| /* Intel i7 core/Nehalem Memory Controller kernel module |
| * |
| * This driver supports the memory controllers found on the Intel |
| * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx, |
| * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield |
| * and Westmere-EP. |
| * |
| * This file may be distributed under the terms of the |
| * GNU General Public License version 2 only. |
| * |
| * Copyright (c) 2009-2010 by: |
| * Mauro Carvalho Chehab |
| * |
| * Red Hat Inc. http://www.redhat.com |
| * |
| * Forked and adapted from the i5400_edac driver |
| * |
| * Based on the following public Intel datasheets: |
| * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor |
| * Datasheet, Volume 2: |
| * http://download.intel.com/design/processor/datashts/320835.pdf |
| * Intel Xeon Processor 5500 Series Datasheet Volume 2 |
| * http://www.intel.com/Assets/PDF/datasheet/321322.pdf |
| * also available at: |
| * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/pci_ids.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/dmi.h> |
| #include <linux/edac.h> |
| #include <linux/mmzone.h> |
| #include <linux/smp.h> |
| #include <asm/mce.h> |
| #include <asm/processor.h> |
| #include <asm/div64.h> |
| |
| #include "edac_module.h" |
| |
| /* Static vars */ |
| static LIST_HEAD(i7core_edac_list); |
| static DEFINE_MUTEX(i7core_edac_lock); |
| static int probed; |
| |
| static int use_pci_fixup; |
| module_param(use_pci_fixup, int, 0444); |
| MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices"); |
| /* |
| * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core |
| * registers start at bus 255, and are not reported by BIOS. |
| * We currently find devices with only 2 sockets. In order to support more QPI |
| * Quick Path Interconnect, just increment this number. |
| */ |
| #define MAX_SOCKET_BUSES 2 |
| |
| |
| /* |
| * Alter this version for the module when modifications are made |
| */ |
| #define I7CORE_REVISION " Ver: 1.0.0" |
| #define EDAC_MOD_STR "i7core_edac" |
| |
| /* |
| * Debug macros |
| */ |
| #define i7core_printk(level, fmt, arg...) \ |
| edac_printk(level, "i7core", fmt, ##arg) |
| |
| #define i7core_mc_printk(mci, level, fmt, arg...) \ |
| edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg) |
| |
| /* |
| * i7core Memory Controller Registers |
| */ |
| |
| /* OFFSETS for Device 0 Function 0 */ |
| |
| #define MC_CFG_CONTROL 0x90 |
| #define MC_CFG_UNLOCK 0x02 |
| #define MC_CFG_LOCK 0x00 |
| |
| /* OFFSETS for Device 3 Function 0 */ |
| |
| #define MC_CONTROL 0x48 |
| #define MC_STATUS 0x4c |
| #define MC_MAX_DOD 0x64 |
| |
| /* |
| * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet: |
| * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf |
| */ |
| |
| #define MC_TEST_ERR_RCV1 0x60 |
| #define DIMM2_COR_ERR(r) ((r) & 0x7fff) |
| |
| #define MC_TEST_ERR_RCV0 0x64 |
| #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff) |
| #define DIMM0_COR_ERR(r) ((r) & 0x7fff) |
| |
| /* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */ |
| #define MC_SSRCONTROL 0x48 |
| #define SSR_MODE_DISABLE 0x00 |
| #define SSR_MODE_ENABLE 0x01 |
| #define SSR_MODE_MASK 0x03 |
| |
| #define MC_SCRUB_CONTROL 0x4c |
| #define STARTSCRUB (1 << 24) |
| #define SCRUBINTERVAL_MASK 0xffffff |
| |
| #define MC_COR_ECC_CNT_0 0x80 |
| #define MC_COR_ECC_CNT_1 0x84 |
| #define MC_COR_ECC_CNT_2 0x88 |
| #define MC_COR_ECC_CNT_3 0x8c |
| #define MC_COR_ECC_CNT_4 0x90 |
| #define MC_COR_ECC_CNT_5 0x94 |
| |
| #define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff) |
| #define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff) |
| |
| |
| /* OFFSETS for Devices 4,5 and 6 Function 0 */ |
| |
| #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58 |
| #define THREE_DIMMS_PRESENT (1 << 24) |
| #define SINGLE_QUAD_RANK_PRESENT (1 << 23) |
| #define QUAD_RANK_PRESENT (1 << 22) |
| #define REGISTERED_DIMM (1 << 15) |
| |
| #define MC_CHANNEL_MAPPER 0x60 |
| #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1) |
| #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1) |
| |
| #define MC_CHANNEL_RANK_PRESENT 0x7c |
| #define RANK_PRESENT_MASK 0xffff |
| |
| #define MC_CHANNEL_ADDR_MATCH 0xf0 |
| #define MC_CHANNEL_ERROR_MASK 0xf8 |
| #define MC_CHANNEL_ERROR_INJECT 0xfc |
| #define INJECT_ADDR_PARITY 0x10 |
| #define INJECT_ECC 0x08 |
| #define MASK_CACHELINE 0x06 |
| #define MASK_FULL_CACHELINE 0x06 |
| #define MASK_MSB32_CACHELINE 0x04 |
| #define MASK_LSB32_CACHELINE 0x02 |
| #define NO_MASK_CACHELINE 0x00 |
| #define REPEAT_EN 0x01 |
| |
| /* OFFSETS for Devices 4,5 and 6 Function 1 */ |
| |
| #define MC_DOD_CH_DIMM0 0x48 |
| #define MC_DOD_CH_DIMM1 0x4c |
| #define MC_DOD_CH_DIMM2 0x50 |
| #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10)) |
| #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10) |
| #define DIMM_PRESENT_MASK (1 << 9) |
| #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9) |
| #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7)) |
| #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7) |
| #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5)) |
| #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5) |
| #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2)) |
| #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2) |
| #define MC_DOD_NUMCOL_MASK 3 |
| #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK) |
| |
| #define MC_RANK_PRESENT 0x7c |
| |
| #define MC_SAG_CH_0 0x80 |
| #define MC_SAG_CH_1 0x84 |
| #define MC_SAG_CH_2 0x88 |
| #define MC_SAG_CH_3 0x8c |
| #define MC_SAG_CH_4 0x90 |
| #define MC_SAG_CH_5 0x94 |
| #define MC_SAG_CH_6 0x98 |
| #define MC_SAG_CH_7 0x9c |
| |
| #define MC_RIR_LIMIT_CH_0 0x40 |
| #define MC_RIR_LIMIT_CH_1 0x44 |
| #define MC_RIR_LIMIT_CH_2 0x48 |
| #define MC_RIR_LIMIT_CH_3 0x4C |
| #define MC_RIR_LIMIT_CH_4 0x50 |
| #define MC_RIR_LIMIT_CH_5 0x54 |
| #define MC_RIR_LIMIT_CH_6 0x58 |
| #define MC_RIR_LIMIT_CH_7 0x5C |
| #define MC_RIR_LIMIT_MASK ((1 << 10) - 1) |
| |
| #define MC_RIR_WAY_CH 0x80 |
| #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7) |
| #define MC_RIR_WAY_RANK_MASK 0x7 |
| |
| /* |
| * i7core structs |
| */ |
| |
| #define NUM_CHANS 3 |
| #define MAX_DIMMS 3 /* Max DIMMS per channel */ |
| #define MAX_MCR_FUNC 4 |
| #define MAX_CHAN_FUNC 3 |
| |
| struct i7core_info { |
| u32 mc_control; |
| u32 mc_status; |
| u32 max_dod; |
| u32 ch_map; |
| }; |
| |
| |
| struct i7core_inject { |
| int enable; |
| |
| u32 section; |
| u32 type; |
| u32 eccmask; |
| |
| /* Error address mask */ |
| int channel, dimm, rank, bank, page, col; |
| }; |
| |
| struct i7core_channel { |
| bool is_3dimms_present; |
| bool is_single_4rank; |
| bool has_4rank; |
| u32 dimms; |
| }; |
| |
| struct pci_id_descr { |
| int dev; |
| int func; |
| int dev_id; |
| int optional; |
| }; |
| |
| struct pci_id_table { |
| const struct pci_id_descr *descr; |
| int n_devs; |
| }; |
| |
| struct i7core_dev { |
| struct list_head list; |
| u8 socket; |
| struct pci_dev **pdev; |
| int n_devs; |
| struct mem_ctl_info *mci; |
| }; |
| |
| struct i7core_pvt { |
| struct device *addrmatch_dev, *chancounts_dev; |
| |
| struct pci_dev *pci_noncore; |
| struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1]; |
| struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1]; |
| |
| struct i7core_dev *i7core_dev; |
| |
| struct i7core_info info; |
| struct i7core_inject inject; |
| struct i7core_channel channel[NUM_CHANS]; |
| |
| int ce_count_available; |
| |
| /* ECC corrected errors counts per udimm */ |
| unsigned long udimm_ce_count[MAX_DIMMS]; |
| int udimm_last_ce_count[MAX_DIMMS]; |
| /* ECC corrected errors counts per rdimm */ |
| unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS]; |
| int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS]; |
| |
| bool is_registered, enable_scrub; |
| |
| /* DCLK Frequency used for computing scrub rate */ |
| int dclk_freq; |
| |
| /* Struct to control EDAC polling */ |
| struct edac_pci_ctl_info *i7core_pci; |
| }; |
| |
| #define PCI_DESCR(device, function, device_id) \ |
| .dev = (device), \ |
| .func = (function), \ |
| .dev_id = (device_id) |
| |
| static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = { |
| /* Memory controller */ |
| { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) }, |
| { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) }, |
| /* Exists only for RDIMM */ |
| { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 }, |
| { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) }, |
| |
| /* Channel 0 */ |
| { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) }, |
| { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) }, |
| { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) }, |
| { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) }, |
| |
| /* Channel 1 */ |
| { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) }, |
| { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) }, |
| { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) }, |
| { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) }, |
| |
| /* Channel 2 */ |
| { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) }, |
| { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) }, |
| { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) }, |
| { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) }, |
| |
| /* Generic Non-core registers */ |
| /* |
| * This is the PCI device on i7core and on Xeon 35xx (8086:2c41) |
| * On Xeon 55xx, however, it has a different id (8086:2c40). So, |
| * the probing code needs to test for the other address in case of |
| * failure of this one |
| */ |
| { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) }, |
| |
| }; |
| |
| static const struct pci_id_descr pci_dev_descr_lynnfield[] = { |
| { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) }, |
| { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) }, |
| { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) }, |
| |
| { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) }, |
| { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) }, |
| { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) }, |
| { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) }, |
| |
| { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) }, |
| { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) }, |
| { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) }, |
| { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) }, |
| |
| /* |
| * This is the PCI device has an alternate address on some |
| * processors like Core i7 860 |
| */ |
| { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) }, |
| }; |
| |
| static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = { |
| /* Memory controller */ |
| { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) }, |
| { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) }, |
| /* Exists only for RDIMM */ |
| { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 }, |
| { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) }, |
| |
| /* Channel 0 */ |
| { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) }, |
| { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) }, |
| { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) }, |
| { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) }, |
| |
| /* Channel 1 */ |
| { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) }, |
| { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) }, |
| { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) }, |
| { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) }, |
| |
| /* Channel 2 */ |
| { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) }, |
| { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) }, |
| { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) }, |
| { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) }, |
| |
| /* Generic Non-core registers */ |
| { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) }, |
| |
| }; |
| |
| #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } |
| static const struct pci_id_table pci_dev_table[] = { |
| PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem), |
| PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield), |
| PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere), |
| {0,} /* 0 terminated list. */ |
| }; |
| |
| /* |
| * pci_device_id table for which devices we are looking for |
| */ |
| static const struct pci_device_id i7core_pci_tbl[] = { |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)}, |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)}, |
| {0,} /* 0 terminated list. */ |
| }; |
| |
| /**************************************************************************** |
| Ancillary status routines |
| ****************************************************************************/ |
| |
| /* MC_CONTROL bits */ |
| #define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch))) |
| #define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1)) |
| |
| /* MC_STATUS bits */ |
| #define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4)) |
| #define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch)) |
| |
| /* MC_MAX_DOD read functions */ |
| static inline int numdimms(u32 dimms) |
| { |
| return (dimms & 0x3) + 1; |
| } |
| |
| static inline int numrank(u32 rank) |
| { |
| static const int ranks[] = { 1, 2, 4, -EINVAL }; |
| |
| return ranks[rank & 0x3]; |
| } |
| |
| static inline int numbank(u32 bank) |
| { |
| static const int banks[] = { 4, 8, 16, -EINVAL }; |
| |
| return banks[bank & 0x3]; |
| } |
| |
| static inline int numrow(u32 row) |
| { |
| static const int rows[] = { |
| 1 << 12, 1 << 13, 1 << 14, 1 << 15, |
| 1 << 16, -EINVAL, -EINVAL, -EINVAL, |
| }; |
| |
| return rows[row & 0x7]; |
| } |
| |
| static inline int numcol(u32 col) |
| { |
| static const int cols[] = { |
| 1 << 10, 1 << 11, 1 << 12, -EINVAL, |
| }; |
| return cols[col & 0x3]; |
| } |
| |
| static struct i7core_dev *get_i7core_dev(u8 socket) |
| { |
| struct i7core_dev *i7core_dev; |
| |
| list_for_each_entry(i7core_dev, &i7core_edac_list, list) { |
| if (i7core_dev->socket == socket) |
| return i7core_dev; |
| } |
| |
| return NULL; |
| } |
| |
| static struct i7core_dev *alloc_i7core_dev(u8 socket, |
| const struct pci_id_table *table) |
| { |
| struct i7core_dev *i7core_dev; |
| |
| i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL); |
| if (!i7core_dev) |
| return NULL; |
| |
| i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs, |
| GFP_KERNEL); |
| if (!i7core_dev->pdev) { |
| kfree(i7core_dev); |
| return NULL; |
| } |
| |
| i7core_dev->socket = socket; |
| i7core_dev->n_devs = table->n_devs; |
| list_add_tail(&i7core_dev->list, &i7core_edac_list); |
| |
| return i7core_dev; |
| } |
| |
| static void free_i7core_dev(struct i7core_dev *i7core_dev) |
| { |
| list_del(&i7core_dev->list); |
| kfree(i7core_dev->pdev); |
| kfree(i7core_dev); |
| } |
| |
| /**************************************************************************** |
| Memory check routines |
| ****************************************************************************/ |
| |
| static int get_dimm_config(struct mem_ctl_info *mci) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| struct pci_dev *pdev; |
| int i, j; |
| enum edac_type mode; |
| enum mem_type mtype; |
| struct dimm_info *dimm; |
| |
| /* Get data from the MC register, function 0 */ |
| pdev = pvt->pci_mcr[0]; |
| if (!pdev) |
| return -ENODEV; |
| |
| /* Device 3 function 0 reads */ |
| pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control); |
| pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status); |
| pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod); |
| pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map); |
| |
| edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n", |
| pvt->i7core_dev->socket, pvt->info.mc_control, |
| pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map); |
| |
| if (ECC_ENABLED(pvt)) { |
| edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4); |
| if (ECCx8(pvt)) |
| mode = EDAC_S8ECD8ED; |
| else |
| mode = EDAC_S4ECD4ED; |
| } else { |
| edac_dbg(0, "ECC disabled\n"); |
| mode = EDAC_NONE; |
| } |
| |
| /* FIXME: need to handle the error codes */ |
| edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n", |
| numdimms(pvt->info.max_dod), |
| numrank(pvt->info.max_dod >> 2), |
| numbank(pvt->info.max_dod >> 4), |
| numrow(pvt->info.max_dod >> 6), |
| numcol(pvt->info.max_dod >> 9)); |
| |
| for (i = 0; i < NUM_CHANS; i++) { |
| u32 data, dimm_dod[3], value[8]; |
| |
| if (!pvt->pci_ch[i][0]) |
| continue; |
| |
| if (!CH_ACTIVE(pvt, i)) { |
| edac_dbg(0, "Channel %i is not active\n", i); |
| continue; |
| } |
| if (CH_DISABLED(pvt, i)) { |
| edac_dbg(0, "Channel %i is disabled\n", i); |
| continue; |
| } |
| |
| /* Devices 4-6 function 0 */ |
| pci_read_config_dword(pvt->pci_ch[i][0], |
| MC_CHANNEL_DIMM_INIT_PARAMS, &data); |
| |
| |
| if (data & THREE_DIMMS_PRESENT) |
| pvt->channel[i].is_3dimms_present = true; |
| |
| if (data & SINGLE_QUAD_RANK_PRESENT) |
| pvt->channel[i].is_single_4rank = true; |
| |
| if (data & QUAD_RANK_PRESENT) |
| pvt->channel[i].has_4rank = true; |
| |
| if (data & REGISTERED_DIMM) |
| mtype = MEM_RDDR3; |
| else |
| mtype = MEM_DDR3; |
| |
| /* Devices 4-6 function 1 */ |
| pci_read_config_dword(pvt->pci_ch[i][1], |
| MC_DOD_CH_DIMM0, &dimm_dod[0]); |
| pci_read_config_dword(pvt->pci_ch[i][1], |
| MC_DOD_CH_DIMM1, &dimm_dod[1]); |
| pci_read_config_dword(pvt->pci_ch[i][1], |
| MC_DOD_CH_DIMM2, &dimm_dod[2]); |
| |
| edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n", |
| i, |
| RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i), |
| data, |
| pvt->channel[i].is_3dimms_present ? "3DIMMS " : "", |
| pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "", |
| pvt->channel[i].has_4rank ? "HAS_4R " : "", |
| (data & REGISTERED_DIMM) ? 'R' : 'U'); |
| |
| for (j = 0; j < 3; j++) { |
| u32 banks, ranks, rows, cols; |
| u32 size, npages; |
| |
| if (!DIMM_PRESENT(dimm_dod[j])) |
| continue; |
| |
| dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, |
| i, j, 0); |
| banks = numbank(MC_DOD_NUMBANK(dimm_dod[j])); |
| ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j])); |
| rows = numrow(MC_DOD_NUMROW(dimm_dod[j])); |
| cols = numcol(MC_DOD_NUMCOL(dimm_dod[j])); |
| |
| /* DDR3 has 8 I/O banks */ |
| size = (rows * cols * banks * ranks) >> (20 - 3); |
| |
| edac_dbg(0, "\tdimm %d %d Mb offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n", |
| j, size, |
| RANKOFFSET(dimm_dod[j]), |
| banks, ranks, rows, cols); |
| |
| npages = MiB_TO_PAGES(size); |
| |
| dimm->nr_pages = npages; |
| |
| switch (banks) { |
| case 4: |
| dimm->dtype = DEV_X4; |
| break; |
| case 8: |
| dimm->dtype = DEV_X8; |
| break; |
| case 16: |
| dimm->dtype = DEV_X16; |
| break; |
| default: |
| dimm->dtype = DEV_UNKNOWN; |
| } |
| |
| snprintf(dimm->label, sizeof(dimm->label), |
| "CPU#%uChannel#%u_DIMM#%u", |
| pvt->i7core_dev->socket, i, j); |
| dimm->grain = 8; |
| dimm->edac_mode = mode; |
| dimm->mtype = mtype; |
| } |
| |
| pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]); |
| pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]); |
| pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]); |
| pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]); |
| pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]); |
| pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]); |
| pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]); |
| pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]); |
| edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i); |
| for (j = 0; j < 8; j++) |
| edac_dbg(1, "\t\t%#x\t%#x\t%#x\n", |
| (value[j] >> 27) & 0x1, |
| (value[j] >> 24) & 0x7, |
| (value[j] & ((1 << 24) - 1))); |
| } |
| |
| return 0; |
| } |
| |
| /**************************************************************************** |
| Error insertion routines |
| ****************************************************************************/ |
| |
| #define to_mci(k) container_of(k, struct mem_ctl_info, dev) |
| |
| /* The i7core has independent error injection features per channel. |
| However, to have a simpler code, we don't allow enabling error injection |
| on more than one channel. |
| Also, since a change at an inject parameter will be applied only at enable, |
| we're disabling error injection on all write calls to the sysfs nodes that |
| controls the error code injection. |
| */ |
| static int disable_inject(const struct mem_ctl_info *mci) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| |
| pvt->inject.enable = 0; |
| |
| if (!pvt->pci_ch[pvt->inject.channel][0]) |
| return -ENODEV; |
| |
| pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0], |
| MC_CHANNEL_ERROR_INJECT, 0); |
| |
| return 0; |
| } |
| |
| /* |
| * i7core inject inject.section |
| * |
| * accept and store error injection inject.section value |
| * bit 0 - refers to the lower 32-byte half cacheline |
| * bit 1 - refers to the upper 32-byte half cacheline |
| */ |
| static ssize_t i7core_inject_section_store(struct device *dev, |
| struct device_attribute *mattr, |
| const char *data, size_t count) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct i7core_pvt *pvt = mci->pvt_info; |
| unsigned long value; |
| int rc; |
| |
| if (pvt->inject.enable) |
| disable_inject(mci); |
| |
| rc = kstrtoul(data, 10, &value); |
| if ((rc < 0) || (value > 3)) |
| return -EIO; |
| |
| pvt->inject.section = (u32) value; |
| return count; |
| } |
| |
| static ssize_t i7core_inject_section_show(struct device *dev, |
| struct device_attribute *mattr, |
| char *data) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct i7core_pvt *pvt = mci->pvt_info; |
| return sprintf(data, "0x%08x\n", pvt->inject.section); |
| } |
| |
| /* |
| * i7core inject.type |
| * |
| * accept and store error injection inject.section value |
| * bit 0 - repeat enable - Enable error repetition |
| * bit 1 - inject ECC error |
| * bit 2 - inject parity error |
| */ |
| static ssize_t i7core_inject_type_store(struct device *dev, |
| struct device_attribute *mattr, |
| const char *data, size_t count) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct i7core_pvt *pvt = mci->pvt_info; |
| unsigned long value; |
| int rc; |
| |
| if (pvt->inject.enable) |
| disable_inject(mci); |
| |
| rc = kstrtoul(data, 10, &value); |
| if ((rc < 0) || (value > 7)) |
| return -EIO; |
| |
| pvt->inject.type = (u32) value; |
| return count; |
| } |
| |
| static ssize_t i7core_inject_type_show(struct device *dev, |
| struct device_attribute *mattr, |
| char *data) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct i7core_pvt *pvt = mci->pvt_info; |
| |
| return sprintf(data, "0x%08x\n", pvt->inject.type); |
| } |
| |
| /* |
| * i7core_inject_inject.eccmask_store |
| * |
| * The type of error (UE/CE) will depend on the inject.eccmask value: |
| * Any bits set to a 1 will flip the corresponding ECC bit |
| * Correctable errors can be injected by flipping 1 bit or the bits within |
| * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or |
| * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an |
| * uncorrectable error to be injected. |
| */ |
| static ssize_t i7core_inject_eccmask_store(struct device *dev, |
| struct device_attribute *mattr, |
| const char *data, size_t count) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct i7core_pvt *pvt = mci->pvt_info; |
| unsigned long value; |
| int rc; |
| |
| if (pvt->inject.enable) |
| disable_inject(mci); |
| |
| rc = kstrtoul(data, 10, &value); |
| if (rc < 0) |
| return -EIO; |
| |
| pvt->inject.eccmask = (u32) value; |
| return count; |
| } |
| |
| static ssize_t i7core_inject_eccmask_show(struct device *dev, |
| struct device_attribute *mattr, |
| char *data) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct i7core_pvt *pvt = mci->pvt_info; |
| |
| return sprintf(data, "0x%08x\n", pvt->inject.eccmask); |
| } |
| |
| /* |
| * i7core_addrmatch |
| * |
| * The type of error (UE/CE) will depend on the inject.eccmask value: |
| * Any bits set to a 1 will flip the corresponding ECC bit |
| * Correctable errors can be injected by flipping 1 bit or the bits within |
| * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or |
| * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an |
| * uncorrectable error to be injected. |
| */ |
| |
| #define DECLARE_ADDR_MATCH(param, limit) \ |
| static ssize_t i7core_inject_store_##param( \ |
| struct device *dev, \ |
| struct device_attribute *mattr, \ |
| const char *data, size_t count) \ |
| { \ |
| struct mem_ctl_info *mci = dev_get_drvdata(dev); \ |
| struct i7core_pvt *pvt; \ |
| long value; \ |
| int rc; \ |
| \ |
| edac_dbg(1, "\n"); \ |
| pvt = mci->pvt_info; \ |
| \ |
| if (pvt->inject.enable) \ |
| disable_inject(mci); \ |
| \ |
| if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\ |
| value = -1; \ |
| else { \ |
| rc = kstrtoul(data, 10, &value); \ |
| if ((rc < 0) || (value >= limit)) \ |
| return -EIO; \ |
| } \ |
| \ |
| pvt->inject.param = value; \ |
| \ |
| return count; \ |
| } \ |
| \ |
| static ssize_t i7core_inject_show_##param( \ |
| struct device *dev, \ |
| struct device_attribute *mattr, \ |
| char *data) \ |
| { \ |
| struct mem_ctl_info *mci = dev_get_drvdata(dev); \ |
| struct i7core_pvt *pvt; \ |
| \ |
| pvt = mci->pvt_info; \ |
| edac_dbg(1, "pvt=%p\n", pvt); \ |
| if (pvt->inject.param < 0) \ |
| return sprintf(data, "any\n"); \ |
| else \ |
| return sprintf(data, "%d\n", pvt->inject.param);\ |
| } |
| |
| #define ATTR_ADDR_MATCH(param) \ |
| static DEVICE_ATTR(param, S_IRUGO | S_IWUSR, \ |
| i7core_inject_show_##param, \ |
| i7core_inject_store_##param) |
| |
| DECLARE_ADDR_MATCH(channel, 3); |
| DECLARE_ADDR_MATCH(dimm, 3); |
| DECLARE_ADDR_MATCH(rank, 4); |
| DECLARE_ADDR_MATCH(bank, 32); |
| DECLARE_ADDR_MATCH(page, 0x10000); |
| DECLARE_ADDR_MATCH(col, 0x4000); |
| |
| ATTR_ADDR_MATCH(channel); |
| ATTR_ADDR_MATCH(dimm); |
| ATTR_ADDR_MATCH(rank); |
| ATTR_ADDR_MATCH(bank); |
| ATTR_ADDR_MATCH(page); |
| ATTR_ADDR_MATCH(col); |
| |
| static int write_and_test(struct pci_dev *dev, const int where, const u32 val) |
| { |
| u32 read; |
| int count; |
| |
| edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n", |
| dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), |
| where, val); |
| |
| for (count = 0; count < 10; count++) { |
| if (count) |
| msleep(100); |
| pci_write_config_dword(dev, where, val); |
| pci_read_config_dword(dev, where, &read); |
| |
| if (read == val) |
| return 0; |
| } |
| |
| i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x " |
| "write=%08x. Read=%08x\n", |
| dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), |
| where, val, read); |
| |
| return -EINVAL; |
| } |
| |
| /* |
| * This routine prepares the Memory Controller for error injection. |
| * The error will be injected when some process tries to write to the |
| * memory that matches the given criteria. |
| * The criteria can be set in terms of a mask where dimm, rank, bank, page |
| * and col can be specified. |
| * A -1 value for any of the mask items will make the MCU to ignore |
| * that matching criteria for error injection. |
| * |
| * It should be noticed that the error will only happen after a write operation |
| * on a memory that matches the condition. if REPEAT_EN is not enabled at |
| * inject mask, then it will produce just one error. Otherwise, it will repeat |
| * until the injectmask would be cleaned. |
| * |
| * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD |
| * is reliable enough to check if the MC is using the |
| * three channels. However, this is not clear at the datasheet. |
| */ |
| static ssize_t i7core_inject_enable_store(struct device *dev, |
| struct device_attribute *mattr, |
| const char *data, size_t count) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct i7core_pvt *pvt = mci->pvt_info; |
| u32 injectmask; |
| u64 mask = 0; |
| int rc; |
| long enable; |
| |
| if (!pvt->pci_ch[pvt->inject.channel][0]) |
| return 0; |
| |
| rc = kstrtoul(data, 10, &enable); |
| if ((rc < 0)) |
| return 0; |
| |
| if (enable) { |
| pvt->inject.enable = 1; |
| } else { |
| disable_inject(mci); |
| return count; |
| } |
| |
| /* Sets pvt->inject.dimm mask */ |
| if (pvt->inject.dimm < 0) |
| mask |= 1LL << 41; |
| else { |
| if (pvt->channel[pvt->inject.channel].dimms > 2) |
| mask |= (pvt->inject.dimm & 0x3LL) << 35; |
| else |
| mask |= (pvt->inject.dimm & 0x1LL) << 36; |
| } |
| |
| /* Sets pvt->inject.rank mask */ |
| if (pvt->inject.rank < 0) |
| mask |= 1LL << 40; |
| else { |
| if (pvt->channel[pvt->inject.channel].dimms > 2) |
| mask |= (pvt->inject.rank & 0x1LL) << 34; |
| else |
| mask |= (pvt->inject.rank & 0x3LL) << 34; |
| } |
| |
| /* Sets pvt->inject.bank mask */ |
| if (pvt->inject.bank < 0) |
| mask |= 1LL << 39; |
| else |
| mask |= (pvt->inject.bank & 0x15LL) << 30; |
| |
| /* Sets pvt->inject.page mask */ |
| if (pvt->inject.page < 0) |
| mask |= 1LL << 38; |
| else |
| mask |= (pvt->inject.page & 0xffff) << 14; |
| |
| /* Sets pvt->inject.column mask */ |
| if (pvt->inject.col < 0) |
| mask |= 1LL << 37; |
| else |
| mask |= (pvt->inject.col & 0x3fff); |
| |
| /* |
| * bit 0: REPEAT_EN |
| * bits 1-2: MASK_HALF_CACHELINE |
| * bit 3: INJECT_ECC |
| * bit 4: INJECT_ADDR_PARITY |
| */ |
| |
| injectmask = (pvt->inject.type & 1) | |
| (pvt->inject.section & 0x3) << 1 | |
| (pvt->inject.type & 0x6) << (3 - 1); |
| |
| /* Unlock writes to registers - this register is write only */ |
| pci_write_config_dword(pvt->pci_noncore, |
| MC_CFG_CONTROL, 0x2); |
| |
| write_and_test(pvt->pci_ch[pvt->inject.channel][0], |
| MC_CHANNEL_ADDR_MATCH, mask); |
| write_and_test(pvt->pci_ch[pvt->inject.channel][0], |
| MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L); |
| |
| write_and_test(pvt->pci_ch[pvt->inject.channel][0], |
| MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask); |
| |
| write_and_test(pvt->pci_ch[pvt->inject.channel][0], |
| MC_CHANNEL_ERROR_INJECT, injectmask); |
| |
| /* |
| * This is something undocumented, based on my tests |
| * Without writing 8 to this register, errors aren't injected. Not sure |
| * why. |
| */ |
| pci_write_config_dword(pvt->pci_noncore, |
| MC_CFG_CONTROL, 8); |
| |
| edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n", |
| mask, pvt->inject.eccmask, injectmask); |
| |
| |
| return count; |
| } |
| |
| static ssize_t i7core_inject_enable_show(struct device *dev, |
| struct device_attribute *mattr, |
| char *data) |
| { |
| struct mem_ctl_info *mci = to_mci(dev); |
| struct i7core_pvt *pvt = mci->pvt_info; |
| u32 injectmask; |
| |
| if (!pvt->pci_ch[pvt->inject.channel][0]) |
| return 0; |
| |
| pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0], |
| MC_CHANNEL_ERROR_INJECT, &injectmask); |
| |
| edac_dbg(0, "Inject error read: 0x%018x\n", injectmask); |
| |
| if (injectmask & 0x0c) |
| pvt->inject.enable = 1; |
| |
| return sprintf(data, "%d\n", pvt->inject.enable); |
| } |
| |
| #define DECLARE_COUNTER(param) \ |
| static ssize_t i7core_show_counter_##param( \ |
| struct device *dev, \ |
| struct device_attribute *mattr, \ |
| char *data) \ |
| { \ |
| struct mem_ctl_info *mci = dev_get_drvdata(dev); \ |
| struct i7core_pvt *pvt = mci->pvt_info; \ |
| \ |
| edac_dbg(1, "\n"); \ |
| if (!pvt->ce_count_available || (pvt->is_registered)) \ |
| return sprintf(data, "data unavailable\n"); \ |
| return sprintf(data, "%lu\n", \ |
| pvt->udimm_ce_count[param]); \ |
| } |
| |
| #define ATTR_COUNTER(param) \ |
| static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR, \ |
| i7core_show_counter_##param, \ |
| NULL) |
| |
| DECLARE_COUNTER(0); |
| DECLARE_COUNTER(1); |
| DECLARE_COUNTER(2); |
| |
| ATTR_COUNTER(0); |
| ATTR_COUNTER(1); |
| ATTR_COUNTER(2); |
| |
| /* |
| * inject_addrmatch device sysfs struct |
| */ |
| |
| static struct attribute *i7core_addrmatch_attrs[] = { |
| &dev_attr_channel.attr, |
| &dev_attr_dimm.attr, |
| &dev_attr_rank.attr, |
| &dev_attr_bank.attr, |
| &dev_attr_page.attr, |
| &dev_attr_col.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group addrmatch_grp = { |
| .attrs = i7core_addrmatch_attrs, |
| }; |
| |
| static const struct attribute_group *addrmatch_groups[] = { |
| &addrmatch_grp, |
| NULL |
| }; |
| |
| static void addrmatch_release(struct device *device) |
| { |
| edac_dbg(1, "Releasing device %s\n", dev_name(device)); |
| kfree(device); |
| } |
| |
| static const struct device_type addrmatch_type = { |
| .groups = addrmatch_groups, |
| .release = addrmatch_release, |
| }; |
| |
| /* |
| * all_channel_counts sysfs struct |
| */ |
| |
| static struct attribute *i7core_udimm_counters_attrs[] = { |
| &dev_attr_udimm0.attr, |
| &dev_attr_udimm1.attr, |
| &dev_attr_udimm2.attr, |
| NULL |
| }; |
| |
| static const struct attribute_group all_channel_counts_grp = { |
| .attrs = i7core_udimm_counters_attrs, |
| }; |
| |
| static const struct attribute_group *all_channel_counts_groups[] = { |
| &all_channel_counts_grp, |
| NULL |
| }; |
| |
| static void all_channel_counts_release(struct device *device) |
| { |
| edac_dbg(1, "Releasing device %s\n", dev_name(device)); |
| kfree(device); |
| } |
| |
| static const struct device_type all_channel_counts_type = { |
| .groups = all_channel_counts_groups, |
| .release = all_channel_counts_release, |
| }; |
| |
| /* |
| * inject sysfs attributes |
| */ |
| |
| static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR, |
| i7core_inject_section_show, i7core_inject_section_store); |
| |
| static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR, |
| i7core_inject_type_show, i7core_inject_type_store); |
| |
| |
| static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR, |
| i7core_inject_eccmask_show, i7core_inject_eccmask_store); |
| |
| static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR, |
| i7core_inject_enable_show, i7core_inject_enable_store); |
| |
| static struct attribute *i7core_dev_attrs[] = { |
| &dev_attr_inject_section.attr, |
| &dev_attr_inject_type.attr, |
| &dev_attr_inject_eccmask.attr, |
| &dev_attr_inject_enable.attr, |
| NULL |
| }; |
| |
| ATTRIBUTE_GROUPS(i7core_dev); |
| |
| static int i7core_create_sysfs_devices(struct mem_ctl_info *mci) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| int rc; |
| |
| pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL); |
| if (!pvt->addrmatch_dev) |
| return -ENOMEM; |
| |
| pvt->addrmatch_dev->type = &addrmatch_type; |
| pvt->addrmatch_dev->bus = mci->dev.bus; |
| device_initialize(pvt->addrmatch_dev); |
| pvt->addrmatch_dev->parent = &mci->dev; |
| dev_set_name(pvt->addrmatch_dev, "inject_addrmatch"); |
| dev_set_drvdata(pvt->addrmatch_dev, mci); |
| |
| edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev)); |
| |
| rc = device_add(pvt->addrmatch_dev); |
| if (rc < 0) |
| return rc; |
| |
| if (!pvt->is_registered) { |
| pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev), |
| GFP_KERNEL); |
| if (!pvt->chancounts_dev) { |
| put_device(pvt->addrmatch_dev); |
| device_del(pvt->addrmatch_dev); |
| return -ENOMEM; |
| } |
| |
| pvt->chancounts_dev->type = &all_channel_counts_type; |
| pvt->chancounts_dev->bus = mci->dev.bus; |
| device_initialize(pvt->chancounts_dev); |
| pvt->chancounts_dev->parent = &mci->dev; |
| dev_set_name(pvt->chancounts_dev, "all_channel_counts"); |
| dev_set_drvdata(pvt->chancounts_dev, mci); |
| |
| edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev)); |
| |
| rc = device_add(pvt->chancounts_dev); |
| if (rc < 0) |
| return rc; |
| } |
| return 0; |
| } |
| |
| static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| |
| edac_dbg(1, "\n"); |
| |
| if (!pvt->is_registered) { |
| put_device(pvt->chancounts_dev); |
| device_del(pvt->chancounts_dev); |
| } |
| put_device(pvt->addrmatch_dev); |
| device_del(pvt->addrmatch_dev); |
| } |
| |
| /**************************************************************************** |
| Device initialization routines: put/get, init/exit |
| ****************************************************************************/ |
| |
| /* |
| * i7core_put_all_devices 'put' all the devices that we have |
| * reserved via 'get' |
| */ |
| static void i7core_put_devices(struct i7core_dev *i7core_dev) |
| { |
| int i; |
| |
| edac_dbg(0, "\n"); |
| for (i = 0; i < i7core_dev->n_devs; i++) { |
| struct pci_dev *pdev = i7core_dev->pdev[i]; |
| if (!pdev) |
| continue; |
| edac_dbg(0, "Removing dev %02x:%02x.%d\n", |
| pdev->bus->number, |
| PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); |
| pci_dev_put(pdev); |
| } |
| } |
| |
| static void i7core_put_all_devices(void) |
| { |
| struct i7core_dev *i7core_dev, *tmp; |
| |
| list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) { |
| i7core_put_devices(i7core_dev); |
| free_i7core_dev(i7core_dev); |
| } |
| } |
| |
| static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table) |
| { |
| struct pci_dev *pdev = NULL; |
| int i; |
| |
| /* |
| * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses |
| * aren't announced by acpi. So, we need to use a legacy scan probing |
| * to detect them |
| */ |
| while (table && table->descr) { |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL); |
| if (unlikely(!pdev)) { |
| for (i = 0; i < MAX_SOCKET_BUSES; i++) |
| pcibios_scan_specific_bus(255-i); |
| } |
| pci_dev_put(pdev); |
| table++; |
| } |
| } |
| |
| static unsigned i7core_pci_lastbus(void) |
| { |
| int last_bus = 0, bus; |
| struct pci_bus *b = NULL; |
| |
| while ((b = pci_find_next_bus(b)) != NULL) { |
| bus = b->number; |
| edac_dbg(0, "Found bus %d\n", bus); |
| if (bus > last_bus) |
| last_bus = bus; |
| } |
| |
| edac_dbg(0, "Last bus %d\n", last_bus); |
| |
| return last_bus; |
| } |
| |
| /* |
| * i7core_get_all_devices Find and perform 'get' operation on the MCH's |
| * device/functions we want to reference for this driver |
| * |
| * Need to 'get' device 16 func 1 and func 2 |
| */ |
| static int i7core_get_onedevice(struct pci_dev **prev, |
| const struct pci_id_table *table, |
| const unsigned devno, |
| const unsigned last_bus) |
| { |
| struct i7core_dev *i7core_dev; |
| const struct pci_id_descr *dev_descr = &table->descr[devno]; |
| |
| struct pci_dev *pdev = NULL; |
| u8 bus = 0; |
| u8 socket = 0; |
| |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| dev_descr->dev_id, *prev); |
| |
| /* |
| * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs |
| * is at addr 8086:2c40, instead of 8086:2c41. So, we need |
| * to probe for the alternate address in case of failure |
| */ |
| if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) { |
| pci_dev_get(*prev); /* pci_get_device will put it */ |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev); |
| } |
| |
| if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && |
| !pdev) { |
| pci_dev_get(*prev); /* pci_get_device will put it */ |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT, |
| *prev); |
| } |
| |
| if (!pdev) { |
| if (*prev) { |
| *prev = pdev; |
| return 0; |
| } |
| |
| if (dev_descr->optional) |
| return 0; |
| |
| if (devno == 0) |
| return -ENODEV; |
| |
| i7core_printk(KERN_INFO, |
| "Device not found: dev %02x.%d PCI ID %04x:%04x\n", |
| dev_descr->dev, dev_descr->func, |
| PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
| |
| /* End of list, leave */ |
| return -ENODEV; |
| } |
| bus = pdev->bus->number; |
| |
| socket = last_bus - bus; |
| |
| i7core_dev = get_i7core_dev(socket); |
| if (!i7core_dev) { |
| i7core_dev = alloc_i7core_dev(socket, table); |
| if (!i7core_dev) { |
| pci_dev_put(pdev); |
| return -ENOMEM; |
| } |
| } |
| |
| if (i7core_dev->pdev[devno]) { |
| i7core_printk(KERN_ERR, |
| "Duplicated device for " |
| "dev %02x:%02x.%d PCI ID %04x:%04x\n", |
| bus, dev_descr->dev, dev_descr->func, |
| PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
| pci_dev_put(pdev); |
| return -ENODEV; |
| } |
| |
| i7core_dev->pdev[devno] = pdev; |
| |
| /* Sanity check */ |
| if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || |
| PCI_FUNC(pdev->devfn) != dev_descr->func)) { |
| i7core_printk(KERN_ERR, |
| "Device PCI ID %04x:%04x " |
| "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n", |
| PCI_VENDOR_ID_INTEL, dev_descr->dev_id, |
| bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), |
| bus, dev_descr->dev, dev_descr->func); |
| return -ENODEV; |
| } |
| |
| /* Be sure that the device is enabled */ |
| if (unlikely(pci_enable_device(pdev) < 0)) { |
| i7core_printk(KERN_ERR, |
| "Couldn't enable " |
| "dev %02x:%02x.%d PCI ID %04x:%04x\n", |
| bus, dev_descr->dev, dev_descr->func, |
| PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
| return -ENODEV; |
| } |
| |
| edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n", |
| socket, bus, dev_descr->dev, |
| dev_descr->func, |
| PCI_VENDOR_ID_INTEL, dev_descr->dev_id); |
| |
| /* |
| * As stated on drivers/pci/search.c, the reference count for |
| * @from is always decremented if it is not %NULL. So, as we need |
| * to get all devices up to null, we need to do a get for the device |
| */ |
| pci_dev_get(pdev); |
| |
| *prev = pdev; |
| |
| return 0; |
| } |
| |
| static int i7core_get_all_devices(void) |
| { |
| int i, rc, last_bus; |
| struct pci_dev *pdev = NULL; |
| const struct pci_id_table *table = pci_dev_table; |
| |
| last_bus = i7core_pci_lastbus(); |
| |
| while (table && table->descr) { |
| for (i = 0; i < table->n_devs; i++) { |
| pdev = NULL; |
| do { |
| rc = i7core_get_onedevice(&pdev, table, i, |
| last_bus); |
| if (rc < 0) { |
| if (i == 0) { |
| i = table->n_devs; |
| break; |
| } |
| i7core_put_all_devices(); |
| return -ENODEV; |
| } |
| } while (pdev); |
| } |
| table++; |
| } |
| |
| return 0; |
| } |
| |
| static int mci_bind_devs(struct mem_ctl_info *mci, |
| struct i7core_dev *i7core_dev) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| struct pci_dev *pdev; |
| int i, func, slot; |
| char *family; |
| |
| pvt->is_registered = false; |
| pvt->enable_scrub = false; |
| for (i = 0; i < i7core_dev->n_devs; i++) { |
| pdev = i7core_dev->pdev[i]; |
| if (!pdev) |
| continue; |
| |
| func = PCI_FUNC(pdev->devfn); |
| slot = PCI_SLOT(pdev->devfn); |
| if (slot == 3) { |
| if (unlikely(func > MAX_MCR_FUNC)) |
| goto error; |
| pvt->pci_mcr[func] = pdev; |
| } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) { |
| if (unlikely(func > MAX_CHAN_FUNC)) |
| goto error; |
| pvt->pci_ch[slot - 4][func] = pdev; |
| } else if (!slot && !func) { |
| pvt->pci_noncore = pdev; |
| |
| /* Detect the processor family */ |
| switch (pdev->device) { |
| case PCI_DEVICE_ID_INTEL_I7_NONCORE: |
| family = "Xeon 35xx/ i7core"; |
| pvt->enable_scrub = false; |
| break; |
| case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT: |
| family = "i7-800/i5-700"; |
| pvt->enable_scrub = false; |
| break; |
| case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE: |
| family = "Xeon 34xx"; |
| pvt->enable_scrub = false; |
| break; |
| case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT: |
| family = "Xeon 55xx"; |
| pvt->enable_scrub = true; |
| break; |
| case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2: |
| family = "Xeon 56xx / i7-900"; |
| pvt->enable_scrub = true; |
| break; |
| default: |
| family = "unknown"; |
| pvt->enable_scrub = false; |
| } |
| edac_dbg(0, "Detected a processor type %s\n", family); |
| } else |
| goto error; |
| |
| edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n", |
| PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), |
| pdev, i7core_dev->socket); |
| |
| if (PCI_SLOT(pdev->devfn) == 3 && |
| PCI_FUNC(pdev->devfn) == 2) |
| pvt->is_registered = true; |
| } |
| |
| return 0; |
| |
| error: |
| i7core_printk(KERN_ERR, "Device %d, function %d " |
| "is out of the expected range\n", |
| slot, func); |
| return -EINVAL; |
| } |
| |
| /**************************************************************************** |
| Error check routines |
| ****************************************************************************/ |
| |
| static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci, |
| const int chan, |
| const int new0, |
| const int new1, |
| const int new2) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| int add0 = 0, add1 = 0, add2 = 0; |
| /* Updates CE counters if it is not the first time here */ |
| if (pvt->ce_count_available) { |
| /* Updates CE counters */ |
| |
| add2 = new2 - pvt->rdimm_last_ce_count[chan][2]; |
| add1 = new1 - pvt->rdimm_last_ce_count[chan][1]; |
| add0 = new0 - pvt->rdimm_last_ce_count[chan][0]; |
| |
| if (add2 < 0) |
| add2 += 0x7fff; |
| pvt->rdimm_ce_count[chan][2] += add2; |
| |
| if (add1 < 0) |
| add1 += 0x7fff; |
| pvt->rdimm_ce_count[chan][1] += add1; |
| |
| if (add0 < 0) |
| add0 += 0x7fff; |
| pvt->rdimm_ce_count[chan][0] += add0; |
| } else |
| pvt->ce_count_available = 1; |
| |
| /* Store the new values */ |
| pvt->rdimm_last_ce_count[chan][2] = new2; |
| pvt->rdimm_last_ce_count[chan][1] = new1; |
| pvt->rdimm_last_ce_count[chan][0] = new0; |
| |
| /*updated the edac core */ |
| if (add0 != 0) |
| edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0, |
| 0, 0, 0, |
| chan, 0, -1, "error", ""); |
| if (add1 != 0) |
| edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1, |
| 0, 0, 0, |
| chan, 1, -1, "error", ""); |
| if (add2 != 0) |
| edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2, |
| 0, 0, 0, |
| chan, 2, -1, "error", ""); |
| } |
| |
| static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| u32 rcv[3][2]; |
| int i, new0, new1, new2; |
| |
| /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/ |
| pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0, |
| &rcv[0][0]); |
| pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1, |
| &rcv[0][1]); |
| pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2, |
| &rcv[1][0]); |
| pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3, |
| &rcv[1][1]); |
| pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4, |
| &rcv[2][0]); |
| pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5, |
| &rcv[2][1]); |
| for (i = 0 ; i < 3; i++) { |
| edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n", |
| (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]); |
| /*if the channel has 3 dimms*/ |
| if (pvt->channel[i].dimms > 2) { |
| new0 = DIMM_BOT_COR_ERR(rcv[i][0]); |
| new1 = DIMM_TOP_COR_ERR(rcv[i][0]); |
| new2 = DIMM_BOT_COR_ERR(rcv[i][1]); |
| } else { |
| new0 = DIMM_TOP_COR_ERR(rcv[i][0]) + |
| DIMM_BOT_COR_ERR(rcv[i][0]); |
| new1 = DIMM_TOP_COR_ERR(rcv[i][1]) + |
| DIMM_BOT_COR_ERR(rcv[i][1]); |
| new2 = 0; |
| } |
| |
| i7core_rdimm_update_ce_count(mci, i, new0, new1, new2); |
| } |
| } |
| |
| /* This function is based on the device 3 function 4 registers as described on: |
| * Intel Xeon Processor 5500 Series Datasheet Volume 2 |
| * http://www.intel.com/Assets/PDF/datasheet/321322.pdf |
| * also available at: |
| * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf |
| */ |
| static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| u32 rcv1, rcv0; |
| int new0, new1, new2; |
| |
| if (!pvt->pci_mcr[4]) { |
| edac_dbg(0, "MCR registers not found\n"); |
| return; |
| } |
| |
| /* Corrected test errors */ |
| pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1); |
| pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0); |
| |
| /* Store the new values */ |
| new2 = DIMM2_COR_ERR(rcv1); |
| new1 = DIMM1_COR_ERR(rcv0); |
| new0 = DIMM0_COR_ERR(rcv0); |
| |
| /* Updates CE counters if it is not the first time here */ |
| if (pvt->ce_count_available) { |
| /* Updates CE counters */ |
| int add0, add1, add2; |
| |
| add2 = new2 - pvt->udimm_last_ce_count[2]; |
| add1 = new1 - pvt->udimm_last_ce_count[1]; |
| add0 = new0 - pvt->udimm_last_ce_count[0]; |
| |
| if (add2 < 0) |
| add2 += 0x7fff; |
| pvt->udimm_ce_count[2] += add2; |
| |
| if (add1 < 0) |
| add1 += 0x7fff; |
| pvt->udimm_ce_count[1] += add1; |
| |
| if (add0 < 0) |
| add0 += 0x7fff; |
| pvt->udimm_ce_count[0] += add0; |
| |
| if (add0 | add1 | add2) |
| i7core_printk(KERN_ERR, "New Corrected error(s): " |
| "dimm0: +%d, dimm1: +%d, dimm2 +%d\n", |
| add0, add1, add2); |
| } else |
| pvt->ce_count_available = 1; |
| |
| /* Store the new values */ |
| pvt->udimm_last_ce_count[2] = new2; |
| pvt->udimm_last_ce_count[1] = new1; |
| pvt->udimm_last_ce_count[0] = new0; |
| } |
| |
| /* |
| * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32 |
| * Architectures Software Developer’s Manual Volume 3B. |
| * Nehalem are defined as family 0x06, model 0x1a |
| * |
| * The MCA registers used here are the following ones: |
| * struct mce field MCA Register |
| * m->status MSR_IA32_MC8_STATUS |
| * m->addr MSR_IA32_MC8_ADDR |
| * m->misc MSR_IA32_MC8_MISC |
| * In the case of Nehalem, the error information is masked at .status and .misc |
| * fields |
| */ |
| static void i7core_mce_output_error(struct mem_ctl_info *mci, |
| const struct mce *m) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| char *optype, *err; |
| enum hw_event_mc_err_type tp_event; |
| unsigned long error = m->status & 0x1ff0000l; |
| bool uncorrected_error = m->mcgstatus & 1ll << 61; |
| bool ripv = m->mcgstatus & 1; |
| u32 optypenum = (m->status >> 4) & 0x07; |
| u32 core_err_cnt = (m->status >> 38) & 0x7fff; |
| u32 dimm = (m->misc >> 16) & 0x3; |
| u32 channel = (m->misc >> 18) & 0x3; |
| u32 syndrome = m->misc >> 32; |
| u32 errnum = find_first_bit(&error, 32); |
| |
| if (uncorrected_error) { |
| if (ripv) |
| tp_event = HW_EVENT_ERR_FATAL; |
| else |
| tp_event = HW_EVENT_ERR_UNCORRECTED; |
| } else { |
| tp_event = HW_EVENT_ERR_CORRECTED; |
| } |
| |
| switch (optypenum) { |
| case 0: |
| optype = "generic undef request"; |
| break; |
| case 1: |
| optype = "read error"; |
| break; |
| case 2: |
| optype = "write error"; |
| break; |
| case 3: |
| optype = "addr/cmd error"; |
| break; |
| case 4: |
| optype = "scrubbing error"; |
| break; |
| default: |
| optype = "reserved"; |
| break; |
| } |
| |
| switch (errnum) { |
| case 16: |
| err = "read ECC error"; |
| break; |
| case 17: |
| err = "RAS ECC error"; |
| break; |
| case 18: |
| err = "write parity error"; |
| break; |
| case 19: |
| err = "redundancy loss"; |
| break; |
| case 20: |
| err = "reserved"; |
| break; |
| case 21: |
| err = "memory range error"; |
| break; |
| case 22: |
| err = "RTID out of range"; |
| break; |
| case 23: |
| err = "address parity error"; |
| break; |
| case 24: |
| err = "byte enable parity error"; |
| break; |
| default: |
| err = "unknown"; |
| } |
| |
| /* |
| * Call the helper to output message |
| * FIXME: what to do if core_err_cnt > 1? Currently, it generates |
| * only one event |
| */ |
| if (uncorrected_error || !pvt->is_registered) |
| edac_mc_handle_error(tp_event, mci, core_err_cnt, |
| m->addr >> PAGE_SHIFT, |
| m->addr & ~PAGE_MASK, |
| syndrome, |
| channel, dimm, -1, |
| err, optype); |
| } |
| |
| /* |
| * i7core_check_error Retrieve and process errors reported by the |
| * hardware. Called by the Core module. |
| */ |
| static void i7core_check_error(struct mem_ctl_info *mci, struct mce *m) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| |
| i7core_mce_output_error(mci, m); |
| |
| /* |
| * Now, let's increment CE error counts |
| */ |
| if (!pvt->is_registered) |
| i7core_udimm_check_mc_ecc_err(mci); |
| else |
| i7core_rdimm_check_mc_ecc_err(mci); |
| } |
| |
| /* |
| * Check that logging is enabled and that this is the right type |
| * of error for us to handle. |
| */ |
| static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct mce *mce = (struct mce *)data; |
| struct i7core_dev *i7_dev; |
| struct mem_ctl_info *mci; |
| struct i7core_pvt *pvt; |
| |
| i7_dev = get_i7core_dev(mce->socketid); |
| if (!i7_dev) |
| return NOTIFY_DONE; |
| |
| mci = i7_dev->mci; |
| pvt = mci->pvt_info; |
| |
| /* |
| * Just let mcelog handle it if the error is |
| * outside the memory controller |
| */ |
| if (((mce->status & 0xffff) >> 7) != 1) |
| return NOTIFY_DONE; |
| |
| /* Bank 8 registers are the only ones that we know how to handle */ |
| if (mce->bank != 8) |
| return NOTIFY_DONE; |
| |
| i7core_check_error(mci, mce); |
| |
| /* Advise mcelog that the errors were handled */ |
| return NOTIFY_STOP; |
| } |
| |
| static struct notifier_block i7_mce_dec = { |
| .notifier_call = i7core_mce_check_error, |
| .priority = MCE_PRIO_EDAC, |
| }; |
| |
| struct memdev_dmi_entry { |
| u8 type; |
| u8 length; |
| u16 handle; |
| u16 phys_mem_array_handle; |
| u16 mem_err_info_handle; |
| u16 total_width; |
| u16 data_width; |
| u16 size; |
| u8 form; |
| u8 device_set; |
| u8 device_locator; |
| u8 bank_locator; |
| u8 memory_type; |
| u16 type_detail; |
| u16 speed; |
| u8 manufacturer; |
| u8 serial_number; |
| u8 asset_tag; |
| u8 part_number; |
| u8 attributes; |
| u32 extended_size; |
| u16 conf_mem_clk_speed; |
| } __attribute__((__packed__)); |
| |
| |
| /* |
| * Decode the DRAM Clock Frequency, be paranoid, make sure that all |
| * memory devices show the same speed, and if they don't then consider |
| * all speeds to be invalid. |
| */ |
| static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq) |
| { |
| int *dclk_freq = _dclk_freq; |
| u16 dmi_mem_clk_speed; |
| |
| if (*dclk_freq == -1) |
| return; |
| |
| if (dh->type == DMI_ENTRY_MEM_DEVICE) { |
| struct memdev_dmi_entry *memdev_dmi_entry = |
| (struct memdev_dmi_entry *)dh; |
| unsigned long conf_mem_clk_speed_offset = |
| (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed - |
| (unsigned long)&memdev_dmi_entry->type; |
| unsigned long speed_offset = |
| (unsigned long)&memdev_dmi_entry->speed - |
| (unsigned long)&memdev_dmi_entry->type; |
| |
| /* Check that a DIMM is present */ |
| if (memdev_dmi_entry->size == 0) |
| return; |
| |
| /* |
| * Pick the configured speed if it's available, otherwise |
| * pick the DIMM speed, or we don't have a speed. |
| */ |
| if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) { |
| dmi_mem_clk_speed = |
| memdev_dmi_entry->conf_mem_clk_speed; |
| } else if (memdev_dmi_entry->length > speed_offset) { |
| dmi_mem_clk_speed = memdev_dmi_entry->speed; |
| } else { |
| *dclk_freq = -1; |
| return; |
| } |
| |
| if (*dclk_freq == 0) { |
| /* First pass, speed was 0 */ |
| if (dmi_mem_clk_speed > 0) { |
| /* Set speed if a valid speed is read */ |
| *dclk_freq = dmi_mem_clk_speed; |
| } else { |
| /* Otherwise we don't have a valid speed */ |
| *dclk_freq = -1; |
| } |
| } else if (*dclk_freq > 0 && |
| *dclk_freq != dmi_mem_clk_speed) { |
| /* |
| * If we have a speed, check that all DIMMS are the same |
| * speed, otherwise set the speed as invalid. |
| */ |
| *dclk_freq = -1; |
| } |
| } |
| } |
| |
| /* |
| * The default DCLK frequency is used as a fallback if we |
| * fail to find anything reliable in the DMI. The value |
| * is taken straight from the datasheet. |
| */ |
| #define DEFAULT_DCLK_FREQ 800 |
| |
| static int get_dclk_freq(void) |
| { |
| int dclk_freq = 0; |
| |
| dmi_walk(decode_dclk, (void *)&dclk_freq); |
| |
| if (dclk_freq < 1) |
| return DEFAULT_DCLK_FREQ; |
| |
| return dclk_freq; |
| } |
| |
| /* |
| * set_sdram_scrub_rate This routine sets byte/sec bandwidth scrub rate |
| * to hardware according to SCRUBINTERVAL formula |
| * found in datasheet. |
| */ |
| static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| struct pci_dev *pdev; |
| u32 dw_scrub; |
| u32 dw_ssr; |
| |
| /* Get data from the MC register, function 2 */ |
| pdev = pvt->pci_mcr[2]; |
| if (!pdev) |
| return -ENODEV; |
| |
| pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub); |
| |
| if (new_bw == 0) { |
| /* Prepare to disable petrol scrub */ |
| dw_scrub &= ~STARTSCRUB; |
| /* Stop the patrol scrub engine */ |
| write_and_test(pdev, MC_SCRUB_CONTROL, |
| dw_scrub & ~SCRUBINTERVAL_MASK); |
| |
| /* Get current status of scrub rate and set bit to disable */ |
| pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); |
| dw_ssr &= ~SSR_MODE_MASK; |
| dw_ssr |= SSR_MODE_DISABLE; |
| } else { |
| const int cache_line_size = 64; |
| const u32 freq_dclk_mhz = pvt->dclk_freq; |
| unsigned long long scrub_interval; |
| /* |
| * Translate the desired scrub rate to a register value and |
| * program the corresponding register value. |
| */ |
| scrub_interval = (unsigned long long)freq_dclk_mhz * |
| cache_line_size * 1000000; |
| do_div(scrub_interval, new_bw); |
| |
| if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK) |
| return -EINVAL; |
| |
| dw_scrub = SCRUBINTERVAL_MASK & scrub_interval; |
| |
| /* Start the patrol scrub engine */ |
| pci_write_config_dword(pdev, MC_SCRUB_CONTROL, |
| STARTSCRUB | dw_scrub); |
| |
| /* Get current status of scrub rate and set bit to enable */ |
| pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); |
| dw_ssr &= ~SSR_MODE_MASK; |
| dw_ssr |= SSR_MODE_ENABLE; |
| } |
| /* Disable or enable scrubbing */ |
| pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr); |
| |
| return new_bw; |
| } |
| |
| /* |
| * get_sdram_scrub_rate This routine convert current scrub rate value |
| * into byte/sec bandwidth according to |
| * SCRUBINTERVAL formula found in datasheet. |
| */ |
| static int get_sdram_scrub_rate(struct mem_ctl_info *mci) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| struct pci_dev *pdev; |
| const u32 cache_line_size = 64; |
| const u32 freq_dclk_mhz = pvt->dclk_freq; |
| unsigned long long scrub_rate; |
| u32 scrubval; |
| |
| /* Get data from the MC register, function 2 */ |
| pdev = pvt->pci_mcr[2]; |
| if (!pdev) |
| return -ENODEV; |
| |
| /* Get current scrub control data */ |
| pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval); |
| |
| /* Mask highest 8-bits to 0 */ |
| scrubval &= SCRUBINTERVAL_MASK; |
| if (!scrubval) |
| return 0; |
| |
| /* Calculate scrub rate value into byte/sec bandwidth */ |
| scrub_rate = (unsigned long long)freq_dclk_mhz * |
| 1000000 * cache_line_size; |
| do_div(scrub_rate, scrubval); |
| return (int)scrub_rate; |
| } |
| |
| static void enable_sdram_scrub_setting(struct mem_ctl_info *mci) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| u32 pci_lock; |
| |
| /* Unlock writes to pci registers */ |
| pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); |
| pci_lock &= ~0x3; |
| pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, |
| pci_lock | MC_CFG_UNLOCK); |
| |
| mci->set_sdram_scrub_rate = set_sdram_scrub_rate; |
| mci->get_sdram_scrub_rate = get_sdram_scrub_rate; |
| } |
| |
| static void disable_sdram_scrub_setting(struct mem_ctl_info *mci) |
| { |
| struct i7core_pvt *pvt = mci->pvt_info; |
| u32 pci_lock; |
| |
| /* Lock writes to pci registers */ |
| pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); |
| pci_lock &= ~0x3; |
| pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, |
| pci_lock | MC_CFG_LOCK); |
| } |
| |
| static void i7core_pci_ctl_create(struct i7core_pvt *pvt) |
| { |
| pvt->i7core_pci = edac_pci_create_generic_ctl( |
| &pvt->i7core_dev->pdev[0]->dev, |
| EDAC_MOD_STR); |
| if (unlikely(!pvt->i7core_pci)) |
| i7core_printk(KERN_WARNING, |
| "Unable to setup PCI error report via EDAC\n"); |
| } |
| |
| static void i7core_pci_ctl_release(struct i7core_pvt *pvt) |
| { |
| if (likely(pvt->i7core_pci)) |
| edac_pci_release_generic_ctl(pvt->i7core_pci); |
| else |
| i7core_printk(KERN_ERR, |
| "Couldn't find mem_ctl_info for socket %d\n", |
| pvt->i7core_dev->socket); |
| pvt->i7core_pci = NULL; |
| } |
| |
| static void i7core_unregister_mci(struct i7core_dev *i7core_dev) |
| { |
| struct mem_ctl_info *mci = i7core_dev->mci; |
| struct i7core_pvt *pvt; |
| |
| if (unlikely(!mci || !mci->pvt_info)) { |
| edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev); |
| |
| i7core_printk(KERN_ERR, "Couldn't find mci handler\n"); |
| return; |
| } |
| |
| pvt = mci->pvt_info; |
| |
| edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); |
| |
| /* Disable scrubrate setting */ |
| if (pvt->enable_scrub) |
| disable_sdram_scrub_setting(mci); |
| |
| /* Disable EDAC polling */ |
| i7core_pci_ctl_release(pvt); |
| |
| /* Remove MC sysfs nodes */ |
| i7core_delete_sysfs_devices(mci); |
| edac_mc_del_mc(mci->pdev); |
| |
| edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); |
| kfree(mci->ctl_name); |
| edac_mc_free(mci); |
| i7core_dev->mci = NULL; |
| } |
| |
| static int i7core_register_mci(struct i7core_dev *i7core_dev) |
| { |
| struct mem_ctl_info *mci; |
| struct i7core_pvt *pvt; |
| int rc; |
| struct edac_mc_layer layers[2]; |
| |
| /* allocate a new MC control structure */ |
| |
| layers[0].type = EDAC_MC_LAYER_CHANNEL; |
| layers[0].size = NUM_CHANS; |
| layers[0].is_virt_csrow = false; |
| layers[1].type = EDAC_MC_LAYER_SLOT; |
| layers[1].size = MAX_DIMMS; |
| layers[1].is_virt_csrow = true; |
| mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers, |
| sizeof(*pvt)); |
| if (unlikely(!mci)) |
| return -ENOMEM; |
| |
| edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); |
| |
| pvt = mci->pvt_info; |
| memset(pvt, 0, sizeof(*pvt)); |
| |
| /* Associates i7core_dev and mci for future usage */ |
| pvt->i7core_dev = i7core_dev; |
| i7core_dev->mci = mci; |
| |
| /* |
| * FIXME: how to handle RDDR3 at MCI level? It is possible to have |
| * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different |
| * memory channels |
| */ |
| mci->mtype_cap = MEM_FLAG_DDR3; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE; |
| mci->edac_cap = EDAC_FLAG_NONE; |
| mci->mod_name = "i7core_edac.c"; |
| |
| mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d", i7core_dev->socket); |
| if (!mci->ctl_name) { |
| rc = -ENOMEM; |
| goto fail1; |
| } |
| |
| mci->dev_name = pci_name(i7core_dev->pdev[0]); |
| mci->ctl_page_to_phys = NULL; |
| |
| /* Store pci devices at mci for faster access */ |
| rc = mci_bind_devs(mci, i7core_dev); |
| if (unlikely(rc < 0)) |
| goto fail0; |
| |
| |
| /* Get dimm basic config */ |
| get_dimm_config(mci); |
| /* record ptr to the generic device */ |
| mci->pdev = &i7core_dev->pdev[0]->dev; |
| |
| /* Enable scrubrate setting */ |
| if (pvt->enable_scrub) |
| enable_sdram_scrub_setting(mci); |
| |
| /* add this new MC control structure to EDAC's list of MCs */ |
| if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) { |
| edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
| /* FIXME: perhaps some code should go here that disables error |
| * reporting if we just enabled it |
| */ |
| |
| rc = -EINVAL; |
| goto fail0; |
| } |
| if (i7core_create_sysfs_devices(mci)) { |
| edac_dbg(0, "MC: failed to create sysfs nodes\n"); |
| edac_mc_del_mc(mci->pdev); |
| rc = -EINVAL; |
| goto fail0; |
| } |
| |
| /* Default error mask is any memory */ |
| pvt->inject.channel = 0; |
| pvt->inject.dimm = -1; |
| pvt->inject.rank = -1; |
| pvt->inject.bank = -1; |
| pvt->inject.page = -1; |
| pvt->inject.col = -1; |
| |
| /* allocating generic PCI control info */ |
| i7core_pci_ctl_create(pvt); |
| |
| /* DCLK for scrub rate setting */ |
| pvt->dclk_freq = get_dclk_freq(); |
| |
| return 0; |
| |
| fail0: |
| kfree(mci->ctl_name); |
| |
| fail1: |
| edac_mc_free(mci); |
| i7core_dev->mci = NULL; |
| return rc; |
| } |
| |
| /* |
| * i7core_probe Probe for ONE instance of device to see if it is |
| * present. |
| * return: |
| * 0 for FOUND a device |
| * < 0 for error code |
| */ |
| |
| static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id) |
| { |
| int rc, count = 0; |
| struct i7core_dev *i7core_dev; |
| |
| /* get the pci devices we want to reserve for our use */ |
| mutex_lock(&i7core_edac_lock); |
| |
| /* |
| * All memory controllers are allocated at the first pass. |
| */ |
| if (unlikely(probed >= 1)) { |
| mutex_unlock(&i7core_edac_lock); |
| return -ENODEV; |
| } |
| probed++; |
| |
| rc = i7core_get_all_devices(); |
| if (unlikely(rc < 0)) |
| goto fail0; |
| |
| list_for_each_entry(i7core_dev, &i7core_edac_list, list) { |
| count++; |
| rc = i7core_register_mci(i7core_dev); |
| if (unlikely(rc < 0)) |
| goto fail1; |
| } |
| |
| /* |
| * Nehalem-EX uses a different memory controller. However, as the |
| * memory controller is not visible on some Nehalem/Nehalem-EP, we |
| * need to indirectly probe via a X58 PCI device. The same devices |
| * are found on (some) Nehalem-EX. So, on those machines, the |
| * probe routine needs to return -ENODEV, as the actual Memory |
| * Controller registers won't be detected. |
| */ |
| if (!count) { |
| rc = -ENODEV; |
| goto fail1; |
| } |
| |
| i7core_printk(KERN_INFO, |
| "Driver loaded, %d memory controller(s) found.\n", |
| count); |
| |
| mutex_unlock(&i7core_edac_lock); |
| return 0; |
| |
| fail1: |
| list_for_each_entry(i7core_dev, &i7core_edac_list, list) |
| i7core_unregister_mci(i7core_dev); |
| |
| i7core_put_all_devices(); |
| fail0: |
| mutex_unlock(&i7core_edac_lock); |
| return rc; |
| } |
| |
| /* |
| * i7core_remove destructor for one instance of device |
| * |
| */ |
| static void i7core_remove(struct pci_dev *pdev) |
| { |
| struct i7core_dev *i7core_dev; |
| |
| edac_dbg(0, "\n"); |
| |
| /* |
| * we have a trouble here: pdev value for removal will be wrong, since |
| * it will point to the X58 register used to detect that the machine |
| * is a Nehalem or upper design. However, due to the way several PCI |
| * devices are grouped together to provide MC functionality, we need |
| * to use a different method for releasing the devices |
| */ |
| |
| mutex_lock(&i7core_edac_lock); |
| |
| if (unlikely(!probed)) { |
| mutex_unlock(&i7core_edac_lock); |
| return; |
| } |
| |
| list_for_each_entry(i7core_dev, &i7core_edac_list, list) |
| i7core_unregister_mci(i7core_dev); |
| |
| /* Release PCI resources */ |
| i7core_put_all_devices(); |
| |
| probed--; |
| |
| mutex_unlock(&i7core_edac_lock); |
| } |
| |
| MODULE_DEVICE_TABLE(pci, i7core_pci_tbl); |
| |
| /* |
| * i7core_driver pci_driver structure for this module |
| * |
| */ |
| static struct pci_driver i7core_driver = { |
| .name = "i7core_edac", |
| .probe = i7core_probe, |
| .remove = i7core_remove, |
| .id_table = i7core_pci_tbl, |
| }; |
| |
| /* |
| * i7core_init Module entry function |
| * Try to initialize this module for its devices |
| */ |
| static int __init i7core_init(void) |
| { |
| int pci_rc; |
| |
| edac_dbg(2, "\n"); |
| |
| /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| opstate_init(); |
| |
| if (use_pci_fixup) |
| i7core_xeon_pci_fixup(pci_dev_table); |
| |
| pci_rc = pci_register_driver(&i7core_driver); |
| |
| if (pci_rc >= 0) { |
| mce_register_decode_chain(&i7_mce_dec); |
| return 0; |
| } |
| |
| i7core_printk(KERN_ERR, "Failed to register device with error %d.\n", |
| pci_rc); |
| |
| return pci_rc; |
| } |
| |
| /* |
| * i7core_exit() Module exit function |
| * Unregister the driver |
| */ |
| static void __exit i7core_exit(void) |
| { |
| edac_dbg(2, "\n"); |
| pci_unregister_driver(&i7core_driver); |
| mce_unregister_decode_chain(&i7_mce_dec); |
| } |
| |
| module_init(i7core_init); |
| module_exit(i7core_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Mauro Carvalho Chehab"); |
| MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); |
| MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - " |
| I7CORE_REVISION); |
| |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |