_vcpu_set_target(vcpu, init); |
| if (ret) |
| return ret; |
| |
| /* |
| * Ensure a rebooted VM will fault in RAM pages and detect if the |
| * guest MMU is turned off and flush the caches as needed. |
| */ |
| if (vcpu->arch.has_run_once) |
| stage2_unmap_vm(vcpu->kvm); |
| |
| vcpu_reset_hcr(vcpu); |
| |
| /* |
| * Handle the "start in power-off" case. |
| */ |
| if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) |
| vcpu->arch.power_off = true; |
| else |
| vcpu->arch.power_off = false; |
| |
| return 0; |
| } |
| |
| static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int ret = -ENXIO; |
| |
| switch (attr->group) { |
| default: |
| ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int ret = -ENXIO; |
| |
| switch (attr->group) { |
| default: |
| ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int ret = -ENXIO; |
| |
| switch (attr->group) { |
| default: |
| ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| long kvm_arch_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| struct kvm_device_attr attr; |
| |
| switch (ioctl) { |
| case KVM_ARM_VCPU_INIT: { |
| struct kvm_vcpu_init init; |
| |
| if (copy_from_user(&init, argp, sizeof(init))) |
| return -EFAULT; |
| |
| return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); |
| } |
| case KVM_SET_ONE_REG: |
| case KVM_GET_ONE_REG: { |
| struct kvm_one_reg reg; |
| |
| if (unlikely(!kvm_vcpu_initialized(vcpu))) |
| return -ENOEXEC; |
| |
| if (copy_from_user(®, argp, sizeof(reg))) |
| return -EFAULT; |
| if (ioctl == KVM_SET_ONE_REG) |
| return kvm_arm_set_reg(vcpu, ®); |
| else |
| return kvm_arm_get_reg(vcpu, ®); |
| } |
| case KVM_GET_REG_LIST: { |
| struct kvm_reg_list __user *user_list = argp; |
| struct kvm_reg_list reg_list; |
| unsigned n; |
| |
| if (unlikely(!kvm_vcpu_initialized(vcpu))) |
| return -ENOEXEC; |
| |
| if (copy_from_user(®_list, user_list, sizeof(reg_list))) |
| return -EFAULT; |
| n = reg_list.n; |
| reg_list.n = kvm_arm_num_regs(vcpu); |
| if (copy_to_user(user_list, ®_list, sizeof(reg_list))) |
| return -EFAULT; |
| if (n < reg_list.n) |
| return -E2BIG; |
| return kvm_arm_copy_reg_indices(vcpu, user_list->reg); |
| } |
| case KVM_SET_DEVICE_ATTR: { |
| if (copy_from_user(&attr, argp, sizeof(attr))) |
| return -EFAULT; |
| return kvm_arm_vcpu_set_attr(vcpu, &attr); |
| } |
| case KVM_GET_DEVICE_ATTR: { |
| if (copy_from_user(&attr, argp, sizeof(attr))) |
| return -EFAULT; |
| return kvm_arm_vcpu_get_attr(vcpu, &attr); |
| } |
| case KVM_HAS_DEVICE_ATTR: { |
| if (copy_from_user(&attr, argp, sizeof(attr))) |
| return -EFAULT; |
| return kvm_arm_vcpu_has_attr(vcpu, &attr); |
| } |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| /** |
| * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot |
| * @kvm: kvm instance |
| * @log: slot id and address to which we copy the log |
| * |
| * Steps 1-4 below provide general overview of dirty page logging. See |
| * kvm_get_dirty_log_protect() function description for additional details. |
| * |
| * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we |
| * always flush the TLB (step 4) even if previous step failed and the dirty |
| * bitmap may be corrupt. Regardless of previous outcome the KVM logging API |
| * does not preclude user space subsequent dirty log read. Flushing TLB ensures |
| * writes will be marked dirty for next log read. |
| * |
| * 1. Take a snapshot of the bit and clear it if needed. |
| * 2. Write protect the corresponding page. |
| * 3. Copy the snapshot to the userspace. |
| * 4. Flush TLB's if needed. |
| */ |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) |
| { |
| bool is_dirty = false; |
| int r; |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); |
| |
| if (is_dirty) |
| kvm_flush_remote_tlbs(kvm); |
| |
| mutex_unlock(&kvm->slots_lock); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, |
| struct kvm_arm_device_addr *dev_addr) |
| { |
| unsigned long dev_id, type; |
| |
| dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> |
| KVM_ARM_DEVICE_ID_SHIFT; |
| type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> |
| KVM_ARM_DEVICE_TYPE_SHIFT; |
| |
| switch (dev_id) { |
| case KVM_ARM_DEVICE_VGIC_V2: |
| if (!vgic_present) |
| return -ENXIO; |
| return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); |
| default: |
| return -ENODEV; |
| } |
| } |
| |
| long kvm_arch_vm_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| |
| switch (ioctl) { |
| case KVM_CREATE_IRQCHIP: { |
| int ret; |
| if (!vgic_present) |
| return -ENXIO; |
| mutex_lock(&kvm->lock); |
| ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| case KVM_ARM_SET_DEVICE_ADDR: { |
| struct kvm_arm_device_addr dev_addr; |
| |
| if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) |
| return -EFAULT; |
| return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); |
| } |
| case KVM_ARM_PREFERRED_TARGET: { |
| int err; |
| struct kvm_vcpu_init init; |
| |
| err = kvm_vcpu_preferred_target(&init); |
| if (err) |
| return err; |
| |
| if (copy_to_user(argp, &init, sizeof(init))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static void cpu_init_hyp_mode(void *dummy) |
| { |
| phys_addr_t pgd_ptr; |
| unsigned long hyp_stack_ptr; |
| unsigned long stack_page; |
| unsigned long vector_ptr; |
| |
| /* Switch from the HYP stub to our own HYP init vector */ |
| __hyp_set_vectors(kvm_get_idmap_vector()); |
| |
| pgd_ptr = kvm_mmu_get_httbr(); |
| stack_page = __this_cpu_read(kvm_arm_hyp_stack_page); |
| hyp_stack_ptr = stack_page + PAGE_SIZE; |
| vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector); |
| |
| __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr); |
| __cpu_init_stage2(); |
| |
| kvm_arm_init_debug(); |
| } |
| |
| static void cpu_hyp_reinit(void) |
| { |
| if (is_kernel_in_hyp_mode()) { |
| /* |
| * __cpu_init_stage2() is safe to call even if the PM |
| * event was cancelled before the CPU was reset. |
| */ |
| __cpu_init_stage2(); |
| } else { |
| if (__hyp_get_vectors() == hyp_default_vectors) |
| cpu_init_hyp_mode(NULL); |
| } |
| } |
| |
| static void cpu_hyp_reset(void) |
| { |
| if (!is_kernel_in_hyp_mode()) |
| __cpu_reset_hyp_mode(hyp_default_vectors, |
| kvm_get_idmap_start()); |
| } |
| |
| static void _kvm_arch_hardware_enable(void *discard) |
| { |
| if (!__this_cpu_read(kvm_arm_hardware_enabled)) { |
| cpu_hyp_reinit(); |
| __this_cpu_write(kvm_arm_hardware_enabled, 1); |
| } |
| } |
| |
| int kvm_arch_hardware_enable(void) |
| { |
| _kvm_arch_hardware_enable(NULL); |
| return 0; |
| } |
| |
| static void _kvm_arch_hardware_disable(void *discard) |
| { |
| if (__this_cpu_read(kvm_arm_hardware_enabled)) { |
| cpu_hyp_reset(); |
| __this_cpu_write(kvm_arm_hardware_enabled, 0); |
| } |
| } |
| |
| void kvm_arch_hardware_disable(void) |
| { |
| _kvm_arch_hardware_disable(NULL); |
| } |
| |
| #ifdef CONFIG_CPU_PM |
| static int hyp_init_cpu_pm_notifier(struct notifier_block *self, |
| unsigned long cmd, |
| void *v) |
| { |
| /* |
| * kvm_arm_hardware_enabled is left with its old value over |
| * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should |
| * re-enable hyp. |
| */ |
| switch (cmd) { |
| case CPU_PM_ENTER: |
| if (__this_cpu_read(kvm_arm_hardware_enabled)) |
| /* |
| * don't update kvm_arm_hardware_enabled here |
| * so that the hardware will be re-enabled |
| * when we resume. See below. |
| */ |
| cpu_hyp_reset(); |
| |
| return NOTIFY_OK; |
| case CPU_PM_EXIT: |
| if (__this_cpu_read(kvm_arm_hardware_enabled)) |
| /* The hardware was enabled before suspend. */ |
| cpu_hyp_reinit(); |
| |
| return NOTIFY_OK; |
| |
| default: |
| return NOTIFY_DONE; |
| } |
| } |
| |
| static struct notifier_block hyp_init_cpu_pm_nb = { |
| .notifier_call = hyp_init_cpu_pm_notifier, |
| }; |
| |
| static void __init hyp_cpu_pm_init(void) |
| { |
| cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); |
| } |
| static void __init hyp_cpu_pm_exit(void) |
| { |
| cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); |
| } |
| #else |
| static inline void hyp_cpu_pm_init(void) |
| { |
| } |
| static inline void hyp_cpu_pm_exit(void) |
| { |
| } |
| #endif |
| |
| static void teardown_common_resources(void) |
| { |
| free_percpu(kvm_host_cpu_state); |
| } |
| |
| static int init_common_resources(void) |
| { |
| kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t); |
| if (!kvm_host_cpu_state) { |
| kvm_err("Cannot allocate host CPU state\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int init_subsystems(void) |
| { |
| int err = 0; |
| |
| /* |
| * Enable hardware so that subsystem initialisation can access EL2. |
| */ |
| on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); |
| |
| /* |
| * Register CPU lower-power notifier |
| */ |
| hyp_cpu_pm_init(); |
| |
| /* |
| * Init HYP view of VGIC |
| */ |
| err = kvm_vgic_hyp_init(); |
| switch (err) { |
| case 0: |
| vgic_present = true; |
| break; |
| case -ENODEV: |
| case -ENXIO: |
| vgic_present = false; |
| err = 0; |
| break; |
| default: |
| goto out; |
| } |
| |
| /* |
| * Init HYP architected timer support |
| */ |
| err = kvm_timer_hyp_init(); |
| if (err) |
| goto out; |
| |
| kvm_perf_init(); |
| kvm_coproc_table_init(); |
| |
| out: |
| on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); |
| |
| return err; |
| } |
| |
| static void teardown_hyp_mode(void) |
| { |
| int cpu; |
| |
| if (is_kernel_in_hyp_mode()) |
| return; |
| |
| free_hyp_pgds(); |
| for_each_possible_cpu(cpu) |
| free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); |
| hyp_cpu_pm_exit(); |
| } |
| |
| static int init_vhe_mode(void) |
| { |
| /* set size of VMID supported by CPU */ |
| kvm_vmid_bits = kvm_get_vmid_bits(); |
| kvm_info("%d-bit VMID\n", kvm_vmid_bits); |
| |
| kvm_info("VHE mode initialized successfully\n"); |
| return 0; |
| } |
| |
| /** |
| * Inits Hyp-mode on all online CPUs |
| */ |
| static int init_hyp_mode(void) |
| { |
| int cpu; |
| int err = 0; |
| |
| /* |
| * Allocate Hyp PGD and setup Hyp identity mapping |
| */ |
| err = kvm_mmu_init(); |
| if (err) |
| goto out_err; |
| |
| /* |
| * It is probably enough to obtain the default on one |
| * CPU. It's unlikely to be different on the others. |
| */ |
| hyp_default_vectors = __hyp_get_vectors(); |
| |
| /* |
| * Allocate stack pages for Hypervisor-mode |
| */ |
| for_each_possible_cpu(cpu) { |
| unsigned long stack_page; |
| |
| stack_page = __get_free_page(GFP_KERNEL); |
| if (!stack_page) { |
| err = -ENOMEM; |
| goto out_err; |
| } |
| |
| per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; |
| } |
| |
| /* |
| * Map the Hyp-code called directly from the host |
| */ |
| err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), |
| kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); |
| if (err) { |
| kvm_err("Cannot map world-switch code\n"); |
| goto out_err; |
| } |
| |
| err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), |
| kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); |
| if (err) { |
| kvm_err("Cannot map rodata section\n"); |
| goto out_err; |
| } |
| |
| /* |
| * Map the Hyp stack pages |
| */ |
| for_each_possible_cpu(cpu) { |
| char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); |
| err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, |
| PAGE_HYP); |
| |
| if (err) { |
| kvm_err("Cannot map hyp stack\n"); |
| goto out_err; |
| } |
| } |
| |
| for_each_possible_cpu(cpu) { |
| kvm_cpu_context_t *cpu_ctxt; |
| |
| cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu); |
| err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP); |
| |
| if (err) { |
| kvm_err("Cannot map host CPU state: %d\n", err); |
| goto out_err; |
| } |
| } |
| |
| /* set size of VMID supported by CPU */ |
| kvm_vmid_bits = kvm_get_vmid_bits(); |
| kvm_info("%d-bit VMID\n", kvm_vmid_bits); |
| |
| kvm_info("Hyp mode initialized successfully\n"); |
| |
| return 0; |
| |
| out_err: |
| teardown_hyp_mode(); |
| kvm_err("error initializing Hyp mode: %d\n", err); |
| return err; |
| } |
| |
| static void check_kvm_target_cpu(void *ret) |
| { |
| *(int *)ret = kvm_target_cpu(); |
| } |
| |
| struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) |
| { |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| mpidr &= MPIDR_HWID_BITMASK; |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) |
| return vcpu; |
| } |
| return NULL; |
| } |
| |
| /** |
| * Initialize Hyp-mode and memory mappings on all CPUs. |
| */ |
| int kvm_arch_init(void *opaque) |
| { |
| int err; |
| int ret, cpu; |
| |
| if (!is_hyp_mode_available()) { |
| kvm_err("HYP mode not available\n"); |
| return -ENODEV; |
| } |
| |
| for_each_online_cpu(cpu) { |
| smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); |
| if (ret < 0) { |
| kvm_err("Error, CPU %d not supported!\n", cpu); |
| return -ENODEV; |
| } |
| } |
| |
| err = init_common_resources(); |
| if (err) |
| return err; |
| |
| if (is_kernel_in_hyp_mode()) |
| err = init_vhe_mode(); |
| else |
| err = init_hyp_mode(); |
| if (err) |
| goto out_err; |
| |
| err = init_subsystems(); |
| if (err) |
| goto out_hyp; |
| |
| return 0; |
| |
| out_hyp: |
| teardown_hyp_mode(); |
| out_err: |
| teardown_common_resources(); |
| return err; |
| } |
| |
| /* NOP: Compiling as a module not supported */ |
| void kvm_arch_exit(void) |
| { |
| kvm_perf_teardown(); |
| } |
| |
| static int arm_init(void) |
| { |
| int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); |
| return rc; |
| } |
| |
| module_init(arm_init); |