| /* |
| * Wireless Host Controller (WHC) qset management. |
| * |
| * Copyright (C) 2007 Cambridge Silicon Radio Ltd. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License version |
| * 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/slab.h> |
| #include <linux/uwb/umc.h> |
| #include <linux/usb.h> |
| |
| #include "../../wusbcore/wusbhc.h" |
| |
| #include "whcd.h" |
| |
| struct whc_qset *qset_alloc(struct whc *whc, gfp_t mem_flags) |
| { |
| struct whc_qset *qset; |
| dma_addr_t dma; |
| |
| qset = dma_pool_zalloc(whc->qset_pool, mem_flags, &dma); |
| if (qset == NULL) |
| return NULL; |
| |
| qset->qset_dma = dma; |
| qset->whc = whc; |
| |
| INIT_LIST_HEAD(&qset->list_node); |
| INIT_LIST_HEAD(&qset->stds); |
| |
| return qset; |
| } |
| |
| /** |
| * qset_fill_qh - fill the static endpoint state in a qset's QHead |
| * @qset: the qset whose QH needs initializing with static endpoint |
| * state |
| * @urb: an urb for a transfer to this endpoint |
| */ |
| static void qset_fill_qh(struct whc *whc, struct whc_qset *qset, struct urb *urb) |
| { |
| struct usb_device *usb_dev = urb->dev; |
| struct wusb_dev *wusb_dev = usb_dev->wusb_dev; |
| struct usb_wireless_ep_comp_descriptor *epcd; |
| bool is_out; |
| uint8_t phy_rate; |
| |
| is_out = usb_pipeout(urb->pipe); |
| |
| qset->max_packet = le16_to_cpu(urb->ep->desc.wMaxPacketSize); |
| |
| epcd = (struct usb_wireless_ep_comp_descriptor *)qset->ep->extra; |
| if (epcd) { |
| qset->max_seq = epcd->bMaxSequence; |
| qset->max_burst = epcd->bMaxBurst; |
| } else { |
| qset->max_seq = 2; |
| qset->max_burst = 1; |
| } |
| |
| /* |
| * Initial PHY rate is 53.3 Mbit/s for control endpoints or |
| * the maximum supported by the device for other endpoints |
| * (unless limited by the user). |
| */ |
| if (usb_pipecontrol(urb->pipe)) |
| phy_rate = UWB_PHY_RATE_53; |
| else { |
| uint16_t phy_rates; |
| |
| phy_rates = le16_to_cpu(wusb_dev->wusb_cap_descr->wPHYRates); |
| phy_rate = fls(phy_rates) - 1; |
| if (phy_rate > whc->wusbhc.phy_rate) |
| phy_rate = whc->wusbhc.phy_rate; |
| } |
| |
| qset->qh.info1 = cpu_to_le32( |
| QH_INFO1_EP(usb_pipeendpoint(urb->pipe)) |
| | (is_out ? QH_INFO1_DIR_OUT : QH_INFO1_DIR_IN) |
| | usb_pipe_to_qh_type(urb->pipe) |
| | QH_INFO1_DEV_INFO_IDX(wusb_port_no_to_idx(usb_dev->portnum)) |
| | QH_INFO1_MAX_PKT_LEN(qset->max_packet) |
| ); |
| qset->qh.info2 = cpu_to_le32( |
| QH_INFO2_BURST(qset->max_burst) |
| | QH_INFO2_DBP(0) |
| | QH_INFO2_MAX_COUNT(3) |
| | QH_INFO2_MAX_RETRY(3) |
| | QH_INFO2_MAX_SEQ(qset->max_seq - 1) |
| ); |
| /* FIXME: where can we obtain these Tx parameters from? Why |
| * doesn't the chip know what Tx power to use? It knows the Rx |
| * strength and can presumably guess the Tx power required |
| * from that? */ |
| qset->qh.info3 = cpu_to_le32( |
| QH_INFO3_TX_RATE(phy_rate) |
| | QH_INFO3_TX_PWR(0) /* 0 == max power */ |
| ); |
| |
| qset->qh.cur_window = cpu_to_le32((1 << qset->max_burst) - 1); |
| } |
| |
| /** |
| * qset_clear - clear fields in a qset so it may be reinserted into a |
| * schedule. |
| * |
| * The sequence number and current window are not cleared (see |
| * qset_reset()). |
| */ |
| void qset_clear(struct whc *whc, struct whc_qset *qset) |
| { |
| qset->td_start = qset->td_end = qset->ntds = 0; |
| |
| qset->qh.link = cpu_to_le64(QH_LINK_NTDS(8) | QH_LINK_T); |
| qset->qh.status = qset->qh.status & QH_STATUS_SEQ_MASK; |
| qset->qh.err_count = 0; |
| qset->qh.scratch[0] = 0; |
| qset->qh.scratch[1] = 0; |
| qset->qh.scratch[2] = 0; |
| |
| memset(&qset->qh.overlay, 0, sizeof(qset->qh.overlay)); |
| |
| init_completion(&qset->remove_complete); |
| } |
| |
| /** |
| * qset_reset - reset endpoint state in a qset. |
| * |
| * Clears the sequence number and current window. This qset must not |
| * be in the ASL or PZL. |
| */ |
| void qset_reset(struct whc *whc, struct whc_qset *qset) |
| { |
| qset->reset = 0; |
| |
| qset->qh.status &= ~QH_STATUS_SEQ_MASK; |
| qset->qh.cur_window = cpu_to_le32((1 << qset->max_burst) - 1); |
| } |
| |
| /** |
| * get_qset - get the qset for an async endpoint |
| * |
| * A new qset is created if one does not already exist. |
| */ |
| struct whc_qset *get_qset(struct whc *whc, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| struct whc_qset *qset; |
| |
| qset = urb->ep->hcpriv; |
| if (qset == NULL) { |
| qset = qset_alloc(whc, mem_flags); |
| if (qset == NULL) |
| return NULL; |
| |
| qset->ep = urb->ep; |
| urb->ep->hcpriv = qset; |
| qset_fill_qh(whc, qset, urb); |
| } |
| return qset; |
| } |
| |
| void qset_remove_complete(struct whc *whc, struct whc_qset *qset) |
| { |
| qset->remove = 0; |
| list_del_init(&qset->list_node); |
| complete(&qset->remove_complete); |
| } |
| |
| /** |
| * qset_add_qtds - add qTDs for an URB to a qset |
| * |
| * Returns true if the list (ASL/PZL) must be updated because (for a |
| * WHCI 0.95 controller) an activated qTD was pointed to be iCur. |
| */ |
| enum whc_update qset_add_qtds(struct whc *whc, struct whc_qset *qset) |
| { |
| struct whc_std *std; |
| enum whc_update update = 0; |
| |
| list_for_each_entry(std, &qset->stds, list_node) { |
| struct whc_qtd *qtd; |
| uint32_t status; |
| |
| if (qset->ntds >= WHCI_QSET_TD_MAX |
| || (qset->pause_after_urb && std->urb != qset->pause_after_urb)) |
| break; |
| |
| if (std->qtd) |
| continue; /* already has a qTD */ |
| |
| qtd = std->qtd = &qset->qtd[qset->td_end]; |
| |
| /* Fill in setup bytes for control transfers. */ |
| if (usb_pipecontrol(std->urb->pipe)) |
| memcpy(qtd->setup, std->urb->setup_packet, 8); |
| |
| status = QTD_STS_ACTIVE | QTD_STS_LEN(std->len); |
| |
| if (whc_std_last(std) && usb_pipeout(std->urb->pipe)) |
| status |= QTD_STS_LAST_PKT; |
| |
| /* |
| * For an IN transfer the iAlt field should be set so |
| * the h/w will automatically advance to the next |
| * transfer. However, if there are 8 or more TDs |
| * remaining in this transfer then iAlt cannot be set |
| * as it could point to somewhere in this transfer. |
| */ |
| if (std->ntds_remaining < WHCI_QSET_TD_MAX) { |
| int ialt; |
| ialt = (qset->td_end + std->ntds_remaining) % WHCI_QSET_TD_MAX; |
| status |= QTD_STS_IALT(ialt); |
| } else if (usb_pipein(std->urb->pipe)) |
| qset->pause_after_urb = std->urb; |
| |
| if (std->num_pointers) |
| qtd->options = cpu_to_le32(QTD_OPT_IOC); |
| else |
| qtd->options = cpu_to_le32(QTD_OPT_IOC | QTD_OPT_SMALL); |
| qtd->page_list_ptr = cpu_to_le64(std->dma_addr); |
| |
| qtd->status = cpu_to_le32(status); |
| |
| if (QH_STATUS_TO_ICUR(qset->qh.status) == qset->td_end) |
| update = WHC_UPDATE_UPDATED; |
| |
| if (++qset->td_end >= WHCI_QSET_TD_MAX) |
| qset->td_end = 0; |
| qset->ntds++; |
| } |
| |
| return update; |
| } |
| |
| /** |
| * qset_remove_qtd - remove the first qTD from a qset. |
| * |
| * The qTD might be still active (if it's part of a IN URB that |
| * resulted in a short read) so ensure it's deactivated. |
| */ |
| static void qset_remove_qtd(struct whc *whc, struct whc_qset *qset) |
| { |
| qset->qtd[qset->td_start].status = 0; |
| |
| if (++qset->td_start >= WHCI_QSET_TD_MAX) |
| qset->td_start = 0; |
| qset->ntds--; |
| } |
| |
| static void qset_copy_bounce_to_sg(struct whc *whc, struct whc_std *std) |
| { |
| struct scatterlist *sg; |
| void *bounce; |
| size_t remaining, offset; |
| |
| bounce = std->bounce_buf; |
| remaining = std->len; |
| |
| sg = std->bounce_sg; |
| offset = std->bounce_offset; |
| |
| while (remaining) { |
| size_t len; |
| |
| len = min(sg->length - offset, remaining); |
| memcpy(sg_virt(sg) + offset, bounce, len); |
| |
| bounce += len; |
| remaining -= len; |
| |
| offset += len; |
| if (offset >= sg->length) { |
| sg = sg_next(sg); |
| offset = 0; |
| } |
| } |
| |
| } |
| |
| /** |
| * qset_free_std - remove an sTD and free it. |
| * @whc: the WHCI host controller |
| * @std: the sTD to remove and free. |
| */ |
| void qset_free_std(struct whc *whc, struct whc_std *std) |
| { |
| list_del(&std->list_node); |
| if (std->bounce_buf) { |
| bool is_out = usb_pipeout(std->urb->pipe); |
| dma_addr_t dma_addr; |
| |
| if (std->num_pointers) |
| dma_addr = le64_to_cpu(std->pl_virt[0].buf_ptr); |
| else |
| dma_addr = std->dma_addr; |
| |
| dma_unmap_single(whc->wusbhc.dev, dma_addr, |
| std->len, is_out ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
| if (!is_out) |
| qset_copy_bounce_to_sg(whc, std); |
| kfree(std->bounce_buf); |
| } |
| if (std->pl_virt) { |
| if (std->dma_addr) |
| dma_unmap_single(whc->wusbhc.dev, std->dma_addr, |
| std->num_pointers * sizeof(struct whc_page_list_entry), |
| DMA_TO_DEVICE); |
| kfree(std->pl_virt); |
| std->pl_virt = NULL; |
| } |
| kfree(std); |
| } |
| |
| /** |
| * qset_remove_qtds - remove an URB's qTDs (and sTDs). |
| */ |
| static void qset_remove_qtds(struct whc *whc, struct whc_qset *qset, |
| struct urb *urb) |
| { |
| struct whc_std *std, *t; |
| |
| list_for_each_entry_safe(std, t, &qset->stds, list_node) { |
| if (std->urb != urb) |
| break; |
| if (std->qtd != NULL) |
| qset_remove_qtd(whc, qset); |
| qset_free_std(whc, std); |
| } |
| } |
| |
| /** |
| * qset_free_stds - free any remaining sTDs for an URB. |
| */ |
| static void qset_free_stds(struct whc_qset *qset, struct urb *urb) |
| { |
| struct whc_std *std, *t; |
| |
| list_for_each_entry_safe(std, t, &qset->stds, list_node) { |
| if (std->urb == urb) |
| qset_free_std(qset->whc, std); |
| } |
| } |
| |
| static int qset_fill_page_list(struct whc *whc, struct whc_std *std, gfp_t mem_flags) |
| { |
| dma_addr_t dma_addr = std->dma_addr; |
| dma_addr_t sp, ep; |
| size_t pl_len; |
| int p; |
| |
| /* Short buffers don't need a page list. */ |
| if (std->len <= WHCI_PAGE_SIZE) { |
| std->num_pointers = 0; |
| return 0; |
| } |
| |
| sp = dma_addr & ~(WHCI_PAGE_SIZE-1); |
| ep = dma_addr + std->len; |
| std->num_pointers = DIV_ROUND_UP(ep - sp, WHCI_PAGE_SIZE); |
| |
| pl_len = std->num_pointers * sizeof(struct whc_page_list_entry); |
| std->pl_virt = kmalloc(pl_len, mem_flags); |
| if (std->pl_virt == NULL) |
| return -ENOMEM; |
| std->dma_addr = dma_map_single(whc->wusbhc.dev, std->pl_virt, pl_len, DMA_TO_DEVICE); |
| if (dma_mapping_error(whc->wusbhc.dev, std->dma_addr)) { |
| kfree(std->pl_virt); |
| return -EFAULT; |
| } |
| |
| for (p = 0; p < std->num_pointers; p++) { |
| std->pl_virt[p].buf_ptr = cpu_to_le64(dma_addr); |
| dma_addr = (dma_addr + WHCI_PAGE_SIZE) & ~(WHCI_PAGE_SIZE-1); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * urb_dequeue_work - executes asl/pzl update and gives back the urb to the system. |
| */ |
| static void urb_dequeue_work(struct work_struct *work) |
| { |
| struct whc_urb *wurb = container_of(work, struct whc_urb, dequeue_work); |
| struct whc_qset *qset = wurb->qset; |
| struct whc *whc = qset->whc; |
| unsigned long flags; |
| |
| if (wurb->is_async) |
| asl_update(whc, WUSBCMD_ASYNC_UPDATED |
| | WUSBCMD_ASYNC_SYNCED_DB |
| | WUSBCMD_ASYNC_QSET_RM); |
| else |
| pzl_update(whc, WUSBCMD_PERIODIC_UPDATED |
| | WUSBCMD_PERIODIC_SYNCED_DB |
| | WUSBCMD_PERIODIC_QSET_RM); |
| |
| spin_lock_irqsave(&whc->lock, flags); |
| qset_remove_urb(whc, qset, wurb->urb, wurb->status); |
| spin_unlock_irqrestore(&whc->lock, flags); |
| } |
| |
| static struct whc_std *qset_new_std(struct whc *whc, struct whc_qset *qset, |
| struct urb *urb, gfp_t mem_flags) |
| { |
| struct whc_std *std; |
| |
| std = kzalloc(sizeof(struct whc_std), mem_flags); |
| if (std == NULL) |
| return NULL; |
| |
| std->urb = urb; |
| std->qtd = NULL; |
| |
| INIT_LIST_HEAD(&std->list_node); |
| list_add_tail(&std->list_node, &qset->stds); |
| |
| return std; |
| } |
| |
| static int qset_add_urb_sg(struct whc *whc, struct whc_qset *qset, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| size_t remaining; |
| struct scatterlist *sg; |
| int i; |
| int ntds = 0; |
| struct whc_std *std = NULL; |
| struct whc_page_list_entry *new_pl_virt; |
| dma_addr_t prev_end = 0; |
| size_t pl_len; |
| int p = 0; |
| |
| remaining = urb->transfer_buffer_length; |
| |
| for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { |
| dma_addr_t dma_addr; |
| size_t dma_remaining; |
| dma_addr_t sp, ep; |
| int num_pointers; |
| |
| if (remaining == 0) { |
| break; |
| } |
| |
| dma_addr = sg_dma_address(sg); |
| dma_remaining = min_t(size_t, sg_dma_len(sg), remaining); |
| |
| while (dma_remaining) { |
| size_t dma_len; |
| |
| /* |
| * We can use the previous std (if it exists) provided that: |
| * - the previous one ended on a page boundary. |
| * - the current one begins on a page boundary. |
| * - the previous one isn't full. |
| * |
| * If a new std is needed but the previous one |
| * was not a whole number of packets then this |
| * sg list cannot be mapped onto multiple |
| * qTDs. Return an error and let the caller |
| * sort it out. |
| */ |
| if (!std |
| || (prev_end & (WHCI_PAGE_SIZE-1)) |
| || (dma_addr & (WHCI_PAGE_SIZE-1)) |
| || std->len + WHCI_PAGE_SIZE > QTD_MAX_XFER_SIZE) { |
| if (std && std->len % qset->max_packet != 0) |
| return -EINVAL; |
| std = qset_new_std(whc, qset, urb, mem_flags); |
| if (std == NULL) { |
| return -ENOMEM; |
| } |
| ntds++; |
| p = 0; |
| } |
| |
| dma_len = dma_remaining; |
| |
| /* |
| * If the remainder of this element doesn't |
| * fit in a single qTD, limit the qTD to a |
| * whole number of packets. This allows the |
| * remainder to go into the next qTD. |
| */ |
| if (std->len + dma_len > QTD_MAX_XFER_SIZE) { |
| dma_len = (QTD_MAX_XFER_SIZE / qset->max_packet) |
| * qset->max_packet - std->len; |
| } |
| |
| std->len += dma_len; |
| std->ntds_remaining = -1; /* filled in later */ |
| |
| sp = dma_addr & ~(WHCI_PAGE_SIZE-1); |
| ep = dma_addr + dma_len; |
| num_pointers = DIV_ROUND_UP(ep - sp, WHCI_PAGE_SIZE); |
| std->num_pointers += num_pointers; |
| |
| pl_len = std->num_pointers * sizeof(struct whc_page_list_entry); |
| |
| new_pl_virt = krealloc(std->pl_virt, pl_len, mem_flags); |
| if (new_pl_virt == NULL) { |
| kfree(std->pl_virt); |
| std->pl_virt = NULL; |
| return -ENOMEM; |
| } |
| std->pl_virt = new_pl_virt; |
| |
| for (;p < std->num_pointers; p++) { |
| std->pl_virt[p].buf_ptr = cpu_to_le64(dma_addr); |
| dma_addr = (dma_addr + WHCI_PAGE_SIZE) & ~(WHCI_PAGE_SIZE-1); |
| } |
| |
| prev_end = dma_addr = ep; |
| dma_remaining -= dma_len; |
| remaining -= dma_len; |
| } |
| } |
| |
| /* Now the number of stds is know, go back and fill in |
| std->ntds_remaining. */ |
| list_for_each_entry(std, &qset->stds, list_node) { |
| if (std->ntds_remaining == -1) { |
| pl_len = std->num_pointers * sizeof(struct whc_page_list_entry); |
| std->ntds_remaining = ntds--; |
| std->dma_addr = dma_map_single(whc->wusbhc.dev, std->pl_virt, |
| pl_len, DMA_TO_DEVICE); |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * qset_add_urb_sg_linearize - add an urb with sg list, copying the data |
| * |
| * If the URB contains an sg list whose elements cannot be directly |
| * mapped to qTDs then the data must be transferred via bounce |
| * buffers. |
| */ |
| static int qset_add_urb_sg_linearize(struct whc *whc, struct whc_qset *qset, |
| struct urb *urb, gfp_t mem_flags) |
| { |
| bool is_out = usb_pipeout(urb->pipe); |
| size_t max_std_len; |
| size_t remaining; |
| int ntds = 0; |
| struct whc_std *std = NULL; |
| void *bounce = NULL; |
| struct scatterlist *sg; |
| int i; |
| |
| /* limit maximum bounce buffer to 16 * 3.5 KiB ~= 28 k */ |
| max_std_len = qset->max_burst * qset->max_packet; |
| |
| remaining = urb->transfer_buffer_length; |
| |
| for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { |
| size_t len; |
| size_t sg_remaining; |
| void *orig; |
| |
| if (remaining == 0) { |
| break; |
| } |
| |
| sg_remaining = min_t(size_t, remaining, sg->length); |
| orig = sg_virt(sg); |
| |
| while (sg_remaining) { |
| if (!std || std->len == max_std_len) { |
| std = qset_new_std(whc, qset, urb, mem_flags); |
| if (std == NULL) |
| return -ENOMEM; |
| std->bounce_buf = kmalloc(max_std_len, mem_flags); |
| if (std->bounce_buf == NULL) |
| return -ENOMEM; |
| std->bounce_sg = sg; |
| std->bounce_offset = orig - sg_virt(sg); |
| bounce = std->bounce_buf; |
| ntds++; |
| } |
| |
| len = min(sg_remaining, max_std_len - std->len); |
| |
| if (is_out) |
| memcpy(bounce, orig, len); |
| |
| std->len += len; |
| std->ntds_remaining = -1; /* filled in later */ |
| |
| bounce += len; |
| orig += len; |
| sg_remaining -= len; |
| remaining -= len; |
| } |
| } |
| |
| /* |
| * For each of the new sTDs, map the bounce buffers, create |
| * page lists (if necessary), and fill in std->ntds_remaining. |
| */ |
| list_for_each_entry(std, &qset->stds, list_node) { |
| if (std->ntds_remaining != -1) |
| continue; |
| |
| std->dma_addr = dma_map_single(&whc->umc->dev, std->bounce_buf, std->len, |
| is_out ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
| |
| if (qset_fill_page_list(whc, std, mem_flags) < 0) |
| return -ENOMEM; |
| |
| std->ntds_remaining = ntds--; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * qset_add_urb - add an urb to the qset's queue. |
| * |
| * The URB is chopped into sTDs, one for each qTD that will required. |
| * At least one qTD (and sTD) is required even if the transfer has no |
| * data (e.g., for some control transfers). |
| */ |
| int qset_add_urb(struct whc *whc, struct whc_qset *qset, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| struct whc_urb *wurb; |
| int remaining = urb->transfer_buffer_length; |
| u64 transfer_dma = urb->transfer_dma; |
| int ntds_remaining; |
| int ret; |
| |
| wurb = kzalloc(sizeof(struct whc_urb), mem_flags); |
| if (wurb == NULL) |
| goto err_no_mem; |
| urb->hcpriv = wurb; |
| wurb->qset = qset; |
| wurb->urb = urb; |
| INIT_WORK(&wurb->dequeue_work, urb_dequeue_work); |
| |
| if (urb->num_sgs) { |
| ret = qset_add_urb_sg(whc, qset, urb, mem_flags); |
| if (ret == -EINVAL) { |
| qset_free_stds(qset, urb); |
| ret = qset_add_urb_sg_linearize(whc, qset, urb, mem_flags); |
| } |
| if (ret < 0) |
| goto err_no_mem; |
| return 0; |
| } |
| |
| ntds_remaining = DIV_ROUND_UP(remaining, QTD_MAX_XFER_SIZE); |
| if (ntds_remaining == 0) |
| ntds_remaining = 1; |
| |
| while (ntds_remaining) { |
| struct whc_std *std; |
| size_t std_len; |
| |
| std_len = remaining; |
| if (std_len > QTD_MAX_XFER_SIZE) |
| std_len = QTD_MAX_XFER_SIZE; |
| |
| std = qset_new_std(whc, qset, urb, mem_flags); |
| if (std == NULL) |
| goto err_no_mem; |
| |
| std->dma_addr = transfer_dma; |
| std->len = std_len; |
| std->ntds_remaining = ntds_remaining; |
| |
| if (qset_fill_page_list(whc, std, mem_flags) < 0) |
| goto err_no_mem; |
| |
| ntds_remaining--; |
| remaining -= std_len; |
| transfer_dma += std_len; |
| } |
| |
| return 0; |
| |
| err_no_mem: |
| qset_free_stds(qset, urb); |
| return -ENOMEM; |
| } |
| |
| /** |
| * qset_remove_urb - remove an URB from the urb queue. |
| * |
| * The URB is returned to the USB subsystem. |
| */ |
| void qset_remove_urb(struct whc *whc, struct whc_qset *qset, |
| struct urb *urb, int status) |
| { |
| struct wusbhc *wusbhc = &whc->wusbhc; |
| struct whc_urb *wurb = urb->hcpriv; |
| |
| usb_hcd_unlink_urb_from_ep(&wusbhc->usb_hcd, urb); |
| /* Drop the lock as urb->complete() may enqueue another urb. */ |
| spin_unlock(&whc->lock); |
| wusbhc_giveback_urb(wusbhc, urb, status); |
| spin_lock(&whc->lock); |
| |
| kfree(wurb); |
| } |
| |
| /** |
| * get_urb_status_from_qtd - get the completed urb status from qTD status |
| * @urb: completed urb |
| * @status: qTD status |
| */ |
| static int get_urb_status_from_qtd(struct urb *urb, u32 status) |
| { |
| if (status & QTD_STS_HALTED) { |
| if (status & QTD_STS_DBE) |
| return usb_pipein(urb->pipe) ? -ENOSR : -ECOMM; |
| else if (status & QTD_STS_BABBLE) |
| return -EOVERFLOW; |
| else if (status & QTD_STS_RCE) |
| return -ETIME; |
| return -EPIPE; |
| } |
| if (usb_pipein(urb->pipe) |
| && (urb->transfer_flags & URB_SHORT_NOT_OK) |
| && urb->actual_length < urb->transfer_buffer_length) |
| return -EREMOTEIO; |
| return 0; |
| } |
| |
| /** |
| * process_inactive_qtd - process an inactive (but not halted) qTD. |
| * |
| * Update the urb with the transfer bytes from the qTD, if the urb is |
| * completely transferred or (in the case of an IN only) the LPF is |
| * set, then the transfer is complete and the urb should be returned |
| * to the system. |
| */ |
| void process_inactive_qtd(struct whc *whc, struct whc_qset *qset, |
| struct whc_qtd *qtd) |
| { |
| struct whc_std *std = list_first_entry(&qset->stds, struct whc_std, list_node); |
| struct urb *urb = std->urb; |
| uint32_t status; |
| bool complete; |
| |
| status = le32_to_cpu(qtd->status); |
| |
| urb->actual_length += std->len - QTD_STS_TO_LEN(status); |
| |
| if (usb_pipein(urb->pipe) && (status & QTD_STS_LAST_PKT)) |
| complete = true; |
| else |
| complete = whc_std_last(std); |
| |
| qset_remove_qtd(whc, qset); |
| qset_free_std(whc, std); |
| |
| /* |
| * Transfers for this URB are complete? Then return it to the |
| * USB subsystem. |
| */ |
| if (complete) { |
| qset_remove_qtds(whc, qset, urb); |
| qset_remove_urb(whc, qset, urb, get_urb_status_from_qtd(urb, status)); |
| |
| /* |
| * If iAlt isn't valid then the hardware didn't |
| * advance iCur. Adjust the start and end pointers to |
| * match iCur. |
| */ |
| if (!(status & QTD_STS_IALT_VALID)) |
| qset->td_start = qset->td_end |
| = QH_STATUS_TO_ICUR(le16_to_cpu(qset->qh.status)); |
| qset->pause_after_urb = NULL; |
| } |
| } |
| |
| /** |
| * process_halted_qtd - process a qset with a halted qtd |
| * |
| * Remove all the qTDs for the failed URB and return the failed URB to |
| * the USB subsystem. Then remove all other qTDs so the qset can be |
| * removed. |
| * |
| * FIXME: this is the point where rate adaptation can be done. If a |
| * transfer failed because it exceeded the maximum number of retries |
| * then it could be reactivated with a slower rate without having to |
| * remove the qset. |
| */ |
| void process_halted_qtd(struct whc *whc, struct whc_qset *qset, |
| struct whc_qtd *qtd) |
| { |
| struct whc_std *std = list_first_entry(&qset->stds, struct whc_std, list_node); |
| struct urb *urb = std->urb; |
| int urb_status; |
| |
| urb_status = get_urb_status_from_qtd(urb, le32_to_cpu(qtd->status)); |
| |
| qset_remove_qtds(whc, qset, urb); |
| qset_remove_urb(whc, qset, urb, urb_status); |
| |
| list_for_each_entry(std, &qset->stds, list_node) { |
| if (qset->ntds == 0) |
| break; |
| qset_remove_qtd(whc, qset); |
| std->qtd = NULL; |
| } |
| |
| qset->remove = 1; |
| } |
| |
| void qset_free(struct whc *whc, struct whc_qset *qset) |
| { |
| dma_pool_free(whc->qset_pool, qset, qset->qset_dma); |
| } |
| |
| /** |
| * qset_delete - wait for a qset to be unused, then free it. |
| */ |
| void qset_delete(struct whc *whc, struct whc_qset *qset) |
| { |
| wait_for_completion(&qset->remove_complete); |
| qset_free(whc, qset); |
| } |