| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/kthread.h> |
| #include <linux/pagemap.h> |
| |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "free-space-cache.h" |
| #include "inode-map.h" |
| #include "transaction.h" |
| |
| static int caching_kthread(void *data) |
| { |
| struct btrfs_root *root = data; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; |
| struct btrfs_key key; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| u64 last = (u64)-1; |
| int slot; |
| int ret; |
| |
| if (!btrfs_test_opt(root, INODE_MAP_CACHE)) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* Since the commit root is read-only, we can safely skip locking. */ |
| path->skip_locking = 1; |
| path->search_commit_root = 1; |
| path->reada = READA_FORWARD; |
| |
| key.objectid = BTRFS_FIRST_FREE_OBJECTID; |
| key.offset = 0; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| again: |
| /* need to make sure the commit_root doesn't disappear */ |
| down_read(&fs_info->commit_root_sem); |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| while (1) { |
| if (btrfs_fs_closing(fs_info)) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) |
| break; |
| |
| if (need_resched() || |
| btrfs_transaction_in_commit(fs_info)) { |
| leaf = path->nodes[0]; |
| |
| if (WARN_ON(btrfs_header_nritems(leaf) == 0)) |
| break; |
| |
| /* |
| * Save the key so we can advances forward |
| * in the next search. |
| */ |
| btrfs_item_key_to_cpu(leaf, &key, 0); |
| btrfs_release_path(path); |
| root->ino_cache_progress = last; |
| up_read(&fs_info->commit_root_sem); |
| schedule_timeout(1); |
| goto again; |
| } else |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| |
| if (key.type != BTRFS_INODE_ITEM_KEY) |
| goto next; |
| |
| if (key.objectid >= root->highest_objectid) |
| break; |
| |
| if (last != (u64)-1 && last + 1 != key.objectid) { |
| __btrfs_add_free_space(ctl, last + 1, |
| key.objectid - last - 1); |
| wake_up(&root->ino_cache_wait); |
| } |
| |
| last = key.objectid; |
| next: |
| path->slots[0]++; |
| } |
| |
| if (last < root->highest_objectid - 1) { |
| __btrfs_add_free_space(ctl, last + 1, |
| root->highest_objectid - last - 1); |
| } |
| |
| spin_lock(&root->ino_cache_lock); |
| root->ino_cache_state = BTRFS_CACHE_FINISHED; |
| spin_unlock(&root->ino_cache_lock); |
| |
| root->ino_cache_progress = (u64)-1; |
| btrfs_unpin_free_ino(root); |
| out: |
| wake_up(&root->ino_cache_wait); |
| up_read(&fs_info->commit_root_sem); |
| |
| btrfs_free_path(path); |
| |
| return ret; |
| } |
| |
| static void start_caching(struct btrfs_root *root) |
| { |
| struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; |
| struct task_struct *tsk; |
| int ret; |
| u64 objectid; |
| |
| if (!btrfs_test_opt(root, INODE_MAP_CACHE)) |
| return; |
| |
| spin_lock(&root->ino_cache_lock); |
| if (root->ino_cache_state != BTRFS_CACHE_NO) { |
| spin_unlock(&root->ino_cache_lock); |
| return; |
| } |
| |
| root->ino_cache_state = BTRFS_CACHE_STARTED; |
| spin_unlock(&root->ino_cache_lock); |
| |
| ret = load_free_ino_cache(root->fs_info, root); |
| if (ret == 1) { |
| spin_lock(&root->ino_cache_lock); |
| root->ino_cache_state = BTRFS_CACHE_FINISHED; |
| spin_unlock(&root->ino_cache_lock); |
| return; |
| } |
| |
| /* |
| * It can be quite time-consuming to fill the cache by searching |
| * through the extent tree, and this can keep ino allocation path |
| * waiting. Therefore at start we quickly find out the highest |
| * inode number and we know we can use inode numbers which fall in |
| * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID]. |
| */ |
| ret = btrfs_find_free_objectid(root, &objectid); |
| if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) { |
| __btrfs_add_free_space(ctl, objectid, |
| BTRFS_LAST_FREE_OBJECTID - objectid + 1); |
| } |
| |
| tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu", |
| root->root_key.objectid); |
| if (IS_ERR(tsk)) { |
| btrfs_warn(root->fs_info, "failed to start inode caching task"); |
| btrfs_clear_pending_and_info(root->fs_info, INODE_MAP_CACHE, |
| "disabling inode map caching"); |
| } |
| } |
| |
| int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid) |
| { |
| if (!btrfs_test_opt(root, INODE_MAP_CACHE)) |
| return btrfs_find_free_objectid(root, objectid); |
| |
| again: |
| *objectid = btrfs_find_ino_for_alloc(root); |
| |
| if (*objectid != 0) |
| return 0; |
| |
| start_caching(root); |
| |
| wait_event(root->ino_cache_wait, |
| root->ino_cache_state == BTRFS_CACHE_FINISHED || |
| root->free_ino_ctl->free_space > 0); |
| |
| if (root->ino_cache_state == BTRFS_CACHE_FINISHED && |
| root->free_ino_ctl->free_space == 0) |
| return -ENOSPC; |
| else |
| goto again; |
| } |
| |
| void btrfs_return_ino(struct btrfs_root *root, u64 objectid) |
| { |
| struct btrfs_free_space_ctl *pinned = root->free_ino_pinned; |
| |
| if (!btrfs_test_opt(root, INODE_MAP_CACHE)) |
| return; |
| again: |
| if (root->ino_cache_state == BTRFS_CACHE_FINISHED) { |
| __btrfs_add_free_space(pinned, objectid, 1); |
| } else { |
| down_write(&root->fs_info->commit_root_sem); |
| spin_lock(&root->ino_cache_lock); |
| if (root->ino_cache_state == BTRFS_CACHE_FINISHED) { |
| spin_unlock(&root->ino_cache_lock); |
| up_write(&root->fs_info->commit_root_sem); |
| goto again; |
| } |
| spin_unlock(&root->ino_cache_lock); |
| |
| start_caching(root); |
| |
| __btrfs_add_free_space(pinned, objectid, 1); |
| |
| up_write(&root->fs_info->commit_root_sem); |
| } |
| } |
| |
| /* |
| * When a transaction is committed, we'll move those inode numbers which are |
| * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and |
| * others will just be dropped, because the commit root we were searching has |
| * changed. |
| * |
| * Must be called with root->fs_info->commit_root_sem held |
| */ |
| void btrfs_unpin_free_ino(struct btrfs_root *root) |
| { |
| struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; |
| struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset; |
| spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock; |
| struct btrfs_free_space *info; |
| struct rb_node *n; |
| u64 count; |
| |
| if (!btrfs_test_opt(root, INODE_MAP_CACHE)) |
| return; |
| |
| while (1) { |
| bool add_to_ctl = true; |
| |
| spin_lock(rbroot_lock); |
| n = rb_first(rbroot); |
| if (!n) { |
| spin_unlock(rbroot_lock); |
| break; |
| } |
| |
| info = rb_entry(n, struct btrfs_free_space, offset_index); |
| BUG_ON(info->bitmap); /* Logic error */ |
| |
| if (info->offset > root->ino_cache_progress) |
| add_to_ctl = false; |
| else if (info->offset + info->bytes > root->ino_cache_progress) |
| count = root->ino_cache_progress - info->offset + 1; |
| else |
| count = info->bytes; |
| |
| rb_erase(&info->offset_index, rbroot); |
| spin_unlock(rbroot_lock); |
| if (add_to_ctl) |
| __btrfs_add_free_space(ctl, info->offset, count); |
| kmem_cache_free(btrfs_free_space_cachep, info); |
| } |
| } |
| |
| #define INIT_THRESHOLD ((SZ_32K / 2) / sizeof(struct btrfs_free_space)) |
| #define INODES_PER_BITMAP (PAGE_CACHE_SIZE * 8) |
| |
| /* |
| * The goal is to keep the memory used by the free_ino tree won't |
| * exceed the memory if we use bitmaps only. |
| */ |
| static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) |
| { |
| struct btrfs_free_space *info; |
| struct rb_node *n; |
| int max_ino; |
| int max_bitmaps; |
| |
| n = rb_last(&ctl->free_space_offset); |
| if (!n) { |
| ctl->extents_thresh = INIT_THRESHOLD; |
| return; |
| } |
| info = rb_entry(n, struct btrfs_free_space, offset_index); |
| |
| /* |
| * Find the maximum inode number in the filesystem. Note we |
| * ignore the fact that this can be a bitmap, because we are |
| * not doing precise calculation. |
| */ |
| max_ino = info->bytes - 1; |
| |
| max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP; |
| if (max_bitmaps <= ctl->total_bitmaps) { |
| ctl->extents_thresh = 0; |
| return; |
| } |
| |
| ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) * |
| PAGE_CACHE_SIZE / sizeof(*info); |
| } |
| |
| /* |
| * We don't fall back to bitmap, if we are below the extents threshold |
| * or this chunk of inode numbers is a big one. |
| */ |
| static bool use_bitmap(struct btrfs_free_space_ctl *ctl, |
| struct btrfs_free_space *info) |
| { |
| if (ctl->free_extents < ctl->extents_thresh || |
| info->bytes > INODES_PER_BITMAP / 10) |
| return false; |
| |
| return true; |
| } |
| |
| static const struct btrfs_free_space_op free_ino_op = { |
| .recalc_thresholds = recalculate_thresholds, |
| .use_bitmap = use_bitmap, |
| }; |
| |
| static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl) |
| { |
| } |
| |
| static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl, |
| struct btrfs_free_space *info) |
| { |
| /* |
| * We always use extents for two reasons: |
| * |
| * - The pinned tree is only used during the process of caching |
| * work. |
| * - Make code simpler. See btrfs_unpin_free_ino(). |
| */ |
| return false; |
| } |
| |
| static const struct btrfs_free_space_op pinned_free_ino_op = { |
| .recalc_thresholds = pinned_recalc_thresholds, |
| .use_bitmap = pinned_use_bitmap, |
| }; |
| |
| void btrfs_init_free_ino_ctl(struct btrfs_root *root) |
| { |
| struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; |
| struct btrfs_free_space_ctl *pinned = root->free_ino_pinned; |
| |
| spin_lock_init(&ctl->tree_lock); |
| ctl->unit = 1; |
| ctl->start = 0; |
| ctl->private = NULL; |
| ctl->op = &free_ino_op; |
| INIT_LIST_HEAD(&ctl->trimming_ranges); |
| mutex_init(&ctl->cache_writeout_mutex); |
| |
| /* |
| * Initially we allow to use 16K of ram to cache chunks of |
| * inode numbers before we resort to bitmaps. This is somewhat |
| * arbitrary, but it will be adjusted in runtime. |
| */ |
| ctl->extents_thresh = INIT_THRESHOLD; |
| |
| spin_lock_init(&pinned->tree_lock); |
| pinned->unit = 1; |
| pinned->start = 0; |
| pinned->private = NULL; |
| pinned->extents_thresh = 0; |
| pinned->op = &pinned_free_ino_op; |
| } |
| |
| int btrfs_save_ino_cache(struct btrfs_root *root, |
| struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; |
| struct btrfs_path *path; |
| struct inode *inode; |
| struct btrfs_block_rsv *rsv; |
| u64 num_bytes; |
| u64 alloc_hint = 0; |
| int ret; |
| int prealloc; |
| bool retry = false; |
| |
| /* only fs tree and subvol/snap needs ino cache */ |
| if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID && |
| (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID || |
| root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID)) |
| return 0; |
| |
| /* Don't save inode cache if we are deleting this root */ |
| if (btrfs_root_refs(&root->root_item) == 0) |
| return 0; |
| |
| if (!btrfs_test_opt(root, INODE_MAP_CACHE)) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| rsv = trans->block_rsv; |
| trans->block_rsv = &root->fs_info->trans_block_rsv; |
| |
| num_bytes = trans->bytes_reserved; |
| /* |
| * 1 item for inode item insertion if need |
| * 4 items for inode item update (in the worst case) |
| * 1 items for slack space if we need do truncation |
| * 1 item for free space object |
| * 3 items for pre-allocation |
| */ |
| trans->bytes_reserved = btrfs_calc_trans_metadata_size(root, 10); |
| ret = btrfs_block_rsv_add(root, trans->block_rsv, |
| trans->bytes_reserved, |
| BTRFS_RESERVE_NO_FLUSH); |
| if (ret) |
| goto out; |
| trace_btrfs_space_reservation(root->fs_info, "ino_cache", |
| trans->transid, trans->bytes_reserved, 1); |
| again: |
| inode = lookup_free_ino_inode(root, path); |
| if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) { |
| ret = PTR_ERR(inode); |
| goto out_release; |
| } |
| |
| if (IS_ERR(inode)) { |
| BUG_ON(retry); /* Logic error */ |
| retry = true; |
| |
| ret = create_free_ino_inode(root, trans, path); |
| if (ret) |
| goto out_release; |
| goto again; |
| } |
| |
| BTRFS_I(inode)->generation = 0; |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_put; |
| } |
| |
| if (i_size_read(inode) > 0) { |
| ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); |
| if (ret) { |
| if (ret != -ENOSPC) |
| btrfs_abort_transaction(trans, root, ret); |
| goto out_put; |
| } |
| } |
| |
| spin_lock(&root->ino_cache_lock); |
| if (root->ino_cache_state != BTRFS_CACHE_FINISHED) { |
| ret = -1; |
| spin_unlock(&root->ino_cache_lock); |
| goto out_put; |
| } |
| spin_unlock(&root->ino_cache_lock); |
| |
| spin_lock(&ctl->tree_lock); |
| prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents; |
| prealloc = ALIGN(prealloc, PAGE_CACHE_SIZE); |
| prealloc += ctl->total_bitmaps * PAGE_CACHE_SIZE; |
| spin_unlock(&ctl->tree_lock); |
| |
| /* Just to make sure we have enough space */ |
| prealloc += 8 * PAGE_CACHE_SIZE; |
| |
| ret = btrfs_delalloc_reserve_space(inode, 0, prealloc); |
| if (ret) |
| goto out_put; |
| |
| ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc, |
| prealloc, prealloc, &alloc_hint); |
| if (ret) { |
| btrfs_delalloc_release_space(inode, 0, prealloc); |
| goto out_put; |
| } |
| btrfs_free_reserved_data_space(inode, 0, prealloc); |
| |
| ret = btrfs_write_out_ino_cache(root, trans, path, inode); |
| out_put: |
| iput(inode); |
| out_release: |
| trace_btrfs_space_reservation(root->fs_info, "ino_cache", |
| trans->transid, trans->bytes_reserved, 0); |
| btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); |
| out: |
| trans->block_rsv = rsv; |
| trans->bytes_reserved = num_bytes; |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid) |
| { |
| struct btrfs_path *path; |
| int ret; |
| struct extent_buffer *l; |
| struct btrfs_key search_key; |
| struct btrfs_key found_key; |
| int slot; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| search_key.objectid = BTRFS_LAST_FREE_OBJECTID; |
| search_key.type = -1; |
| search_key.offset = (u64)-1; |
| ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| BUG_ON(ret == 0); /* Corruption */ |
| if (path->slots[0] > 0) { |
| slot = path->slots[0] - 1; |
| l = path->nodes[0]; |
| btrfs_item_key_to_cpu(l, &found_key, slot); |
| *objectid = max_t(u64, found_key.objectid, |
| BTRFS_FIRST_FREE_OBJECTID - 1); |
| } else { |
| *objectid = BTRFS_FIRST_FREE_OBJECTID - 1; |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid) |
| { |
| int ret; |
| mutex_lock(&root->objectid_mutex); |
| |
| if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) { |
| btrfs_warn(root->fs_info, |
| "the objectid of root %llu reaches its highest value", |
| root->root_key.objectid); |
| ret = -ENOSPC; |
| goto out; |
| } |
| |
| *objectid = ++root->highest_objectid; |
| ret = 0; |
| out: |
| mutex_unlock(&root->objectid_mutex); |
| return ret; |
| } |