| /* Maintain an RxRPC server socket to do AFS communications through |
| * |
| * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/slab.h> |
| #include <net/sock.h> |
| #include <net/af_rxrpc.h> |
| #include <rxrpc/packet.h> |
| #include "internal.h" |
| #include "afs_cm.h" |
| |
| struct socket *afs_socket; /* my RxRPC socket */ |
| static struct workqueue_struct *afs_async_calls; |
| static atomic_t afs_outstanding_calls; |
| static atomic_t afs_outstanding_skbs; |
| |
| static void afs_wake_up_call_waiter(struct afs_call *); |
| static int afs_wait_for_call_to_complete(struct afs_call *); |
| static void afs_wake_up_async_call(struct afs_call *); |
| static int afs_dont_wait_for_call_to_complete(struct afs_call *); |
| static void afs_process_async_call(struct afs_call *); |
| static void afs_rx_interceptor(struct sock *, unsigned long, struct sk_buff *); |
| static int afs_deliver_cm_op_id(struct afs_call *, struct sk_buff *, bool); |
| |
| /* synchronous call management */ |
| const struct afs_wait_mode afs_sync_call = { |
| .rx_wakeup = afs_wake_up_call_waiter, |
| .wait = afs_wait_for_call_to_complete, |
| }; |
| |
| /* asynchronous call management */ |
| const struct afs_wait_mode afs_async_call = { |
| .rx_wakeup = afs_wake_up_async_call, |
| .wait = afs_dont_wait_for_call_to_complete, |
| }; |
| |
| /* asynchronous incoming call management */ |
| static const struct afs_wait_mode afs_async_incoming_call = { |
| .rx_wakeup = afs_wake_up_async_call, |
| }; |
| |
| /* asynchronous incoming call initial processing */ |
| static const struct afs_call_type afs_RXCMxxxx = { |
| .name = "CB.xxxx", |
| .deliver = afs_deliver_cm_op_id, |
| .abort_to_error = afs_abort_to_error, |
| }; |
| |
| static void afs_collect_incoming_call(struct work_struct *); |
| |
| static struct sk_buff_head afs_incoming_calls; |
| static DECLARE_WORK(afs_collect_incoming_call_work, afs_collect_incoming_call); |
| |
| static void afs_async_workfn(struct work_struct *work) |
| { |
| struct afs_call *call = container_of(work, struct afs_call, async_work); |
| |
| call->async_workfn(call); |
| } |
| |
| static int afs_wait_atomic_t(atomic_t *p) |
| { |
| schedule(); |
| return 0; |
| } |
| |
| /* |
| * open an RxRPC socket and bind it to be a server for callback notifications |
| * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT |
| */ |
| int afs_open_socket(void) |
| { |
| struct sockaddr_rxrpc srx; |
| struct socket *socket; |
| int ret; |
| |
| _enter(""); |
| |
| skb_queue_head_init(&afs_incoming_calls); |
| |
| ret = -ENOMEM; |
| afs_async_calls = create_singlethread_workqueue("kafsd"); |
| if (!afs_async_calls) |
| goto error_0; |
| |
| ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket); |
| if (ret < 0) |
| goto error_1; |
| |
| socket->sk->sk_allocation = GFP_NOFS; |
| |
| /* bind the callback manager's address to make this a server socket */ |
| srx.srx_family = AF_RXRPC; |
| srx.srx_service = CM_SERVICE; |
| srx.transport_type = SOCK_DGRAM; |
| srx.transport_len = sizeof(srx.transport.sin); |
| srx.transport.sin.sin_family = AF_INET; |
| srx.transport.sin.sin_port = htons(AFS_CM_PORT); |
| memset(&srx.transport.sin.sin_addr, 0, |
| sizeof(srx.transport.sin.sin_addr)); |
| |
| ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); |
| if (ret < 0) |
| goto error_2; |
| |
| ret = kernel_listen(socket, INT_MAX); |
| if (ret < 0) |
| goto error_2; |
| |
| rxrpc_kernel_intercept_rx_messages(socket, afs_rx_interceptor); |
| |
| afs_socket = socket; |
| _leave(" = 0"); |
| return 0; |
| |
| error_2: |
| sock_release(socket); |
| error_1: |
| destroy_workqueue(afs_async_calls); |
| error_0: |
| _leave(" = %d", ret); |
| return ret; |
| } |
| |
| /* |
| * close the RxRPC socket AFS was using |
| */ |
| void afs_close_socket(void) |
| { |
| _enter(""); |
| |
| wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t, |
| TASK_UNINTERRUPTIBLE); |
| _debug("no outstanding calls"); |
| |
| sock_release(afs_socket); |
| |
| _debug("dework"); |
| destroy_workqueue(afs_async_calls); |
| |
| ASSERTCMP(atomic_read(&afs_outstanding_skbs), ==, 0); |
| _leave(""); |
| } |
| |
| /* |
| * Note that the data in a socket buffer is now consumed. |
| */ |
| void afs_data_consumed(struct afs_call *call, struct sk_buff *skb) |
| { |
| if (!skb) { |
| _debug("DLVR NULL [%d]", atomic_read(&afs_outstanding_skbs)); |
| dump_stack(); |
| } else { |
| _debug("DLVR %p{%u} [%d]", |
| skb, skb->mark, atomic_read(&afs_outstanding_skbs)); |
| rxrpc_kernel_data_consumed(call->rxcall, skb); |
| } |
| } |
| |
| /* |
| * free a socket buffer |
| */ |
| static void afs_free_skb(struct sk_buff *skb) |
| { |
| if (!skb) { |
| _debug("FREE NULL [%d]", atomic_read(&afs_outstanding_skbs)); |
| dump_stack(); |
| } else { |
| _debug("FREE %p{%u} [%d]", |
| skb, skb->mark, atomic_read(&afs_outstanding_skbs)); |
| if (atomic_dec_return(&afs_outstanding_skbs) == -1) |
| BUG(); |
| rxrpc_kernel_free_skb(skb); |
| } |
| } |
| |
| /* |
| * free a call |
| */ |
| static void afs_free_call(struct afs_call *call) |
| { |
| _debug("DONE %p{%s} [%d]", |
| call, call->type->name, atomic_read(&afs_outstanding_calls)); |
| |
| ASSERTCMP(call->rxcall, ==, NULL); |
| ASSERT(!work_pending(&call->async_work)); |
| ASSERT(skb_queue_empty(&call->rx_queue)); |
| ASSERT(call->type->name != NULL); |
| |
| kfree(call->request); |
| kfree(call); |
| |
| if (atomic_dec_and_test(&afs_outstanding_calls)) |
| wake_up_atomic_t(&afs_outstanding_calls); |
| } |
| |
| /* |
| * End a call but do not free it |
| */ |
| static void afs_end_call_nofree(struct afs_call *call) |
| { |
| if (call->rxcall) { |
| rxrpc_kernel_end_call(call->rxcall); |
| call->rxcall = NULL; |
| } |
| if (call->type->destructor) |
| call->type->destructor(call); |
| } |
| |
| /* |
| * End a call and free it |
| */ |
| static void afs_end_call(struct afs_call *call) |
| { |
| afs_end_call_nofree(call); |
| afs_free_call(call); |
| } |
| |
| /* |
| * allocate a call with flat request and reply buffers |
| */ |
| struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type, |
| size_t request_size, size_t reply_size) |
| { |
| struct afs_call *call; |
| |
| call = kzalloc(sizeof(*call), GFP_NOFS); |
| if (!call) |
| goto nomem_call; |
| |
| _debug("CALL %p{%s} [%d]", |
| call, type->name, atomic_read(&afs_outstanding_calls)); |
| atomic_inc(&afs_outstanding_calls); |
| |
| call->type = type; |
| call->request_size = request_size; |
| call->reply_max = reply_size; |
| |
| if (request_size) { |
| call->request = kmalloc(request_size, GFP_NOFS); |
| if (!call->request) |
| goto nomem_free; |
| } |
| |
| if (reply_size) { |
| call->buffer = kmalloc(reply_size, GFP_NOFS); |
| if (!call->buffer) |
| goto nomem_free; |
| } |
| |
| init_waitqueue_head(&call->waitq); |
| skb_queue_head_init(&call->rx_queue); |
| return call; |
| |
| nomem_free: |
| afs_free_call(call); |
| nomem_call: |
| return NULL; |
| } |
| |
| /* |
| * clean up a call with flat buffer |
| */ |
| void afs_flat_call_destructor(struct afs_call *call) |
| { |
| _enter(""); |
| |
| kfree(call->request); |
| call->request = NULL; |
| kfree(call->buffer); |
| call->buffer = NULL; |
| } |
| |
| /* |
| * attach the data from a bunch of pages on an inode to a call |
| */ |
| static int afs_send_pages(struct afs_call *call, struct msghdr *msg, |
| struct kvec *iov) |
| { |
| struct page *pages[8]; |
| unsigned count, n, loop, offset, to; |
| pgoff_t first = call->first, last = call->last; |
| int ret; |
| |
| _enter(""); |
| |
| offset = call->first_offset; |
| call->first_offset = 0; |
| |
| do { |
| _debug("attach %lx-%lx", first, last); |
| |
| count = last - first + 1; |
| if (count > ARRAY_SIZE(pages)) |
| count = ARRAY_SIZE(pages); |
| n = find_get_pages_contig(call->mapping, first, count, pages); |
| ASSERTCMP(n, ==, count); |
| |
| loop = 0; |
| do { |
| msg->msg_flags = 0; |
| to = PAGE_SIZE; |
| if (first + loop >= last) |
| to = call->last_to; |
| else |
| msg->msg_flags = MSG_MORE; |
| iov->iov_base = kmap(pages[loop]) + offset; |
| iov->iov_len = to - offset; |
| offset = 0; |
| |
| _debug("- range %u-%u%s", |
| offset, to, msg->msg_flags ? " [more]" : ""); |
| iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, |
| iov, 1, to - offset); |
| |
| /* have to change the state *before* sending the last |
| * packet as RxRPC might give us the reply before it |
| * returns from sending the request */ |
| if (first + loop >= last) |
| call->state = AFS_CALL_AWAIT_REPLY; |
| ret = rxrpc_kernel_send_data(call->rxcall, msg, |
| to - offset); |
| kunmap(pages[loop]); |
| if (ret < 0) |
| break; |
| } while (++loop < count); |
| first += count; |
| |
| for (loop = 0; loop < count; loop++) |
| put_page(pages[loop]); |
| if (ret < 0) |
| break; |
| } while (first <= last); |
| |
| _leave(" = %d", ret); |
| return ret; |
| } |
| |
| /* |
| * initiate a call |
| */ |
| int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp, |
| const struct afs_wait_mode *wait_mode) |
| { |
| struct sockaddr_rxrpc srx; |
| struct rxrpc_call *rxcall; |
| struct msghdr msg; |
| struct kvec iov[1]; |
| int ret; |
| struct sk_buff *skb; |
| |
| _enter("%x,{%d},", addr->s_addr, ntohs(call->port)); |
| |
| ASSERT(call->type != NULL); |
| ASSERT(call->type->name != NULL); |
| |
| _debug("____MAKE %p{%s,%x} [%d]____", |
| call, call->type->name, key_serial(call->key), |
| atomic_read(&afs_outstanding_calls)); |
| |
| call->wait_mode = wait_mode; |
| call->async_workfn = afs_process_async_call; |
| INIT_WORK(&call->async_work, afs_async_workfn); |
| |
| memset(&srx, 0, sizeof(srx)); |
| srx.srx_family = AF_RXRPC; |
| srx.srx_service = call->service_id; |
| srx.transport_type = SOCK_DGRAM; |
| srx.transport_len = sizeof(srx.transport.sin); |
| srx.transport.sin.sin_family = AF_INET; |
| srx.transport.sin.sin_port = call->port; |
| memcpy(&srx.transport.sin.sin_addr, addr, 4); |
| |
| /* create a call */ |
| rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key, |
| (unsigned long) call, gfp); |
| call->key = NULL; |
| if (IS_ERR(rxcall)) { |
| ret = PTR_ERR(rxcall); |
| goto error_kill_call; |
| } |
| |
| call->rxcall = rxcall; |
| |
| /* send the request */ |
| iov[0].iov_base = call->request; |
| iov[0].iov_len = call->request_size; |
| |
| msg.msg_name = NULL; |
| msg.msg_namelen = 0; |
| iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, |
| call->request_size); |
| msg.msg_control = NULL; |
| msg.msg_controllen = 0; |
| msg.msg_flags = (call->send_pages ? MSG_MORE : 0); |
| |
| /* have to change the state *before* sending the last packet as RxRPC |
| * might give us the reply before it returns from sending the |
| * request */ |
| if (!call->send_pages) |
| call->state = AFS_CALL_AWAIT_REPLY; |
| ret = rxrpc_kernel_send_data(rxcall, &msg, call->request_size); |
| if (ret < 0) |
| goto error_do_abort; |
| |
| if (call->send_pages) { |
| ret = afs_send_pages(call, &msg, iov); |
| if (ret < 0) |
| goto error_do_abort; |
| } |
| |
| /* at this point, an async call may no longer exist as it may have |
| * already completed */ |
| return wait_mode->wait(call); |
| |
| error_do_abort: |
| rxrpc_kernel_abort_call(rxcall, RX_USER_ABORT); |
| while ((skb = skb_dequeue(&call->rx_queue))) |
| afs_free_skb(skb); |
| error_kill_call: |
| afs_end_call(call); |
| _leave(" = %d", ret); |
| return ret; |
| } |
| |
| /* |
| * Handles intercepted messages that were arriving in the socket's Rx queue. |
| * |
| * Called from the AF_RXRPC call processor in waitqueue process context. For |
| * each call, it is guaranteed this will be called in order of packet to be |
| * delivered. |
| */ |
| static void afs_rx_interceptor(struct sock *sk, unsigned long user_call_ID, |
| struct sk_buff *skb) |
| { |
| struct afs_call *call = (struct afs_call *) user_call_ID; |
| |
| _enter("%p,,%u", call, skb->mark); |
| |
| _debug("ICPT %p{%u} [%d]", |
| skb, skb->mark, atomic_read(&afs_outstanding_skbs)); |
| |
| ASSERTCMP(sk, ==, afs_socket->sk); |
| atomic_inc(&afs_outstanding_skbs); |
| |
| if (!call) { |
| /* its an incoming call for our callback service */ |
| skb_queue_tail(&afs_incoming_calls, skb); |
| queue_work(afs_wq, &afs_collect_incoming_call_work); |
| } else { |
| /* route the messages directly to the appropriate call */ |
| skb_queue_tail(&call->rx_queue, skb); |
| call->wait_mode->rx_wakeup(call); |
| } |
| |
| _leave(""); |
| } |
| |
| /* |
| * deliver messages to a call |
| */ |
| static void afs_deliver_to_call(struct afs_call *call) |
| { |
| struct sk_buff *skb; |
| bool last; |
| u32 abort_code; |
| int ret; |
| |
| _enter(""); |
| |
| while ((call->state == AFS_CALL_AWAIT_REPLY || |
| call->state == AFS_CALL_AWAIT_OP_ID || |
| call->state == AFS_CALL_AWAIT_REQUEST || |
| call->state == AFS_CALL_AWAIT_ACK) && |
| (skb = skb_dequeue(&call->rx_queue))) { |
| switch (skb->mark) { |
| case RXRPC_SKB_MARK_DATA: |
| _debug("Rcv DATA"); |
| last = rxrpc_kernel_is_data_last(skb); |
| ret = call->type->deliver(call, skb, last); |
| switch (ret) { |
| case -EAGAIN: |
| if (last) { |
| _debug("short data"); |
| goto unmarshal_error; |
| } |
| break; |
| case 0: |
| ASSERT(last); |
| if (call->state == AFS_CALL_AWAIT_REPLY) |
| call->state = AFS_CALL_COMPLETE; |
| break; |
| case -ENOTCONN: |
| abort_code = RX_CALL_DEAD; |
| goto do_abort; |
| case -ENOTSUPP: |
| abort_code = RX_INVALID_OPERATION; |
| goto do_abort; |
| default: |
| unmarshal_error: |
| abort_code = RXGEN_CC_UNMARSHAL; |
| if (call->state != AFS_CALL_AWAIT_REPLY) |
| abort_code = RXGEN_SS_UNMARSHAL; |
| do_abort: |
| rxrpc_kernel_abort_call(call->rxcall, |
| abort_code); |
| call->error = ret; |
| call->state = AFS_CALL_ERROR; |
| break; |
| } |
| break; |
| case RXRPC_SKB_MARK_FINAL_ACK: |
| _debug("Rcv ACK"); |
| call->state = AFS_CALL_COMPLETE; |
| break; |
| case RXRPC_SKB_MARK_BUSY: |
| _debug("Rcv BUSY"); |
| call->error = -EBUSY; |
| call->state = AFS_CALL_BUSY; |
| break; |
| case RXRPC_SKB_MARK_REMOTE_ABORT: |
| abort_code = rxrpc_kernel_get_abort_code(skb); |
| call->error = call->type->abort_to_error(abort_code); |
| call->state = AFS_CALL_ABORTED; |
| _debug("Rcv ABORT %u -> %d", abort_code, call->error); |
| break; |
| case RXRPC_SKB_MARK_LOCAL_ABORT: |
| abort_code = rxrpc_kernel_get_abort_code(skb); |
| call->error = call->type->abort_to_error(abort_code); |
| call->state = AFS_CALL_ABORTED; |
| _debug("Loc ABORT %u -> %d", abort_code, call->error); |
| break; |
| case RXRPC_SKB_MARK_NET_ERROR: |
| call->error = -rxrpc_kernel_get_error_number(skb); |
| call->state = AFS_CALL_ERROR; |
| _debug("Rcv NET ERROR %d", call->error); |
| break; |
| case RXRPC_SKB_MARK_LOCAL_ERROR: |
| call->error = -rxrpc_kernel_get_error_number(skb); |
| call->state = AFS_CALL_ERROR; |
| _debug("Rcv LOCAL ERROR %d", call->error); |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| afs_free_skb(skb); |
| } |
| |
| /* make sure the queue is empty if the call is done with (we might have |
| * aborted the call early because of an unmarshalling error) */ |
| if (call->state >= AFS_CALL_COMPLETE) { |
| while ((skb = skb_dequeue(&call->rx_queue))) |
| afs_free_skb(skb); |
| if (call->incoming) |
| afs_end_call(call); |
| } |
| |
| _leave(""); |
| } |
| |
| /* |
| * wait synchronously for a call to complete |
| */ |
| static int afs_wait_for_call_to_complete(struct afs_call *call) |
| { |
| struct sk_buff *skb; |
| int ret; |
| |
| DECLARE_WAITQUEUE(myself, current); |
| |
| _enter(""); |
| |
| add_wait_queue(&call->waitq, &myself); |
| for (;;) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| /* deliver any messages that are in the queue */ |
| if (!skb_queue_empty(&call->rx_queue)) { |
| __set_current_state(TASK_RUNNING); |
| afs_deliver_to_call(call); |
| continue; |
| } |
| |
| ret = call->error; |
| if (call->state >= AFS_CALL_COMPLETE) |
| break; |
| ret = -EINTR; |
| if (signal_pending(current)) |
| break; |
| schedule(); |
| } |
| |
| remove_wait_queue(&call->waitq, &myself); |
| __set_current_state(TASK_RUNNING); |
| |
| /* kill the call */ |
| if (call->state < AFS_CALL_COMPLETE) { |
| _debug("call incomplete"); |
| rxrpc_kernel_abort_call(call->rxcall, RX_CALL_DEAD); |
| while ((skb = skb_dequeue(&call->rx_queue))) |
| afs_free_skb(skb); |
| } |
| |
| _debug("call complete"); |
| afs_end_call(call); |
| _leave(" = %d", ret); |
| return ret; |
| } |
| |
| /* |
| * wake up a waiting call |
| */ |
| static void afs_wake_up_call_waiter(struct afs_call *call) |
| { |
| wake_up(&call->waitq); |
| } |
| |
| /* |
| * wake up an asynchronous call |
| */ |
| static void afs_wake_up_async_call(struct afs_call *call) |
| { |
| _enter(""); |
| queue_work(afs_async_calls, &call->async_work); |
| } |
| |
| /* |
| * put a call into asynchronous mode |
| * - mustn't touch the call descriptor as the call my have completed by the |
| * time we get here |
| */ |
| static int afs_dont_wait_for_call_to_complete(struct afs_call *call) |
| { |
| _enter(""); |
| return -EINPROGRESS; |
| } |
| |
| /* |
| * delete an asynchronous call |
| */ |
| static void afs_delete_async_call(struct afs_call *call) |
| { |
| _enter(""); |
| |
| afs_free_call(call); |
| |
| _leave(""); |
| } |
| |
| /* |
| * perform processing on an asynchronous call |
| * - on a multiple-thread workqueue this work item may try to run on several |
| * CPUs at the same time |
| */ |
| static void afs_process_async_call(struct afs_call *call) |
| { |
| _enter(""); |
| |
| if (!skb_queue_empty(&call->rx_queue)) |
| afs_deliver_to_call(call); |
| |
| if (call->state >= AFS_CALL_COMPLETE && call->wait_mode) { |
| if (call->wait_mode->async_complete) |
| call->wait_mode->async_complete(call->reply, |
| call->error); |
| call->reply = NULL; |
| |
| /* kill the call */ |
| afs_end_call_nofree(call); |
| |
| /* we can't just delete the call because the work item may be |
| * queued */ |
| call->async_workfn = afs_delete_async_call; |
| queue_work(afs_async_calls, &call->async_work); |
| } |
| |
| _leave(""); |
| } |
| |
| /* |
| * Empty a socket buffer into a flat reply buffer. |
| */ |
| int afs_transfer_reply(struct afs_call *call, struct sk_buff *skb, bool last) |
| { |
| size_t len = skb->len; |
| |
| if (len > call->reply_max - call->reply_size) { |
| _leave(" = -EBADMSG [%zu > %u]", |
| len, call->reply_max - call->reply_size); |
| return -EBADMSG; |
| } |
| |
| if (len > 0) { |
| if (skb_copy_bits(skb, 0, call->buffer + call->reply_size, |
| len) < 0) |
| BUG(); |
| call->reply_size += len; |
| } |
| |
| afs_data_consumed(call, skb); |
| if (!last) |
| return -EAGAIN; |
| |
| if (call->reply_size != call->reply_max) { |
| _leave(" = -EBADMSG [%u != %u]", |
| call->reply_size, call->reply_max); |
| return -EBADMSG; |
| } |
| return 0; |
| } |
| |
| /* |
| * accept the backlog of incoming calls |
| */ |
| static void afs_collect_incoming_call(struct work_struct *work) |
| { |
| struct rxrpc_call *rxcall; |
| struct afs_call *call = NULL; |
| struct sk_buff *skb; |
| |
| while ((skb = skb_dequeue(&afs_incoming_calls))) { |
| _debug("new call"); |
| |
| /* don't need the notification */ |
| afs_free_skb(skb); |
| |
| if (!call) { |
| call = kzalloc(sizeof(struct afs_call), GFP_KERNEL); |
| if (!call) { |
| rxrpc_kernel_reject_call(afs_socket); |
| return; |
| } |
| |
| call->async_workfn = afs_process_async_call; |
| INIT_WORK(&call->async_work, afs_async_workfn); |
| call->wait_mode = &afs_async_incoming_call; |
| call->type = &afs_RXCMxxxx; |
| init_waitqueue_head(&call->waitq); |
| skb_queue_head_init(&call->rx_queue); |
| call->state = AFS_CALL_AWAIT_OP_ID; |
| |
| _debug("CALL %p{%s} [%d]", |
| call, call->type->name, |
| atomic_read(&afs_outstanding_calls)); |
| atomic_inc(&afs_outstanding_calls); |
| } |
| |
| rxcall = rxrpc_kernel_accept_call(afs_socket, |
| (unsigned long) call); |
| if (!IS_ERR(rxcall)) { |
| call->rxcall = rxcall; |
| call = NULL; |
| } |
| } |
| |
| if (call) |
| afs_free_call(call); |
| } |
| |
| /* |
| * Grab the operation ID from an incoming cache manager call. The socket |
| * buffer is discarded on error or if we don't yet have sufficient data. |
| */ |
| static int afs_deliver_cm_op_id(struct afs_call *call, struct sk_buff *skb, |
| bool last) |
| { |
| size_t len = skb->len; |
| void *oibuf = (void *) &call->operation_ID; |
| |
| _enter("{%u},{%zu},%d", call->offset, len, last); |
| |
| ASSERTCMP(call->offset, <, 4); |
| |
| /* the operation ID forms the first four bytes of the request data */ |
| len = min_t(size_t, len, 4 - call->offset); |
| if (skb_copy_bits(skb, 0, oibuf + call->offset, len) < 0) |
| BUG(); |
| if (!pskb_pull(skb, len)) |
| BUG(); |
| call->offset += len; |
| |
| if (call->offset < 4) { |
| afs_data_consumed(call, skb); |
| _leave(" = -EAGAIN"); |
| return -EAGAIN; |
| } |
| |
| call->state = AFS_CALL_AWAIT_REQUEST; |
| |
| /* ask the cache manager to route the call (it'll change the call type |
| * if successful) */ |
| if (!afs_cm_incoming_call(call)) |
| return -ENOTSUPP; |
| |
| /* pass responsibility for the remainer of this message off to the |
| * cache manager op */ |
| return call->type->deliver(call, skb, last); |
| } |
| |
| /* |
| * send an empty reply |
| */ |
| void afs_send_empty_reply(struct afs_call *call) |
| { |
| struct msghdr msg; |
| |
| _enter(""); |
| |
| msg.msg_name = NULL; |
| msg.msg_namelen = 0; |
| iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); |
| msg.msg_control = NULL; |
| msg.msg_controllen = 0; |
| msg.msg_flags = 0; |
| |
| call->state = AFS_CALL_AWAIT_ACK; |
| switch (rxrpc_kernel_send_data(call->rxcall, &msg, 0)) { |
| case 0: |
| _leave(" [replied]"); |
| return; |
| |
| case -ENOMEM: |
| _debug("oom"); |
| rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT); |
| default: |
| afs_end_call(call); |
| _leave(" [error]"); |
| return; |
| } |
| } |
| |
| /* |
| * send a simple reply |
| */ |
| void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) |
| { |
| struct msghdr msg; |
| struct kvec iov[1]; |
| int n; |
| |
| _enter(""); |
| |
| iov[0].iov_base = (void *) buf; |
| iov[0].iov_len = len; |
| msg.msg_name = NULL; |
| msg.msg_namelen = 0; |
| iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len); |
| msg.msg_control = NULL; |
| msg.msg_controllen = 0; |
| msg.msg_flags = 0; |
| |
| call->state = AFS_CALL_AWAIT_ACK; |
| n = rxrpc_kernel_send_data(call->rxcall, &msg, len); |
| if (n >= 0) { |
| /* Success */ |
| _leave(" [replied]"); |
| return; |
| } |
| |
| if (n == -ENOMEM) { |
| _debug("oom"); |
| rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT); |
| } |
| afs_end_call(call); |
| _leave(" [error]"); |
| } |
| |
| /* |
| * Extract a piece of data from the received data socket buffers. |
| */ |
| int afs_extract_data(struct afs_call *call, struct sk_buff *skb, |
| bool last, void *buf, size_t count) |
| { |
| size_t len = skb->len; |
| |
| _enter("{%u},{%zu},%d,,%zu", call->offset, len, last, count); |
| |
| ASSERTCMP(call->offset, <, count); |
| |
| len = min_t(size_t, len, count - call->offset); |
| if (skb_copy_bits(skb, 0, buf + call->offset, len) < 0 || |
| !pskb_pull(skb, len)) |
| BUG(); |
| call->offset += len; |
| |
| if (call->offset < count) { |
| afs_data_consumed(call, skb); |
| _leave(" = -EAGAIN"); |
| return -EAGAIN; |
| } |
| return 0; |
| } |