| /* |
| * Compressed RAM block device |
| * |
| * Copyright (C) 2008, 2009, 2010 Nitin Gupta |
| * 2012, 2013 Minchan Kim |
| * |
| * This code is released using a dual license strategy: BSD/GPL |
| * You can choose the licence that better fits your requirements. |
| * |
| * Released under the terms of 3-clause BSD License |
| * Released under the terms of GNU General Public License Version 2.0 |
| * |
| */ |
| |
| #define KMSG_COMPONENT "zram" |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/bio.h> |
| #include <linux/bitops.h> |
| #include <linux/blkdev.h> |
| #include <linux/buffer_head.h> |
| #include <linux/device.h> |
| #include <linux/genhd.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <linux/backing-dev.h> |
| #include <linux/string.h> |
| #include <linux/vmalloc.h> |
| #include <linux/err.h> |
| #include <linux/idr.h> |
| #include <linux/sysfs.h> |
| #include <linux/cpuhotplug.h> |
| |
| #include "zram_drv.h" |
| |
| static DEFINE_IDR(zram_index_idr); |
| /* idr index must be protected */ |
| static DEFINE_MUTEX(zram_index_mutex); |
| |
| static int zram_major; |
| static const char *default_compressor = "lzo"; |
| |
| /* Module params (documentation at end) */ |
| static unsigned int num_devices = 1; |
| |
| static inline bool init_done(struct zram *zram) |
| { |
| return zram->disksize; |
| } |
| |
| static inline struct zram *dev_to_zram(struct device *dev) |
| { |
| return (struct zram *)dev_to_disk(dev)->private_data; |
| } |
| |
| /* flag operations require table entry bit_spin_lock() being held */ |
| static int zram_test_flag(struct zram_meta *meta, u32 index, |
| enum zram_pageflags flag) |
| { |
| return meta->table[index].value & BIT(flag); |
| } |
| |
| static void zram_set_flag(struct zram_meta *meta, u32 index, |
| enum zram_pageflags flag) |
| { |
| meta->table[index].value |= BIT(flag); |
| } |
| |
| static void zram_clear_flag(struct zram_meta *meta, u32 index, |
| enum zram_pageflags flag) |
| { |
| meta->table[index].value &= ~BIT(flag); |
| } |
| |
| static inline void zram_set_element(struct zram_meta *meta, u32 index, |
| unsigned long element) |
| { |
| meta->table[index].element = element; |
| } |
| |
| static inline void zram_clear_element(struct zram_meta *meta, u32 index) |
| { |
| meta->table[index].element = 0; |
| } |
| |
| static size_t zram_get_obj_size(struct zram_meta *meta, u32 index) |
| { |
| return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1); |
| } |
| |
| static void zram_set_obj_size(struct zram_meta *meta, |
| u32 index, size_t size) |
| { |
| unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT; |
| |
| meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size; |
| } |
| |
| static inline bool is_partial_io(struct bio_vec *bvec) |
| { |
| return bvec->bv_len != PAGE_SIZE; |
| } |
| |
| static void zram_revalidate_disk(struct zram *zram) |
| { |
| revalidate_disk(zram->disk); |
| /* revalidate_disk reset the BDI_CAP_STABLE_WRITES so set again */ |
| zram->disk->queue->backing_dev_info->capabilities |= |
| BDI_CAP_STABLE_WRITES; |
| } |
| |
| /* |
| * Check if request is within bounds and aligned on zram logical blocks. |
| */ |
| static inline bool valid_io_request(struct zram *zram, |
| sector_t start, unsigned int size) |
| { |
| u64 end, bound; |
| |
| /* unaligned request */ |
| if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1))) |
| return false; |
| if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1))) |
| return false; |
| |
| end = start + (size >> SECTOR_SHIFT); |
| bound = zram->disksize >> SECTOR_SHIFT; |
| /* out of range range */ |
| if (unlikely(start >= bound || end > bound || start > end)) |
| return false; |
| |
| /* I/O request is valid */ |
| return true; |
| } |
| |
| static void update_position(u32 *index, int *offset, struct bio_vec *bvec) |
| { |
| if (*offset + bvec->bv_len >= PAGE_SIZE) |
| (*index)++; |
| *offset = (*offset + bvec->bv_len) % PAGE_SIZE; |
| } |
| |
| static inline void update_used_max(struct zram *zram, |
| const unsigned long pages) |
| { |
| unsigned long old_max, cur_max; |
| |
| old_max = atomic_long_read(&zram->stats.max_used_pages); |
| |
| do { |
| cur_max = old_max; |
| if (pages > cur_max) |
| old_max = atomic_long_cmpxchg( |
| &zram->stats.max_used_pages, cur_max, pages); |
| } while (old_max != cur_max); |
| } |
| |
| static inline void zram_fill_page(char *ptr, unsigned long len, |
| unsigned long value) |
| { |
| int i; |
| unsigned long *page = (unsigned long *)ptr; |
| |
| WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); |
| |
| if (likely(value == 0)) { |
| memset(ptr, 0, len); |
| } else { |
| for (i = 0; i < len / sizeof(*page); i++) |
| page[i] = value; |
| } |
| } |
| |
| static bool page_same_filled(void *ptr, unsigned long *element) |
| { |
| unsigned int pos; |
| unsigned long *page; |
| |
| page = (unsigned long *)ptr; |
| |
| for (pos = 0; pos < PAGE_SIZE / sizeof(*page) - 1; pos++) { |
| if (page[pos] != page[pos + 1]) |
| return false; |
| } |
| |
| *element = page[pos]; |
| |
| return true; |
| } |
| |
| static void handle_same_page(struct bio_vec *bvec, unsigned long element) |
| { |
| struct page *page = bvec->bv_page; |
| void *user_mem; |
| |
| user_mem = kmap_atomic(page); |
| zram_fill_page(user_mem + bvec->bv_offset, bvec->bv_len, element); |
| kunmap_atomic(user_mem); |
| |
| flush_dcache_page(page); |
| } |
| |
| static ssize_t initstate_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| u32 val; |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| val = init_done(zram); |
| up_read(&zram->init_lock); |
| |
| return scnprintf(buf, PAGE_SIZE, "%u\n", val); |
| } |
| |
| static ssize_t disksize_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| |
| return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); |
| } |
| |
| static ssize_t mem_limit_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| u64 limit; |
| char *tmp; |
| struct zram *zram = dev_to_zram(dev); |
| |
| limit = memparse(buf, &tmp); |
| if (buf == tmp) /* no chars parsed, invalid input */ |
| return -EINVAL; |
| |
| down_write(&zram->init_lock); |
| zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; |
| up_write(&zram->init_lock); |
| |
| return len; |
| } |
| |
| static ssize_t mem_used_max_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| int err; |
| unsigned long val; |
| struct zram *zram = dev_to_zram(dev); |
| |
| err = kstrtoul(buf, 10, &val); |
| if (err || val != 0) |
| return -EINVAL; |
| |
| down_read(&zram->init_lock); |
| if (init_done(zram)) { |
| struct zram_meta *meta = zram->meta; |
| atomic_long_set(&zram->stats.max_used_pages, |
| zs_get_total_pages(meta->mem_pool)); |
| } |
| up_read(&zram->init_lock); |
| |
| return len; |
| } |
| |
| /* |
| * We switched to per-cpu streams and this attr is not needed anymore. |
| * However, we will keep it around for some time, because: |
| * a) we may revert per-cpu streams in the future |
| * b) it's visible to user space and we need to follow our 2 years |
| * retirement rule; but we already have a number of 'soon to be |
| * altered' attrs, so max_comp_streams need to wait for the next |
| * layoff cycle. |
| */ |
| static ssize_t max_comp_streams_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); |
| } |
| |
| static ssize_t max_comp_streams_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| return len; |
| } |
| |
| static ssize_t comp_algorithm_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| size_t sz; |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| sz = zcomp_available_show(zram->compressor, buf); |
| up_read(&zram->init_lock); |
| |
| return sz; |
| } |
| |
| static ssize_t comp_algorithm_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| char compressor[CRYPTO_MAX_ALG_NAME]; |
| size_t sz; |
| |
| strlcpy(compressor, buf, sizeof(compressor)); |
| /* ignore trailing newline */ |
| sz = strlen(compressor); |
| if (sz > 0 && compressor[sz - 1] == '\n') |
| compressor[sz - 1] = 0x00; |
| |
| if (!zcomp_available_algorithm(compressor)) |
| return -EINVAL; |
| |
| down_write(&zram->init_lock); |
| if (init_done(zram)) { |
| up_write(&zram->init_lock); |
| pr_info("Can't change algorithm for initialized device\n"); |
| return -EBUSY; |
| } |
| |
| strlcpy(zram->compressor, compressor, sizeof(compressor)); |
| up_write(&zram->init_lock); |
| return len; |
| } |
| |
| static ssize_t compact_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| struct zram_meta *meta; |
| |
| down_read(&zram->init_lock); |
| if (!init_done(zram)) { |
| up_read(&zram->init_lock); |
| return -EINVAL; |
| } |
| |
| meta = zram->meta; |
| zs_compact(meta->mem_pool); |
| up_read(&zram->init_lock); |
| |
| return len; |
| } |
| |
| static ssize_t io_stat_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| ssize_t ret; |
| |
| down_read(&zram->init_lock); |
| ret = scnprintf(buf, PAGE_SIZE, |
| "%8llu %8llu %8llu %8llu\n", |
| (u64)atomic64_read(&zram->stats.failed_reads), |
| (u64)atomic64_read(&zram->stats.failed_writes), |
| (u64)atomic64_read(&zram->stats.invalid_io), |
| (u64)atomic64_read(&zram->stats.notify_free)); |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| |
| static ssize_t mm_stat_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| struct zs_pool_stats pool_stats; |
| u64 orig_size, mem_used = 0; |
| long max_used; |
| ssize_t ret; |
| |
| memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); |
| |
| down_read(&zram->init_lock); |
| if (init_done(zram)) { |
| mem_used = zs_get_total_pages(zram->meta->mem_pool); |
| zs_pool_stats(zram->meta->mem_pool, &pool_stats); |
| } |
| |
| orig_size = atomic64_read(&zram->stats.pages_stored); |
| max_used = atomic_long_read(&zram->stats.max_used_pages); |
| |
| ret = scnprintf(buf, PAGE_SIZE, |
| "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n", |
| orig_size << PAGE_SHIFT, |
| (u64)atomic64_read(&zram->stats.compr_data_size), |
| mem_used << PAGE_SHIFT, |
| zram->limit_pages << PAGE_SHIFT, |
| max_used << PAGE_SHIFT, |
| (u64)atomic64_read(&zram->stats.same_pages), |
| pool_stats.pages_compacted); |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| |
| static ssize_t debug_stat_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int version = 1; |
| struct zram *zram = dev_to_zram(dev); |
| ssize_t ret; |
| |
| down_read(&zram->init_lock); |
| ret = scnprintf(buf, PAGE_SIZE, |
| "version: %d\n%8llu\n", |
| version, |
| (u64)atomic64_read(&zram->stats.writestall)); |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| |
| static DEVICE_ATTR_RO(io_stat); |
| static DEVICE_ATTR_RO(mm_stat); |
| static DEVICE_ATTR_RO(debug_stat); |
| |
| static void zram_meta_free(struct zram_meta *meta, u64 disksize) |
| { |
| size_t num_pages = disksize >> PAGE_SHIFT; |
| size_t index; |
| |
| /* Free all pages that are still in this zram device */ |
| for (index = 0; index < num_pages; index++) { |
| unsigned long handle = meta->table[index].handle; |
| /* |
| * No memory is allocated for same element filled pages. |
| * Simply clear same page flag. |
| */ |
| if (!handle || zram_test_flag(meta, index, ZRAM_SAME)) |
| continue; |
| |
| zs_free(meta->mem_pool, handle); |
| } |
| |
| zs_destroy_pool(meta->mem_pool); |
| vfree(meta->table); |
| kfree(meta); |
| } |
| |
| static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize) |
| { |
| size_t num_pages; |
| struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL); |
| |
| if (!meta) |
| return NULL; |
| |
| num_pages = disksize >> PAGE_SHIFT; |
| meta->table = vzalloc(num_pages * sizeof(*meta->table)); |
| if (!meta->table) { |
| pr_err("Error allocating zram address table\n"); |
| goto out_error; |
| } |
| |
| meta->mem_pool = zs_create_pool(pool_name); |
| if (!meta->mem_pool) { |
| pr_err("Error creating memory pool\n"); |
| goto out_error; |
| } |
| |
| return meta; |
| |
| out_error: |
| vfree(meta->table); |
| kfree(meta); |
| return NULL; |
| } |
| |
| /* |
| * To protect concurrent access to the same index entry, |
| * caller should hold this table index entry's bit_spinlock to |
| * indicate this index entry is accessing. |
| */ |
| static void zram_free_page(struct zram *zram, size_t index) |
| { |
| struct zram_meta *meta = zram->meta; |
| unsigned long handle = meta->table[index].handle; |
| |
| /* |
| * No memory is allocated for same element filled pages. |
| * Simply clear same page flag. |
| */ |
| if (zram_test_flag(meta, index, ZRAM_SAME)) { |
| zram_clear_flag(meta, index, ZRAM_SAME); |
| zram_clear_element(meta, index); |
| atomic64_dec(&zram->stats.same_pages); |
| return; |
| } |
| |
| if (!handle) |
| return; |
| |
| zs_free(meta->mem_pool, handle); |
| |
| atomic64_sub(zram_get_obj_size(meta, index), |
| &zram->stats.compr_data_size); |
| atomic64_dec(&zram->stats.pages_stored); |
| |
| meta->table[index].handle = 0; |
| zram_set_obj_size(meta, index, 0); |
| } |
| |
| static int zram_decompress_page(struct zram *zram, char *mem, u32 index) |
| { |
| int ret = 0; |
| unsigned char *cmem; |
| struct zram_meta *meta = zram->meta; |
| unsigned long handle; |
| unsigned int size; |
| |
| bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| handle = meta->table[index].handle; |
| size = zram_get_obj_size(meta, index); |
| |
| if (!handle || zram_test_flag(meta, index, ZRAM_SAME)) { |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| zram_fill_page(mem, PAGE_SIZE, meta->table[index].element); |
| return 0; |
| } |
| |
| cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO); |
| if (size == PAGE_SIZE) { |
| copy_page(mem, cmem); |
| } else { |
| struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp); |
| |
| ret = zcomp_decompress(zstrm, cmem, size, mem); |
| zcomp_stream_put(zram->comp); |
| } |
| zs_unmap_object(meta->mem_pool, handle); |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| |
| /* Should NEVER happen. Return bio error if it does. */ |
| if (unlikely(ret)) { |
| pr_err("Decompression failed! err=%d, page=%u\n", ret, index); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, |
| u32 index, int offset) |
| { |
| int ret; |
| struct page *page; |
| unsigned char *user_mem, *uncmem = NULL; |
| struct zram_meta *meta = zram->meta; |
| page = bvec->bv_page; |
| |
| bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| if (unlikely(!meta->table[index].handle) || |
| zram_test_flag(meta, index, ZRAM_SAME)) { |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| handle_same_page(bvec, meta->table[index].element); |
| return 0; |
| } |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| |
| if (is_partial_io(bvec)) |
| /* Use a temporary buffer to decompress the page */ |
| uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); |
| |
| user_mem = kmap_atomic(page); |
| if (!is_partial_io(bvec)) |
| uncmem = user_mem; |
| |
| if (!uncmem) { |
| pr_err("Unable to allocate temp memory\n"); |
| ret = -ENOMEM; |
| goto out_cleanup; |
| } |
| |
| ret = zram_decompress_page(zram, uncmem, index); |
| /* Should NEVER happen. Return bio error if it does. */ |
| if (unlikely(ret)) |
| goto out_cleanup; |
| |
| if (is_partial_io(bvec)) |
| memcpy(user_mem + bvec->bv_offset, uncmem + offset, |
| bvec->bv_len); |
| |
| flush_dcache_page(page); |
| ret = 0; |
| out_cleanup: |
| kunmap_atomic(user_mem); |
| if (is_partial_io(bvec)) |
| kfree(uncmem); |
| return ret; |
| } |
| |
| static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index, |
| int offset) |
| { |
| int ret = 0; |
| unsigned int clen; |
| unsigned long handle = 0; |
| struct page *page; |
| unsigned char *user_mem, *cmem, *src, *uncmem = NULL; |
| struct zram_meta *meta = zram->meta; |
| struct zcomp_strm *zstrm = NULL; |
| unsigned long alloced_pages; |
| unsigned long element; |
| |
| page = bvec->bv_page; |
| if (is_partial_io(bvec)) { |
| /* |
| * This is a partial IO. We need to read the full page |
| * before to write the changes. |
| */ |
| uncmem = kmalloc(PAGE_SIZE, GFP_NOIO); |
| if (!uncmem) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| ret = zram_decompress_page(zram, uncmem, index); |
| if (ret) |
| goto out; |
| } |
| |
| compress_again: |
| user_mem = kmap_atomic(page); |
| if (is_partial_io(bvec)) { |
| memcpy(uncmem + offset, user_mem + bvec->bv_offset, |
| bvec->bv_len); |
| kunmap_atomic(user_mem); |
| user_mem = NULL; |
| } else { |
| uncmem = user_mem; |
| } |
| |
| if (page_same_filled(uncmem, &element)) { |
| if (user_mem) |
| kunmap_atomic(user_mem); |
| /* Free memory associated with this sector now. */ |
| bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| zram_free_page(zram, index); |
| zram_set_flag(meta, index, ZRAM_SAME); |
| zram_set_element(meta, index, element); |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| |
| atomic64_inc(&zram->stats.same_pages); |
| ret = 0; |
| goto out; |
| } |
| |
| zstrm = zcomp_stream_get(zram->comp); |
| ret = zcomp_compress(zstrm, uncmem, &clen); |
| if (!is_partial_io(bvec)) { |
| kunmap_atomic(user_mem); |
| user_mem = NULL; |
| uncmem = NULL; |
| } |
| |
| if (unlikely(ret)) { |
| pr_err("Compression failed! err=%d\n", ret); |
| goto out; |
| } |
| |
| src = zstrm->buffer; |
| if (unlikely(clen > max_zpage_size)) { |
| clen = PAGE_SIZE; |
| if (is_partial_io(bvec)) |
| src = uncmem; |
| } |
| |
| /* |
| * handle allocation has 2 paths: |
| * a) fast path is executed with preemption disabled (for |
| * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, |
| * since we can't sleep; |
| * b) slow path enables preemption and attempts to allocate |
| * the page with __GFP_DIRECT_RECLAIM bit set. we have to |
| * put per-cpu compression stream and, thus, to re-do |
| * the compression once handle is allocated. |
| * |
| * if we have a 'non-null' handle here then we are coming |
| * from the slow path and handle has already been allocated. |
| */ |
| if (!handle) |
| handle = zs_malloc(meta->mem_pool, clen, |
| __GFP_KSWAPD_RECLAIM | |
| __GFP_NOWARN | |
| __GFP_HIGHMEM | |
| __GFP_MOVABLE); |
| if (!handle) { |
| zcomp_stream_put(zram->comp); |
| zstrm = NULL; |
| |
| atomic64_inc(&zram->stats.writestall); |
| |
| handle = zs_malloc(meta->mem_pool, clen, |
| GFP_NOIO | __GFP_HIGHMEM | |
| __GFP_MOVABLE); |
| if (handle) |
| goto compress_again; |
| |
| pr_err("Error allocating memory for compressed page: %u, size=%u\n", |
| index, clen); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| alloced_pages = zs_get_total_pages(meta->mem_pool); |
| update_used_max(zram, alloced_pages); |
| |
| if (zram->limit_pages && alloced_pages > zram->limit_pages) { |
| zs_free(meta->mem_pool, handle); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO); |
| |
| if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) { |
| src = kmap_atomic(page); |
| copy_page(cmem, src); |
| kunmap_atomic(src); |
| } else { |
| memcpy(cmem, src, clen); |
| } |
| |
| zcomp_stream_put(zram->comp); |
| zstrm = NULL; |
| zs_unmap_object(meta->mem_pool, handle); |
| |
| /* |
| * Free memory associated with this sector |
| * before overwriting unused sectors. |
| */ |
| bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| zram_free_page(zram, index); |
| |
| meta->table[index].handle = handle; |
| zram_set_obj_size(meta, index, clen); |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| |
| /* Update stats */ |
| atomic64_add(clen, &zram->stats.compr_data_size); |
| atomic64_inc(&zram->stats.pages_stored); |
| out: |
| if (zstrm) |
| zcomp_stream_put(zram->comp); |
| if (is_partial_io(bvec)) |
| kfree(uncmem); |
| return ret; |
| } |
| |
| /* |
| * zram_bio_discard - handler on discard request |
| * @index: physical block index in PAGE_SIZE units |
| * @offset: byte offset within physical block |
| */ |
| static void zram_bio_discard(struct zram *zram, u32 index, |
| int offset, struct bio *bio) |
| { |
| size_t n = bio->bi_iter.bi_size; |
| struct zram_meta *meta = zram->meta; |
| |
| /* |
| * zram manages data in physical block size units. Because logical block |
| * size isn't identical with physical block size on some arch, we |
| * could get a discard request pointing to a specific offset within a |
| * certain physical block. Although we can handle this request by |
| * reading that physiclal block and decompressing and partially zeroing |
| * and re-compressing and then re-storing it, this isn't reasonable |
| * because our intent with a discard request is to save memory. So |
| * skipping this logical block is appropriate here. |
| */ |
| if (offset) { |
| if (n <= (PAGE_SIZE - offset)) |
| return; |
| |
| n -= (PAGE_SIZE - offset); |
| index++; |
| } |
| |
| while (n >= PAGE_SIZE) { |
| bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| zram_free_page(zram, index); |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| atomic64_inc(&zram->stats.notify_free); |
| index++; |
| n -= PAGE_SIZE; |
| } |
| } |
| |
| static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index, |
| int offset, bool is_write) |
| { |
| unsigned long start_time = jiffies; |
| int rw_acct = is_write ? REQ_OP_WRITE : REQ_OP_READ; |
| int ret; |
| |
| generic_start_io_acct(rw_acct, bvec->bv_len >> SECTOR_SHIFT, |
| &zram->disk->part0); |
| |
| if (!is_write) { |
| atomic64_inc(&zram->stats.num_reads); |
| ret = zram_bvec_read(zram, bvec, index, offset); |
| } else { |
| atomic64_inc(&zram->stats.num_writes); |
| ret = zram_bvec_write(zram, bvec, index, offset); |
| } |
| |
| generic_end_io_acct(rw_acct, &zram->disk->part0, start_time); |
| |
| if (unlikely(ret)) { |
| if (!is_write) |
| atomic64_inc(&zram->stats.failed_reads); |
| else |
| atomic64_inc(&zram->stats.failed_writes); |
| } |
| |
| return ret; |
| } |
| |
| static void __zram_make_request(struct zram *zram, struct bio *bio) |
| { |
| int offset; |
| u32 index; |
| struct bio_vec bvec; |
| struct bvec_iter iter; |
| |
| index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; |
| offset = (bio->bi_iter.bi_sector & |
| (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT; |
| |
| if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { |
| zram_bio_discard(zram, index, offset, bio); |
| bio_endio(bio); |
| return; |
| } |
| |
| bio_for_each_segment(bvec, bio, iter) { |
| int max_transfer_size = PAGE_SIZE - offset; |
| |
| if (bvec.bv_len > max_transfer_size) { |
| /* |
| * zram_bvec_rw() can only make operation on a single |
| * zram page. Split the bio vector. |
| */ |
| struct bio_vec bv; |
| |
| bv.bv_page = bvec.bv_page; |
| bv.bv_len = max_transfer_size; |
| bv.bv_offset = bvec.bv_offset; |
| |
| if (zram_bvec_rw(zram, &bv, index, offset, |
| op_is_write(bio_op(bio))) < 0) |
| goto out; |
| |
| bv.bv_len = bvec.bv_len - max_transfer_size; |
| bv.bv_offset += max_transfer_size; |
| if (zram_bvec_rw(zram, &bv, index + 1, 0, |
| op_is_write(bio_op(bio))) < 0) |
| goto out; |
| } else |
| if (zram_bvec_rw(zram, &bvec, index, offset, |
| op_is_write(bio_op(bio))) < 0) |
| goto out; |
| |
| update_position(&index, &offset, &bvec); |
| } |
| |
| bio_endio(bio); |
| return; |
| |
| out: |
| bio_io_error(bio); |
| } |
| |
| /* |
| * Handler function for all zram I/O requests. |
| */ |
| static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio) |
| { |
| struct zram *zram = queue->queuedata; |
| |
| blk_queue_split(queue, &bio, queue->bio_split); |
| |
| if (!valid_io_request(zram, bio->bi_iter.bi_sector, |
| bio->bi_iter.bi_size)) { |
| atomic64_inc(&zram->stats.invalid_io); |
| goto error; |
| } |
| |
| __zram_make_request(zram, bio); |
| return BLK_QC_T_NONE; |
| |
| error: |
| bio_io_error(bio); |
| return BLK_QC_T_NONE; |
| } |
| |
| static void zram_slot_free_notify(struct block_device *bdev, |
| unsigned long index) |
| { |
| struct zram *zram; |
| struct zram_meta *meta; |
| |
| zram = bdev->bd_disk->private_data; |
| meta = zram->meta; |
| |
| bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value); |
| zram_free_page(zram, index); |
| bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value); |
| atomic64_inc(&zram->stats.notify_free); |
| } |
| |
| static int zram_rw_page(struct block_device *bdev, sector_t sector, |
| struct page *page, bool is_write) |
| { |
| int offset, err = -EIO; |
| u32 index; |
| struct zram *zram; |
| struct bio_vec bv; |
| |
| zram = bdev->bd_disk->private_data; |
| |
| if (!valid_io_request(zram, sector, PAGE_SIZE)) { |
| atomic64_inc(&zram->stats.invalid_io); |
| err = -EINVAL; |
| goto out; |
| } |
| |
| index = sector >> SECTORS_PER_PAGE_SHIFT; |
| offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT; |
| |
| bv.bv_page = page; |
| bv.bv_len = PAGE_SIZE; |
| bv.bv_offset = 0; |
| |
| err = zram_bvec_rw(zram, &bv, index, offset, is_write); |
| out: |
| /* |
| * If I/O fails, just return error(ie, non-zero) without |
| * calling page_endio. |
| * It causes resubmit the I/O with bio request by upper functions |
| * of rw_page(e.g., swap_readpage, __swap_writepage) and |
| * bio->bi_end_io does things to handle the error |
| * (e.g., SetPageError, set_page_dirty and extra works). |
| */ |
| if (err == 0) |
| page_endio(page, is_write, 0); |
| return err; |
| } |
| |
| static void zram_reset_device(struct zram *zram) |
| { |
| struct zram_meta *meta; |
| struct zcomp *comp; |
| u64 disksize; |
| |
| down_write(&zram->init_lock); |
| |
| zram->limit_pages = 0; |
| |
| if (!init_done(zram)) { |
| up_write(&zram->init_lock); |
| return; |
| } |
| |
| meta = zram->meta; |
| comp = zram->comp; |
| disksize = zram->disksize; |
| |
| /* Reset stats */ |
| memset(&zram->stats, 0, sizeof(zram->stats)); |
| zram->disksize = 0; |
| |
| set_capacity(zram->disk, 0); |
| part_stat_set_all(&zram->disk->part0, 0); |
| |
| up_write(&zram->init_lock); |
| /* I/O operation under all of CPU are done so let's free */ |
| zram_meta_free(meta, disksize); |
| zcomp_destroy(comp); |
| } |
| |
| static ssize_t disksize_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| u64 disksize; |
| struct zcomp *comp; |
| struct zram_meta *meta; |
| struct zram *zram = dev_to_zram(dev); |
| int err; |
| |
| disksize = memparse(buf, NULL); |
| if (!disksize) |
| return -EINVAL; |
| |
| disksize = PAGE_ALIGN(disksize); |
| meta = zram_meta_alloc(zram->disk->disk_name, disksize); |
| if (!meta) |
| return -ENOMEM; |
| |
| comp = zcomp_create(zram->compressor); |
| if (IS_ERR(comp)) { |
| pr_err("Cannot initialise %s compressing backend\n", |
| zram->compressor); |
| err = PTR_ERR(comp); |
| goto out_free_meta; |
| } |
| |
| down_write(&zram->init_lock); |
| if (init_done(zram)) { |
| pr_info("Cannot change disksize for initialized device\n"); |
| err = -EBUSY; |
| goto out_destroy_comp; |
| } |
| |
| zram->meta = meta; |
| zram->comp = comp; |
| zram->disksize = disksize; |
| set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT); |
| zram_revalidate_disk(zram); |
| up_write(&zram->init_lock); |
| |
| return len; |
| |
| out_destroy_comp: |
| up_write(&zram->init_lock); |
| zcomp_destroy(comp); |
| out_free_meta: |
| zram_meta_free(meta, disksize); |
| return err; |
| } |
| |
| static ssize_t reset_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| int ret; |
| unsigned short do_reset; |
| struct zram *zram; |
| struct block_device *bdev; |
| |
| ret = kstrtou16(buf, 10, &do_reset); |
| if (ret) |
| return ret; |
| |
| if (!do_reset) |
| return -EINVAL; |
| |
| zram = dev_to_zram(dev); |
| bdev = bdget_disk(zram->disk, 0); |
| if (!bdev) |
| return -ENOMEM; |
| |
| mutex_lock(&bdev->bd_mutex); |
| /* Do not reset an active device or claimed device */ |
| if (bdev->bd_openers || zram->claim) { |
| mutex_unlock(&bdev->bd_mutex); |
| bdput(bdev); |
| return -EBUSY; |
| } |
| |
| /* From now on, anyone can't open /dev/zram[0-9] */ |
| zram->claim = true; |
| mutex_unlock(&bdev->bd_mutex); |
| |
| /* Make sure all the pending I/O are finished */ |
| fsync_bdev(bdev); |
| zram_reset_device(zram); |
| zram_revalidate_disk(zram); |
| bdput(bdev); |
| |
| mutex_lock(&bdev->bd_mutex); |
| zram->claim = false; |
| mutex_unlock(&bdev->bd_mutex); |
| |
| return len; |
| } |
| |
| static int zram_open(struct block_device *bdev, fmode_t mode) |
| { |
| int ret = 0; |
| struct zram *zram; |
| |
| WARN_ON(!mutex_is_locked(&bdev->bd_mutex)); |
| |
| zram = bdev->bd_disk->private_data; |
| /* zram was claimed to reset so open request fails */ |
| if (zram->claim) |
| ret = -EBUSY; |
| |
| return ret; |
| } |
| |
| static const struct block_device_operations zram_devops = { |
| .open = zram_open, |
| .swap_slot_free_notify = zram_slot_free_notify, |
| .rw_page = zram_rw_page, |
| .owner = THIS_MODULE |
| }; |
| |
| static DEVICE_ATTR_WO(compact); |
| static DEVICE_ATTR_RW(disksize); |
| static DEVICE_ATTR_RO(initstate); |
| static DEVICE_ATTR_WO(reset); |
| static DEVICE_ATTR_WO(mem_limit); |
| static DEVICE_ATTR_WO(mem_used_max); |
| static DEVICE_ATTR_RW(max_comp_streams); |
| static DEVICE_ATTR_RW(comp_algorithm); |
| |
| static struct attribute *zram_disk_attrs[] = { |
| &dev_attr_disksize.attr, |
| &dev_attr_initstate.attr, |
| &dev_attr_reset.attr, |
| &dev_attr_compact.attr, |
| &dev_attr_mem_limit.attr, |
| &dev_attr_mem_used_max.attr, |
| &dev_attr_max_comp_streams.attr, |
| &dev_attr_comp_algorithm.attr, |
| &dev_attr_io_stat.attr, |
| &dev_attr_mm_stat.attr, |
| &dev_attr_debug_stat.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group zram_disk_attr_group = { |
| .attrs = zram_disk_attrs, |
| }; |
| |
| /* |
| * Allocate and initialize new zram device. the function returns |
| * '>= 0' device_id upon success, and negative value otherwise. |
| */ |
| static int zram_add(void) |
| { |
| struct zram *zram; |
| struct request_queue *queue; |
| int ret, device_id; |
| |
| zram = kzalloc(sizeof(struct zram), GFP_KERNEL); |
| if (!zram) |
| return -ENOMEM; |
| |
| ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); |
| if (ret < 0) |
| goto out_free_dev; |
| device_id = ret; |
| |
| init_rwsem(&zram->init_lock); |
| |
| queue = blk_alloc_queue(GFP_KERNEL); |
| if (!queue) { |
| pr_err("Error allocating disk queue for device %d\n", |
| device_id); |
| ret = -ENOMEM; |
| goto out_free_idr; |
| } |
| |
| blk_queue_make_request(queue, zram_make_request); |
| |
| /* gendisk structure */ |
| zram->disk = alloc_disk(1); |
| if (!zram->disk) { |
| pr_err("Error allocating disk structure for device %d\n", |
| device_id); |
| ret = -ENOMEM; |
| goto out_free_queue; |
| } |
| |
| zram->disk->major = zram_major; |
| zram->disk->first_minor = device_id; |
| zram->disk->fops = &zram_devops; |
| zram->disk->queue = queue; |
| zram->disk->queue->queuedata = zram; |
| zram->disk->private_data = zram; |
| snprintf(zram->disk->disk_name, 16, "zram%d", device_id); |
| |
| /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */ |
| set_capacity(zram->disk, 0); |
| /* zram devices sort of resembles non-rotational disks */ |
| queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue); |
| queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue); |
| /* |
| * To ensure that we always get PAGE_SIZE aligned |
| * and n*PAGE_SIZED sized I/O requests. |
| */ |
| blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); |
| blk_queue_logical_block_size(zram->disk->queue, |
| ZRAM_LOGICAL_BLOCK_SIZE); |
| blk_queue_io_min(zram->disk->queue, PAGE_SIZE); |
| blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); |
| zram->disk->queue->limits.discard_granularity = PAGE_SIZE; |
| zram->disk->queue->limits.max_sectors = SECTORS_PER_PAGE; |
| zram->disk->queue->limits.chunk_sectors = 0; |
| blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); |
| /* |
| * zram_bio_discard() will clear all logical blocks if logical block |
| * size is identical with physical block size(PAGE_SIZE). But if it is |
| * different, we will skip discarding some parts of logical blocks in |
| * the part of the request range which isn't aligned to physical block |
| * size. So we can't ensure that all discarded logical blocks are |
| * zeroed. |
| */ |
| if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) |
| zram->disk->queue->limits.discard_zeroes_data = 1; |
| else |
| zram->disk->queue->limits.discard_zeroes_data = 0; |
| queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue); |
| |
| add_disk(zram->disk); |
| |
| ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj, |
| &zram_disk_attr_group); |
| if (ret < 0) { |
| pr_err("Error creating sysfs group for device %d\n", |
| device_id); |
| goto out_free_disk; |
| } |
| strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor)); |
| zram->meta = NULL; |
| |
| pr_info("Added device: %s\n", zram->disk->disk_name); |
| return device_id; |
| |
| out_free_disk: |
| del_gendisk(zram->disk); |
| put_disk(zram->disk); |
| out_free_queue: |
| blk_cleanup_queue(queue); |
| out_free_idr: |
| idr_remove(&zram_index_idr, device_id); |
| out_free_dev: |
| kfree(zram); |
| return ret; |
| } |
| |
| static int zram_remove(struct zram *zram) |
| { |
| struct block_device *bdev; |
| |
| bdev = bdget_disk(zram->disk, 0); |
| if (!bdev) |
| return -ENOMEM; |
| |
| mutex_lock(&bdev->bd_mutex); |
| if (bdev->bd_openers || zram->claim) { |
| mutex_unlock(&bdev->bd_mutex); |
| bdput(bdev); |
| return -EBUSY; |
| } |
| |
| zram->claim = true; |
| mutex_unlock(&bdev->bd_mutex); |
| |
| /* |
| * Remove sysfs first, so no one will perform a disksize |
| * store while we destroy the devices. This also helps during |
| * hot_remove -- zram_reset_device() is the last holder of |
| * ->init_lock, no later/concurrent disksize_store() or any |
| * other sysfs handlers are possible. |
| */ |
| sysfs_remove_group(&disk_to_dev(zram->disk)->kobj, |
| &zram_disk_attr_group); |
| |
| /* Make sure all the pending I/O are finished */ |
| fsync_bdev(bdev); |
| zram_reset_device(zram); |
| bdput(bdev); |
| |
| pr_info("Removed device: %s\n", zram->disk->disk_name); |
| |
| blk_cleanup_queue(zram->disk->queue); |
| del_gendisk(zram->disk); |
| put_disk(zram->disk); |
| kfree(zram); |
| return 0; |
| } |
| |
| /* zram-control sysfs attributes */ |
| static ssize_t hot_add_show(struct class *class, |
| struct class_attribute *attr, |
| char *buf) |
| { |
| int ret; |
| |
| mutex_lock(&zram_index_mutex); |
| ret = zram_add(); |
| mutex_unlock(&zram_index_mutex); |
| |
| if (ret < 0) |
| return ret; |
| return scnprintf(buf, PAGE_SIZE, "%d\n", ret); |
| } |
| |
| static ssize_t hot_remove_store(struct class *class, |
| struct class_attribute *attr, |
| const char *buf, |
| size_t count) |
| { |
| struct zram *zram; |
| int ret, dev_id; |
| |
| /* dev_id is gendisk->first_minor, which is `int' */ |
| ret = kstrtoint(buf, 10, &dev_id); |
| if (ret) |
| return ret; |
| if (dev_id < 0) |
| return -EINVAL; |
| |
| mutex_lock(&zram_index_mutex); |
| |
| zram = idr_find(&zram_index_idr, dev_id); |
| if (zram) { |
| ret = zram_remove(zram); |
| if (!ret) |
| idr_remove(&zram_index_idr, dev_id); |
| } else { |
| ret = -ENODEV; |
| } |
| |
| mutex_unlock(&zram_index_mutex); |
| return ret ? ret : count; |
| } |
| |
| /* |
| * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a |
| * sense that reading from this file does alter the state of your system -- it |
| * creates a new un-initialized zram device and returns back this device's |
| * device_id (or an error code if it fails to create a new device). |
| */ |
| static struct class_attribute zram_control_class_attrs[] = { |
| __ATTR(hot_add, 0400, hot_add_show, NULL), |
| __ATTR_WO(hot_remove), |
| __ATTR_NULL, |
| }; |
| |
| static struct class zram_control_class = { |
| .name = "zram-control", |
| .owner = THIS_MODULE, |
| .class_attrs = zram_control_class_attrs, |
| }; |
| |
| static int zram_remove_cb(int id, void *ptr, void *data) |
| { |
| zram_remove(ptr); |
| return 0; |
| } |
| |
| static void destroy_devices(void) |
| { |
| class_unregister(&zram_control_class); |
| idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); |
| idr_destroy(&zram_index_idr); |
| unregister_blkdev(zram_major, "zram"); |
| cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); |
| } |
| |
| static int __init zram_init(void) |
| { |
| int ret; |
| |
| ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", |
| zcomp_cpu_up_prepare, zcomp_cpu_dead); |
| if (ret < 0) |
| return ret; |
| |
| ret = class_register(&zram_control_class); |
| if (ret) { |
| pr_err("Unable to register zram-control class\n"); |
| cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); |
| return ret; |
| } |
| |
| zram_major = register_blkdev(0, "zram"); |
| if (zram_major <= 0) { |
| pr_err("Unable to get major number\n"); |
| class_unregister(&zram_control_class); |
| cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); |
| return -EBUSY; |
| } |
| |
| while (num_devices != 0) { |
| mutex_lock(&zram_index_mutex); |
| ret = zram_add(); |
| mutex_unlock(&zram_index_mutex); |
| if (ret < 0) |
| goto out_error; |
| num_devices--; |
| } |
| |
| return 0; |
| |
| out_error: |
| destroy_devices(); |
| return ret; |
| } |
| |
| static void __exit zram_exit(void) |
| { |
| destroy_devices(); |
| } |
| |
| module_init(zram_init); |
| module_exit(zram_exit); |
| |
| module_param(num_devices, uint, 0); |
| MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); |
| |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |
| MODULE_DESCRIPTION("Compressed RAM Block Device"); |