blob: dae8ed19630e85f4520a098e8fb158b5b1783c54 [file] [log] [blame]
/*
* Copyright (C) 1999 - 2010 Intel Corporation.
* Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#define PCH_MAX_MSG_OBJ 32
#define PCH_MSG_OBJ_RX 0 /* The receive message object flag. */
#define PCH_MSG_OBJ_TX 1 /* The transmit message object flag. */
#define PCH_ENABLE 1 /* The enable flag */
#define PCH_DISABLE 0 /* The disable flag */
#define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
#define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
#define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
#define PCH_CTRL_CCE BIT(6)
#define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
#define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
#define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
#define PCH_CMASK_RX_TX_SET 0x00f3
#define PCH_CMASK_RX_TX_GET 0x0073
#define PCH_CMASK_ALL 0xff
#define PCH_CMASK_NEWDAT BIT(2)
#define PCH_CMASK_CLRINTPND BIT(3)
#define PCH_CMASK_CTRL BIT(4)
#define PCH_CMASK_ARB BIT(5)
#define PCH_CMASK_MASK BIT(6)
#define PCH_CMASK_RDWR BIT(7)
#define PCH_IF_MCONT_NEWDAT BIT(15)
#define PCH_IF_MCONT_MSGLOST BIT(14)
#define PCH_IF_MCONT_INTPND BIT(13)
#define PCH_IF_MCONT_UMASK BIT(12)
#define PCH_IF_MCONT_TXIE BIT(11)
#define PCH_IF_MCONT_RXIE BIT(10)
#define PCH_IF_MCONT_RMTEN BIT(9)
#define PCH_IF_MCONT_TXRQXT BIT(8)
#define PCH_IF_MCONT_EOB BIT(7)
#define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
#define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
#define PCH_ID2_DIR BIT(13)
#define PCH_ID2_XTD BIT(14)
#define PCH_ID_MSGVAL BIT(15)
#define PCH_IF_CREQ_BUSY BIT(15)
#define PCH_STATUS_INT 0x8000
#define PCH_REC 0x00007f00
#define PCH_TEC 0x000000ff
#define PCH_TX_OK BIT(3)
#define PCH_RX_OK BIT(4)
#define PCH_EPASSIV BIT(5)
#define PCH_EWARN BIT(6)
#define PCH_BUS_OFF BIT(7)
#define PCH_LEC0 BIT(0)
#define PCH_LEC1 BIT(1)
#define PCH_LEC2 BIT(2)
#define PCH_LEC_ALL (PCH_LEC0 | PCH_LEC1 | PCH_LEC2)
#define PCH_STUF_ERR PCH_LEC0
#define PCH_FORM_ERR PCH_LEC1
#define PCH_ACK_ERR (PCH_LEC0 | PCH_LEC1)
#define PCH_BIT1_ERR PCH_LEC2
#define PCH_BIT0_ERR (PCH_LEC0 | PCH_LEC2)
#define PCH_CRC_ERR (PCH_LEC1 | PCH_LEC2)
/* bit position of certain controller bits. */
#define PCH_BIT_BRP 0
#define PCH_BIT_SJW 6
#define PCH_BIT_TSEG1 8
#define PCH_BIT_TSEG2 12
#define PCH_BIT_BRPE_BRPE 6
#define PCH_MSK_BITT_BRP 0x3f
#define PCH_MSK_BRPE_BRPE 0x3c0
#define PCH_MSK_CTRL_IE_SIE_EIE 0x07
#define PCH_COUNTER_LIMIT 10
#define PCH_CAN_CLK 50000000 /* 50MHz */
/* Define the number of message object.
* PCH CAN communications are done via Message RAM.
* The Message RAM consists of 32 message objects. */
#define PCH_RX_OBJ_NUM 26 /* 1~ PCH_RX_OBJ_NUM is Rx*/
#define PCH_TX_OBJ_NUM 6 /* PCH_RX_OBJ_NUM is RX ~ Tx*/
#define PCH_OBJ_NUM (PCH_TX_OBJ_NUM + PCH_RX_OBJ_NUM)
#define PCH_FIFO_THRESH 16
enum pch_ifreg {
PCH_RX_IFREG,
PCH_TX_IFREG,
};
enum pch_can_mode {
PCH_CAN_ENABLE,
PCH_CAN_DISABLE,
PCH_CAN_ALL,
PCH_CAN_NONE,
PCH_CAN_STOP,
PCH_CAN_RUN
};
struct pch_can_if_regs {
u32 creq;
u32 cmask;
u32 mask1;
u32 mask2;
u32 id1;
u32 id2;
u32 mcont;
u32 dataa1;
u32 dataa2;
u32 datab1;
u32 datab2;
u32 rsv[13];
};
struct pch_can_regs {
u32 cont;
u32 stat;
u32 errc;
u32 bitt;
u32 intr;
u32 opt;
u32 brpe;
u32 reserve;
struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
u32 reserve1[8];
u32 treq1;
u32 treq2;
u32 reserve2[6];
u32 data1;
u32 data2;
u32 reserve3[6];
u32 canipend1;
u32 canipend2;
u32 reserve4[6];
u32 canmval1;
u32 canmval2;
u32 reserve5[37];
u32 srst;
};
struct pch_can_priv {
struct can_priv can;
unsigned int can_num;
struct pci_dev *dev;
unsigned int tx_enable[PCH_MAX_MSG_OBJ];
unsigned int rx_enable[PCH_MAX_MSG_OBJ];
unsigned int rx_link[PCH_MAX_MSG_OBJ];
unsigned int int_enables;
unsigned int int_stat;
struct net_device *ndev;
spinlock_t msgif_reg_lock; /* Message Interface Registers Access Lock*/
unsigned int msg_obj[PCH_MAX_MSG_OBJ];
struct pch_can_regs __iomem *regs;
struct napi_struct napi;
unsigned int tx_obj; /* Point next Tx Obj index */
unsigned int use_msi;
};
static struct can_bittiming_const pch_can_bittiming_const = {
.name = KBUILD_MODNAME,
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 1024, /* 6bit + extended 4bit */
.brp_inc = 1,
};
static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = {
{PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
{0,}
};
MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
{
iowrite32(ioread32(addr) | mask, addr);
}
static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
{
iowrite32(ioread32(addr) & ~mask, addr);
}
static void pch_can_set_run_mode(struct pch_can_priv *priv,
enum pch_can_mode mode)
{
switch (mode) {
case PCH_CAN_RUN:
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
break;
case PCH_CAN_STOP:
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
break;
default:
dev_err(&priv->ndev->dev, "%s -> Invalid Mode.\n", __func__);
break;
}
}
static void pch_can_set_optmode(struct pch_can_priv *priv)
{
u32 reg_val = ioread32(&priv->regs->opt);
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
reg_val |= PCH_OPT_SILENT;
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
reg_val |= PCH_OPT_LBACK;
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
iowrite32(reg_val, &priv->regs->opt);
}
static void pch_can_set_int_custom(struct pch_can_priv *priv)
{
/* Clearing the IE, SIE and EIE bits of Can control register. */
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
/* Appropriately setting them. */
pch_can_bit_set(&priv->regs->cont,
((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
}
/* This function retrieves interrupt enabled for the CAN device. */
static void pch_can_get_int_enables(struct pch_can_priv *priv, u32 *enables)
{
/* Obtaining the status of IE, SIE and EIE interrupt bits. */
*enables = ((ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1);
}
static void pch_can_set_int_enables(struct pch_can_priv *priv,
enum pch_can_mode interrupt_no)
{
switch (interrupt_no) {
case PCH_CAN_ENABLE:
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE);
break;
case PCH_CAN_DISABLE:
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
break;
case PCH_CAN_ALL:
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
break;
case PCH_CAN_NONE:
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
break;
default:
dev_err(&priv->ndev->dev, "Invalid interrupt number.\n");
break;
}
}
static void pch_can_check_if_busy(u32 __iomem *creq_addr, u32 num)
{
u32 counter = PCH_COUNTER_LIMIT;
u32 ifx_creq;
iowrite32(num, creq_addr);
while (counter) {
ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
if (!ifx_creq)
break;
counter--;
udelay(1);
}
if (!counter)
pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
}
static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
u32 set, enum pch_ifreg dir)
{
unsigned long flags;
u32 ie;
if (dir)
ie = PCH_IF_MCONT_TXIE;
else
ie = PCH_IF_MCONT_RXIE;
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
/* Reading the receive buffer data from RAM to Interface1 registers */
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
/* Setting the IF1MASK1 register to access MsgVal and RxIE bits */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
&priv->regs->ifregs[dir].cmask);
if (set == PCH_ENABLE) {
/* Setting the MsgVal and RxIE bits */
pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
} else if (set == PCH_DISABLE) {
/* Resetting the MsgVal and RxIE bits */
pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
}
pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
}
static void pch_can_set_rx_all(struct pch_can_priv *priv, u32 set)
{
int i;
/* Traversing to obtain the object configured as receivers. */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == PCH_MSG_OBJ_RX)
pch_can_set_rxtx(priv, i + 1, set, PCH_RX_IFREG);
}
}
static void pch_can_set_tx_all(struct pch_can_priv *priv, u32 set)
{
int i;
/* Traversing to obtain the object configured as transmit object. */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == PCH_MSG_OBJ_TX)
pch_can_set_rxtx(priv, i + 1, set, PCH_TX_IFREG);
}
}
static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
enum pch_ifreg dir)
{
unsigned long flags;
u32 ie, enable;
if (dir)
ie = PCH_IF_MCONT_RXIE;
else
ie = PCH_IF_MCONT_TXIE;
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[dir].creq, buff_num);
if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
((ioread32(&priv->regs->ifregs[dir].mcont)) & ie)) {
enable = PCH_ENABLE;
} else {
enable = PCH_DISABLE;
}
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
return enable;
}
static int pch_can_int_pending(struct pch_can_priv *priv)
{
return ioread32(&priv->regs->intr) & 0xffff;
}
static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
u32 buffer_num, u32 set)
{
unsigned long flags;
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
&priv->regs->ifregs[0].cmask);
if (set == PCH_ENABLE)
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_EOB);
else
pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
}
static void pch_can_get_rx_buffer_link(struct pch_can_priv *priv,
u32 buffer_num, u32 *link)
{
unsigned long flags;
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[0].creq, buffer_num);
if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
*link = PCH_DISABLE;
else
*link = PCH_ENABLE;
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
}
static void pch_can_clear_buffers(struct pch_can_priv *priv)
{
int i;
for (i = 0; i < PCH_RX_OBJ_NUM; i++) {
iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
iowrite32(0x0, &priv->regs->ifregs[0].id1);
iowrite32(0x0, &priv->regs->ifregs[0].id2);
iowrite32(0x0, &priv->regs->ifregs[0].mcont);
iowrite32(0x0, &priv->regs->ifregs[0].dataa1);
iowrite32(0x0, &priv->regs->ifregs[0].dataa2);
iowrite32(0x0, &priv->regs->ifregs[0].datab1);
iowrite32(0x0, &priv->regs->ifregs[0].datab2);
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
PCH_CMASK_ARB | PCH_CMASK_CTRL,
&priv->regs->ifregs[0].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i+1);
}
for (i = i; i < PCH_OBJ_NUM; i++) {
iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[1].cmask);
iowrite32(0xffff, &priv->regs->ifregs[1].mask1);
iowrite32(0xffff, &priv->regs->ifregs[1].mask2);
iowrite32(0x0, &priv->regs->ifregs[1].id1);
iowrite32(0x0, &priv->regs->ifregs[1].id2);
iowrite32(0x0, &priv->regs->ifregs[1].mcont);
iowrite32(0x0, &priv->regs->ifregs[1].dataa1);
iowrite32(0x0, &priv->regs->ifregs[1].dataa2);
iowrite32(0x0, &priv->regs->ifregs[1].datab1);
iowrite32(0x0, &priv->regs->ifregs[1].datab2);
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
PCH_CMASK_ARB | PCH_CMASK_CTRL,
&priv->regs->ifregs[1].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i+1);
}
}
static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
{
int i;
unsigned long flags;
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == PCH_MSG_OBJ_RX) {
iowrite32(PCH_CMASK_RX_TX_GET,
&priv->regs->ifregs[0].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i+1);
iowrite32(0x0, &priv->regs->ifregs[0].id1);
iowrite32(0x0, &priv->regs->ifregs[0].id2);
pch_can_bit_set(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_UMASK);
/* Set FIFO mode set to 0 except last Rx Obj*/
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_EOB);
/* In case FIFO mode, Last EoB of Rx Obj must be 1 */
if (i == (PCH_RX_OBJ_NUM - 1))
pch_can_bit_set(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_EOB);
iowrite32(0, &priv->regs->ifregs[0].mask1);
pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
0x1fff | PCH_MASK2_MDIR_MXTD);
/* Setting CMASK for writing */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
PCH_CMASK_ARB | PCH_CMASK_CTRL,
&priv->regs->ifregs[0].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[0].creq, i+1);
} else if (priv->msg_obj[i] == PCH_MSG_OBJ_TX) {
iowrite32(PCH_CMASK_RX_TX_GET,
&priv->regs->ifregs[1].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i+1);
/* Resetting DIR bit for reception */
iowrite32(0x0, &priv->regs->ifregs[1].id1);
iowrite32(0x0, &priv->regs->ifregs[1].id2);
pch_can_bit_set(&priv->regs->ifregs[1].id2,
PCH_ID2_DIR);
/* Setting EOB bit for transmitter */
iowrite32(PCH_IF_MCONT_EOB,
&priv->regs->ifregs[1].mcont);
pch_can_bit_set(&priv->regs->ifregs[1].mcont,
PCH_IF_MCONT_UMASK);
iowrite32(0, &priv->regs->ifregs[1].mask1);
pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
/* Setting CMASK for writing */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
PCH_CMASK_ARB | PCH_CMASK_CTRL,
&priv->regs->ifregs[1].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[1].creq, i+1);
}
}
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
}
static void pch_can_init(struct pch_can_priv *priv)
{
/* Stopping the Can device. */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Clearing all the message object buffers. */
pch_can_clear_buffers(priv);
/* Configuring the respective message object as either rx/tx object. */
pch_can_config_rx_tx_buffers(priv);
/* Enabling the interrupts. */
pch_can_set_int_enables(priv, PCH_CAN_ALL);
}
static void pch_can_release(struct pch_can_priv *priv)
{
/* Stooping the CAN device. */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Disabling the interrupts. */
pch_can_set_int_enables(priv, PCH_CAN_NONE);
/* Disabling all the receive object. */
pch_can_set_rx_all(priv, 0);
/* Disabling all the transmit object. */
pch_can_set_tx_all(priv, 0);
}
/* This function clears interrupt(s) from the CAN device. */
static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
{
if (mask == PCH_STATUS_INT) {
ioread32(&priv->regs->stat);
return;
}
/* Clear interrupt for transmit object */
if (priv->msg_obj[mask - 1] == PCH_MSG_OBJ_TX) {
/* Setting CMASK for clearing interrupts for
frame transmission. */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
&priv->regs->ifregs[1].cmask);
/* Resetting the ID registers. */
pch_can_bit_set(&priv->regs->ifregs[1].id2,
PCH_ID2_DIR | (0x7ff << 2));
iowrite32(0x0, &priv->regs->ifregs[1].id1);
/* Claring NewDat, TxRqst & IntPnd */
pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
PCH_IF_MCONT_TXRQXT);
pch_can_check_if_busy(&priv->regs->ifregs[1].creq, mask);
} else if (priv->msg_obj[mask - 1] == PCH_MSG_OBJ_RX) {
/* Setting CMASK for clearing the reception interrupts. */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
&priv->regs->ifregs[0].cmask);
/* Clearing the Dir bit. */
pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
/* Clearing NewDat & IntPnd */
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
pch_can_check_if_busy(&priv->regs->ifregs[0].creq, mask);
}
}
static int pch_can_get_buffer_status(struct pch_can_priv *priv)
{
return (ioread32(&priv->regs->treq1) & 0xffff) |
((ioread32(&priv->regs->treq2) & 0xffff) << 16);
}
static void pch_can_reset(struct pch_can_priv *priv)
{
/* write to sw reset register */
iowrite32(1, &priv->regs->srst);
iowrite32(0, &priv->regs->srst);
}
static void pch_can_error(struct net_device *ndev, u32 status)
{
struct sk_buff *skb;
struct pch_can_priv *priv = netdev_priv(ndev);
struct can_frame *cf;
u32 errc;
struct net_device_stats *stats = &(priv->ndev->stats);
enum can_state state = priv->can.state;
skb = alloc_can_err_skb(ndev, &cf);
if (!skb)
return;
if (status & PCH_BUS_OFF) {
pch_can_set_tx_all(priv, 0);
pch_can_set_rx_all(priv, 0);
state = CAN_STATE_BUS_OFF;
cf->can_id |= CAN_ERR_BUSOFF;
can_bus_off(ndev);
pch_can_set_run_mode(priv, PCH_CAN_RUN);
dev_err(&ndev->dev, "%s -> Bus Off occurres.\n", __func__);
}
/* Warning interrupt. */
if (status & PCH_EWARN) {
state = CAN_STATE_ERROR_WARNING;
priv->can.can_stats.error_warning++;
cf->can_id |= CAN_ERR_CRTL;
errc = ioread32(&priv->regs->errc);
if (((errc & PCH_REC) >> 8) > 96)
cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
if ((errc & PCH_TEC) > 96)
cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
dev_warn(&ndev->dev,
"%s -> Error Counter is more than 96.\n", __func__);
}
/* Error passive interrupt. */
if (status & PCH_EPASSIV) {
priv->can.can_stats.error_passive++;
state = CAN_STATE_ERROR_PASSIVE;
cf->can_id |= CAN_ERR_CRTL;
errc = ioread32(&priv->regs->errc);
if (((errc & PCH_REC) >> 8) > 127)
cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
if ((errc & PCH_TEC) > 127)
cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
dev_err(&ndev->dev,
"%s -> CAN controller is ERROR PASSIVE .\n", __func__);
}
if (status & PCH_LEC_ALL) {
priv->can.can_stats.bus_error++;
stats->rx_errors++;
switch (status & PCH_LEC_ALL) {
case PCH_STUF_ERR:
cf->data[2] |= CAN_ERR_PROT_STUFF;
break;
case PCH_FORM_ERR:
cf->data[2] |= CAN_ERR_PROT_FORM;
break;
case PCH_ACK_ERR:
cf->data[2] |= CAN_ERR_PROT_LOC_ACK |
CAN_ERR_PROT_LOC_ACK_DEL;
break;
case PCH_BIT1_ERR:
case PCH_BIT0_ERR:
cf->data[2] |= CAN_ERR_PROT_BIT;
break;
case PCH_CRC_ERR:
cf->data[2] |= CAN_ERR_PROT_LOC_CRC_SEQ |
CAN_ERR_PROT_LOC_CRC_DEL;
break;
default:
iowrite32(status | PCH_LEC_ALL, &priv->regs->stat);
break;
}
}
priv->can.state = state;
netif_rx(skb);
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
}
static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = (struct net_device *)dev_id;
struct pch_can_priv *priv = netdev_priv(ndev);
pch_can_set_int_enables(priv, PCH_CAN_NONE);
napi_schedule(&priv->napi);
return IRQ_HANDLED;
}
static int pch_can_rx_normal(struct net_device *ndev, u32 int_stat)
{
u32 reg;
canid_t id;
u32 ide;
u32 rtr;
int i, j, k;
int rcv_pkts = 0;
struct sk_buff *skb;
struct can_frame *cf;
struct pch_can_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &(priv->ndev->stats);
/* Reading the messsage object from the Message RAM */
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[0].creq, int_stat);
/* Reading the MCONT register. */
reg = ioread32(&priv->regs->ifregs[0].mcont);
reg &= 0xffff;
for (k = int_stat; !(reg & PCH_IF_MCONT_EOB); k++) {
/* If MsgLost bit set. */
if (reg & PCH_IF_MCONT_MSGLOST) {
dev_err(&priv->ndev->dev, "Msg Obj is overwritten.\n");
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_MSGLOST);
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
&priv->regs->ifregs[0].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[0].creq, k);
skb = alloc_can_err_skb(ndev, &cf);
if (!skb)
return -ENOMEM;
priv->can.can_stats.error_passive++;
priv->can.state = CAN_STATE_ERROR_PASSIVE;
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_receive_skb(skb);
rcv_pkts++;
goto RX_NEXT;
}
if (!(reg & PCH_IF_MCONT_NEWDAT))
goto RX_NEXT;
skb = alloc_can_skb(priv->ndev, &cf);
if (!skb)
return -ENOMEM;
/* Get Received data */
ide = ((ioread32(&priv->regs->ifregs[0].id2)) & PCH_ID2_XTD) >>
14;
if (ide) {
id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
id |= (((ioread32(&priv->regs->ifregs[0].id2)) &
0x1fff) << 16);
cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
} else {
id = (((ioread32(&priv->regs->ifregs[0].id2)) &
(CAN_SFF_MASK << 2)) >> 2);
cf->can_id = (id & CAN_SFF_MASK);
}
rtr = (ioread32(&priv->regs->ifregs[0].id2) & PCH_ID2_DIR);
if (rtr) {
cf->can_dlc = 0;
cf->can_id |= CAN_RTR_FLAG;
} else {
cf->can_dlc = ((ioread32(&priv->regs->ifregs[0].mcont))
& 0x0f);
}
for (i = 0, j = 0; i < cf->can_dlc; j++) {
reg = ioread32(&priv->regs->ifregs[0].dataa1 + j*4);
cf->data[i++] = cpu_to_le32(reg & 0xff);
if (i == cf->can_dlc)
break;
cf->data[i++] = cpu_to_le32((reg >> 8) & 0xff);
}
netif_receive_skb(skb);
rcv_pkts++;
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
if (k < PCH_FIFO_THRESH) {
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
/* Clearing the Dir bit. */
pch_can_bit_clear(&priv->regs->ifregs[0].id2,
PCH_ID2_DIR);
/* Clearing NewDat & IntPnd */
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_INTPND);
pch_can_check_if_busy(&priv->regs->ifregs[0].creq, k);
} else if (k > PCH_FIFO_THRESH) {
pch_can_int_clr(priv, k);
} else if (k == PCH_FIFO_THRESH) {
int cnt;
for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
pch_can_int_clr(priv, cnt+1);
}
RX_NEXT:
/* Reading the messsage object from the Message RAM */
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[0].creq, k + 1);
reg = ioread32(&priv->regs->ifregs[0].mcont);
}
return rcv_pkts;
}
static int pch_can_rx_poll(struct napi_struct *napi, int quota)
{
struct net_device *ndev = napi->dev;
struct pch_can_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &(priv->ndev->stats);
u32 dlc;
u32 int_stat;
int rcv_pkts = 0;
u32 reg_stat;
unsigned long flags;
int_stat = pch_can_int_pending(priv);
if (!int_stat)
return 0;
INT_STAT:
if (int_stat == PCH_STATUS_INT) {
reg_stat = ioread32(&priv->regs->stat);
if (reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) {
if ((reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL)
pch_can_error(ndev, reg_stat);
}
if (reg_stat & PCH_TX_OK) {
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
iowrite32(PCH_CMASK_RX_TX_GET,
&priv->regs->ifregs[1].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[1].creq,
ioread32(&priv->regs->intr));
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
pch_can_bit_clear(&priv->regs->stat, PCH_TX_OK);
}
if (reg_stat & PCH_RX_OK)
pch_can_bit_clear(&priv->regs->stat, PCH_RX_OK);
int_stat = pch_can_int_pending(priv);
if (int_stat == PCH_STATUS_INT)
goto INT_STAT;
}
MSG_OBJ:
if ((int_stat >= 1) && (int_stat <= PCH_RX_OBJ_NUM)) {
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
rcv_pkts = pch_can_rx_normal(ndev, int_stat);
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
if (rcv_pkts < 0)
return 0;
} else if ((int_stat > PCH_RX_OBJ_NUM) && (int_stat <= PCH_OBJ_NUM)) {
if (priv->msg_obj[int_stat - 1] == PCH_MSG_OBJ_TX) {
/* Handle transmission interrupt */
can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_NUM - 1);
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
&priv->regs->ifregs[1].cmask);
dlc = ioread32(&priv->regs->ifregs[1].mcont) &
PCH_IF_MCONT_DLC;
pch_can_check_if_busy(&priv->regs->ifregs[1].creq,
int_stat);
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
if (dlc > 8)
dlc = 8;
stats->tx_bytes += dlc;
stats->tx_packets++;
}
}
int_stat = pch_can_int_pending(priv);
if (int_stat == PCH_STATUS_INT)
goto INT_STAT;
else if (int_stat >= 1 && int_stat <= 32)
goto MSG_OBJ;
napi_complete(napi);
pch_can_set_int_enables(priv, PCH_CAN_ALL);
return rcv_pkts;
}
static int pch_set_bittiming(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
const struct can_bittiming *bt = &priv->can.bittiming;
u32 canbit;
u32 bepe;
u32 brp;
/* Setting the CCE bit for accessing the Can Timing register. */
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
brp = (bt->tq) / (1000000000/PCH_CAN_CLK) - 1;
canbit = brp & PCH_MSK_BITT_BRP;
canbit |= (bt->sjw - 1) << PCH_BIT_SJW;
canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1;
canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2;
bepe = (brp & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE;
iowrite32(canbit, &priv->regs->bitt);
iowrite32(bepe, &priv->regs->brpe);
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
return 0;
}
static void pch_can_start(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
if (priv->can.state != CAN_STATE_STOPPED)
pch_can_reset(priv);
pch_set_bittiming(ndev);
pch_can_set_optmode(priv);
pch_can_set_tx_all(priv, 1);
pch_can_set_rx_all(priv, 1);
/* Setting the CAN to run mode. */
pch_can_set_run_mode(priv, PCH_CAN_RUN);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return;
}
static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
{
int ret = 0;
switch (mode) {
case CAN_MODE_START:
pch_can_start(ndev);
netif_wake_queue(ndev);
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int pch_can_open(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
int retval;
retval = pci_enable_msi(priv->dev);
if (retval) {
dev_info(&ndev->dev, "PCH CAN opened without MSI\n");
priv->use_msi = 0;
} else {
dev_info(&ndev->dev, "PCH CAN opened with MSI\n");
priv->use_msi = 1;
}
/* Regsitering the interrupt. */
retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
ndev->name, ndev);
if (retval) {
dev_err(&ndev->dev, "request_irq failed.\n");
goto req_irq_err;
}
/* Open common can device */
retval = open_candev(ndev);
if (retval) {
dev_err(ndev->dev.parent, "open_candev() failed %d\n", retval);
goto err_open_candev;
}
pch_can_init(priv);
pch_can_start(ndev);
napi_enable(&priv->napi);
netif_start_queue(ndev);
return 0;
err_open_candev:
free_irq(priv->dev->irq, ndev);
req_irq_err:
if (priv->use_msi)
pci_disable_msi(priv->dev);
pch_can_release(priv);
return retval;
}
static int pch_close(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
napi_disable(&priv->napi);
pch_can_release(priv);
free_irq(priv->dev->irq, ndev);
if (priv->use_msi)
pci_disable_msi(priv->dev);
close_candev(ndev);
priv->can.state = CAN_STATE_STOPPED;
return 0;
}
static int pch_get_msg_obj_sts(struct net_device *ndev, u32 obj_id)
{
u32 buffer_status = 0;
struct pch_can_priv *priv = netdev_priv(ndev);
/* Getting the message object status. */
buffer_status = (u32) pch_can_get_buffer_status(priv);
return buffer_status & obj_id;
}
static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
{
int i, j;
unsigned long flags;
struct pch_can_priv *priv = netdev_priv(ndev);
struct can_frame *cf = (struct can_frame *)skb->data;
int tx_buffer_avail = 0;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
if (priv->tx_obj == (PCH_OBJ_NUM + 1)) { /* Point tail Obj */
while (pch_get_msg_obj_sts(ndev, (((1 << PCH_TX_OBJ_NUM)-1) <<
PCH_RX_OBJ_NUM)))
udelay(500);
priv->tx_obj = PCH_RX_OBJ_NUM + 1; /* Point head of Tx Obj ID */
tx_buffer_avail = priv->tx_obj; /* Point Tail of Tx Obj */
} else {
tx_buffer_avail = priv->tx_obj;
}
priv->tx_obj++;
/* Attaining the lock. */
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
/* Reading the Msg Obj from the Msg RAM to the Interface register. */
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
pch_can_check_if_busy(&priv->regs->ifregs[1].creq, tx_buffer_avail);
/* Setting the CMASK register. */
pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
/* If ID extended is set. */
pch_can_bit_clear(&priv->regs->ifregs[1].id1, 0xffff);
pch_can_bit_clear(&priv->regs->ifregs[1].id2, 0x1fff | PCH_ID2_XTD);
if (cf->can_id & CAN_EFF_FLAG) {
pch_can_bit_set(&priv->regs->ifregs[1].id1,
cf->can_id & 0xffff);
pch_can_bit_set(&priv->regs->ifregs[1].id2,
((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD);
} else {
pch_can_bit_set(&priv->regs->ifregs[1].id1, 0);
pch_can_bit_set(&priv->regs->ifregs[1].id2,
(cf->can_id & CAN_SFF_MASK) << 2);
}
/* If remote frame has to be transmitted.. */
if (cf->can_id & CAN_RTR_FLAG)
pch_can_bit_clear(&priv->regs->ifregs[1].id2, PCH_ID2_DIR);
for (i = 0, j = 0; i < cf->can_dlc; j++) {
iowrite32(le32_to_cpu(cf->data[i++]),
(&priv->regs->ifregs[1].dataa1) + j*4);
if (i == cf->can_dlc)
break;
iowrite32(le32_to_cpu(cf->data[i++] << 8),
(&priv->regs->ifregs[1].dataa1) + j*4);
}
can_put_echo_skb(skb, ndev, tx_buffer_avail - PCH_RX_OBJ_NUM - 1);
/* Updating the size of the data. */
pch_can_bit_clear(&priv->regs->ifregs[1].mcont, 0x0f);
pch_can_bit_set(&priv->regs->ifregs[1].mcont, cf->can_dlc);
/* Clearing IntPend, NewDat & TxRqst */
pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
PCH_IF_MCONT_TXRQXT);
/* Setting NewDat, TxRqst bits */
pch_can_bit_set(&priv->regs->ifregs[1].mcont,
PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT);
pch_can_check_if_busy(&priv->regs->ifregs[1].creq, tx_buffer_avail);
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
return NETDEV_TX_OK;
}
static const struct net_device_ops pch_can_netdev_ops = {
.ndo_open = pch_can_open,
.ndo_stop = pch_close,
.ndo_start_xmit = pch_xmit,
};
static void __devexit pch_can_remove(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct pch_can_priv *priv = netdev_priv(ndev);
unregister_candev(priv->ndev);
free_candev(priv->ndev);
pci_iounmap(pdev, priv->regs);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
pch_can_reset(priv);
}
#ifdef CONFIG_PM
static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
{
int i; /* Counter variable. */
int retval; /* Return value. */
u32 buf_stat; /* Variable for reading the transmit buffer status. */
u32 counter = 0xFFFFFF;
struct net_device *dev = pci_get_drvdata(pdev);
struct pch_can_priv *priv = netdev_priv(dev);
/* Stop the CAN controller */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Indicate that we are aboutto/in suspend */
priv->can.state = CAN_STATE_SLEEPING;
/* Waiting for all transmission to complete. */
while (counter) {
buf_stat = pch_can_get_buffer_status(priv);
if (!buf_stat)
break;
counter--;
udelay(1);
}
if (!counter)
dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
/* Save interrupt configuration and then disable them */
pch_can_get_int_enables(priv, &(priv->int_enables));
pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
/* Save Tx buffer enable state */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == PCH_MSG_OBJ_TX)
priv->tx_enable[i] = pch_can_get_rxtx_ir(priv, i + 1,
PCH_TX_IFREG);
}
/* Disable all Transmit buffers */
pch_can_set_tx_all(priv, 0);
/* Save Rx buffer enable state */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == PCH_MSG_OBJ_RX) {
priv->rx_enable[i] = pch_can_get_rxtx_ir(priv, i + 1,
PCH_RX_IFREG);
pch_can_get_rx_buffer_link(priv, i + 1,
&(priv->rx_link[i]));
}
}
/* Disable all Receive buffers */
pch_can_set_rx_all(priv, 0);
retval = pci_save_state(pdev);
if (retval) {
dev_err(&pdev->dev, "pci_save_state failed.\n");
} else {
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
}
return retval;
}
static int pch_can_resume(struct pci_dev *pdev)
{
int i; /* Counter variable. */
int retval; /* Return variable. */
struct net_device *dev = pci_get_drvdata(pdev);
struct pch_can_priv *priv = netdev_priv(dev);
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
retval = pci_enable_device(pdev);
if (retval) {
dev_err(&pdev->dev, "pci_enable_device failed.\n");
return retval;
}
pci_enable_wake(pdev, PCI_D3hot, 0);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
/* Disabling all interrupts. */
pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
/* Setting the CAN device in Stop Mode. */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Configuring the transmit and receive buffers. */
pch_can_config_rx_tx_buffers(priv);
/* Restore the CAN state */
pch_set_bittiming(dev);
/* Listen/Active */
pch_can_set_optmode(priv);
/* Enabling the transmit buffer. */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == PCH_MSG_OBJ_TX)
pch_can_set_rxtx(priv, i, priv->tx_enable[i],
PCH_TX_IFREG);
}
/* Configuring the receive buffer and enabling them. */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == PCH_MSG_OBJ_RX) {
/* Restore buffer link */
pch_can_set_rx_buffer_link(priv, i + 1,
priv->rx_link[i]);
/* Restore buffer enables */
pch_can_set_rxtx(priv, i, priv->rx_enable[i],
PCH_RX_IFREG);
}
}
/* Enable CAN Interrupts */
pch_can_set_int_custom(priv);
/* Restore Run Mode */
pch_can_set_run_mode(priv, PCH_CAN_RUN);
return retval;
}
#else
#define pch_can_suspend NULL
#define pch_can_resume NULL
#endif
static int pch_can_get_berr_counter(const struct net_device *dev,
struct can_berr_counter *bec)
{
struct pch_can_priv *priv = netdev_priv(dev);
bec->txerr = ioread32(&priv->regs->errc) & PCH_TEC;
bec->rxerr = (ioread32(&priv->regs->errc) & PCH_REC) >> 8;
return 0;
}
static int __devinit pch_can_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct net_device *ndev;
struct pch_can_priv *priv;
int rc;
int index;
void __iomem *addr;
rc = pci_enable_device(pdev);
if (rc) {
dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
goto probe_exit_endev;
}
rc = pci_request_regions(pdev, KBUILD_MODNAME);
if (rc) {
dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
goto probe_exit_pcireq;
}
addr = pci_iomap(pdev, 1, 0);
if (!addr) {
rc = -EIO;
dev_err(&pdev->dev, "Failed pci_iomap\n");
goto probe_exit_ipmap;
}
ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_NUM);
if (!ndev) {
rc = -ENOMEM;
dev_err(&pdev->dev, "Failed alloc_candev\n");
goto probe_exit_alloc_candev;
}
priv = netdev_priv(ndev);
priv->ndev = ndev;
priv->regs = addr;
priv->dev = pdev;
priv->can.bittiming_const = &pch_can_bittiming_const;
priv->can.do_set_mode = pch_can_do_set_mode;
priv->can.do_get_berr_counter = pch_can_get_berr_counter;
priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
CAN_CTRLMODE_LOOPBACK;
priv->tx_obj = PCH_RX_OBJ_NUM + 1; /* Point head of Tx Obj */
ndev->irq = pdev->irq;
ndev->flags |= IFF_ECHO;
pci_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->netdev_ops = &pch_can_netdev_ops;
priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
for (index = 0; index < PCH_RX_OBJ_NUM;)
priv->msg_obj[index++] = PCH_MSG_OBJ_RX;
for (index = index; index < PCH_OBJ_NUM;)
priv->msg_obj[index++] = PCH_MSG_OBJ_TX;
netif_napi_add(ndev, &priv->napi, pch_can_rx_poll, PCH_RX_OBJ_NUM);
rc = register_candev(ndev);
if (rc) {
dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
goto probe_exit_reg_candev;
}
return 0;
probe_exit_reg_candev:
free_candev(ndev);
probe_exit_alloc_candev:
pci_iounmap(pdev, addr);
probe_exit_ipmap:
pci_release_regions(pdev);
probe_exit_pcireq:
pci_disable_device(pdev);
probe_exit_endev:
return rc;
}
static struct pci_driver pch_can_pci_driver = {
.name = "pch_can",
.id_table = pch_pci_tbl,
.probe = pch_can_probe,
.remove = __devexit_p(pch_can_remove),
.suspend = pch_can_suspend,
.resume = pch_can_resume,
};
static int __init pch_can_pci_init(void)
{
return pci_register_driver(&pch_can_pci_driver);
}
module_init(pch_can_pci_init);
static void __exit pch_can_pci_exit(void)
{
pci_unregister_driver(&pch_can_pci_driver);
}
module_exit(pch_can_pci_exit);
MODULE_DESCRIPTION("Controller Area Network Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.94");