| /* | 
 |  * | 
 |  * Alchemy Au1x00 ethernet driver | 
 |  * | 
 |  * Copyright 2001-2003, 2006 MontaVista Software Inc. | 
 |  * Copyright 2002 TimeSys Corp. | 
 |  * Added ethtool/mii-tool support, | 
 |  * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> | 
 |  * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de | 
 |  * or riemer@riemer-nt.de: fixed the link beat detection with | 
 |  * ioctls (SIOCGMIIPHY) | 
 |  * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org> | 
 |  *  converted to use linux-2.6.x's PHY framework | 
 |  * | 
 |  * Author: MontaVista Software, Inc. | 
 |  *         	ppopov@mvista.com or source@mvista.com | 
 |  * | 
 |  * ######################################################################## | 
 |  * | 
 |  *  This program is free software; you can distribute it and/or modify it | 
 |  *  under the terms of the GNU General Public License (Version 2) as | 
 |  *  published by the Free Software Foundation. | 
 |  * | 
 |  *  This program is distributed in the hope it will be useful, but WITHOUT | 
 |  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
 |  *  for more details. | 
 |  * | 
 |  *  You should have received a copy of the GNU General Public License along | 
 |  *  with this program; if not, write to the Free Software Foundation, Inc., | 
 |  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA. | 
 |  * | 
 |  * ######################################################################## | 
 |  * | 
 |  * | 
 |  */ | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/string.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/in.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/init.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/ethtool.h> | 
 | #include <linux/mii.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/crc32.h> | 
 | #include <linux/phy.h> | 
 |  | 
 | #include <asm/cpu.h> | 
 | #include <asm/mipsregs.h> | 
 | #include <asm/irq.h> | 
 | #include <asm/io.h> | 
 | #include <asm/processor.h> | 
 |  | 
 | #include <au1000.h> | 
 | #include <prom.h> | 
 |  | 
 | #include "au1000_eth.h" | 
 |  | 
 | #ifdef AU1000_ETH_DEBUG | 
 | static int au1000_debug = 5; | 
 | #else | 
 | static int au1000_debug = 3; | 
 | #endif | 
 |  | 
 | #define DRV_NAME	"au1000_eth" | 
 | #define DRV_VERSION	"1.6" | 
 | #define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>" | 
 | #define DRV_DESC	"Au1xxx on-chip Ethernet driver" | 
 |  | 
 | MODULE_AUTHOR(DRV_AUTHOR); | 
 | MODULE_DESCRIPTION(DRV_DESC); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | // prototypes | 
 | static void hard_stop(struct net_device *); | 
 | static void enable_rx_tx(struct net_device *dev); | 
 | static struct net_device * au1000_probe(int port_num); | 
 | static int au1000_init(struct net_device *); | 
 | static int au1000_open(struct net_device *); | 
 | static int au1000_close(struct net_device *); | 
 | static int au1000_tx(struct sk_buff *, struct net_device *); | 
 | static int au1000_rx(struct net_device *); | 
 | static irqreturn_t au1000_interrupt(int, void *); | 
 | static void au1000_tx_timeout(struct net_device *); | 
 | static void set_rx_mode(struct net_device *); | 
 | static int au1000_ioctl(struct net_device *, struct ifreq *, int); | 
 | static int au1000_mdio_read(struct net_device *, int, int); | 
 | static void au1000_mdio_write(struct net_device *, int, int, u16); | 
 | static void au1000_adjust_link(struct net_device *); | 
 | static void enable_mac(struct net_device *, int); | 
 |  | 
 | /* | 
 |  * Theory of operation | 
 |  * | 
 |  * The Au1000 MACs use a simple rx and tx descriptor ring scheme. | 
 |  * There are four receive and four transmit descriptors.  These | 
 |  * descriptors are not in memory; rather, they are just a set of | 
 |  * hardware registers. | 
 |  * | 
 |  * Since the Au1000 has a coherent data cache, the receive and | 
 |  * transmit buffers are allocated from the KSEG0 segment. The | 
 |  * hardware registers, however, are still mapped at KSEG1 to | 
 |  * make sure there's no out-of-order writes, and that all writes | 
 |  * complete immediately. | 
 |  */ | 
 |  | 
 | /* These addresses are only used if yamon doesn't tell us what | 
 |  * the mac address is, and the mac address is not passed on the | 
 |  * command line. | 
 |  */ | 
 | static unsigned char au1000_mac_addr[6] __devinitdata = { | 
 | 	0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00 | 
 | }; | 
 |  | 
 | struct au1000_private *au_macs[NUM_ETH_INTERFACES]; | 
 |  | 
 | /* | 
 |  * board-specific configurations | 
 |  * | 
 |  * PHY detection algorithm | 
 |  * | 
 |  * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is | 
 |  * autodetected: | 
 |  * | 
 |  * mii_probe() first searches the current MAC's MII bus for a PHY, | 
 |  * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is | 
 |  * defined) PHY address not already claimed by another netdev. | 
 |  * | 
 |  * If nothing was found that way when searching for the 2nd ethernet | 
 |  * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then | 
 |  * the first MII bus is searched as well for an unclaimed PHY; this is | 
 |  * needed in case of a dual-PHY accessible only through the MAC0's MII | 
 |  * bus. | 
 |  * | 
 |  * Finally, if no PHY is found, then the corresponding ethernet | 
 |  * controller is not registered to the network subsystem. | 
 |  */ | 
 |  | 
 | /* autodetection defaults */ | 
 | #undef  AU1XXX_PHY_SEARCH_HIGHEST_ADDR | 
 | #define AU1XXX_PHY1_SEARCH_ON_MAC0 | 
 |  | 
 | /* static PHY setup | 
 |  * | 
 |  * most boards PHY setup should be detectable properly with the | 
 |  * autodetection algorithm in mii_probe(), but in some cases (e.g. if | 
 |  * you have a switch attached, or want to use the PHY's interrupt | 
 |  * notification capabilities) you can provide a static PHY | 
 |  * configuration here | 
 |  * | 
 |  * IRQs may only be set, if a PHY address was configured | 
 |  * If a PHY address is given, also a bus id is required to be set | 
 |  * | 
 |  * ps: make sure the used irqs are configured properly in the board | 
 |  * specific irq-map | 
 |  */ | 
 |  | 
 | #if defined(CONFIG_MIPS_BOSPORUS) | 
 | /* | 
 |  * Micrel/Kendin 5 port switch attached to MAC0, | 
 |  * MAC0 is associated with PHY address 5 (== WAN port) | 
 |  * MAC1 is not associated with any PHY, since it's connected directly | 
 |  * to the switch. | 
 |  * no interrupts are used | 
 |  */ | 
 | # define AU1XXX_PHY_STATIC_CONFIG | 
 |  | 
 | # define AU1XXX_PHY0_ADDR  5 | 
 | # define AU1XXX_PHY0_BUSID 0 | 
 | #  undef AU1XXX_PHY0_IRQ | 
 |  | 
 | #  undef AU1XXX_PHY1_ADDR | 
 | #  undef AU1XXX_PHY1_BUSID | 
 | #  undef AU1XXX_PHY1_IRQ | 
 | #endif | 
 |  | 
 | #if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0) | 
 | # error MAC0-associated PHY attached 2nd MACs MII bus not supported yet | 
 | #endif | 
 |  | 
 | /* | 
 |  * MII operations | 
 |  */ | 
 | static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	volatile u32 *const mii_control_reg = &aup->mac->mii_control; | 
 | 	volatile u32 *const mii_data_reg = &aup->mac->mii_data; | 
 | 	u32 timedout = 20; | 
 | 	u32 mii_control; | 
 |  | 
 | 	while (*mii_control_reg & MAC_MII_BUSY) { | 
 | 		mdelay(1); | 
 | 		if (--timedout == 0) { | 
 | 			printk(KERN_ERR "%s: read_MII busy timeout!!\n", | 
 | 					dev->name); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mii_control = MAC_SET_MII_SELECT_REG(reg) | | 
 | 		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ; | 
 |  | 
 | 	*mii_control_reg = mii_control; | 
 |  | 
 | 	timedout = 20; | 
 | 	while (*mii_control_reg & MAC_MII_BUSY) { | 
 | 		mdelay(1); | 
 | 		if (--timedout == 0) { | 
 | 			printk(KERN_ERR "%s: mdio_read busy timeout!!\n", | 
 | 					dev->name); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 | 	return (int)*mii_data_reg; | 
 | } | 
 |  | 
 | static void au1000_mdio_write(struct net_device *dev, int phy_addr, | 
 | 			      int reg, u16 value) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	volatile u32 *const mii_control_reg = &aup->mac->mii_control; | 
 | 	volatile u32 *const mii_data_reg = &aup->mac->mii_data; | 
 | 	u32 timedout = 20; | 
 | 	u32 mii_control; | 
 |  | 
 | 	while (*mii_control_reg & MAC_MII_BUSY) { | 
 | 		mdelay(1); | 
 | 		if (--timedout == 0) { | 
 | 			printk(KERN_ERR "%s: mdio_write busy timeout!!\n", | 
 | 					dev->name); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mii_control = MAC_SET_MII_SELECT_REG(reg) | | 
 | 		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE; | 
 |  | 
 | 	*mii_data_reg = value; | 
 | 	*mii_control_reg = mii_control; | 
 | } | 
 |  | 
 | static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) | 
 | { | 
 | 	/* WARNING: bus->phy_map[phy_addr].attached_dev == dev does | 
 | 	 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */ | 
 | 	struct net_device *const dev = bus->priv; | 
 |  | 
 | 	enable_mac(dev, 0); /* make sure the MAC associated with this | 
 | 			     * mii_bus is enabled */ | 
 | 	return au1000_mdio_read(dev, phy_addr, regnum); | 
 | } | 
 |  | 
 | static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, | 
 | 				u16 value) | 
 | { | 
 | 	struct net_device *const dev = bus->priv; | 
 |  | 
 | 	enable_mac(dev, 0); /* make sure the MAC associated with this | 
 | 			     * mii_bus is enabled */ | 
 | 	au1000_mdio_write(dev, phy_addr, regnum, value); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int au1000_mdiobus_reset(struct mii_bus *bus) | 
 | { | 
 | 	struct net_device *const dev = bus->priv; | 
 |  | 
 | 	enable_mac(dev, 0); /* make sure the MAC associated with this | 
 | 			     * mii_bus is enabled */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mii_probe (struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *const aup = (struct au1000_private *) dev->priv; | 
 | 	struct phy_device *phydev = NULL; | 
 |  | 
 | #if defined(AU1XXX_PHY_STATIC_CONFIG) | 
 | 	BUG_ON(aup->mac_id < 0 || aup->mac_id > 1); | 
 |  | 
 | 	if(aup->mac_id == 0) { /* get PHY0 */ | 
 | # if defined(AU1XXX_PHY0_ADDR) | 
 | 		phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus->phy_map[AU1XXX_PHY0_ADDR]; | 
 | # else | 
 | 		printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n", | 
 | 			dev->name); | 
 | 		return 0; | 
 | # endif /* defined(AU1XXX_PHY0_ADDR) */ | 
 | 	} else if (aup->mac_id == 1) { /* get PHY1 */ | 
 | # if defined(AU1XXX_PHY1_ADDR) | 
 | 		phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus->phy_map[AU1XXX_PHY1_ADDR]; | 
 | # else | 
 | 		printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n", | 
 | 			dev->name); | 
 | 		return 0; | 
 | # endif /* defined(AU1XXX_PHY1_ADDR) */ | 
 | 	} | 
 |  | 
 | #else /* defined(AU1XXX_PHY_STATIC_CONFIG) */ | 
 | 	int phy_addr; | 
 |  | 
 | 	/* find the first (lowest address) PHY on the current MAC's MII bus */ | 
 | 	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) | 
 | 		if (aup->mii_bus->phy_map[phy_addr]) { | 
 | 			phydev = aup->mii_bus->phy_map[phy_addr]; | 
 | # if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR) | 
 | 			break; /* break out with first one found */ | 
 | # endif | 
 | 		} | 
 |  | 
 | # if defined(AU1XXX_PHY1_SEARCH_ON_MAC0) | 
 | 	/* try harder to find a PHY */ | 
 | 	if (!phydev && (aup->mac_id == 1)) { | 
 | 		/* no PHY found, maybe we have a dual PHY? */ | 
 | 		printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, " | 
 | 			"let's see if it's attached to MAC0...\n"); | 
 |  | 
 | 		BUG_ON(!au_macs[0]); | 
 |  | 
 | 		/* find the first (lowest address) non-attached PHY on | 
 | 		 * the MAC0 MII bus */ | 
 | 		for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { | 
 | 			struct phy_device *const tmp_phydev = | 
 | 				au_macs[0]->mii_bus->phy_map[phy_addr]; | 
 |  | 
 | 			if (!tmp_phydev) | 
 | 				continue; /* no PHY here... */ | 
 |  | 
 | 			if (tmp_phydev->attached_dev) | 
 | 				continue; /* already claimed by MAC0 */ | 
 |  | 
 | 			phydev = tmp_phydev; | 
 | 			break; /* found it */ | 
 | 		} | 
 | 	} | 
 | # endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */ | 
 |  | 
 | #endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */ | 
 | 	if (!phydev) { | 
 | 		printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* now we are supposed to have a proper phydev, to attach to... */ | 
 | 	BUG_ON(!phydev); | 
 | 	BUG_ON(phydev->attached_dev); | 
 |  | 
 | 	phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0, | 
 | 			PHY_INTERFACE_MODE_MII); | 
 |  | 
 | 	if (IS_ERR(phydev)) { | 
 | 		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); | 
 | 		return PTR_ERR(phydev); | 
 | 	} | 
 |  | 
 | 	/* mask with MAC supported features */ | 
 | 	phydev->supported &= (SUPPORTED_10baseT_Half | 
 | 			      | SUPPORTED_10baseT_Full | 
 | 			      | SUPPORTED_100baseT_Half | 
 | 			      | SUPPORTED_100baseT_Full | 
 | 			      | SUPPORTED_Autoneg | 
 | 			      /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */ | 
 | 			      | SUPPORTED_MII | 
 | 			      | SUPPORTED_TP); | 
 |  | 
 | 	phydev->advertising = phydev->supported; | 
 |  | 
 | 	aup->old_link = 0; | 
 | 	aup->old_speed = 0; | 
 | 	aup->old_duplex = -1; | 
 | 	aup->phy_dev = phydev; | 
 |  | 
 | 	printk(KERN_INFO "%s: attached PHY driver [%s] " | 
 | 	       "(mii_bus:phy_addr=%s, irq=%d)\n", | 
 | 	       dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Buffer allocation/deallocation routines. The buffer descriptor returned | 
 |  * has the virtual and dma address of a buffer suitable for | 
 |  * both, receive and transmit operations. | 
 |  */ | 
 | static db_dest_t *GetFreeDB(struct au1000_private *aup) | 
 | { | 
 | 	db_dest_t *pDB; | 
 | 	pDB = aup->pDBfree; | 
 |  | 
 | 	if (pDB) { | 
 | 		aup->pDBfree = pDB->pnext; | 
 | 	} | 
 | 	return pDB; | 
 | } | 
 |  | 
 | void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB) | 
 | { | 
 | 	db_dest_t *pDBfree = aup->pDBfree; | 
 | 	if (pDBfree) | 
 | 		pDBfree->pnext = pDB; | 
 | 	aup->pDBfree = pDB; | 
 | } | 
 |  | 
 | static void enable_rx_tx(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk(KERN_INFO "%s: enable_rx_tx\n", dev->name); | 
 |  | 
 | 	aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE); | 
 | 	au_sync_delay(10); | 
 | } | 
 |  | 
 | static void hard_stop(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk(KERN_INFO "%s: hard stop\n", dev->name); | 
 |  | 
 | 	aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); | 
 | 	au_sync_delay(10); | 
 | } | 
 |  | 
 | static void enable_mac(struct net_device *dev, int force_reset) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	spin_lock_irqsave(&aup->lock, flags); | 
 |  | 
 | 	if(force_reset || (!aup->mac_enabled)) { | 
 | 		*aup->enable = MAC_EN_CLOCK_ENABLE; | 
 | 		au_sync_delay(2); | 
 | 		*aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 | 
 | 				| MAC_EN_CLOCK_ENABLE); | 
 | 		au_sync_delay(2); | 
 |  | 
 | 		aup->mac_enabled = 1; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&aup->lock, flags); | 
 | } | 
 |  | 
 | static void reset_mac_unlocked(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *const aup = (struct au1000_private *) dev->priv; | 
 | 	int i; | 
 |  | 
 | 	hard_stop(dev); | 
 |  | 
 | 	*aup->enable = MAC_EN_CLOCK_ENABLE; | 
 | 	au_sync_delay(2); | 
 | 	*aup->enable = 0; | 
 | 	au_sync_delay(2); | 
 |  | 
 | 	aup->tx_full = 0; | 
 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 		/* reset control bits */ | 
 | 		aup->rx_dma_ring[i]->buff_stat &= ~0xf; | 
 | 	} | 
 | 	for (i = 0; i < NUM_TX_DMA; i++) { | 
 | 		/* reset control bits */ | 
 | 		aup->tx_dma_ring[i]->buff_stat &= ~0xf; | 
 | 	} | 
 |  | 
 | 	aup->mac_enabled = 0; | 
 |  | 
 | } | 
 |  | 
 | static void reset_mac(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *const aup = (struct au1000_private *) dev->priv; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk(KERN_INFO "%s: reset mac, aup %x\n", | 
 | 		       dev->name, (unsigned)aup); | 
 |  | 
 | 	spin_lock_irqsave(&aup->lock, flags); | 
 |  | 
 | 	reset_mac_unlocked (dev); | 
 |  | 
 | 	spin_unlock_irqrestore(&aup->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Setup the receive and transmit "rings".  These pointers are the addresses | 
 |  * of the rx and tx MAC DMA registers so they are fixed by the hardware -- | 
 |  * these are not descriptors sitting in memory. | 
 |  */ | 
 | static void | 
 | setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 		aup->rx_dma_ring[i] = | 
 | 			(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i); | 
 | 	} | 
 | 	for (i = 0; i < NUM_TX_DMA; i++) { | 
 | 		aup->tx_dma_ring[i] = | 
 | 			(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i); | 
 | 	} | 
 | } | 
 |  | 
 | static struct { | 
 | 	u32 base_addr; | 
 | 	u32 macen_addr; | 
 | 	int irq; | 
 | 	struct net_device *dev; | 
 | } iflist[2] = { | 
 | #ifdef CONFIG_SOC_AU1000 | 
 | 	{AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT}, | 
 | 	{AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT} | 
 | #endif | 
 | #ifdef CONFIG_SOC_AU1100 | 
 | 	{AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT} | 
 | #endif | 
 | #ifdef CONFIG_SOC_AU1500 | 
 | 	{AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT}, | 
 | 	{AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT} | 
 | #endif | 
 | #ifdef CONFIG_SOC_AU1550 | 
 | 	{AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT}, | 
 | 	{AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT} | 
 | #endif | 
 | }; | 
 |  | 
 | static int num_ifs; | 
 |  | 
 | /* | 
 |  * Setup the base address and interrupt of the Au1xxx ethernet macs | 
 |  * based on cpu type and whether the interface is enabled in sys_pinfunc | 
 |  * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0. | 
 |  */ | 
 | static int __init au1000_init_module(void) | 
 | { | 
 | 	int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4); | 
 | 	struct net_device *dev; | 
 | 	int i, found_one = 0; | 
 |  | 
 | 	num_ifs = NUM_ETH_INTERFACES - ni; | 
 |  | 
 | 	for(i = 0; i < num_ifs; i++) { | 
 | 		dev = au1000_probe(i); | 
 | 		iflist[i].dev = dev; | 
 | 		if (dev) | 
 | 			found_one++; | 
 | 	} | 
 | 	if (!found_one) | 
 | 		return -ENODEV; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * ethtool operations | 
 |  */ | 
 |  | 
 | static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 |  | 
 | 	if (aup->phy_dev) | 
 | 		return phy_ethtool_gset(aup->phy_dev, cmd); | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 |  | 
 | 	if (!capable(CAP_NET_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (aup->phy_dev) | 
 | 		return phy_ethtool_sset(aup->phy_dev, cmd); | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static void | 
 | au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 |  | 
 | 	strcpy(info->driver, DRV_NAME); | 
 | 	strcpy(info->version, DRV_VERSION); | 
 | 	info->fw_version[0] = '\0'; | 
 | 	sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id); | 
 | 	info->regdump_len = 0; | 
 | } | 
 |  | 
 | static const struct ethtool_ops au1000_ethtool_ops = { | 
 | 	.get_settings = au1000_get_settings, | 
 | 	.set_settings = au1000_set_settings, | 
 | 	.get_drvinfo = au1000_get_drvinfo, | 
 | 	.get_link = ethtool_op_get_link, | 
 | }; | 
 |  | 
 | static struct net_device * au1000_probe(int port_num) | 
 | { | 
 | 	static unsigned version_printed = 0; | 
 | 	struct au1000_private *aup = NULL; | 
 | 	struct net_device *dev = NULL; | 
 | 	db_dest_t *pDB, *pDBfree; | 
 | 	char ethaddr[6]; | 
 | 	int irq, i, err; | 
 | 	u32 base, macen; | 
 |  | 
 | 	if (port_num >= NUM_ETH_INTERFACES) | 
 |  		return NULL; | 
 |  | 
 | 	base  = CPHYSADDR(iflist[port_num].base_addr ); | 
 | 	macen = CPHYSADDR(iflist[port_num].macen_addr); | 
 | 	irq = iflist[port_num].irq; | 
 |  | 
 | 	if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") || | 
 | 	    !request_mem_region(macen, 4, "Au1x00 ENET")) | 
 | 		return NULL; | 
 |  | 
 | 	if (version_printed++ == 0) | 
 | 		printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); | 
 |  | 
 | 	dev = alloc_etherdev(sizeof(struct au1000_private)); | 
 | 	if (!dev) { | 
 | 		printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if ((err = register_netdev(dev)) != 0) { | 
 | 		printk(KERN_ERR "%s: Cannot register net device, error %d\n", | 
 | 				DRV_NAME, err); | 
 | 		free_netdev(dev); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n", | 
 | 		dev->name, base, irq); | 
 |  | 
 | 	aup = dev->priv; | 
 |  | 
 | 	spin_lock_init(&aup->lock); | 
 |  | 
 | 	/* Allocate the data buffers */ | 
 | 	/* Snooping works fine with eth on all au1xxx */ | 
 | 	aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE * | 
 | 						(NUM_TX_BUFFS + NUM_RX_BUFFS), | 
 | 						&aup->dma_addr,	0); | 
 | 	if (!aup->vaddr) { | 
 | 		free_netdev(dev); | 
 | 		release_mem_region( base, MAC_IOSIZE); | 
 | 		release_mem_region(macen, 4); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* aup->mac is the base address of the MAC's registers */ | 
 | 	aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr; | 
 |  | 
 | 	/* Setup some variables for quick register address access */ | 
 | 	aup->enable = (volatile u32 *)iflist[port_num].macen_addr; | 
 | 	aup->mac_id = port_num; | 
 | 	au_macs[port_num] = aup; | 
 |  | 
 | 	if (port_num == 0) { | 
 | 		if (prom_get_ethernet_addr(ethaddr) == 0) | 
 | 			memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr)); | 
 | 		else { | 
 | 			printk(KERN_INFO "%s: No MAC address found\n", | 
 | 					 dev->name); | 
 | 				/* Use the hard coded MAC addresses */ | 
 | 		} | 
 |  | 
 | 		setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR); | 
 | 	} else if (port_num == 1) | 
 | 		setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR); | 
 |  | 
 | 	/* | 
 | 	 * Assign to the Ethernet ports two consecutive MAC addresses | 
 | 	 * to match those that are printed on their stickers | 
 | 	 */ | 
 | 	memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr)); | 
 | 	dev->dev_addr[5] += port_num; | 
 |  | 
 | 	*aup->enable = 0; | 
 | 	aup->mac_enabled = 0; | 
 |  | 
 | 	aup->mii_bus = mdiobus_alloc(); | 
 | 	if (aup->mii_bus == NULL) | 
 | 		goto err_out; | 
 |  | 
 | 	aup->mii_bus->priv = dev; | 
 | 	aup->mii_bus->read = au1000_mdiobus_read; | 
 | 	aup->mii_bus->write = au1000_mdiobus_write; | 
 | 	aup->mii_bus->reset = au1000_mdiobus_reset; | 
 | 	aup->mii_bus->name = "au1000_eth_mii"; | 
 | 	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%x", aup->mac_id); | 
 | 	aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL); | 
 | 	for(i = 0; i < PHY_MAX_ADDR; ++i) | 
 | 		aup->mii_bus->irq[i] = PHY_POLL; | 
 |  | 
 | 	/* if known, set corresponding PHY IRQs */ | 
 | #if defined(AU1XXX_PHY_STATIC_CONFIG) | 
 | # if defined(AU1XXX_PHY0_IRQ) | 
 | 	if (AU1XXX_PHY0_BUSID == aup->mac_id) | 
 | 		aup->mii_bus->irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ; | 
 | # endif | 
 | # if defined(AU1XXX_PHY1_IRQ) | 
 | 	if (AU1XXX_PHY1_BUSID == aup->mac_id) | 
 | 		aup->mii_bus->irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ; | 
 | # endif | 
 | #endif | 
 | 	mdiobus_register(aup->mii_bus); | 
 |  | 
 | 	if (mii_probe(dev) != 0) { | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	pDBfree = NULL; | 
 | 	/* setup the data buffer descriptors and attach a buffer to each one */ | 
 | 	pDB = aup->db; | 
 | 	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { | 
 | 		pDB->pnext = pDBfree; | 
 | 		pDBfree = pDB; | 
 | 		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); | 
 | 		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); | 
 | 		pDB++; | 
 | 	} | 
 | 	aup->pDBfree = pDBfree; | 
 |  | 
 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 		pDB = GetFreeDB(aup); | 
 | 		if (!pDB) { | 
 | 			goto err_out; | 
 | 		} | 
 | 		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; | 
 | 		aup->rx_db_inuse[i] = pDB; | 
 | 	} | 
 | 	for (i = 0; i < NUM_TX_DMA; i++) { | 
 | 		pDB = GetFreeDB(aup); | 
 | 		if (!pDB) { | 
 | 			goto err_out; | 
 | 		} | 
 | 		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; | 
 | 		aup->tx_dma_ring[i]->len = 0; | 
 | 		aup->tx_db_inuse[i] = pDB; | 
 | 	} | 
 |  | 
 | 	dev->base_addr = base; | 
 | 	dev->irq = irq; | 
 | 	dev->open = au1000_open; | 
 | 	dev->hard_start_xmit = au1000_tx; | 
 | 	dev->stop = au1000_close; | 
 | 	dev->set_multicast_list = &set_rx_mode; | 
 | 	dev->do_ioctl = &au1000_ioctl; | 
 | 	SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops); | 
 | 	dev->tx_timeout = au1000_tx_timeout; | 
 | 	dev->watchdog_timeo = ETH_TX_TIMEOUT; | 
 |  | 
 | 	/* | 
 | 	 * The boot code uses the ethernet controller, so reset it to start | 
 | 	 * fresh.  au1000_init() expects that the device is in reset state. | 
 | 	 */ | 
 | 	reset_mac(dev); | 
 |  | 
 | 	return dev; | 
 |  | 
 | err_out: | 
 | 	if (aup->mii_bus != NULL) { | 
 | 		mdiobus_unregister(aup->mii_bus); | 
 | 		mdiobus_free(aup->mii_bus); | 
 | 	} | 
 |  | 
 | 	/* here we should have a valid dev plus aup-> register addresses | 
 | 	 * so we can reset the mac properly.*/ | 
 | 	reset_mac(dev); | 
 |  | 
 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 		if (aup->rx_db_inuse[i]) | 
 | 			ReleaseDB(aup, aup->rx_db_inuse[i]); | 
 | 	} | 
 | 	for (i = 0; i < NUM_TX_DMA; i++) { | 
 | 		if (aup->tx_db_inuse[i]) | 
 | 			ReleaseDB(aup, aup->tx_db_inuse[i]); | 
 | 	} | 
 | 	dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), | 
 | 			     (void *)aup->vaddr, aup->dma_addr); | 
 | 	unregister_netdev(dev); | 
 | 	free_netdev(dev); | 
 | 	release_mem_region( base, MAC_IOSIZE); | 
 | 	release_mem_region(macen, 4); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the interface. | 
 |  * | 
 |  * When the device powers up, the clocks are disabled and the | 
 |  * mac is in reset state.  When the interface is closed, we | 
 |  * do the same -- reset the device and disable the clocks to | 
 |  * conserve power. Thus, whenever au1000_init() is called, | 
 |  * the device should already be in reset state. | 
 |  */ | 
 | static int au1000_init(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	unsigned long flags; | 
 | 	int i; | 
 | 	u32 control; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk("%s: au1000_init\n", dev->name); | 
 |  | 
 | 	/* bring the device out of reset */ | 
 | 	enable_mac(dev, 1); | 
 |  | 
 | 	spin_lock_irqsave(&aup->lock, flags); | 
 |  | 
 | 	aup->mac->control = 0; | 
 | 	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; | 
 | 	aup->tx_tail = aup->tx_head; | 
 | 	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; | 
 |  | 
 | 	aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4]; | 
 | 	aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | | 
 | 		dev->dev_addr[1]<<8 | dev->dev_addr[0]; | 
 |  | 
 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; | 
 | 	} | 
 | 	au_sync(); | 
 |  | 
 | 	control = MAC_RX_ENABLE | MAC_TX_ENABLE; | 
 | #ifndef CONFIG_CPU_LITTLE_ENDIAN | 
 | 	control |= MAC_BIG_ENDIAN; | 
 | #endif | 
 | 	if (aup->phy_dev) { | 
 | 		if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex)) | 
 | 			control |= MAC_FULL_DUPLEX; | 
 | 		else | 
 | 			control |= MAC_DISABLE_RX_OWN; | 
 | 	} else { /* PHY-less op, assume full-duplex */ | 
 | 		control |= MAC_FULL_DUPLEX; | 
 | 	} | 
 |  | 
 | 	aup->mac->control = control; | 
 | 	aup->mac->vlan1_tag = 0x8100; /* activate vlan support */ | 
 | 	au_sync(); | 
 |  | 
 | 	spin_unlock_irqrestore(&aup->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | au1000_adjust_link(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	struct phy_device *phydev = aup->phy_dev; | 
 | 	unsigned long flags; | 
 |  | 
 | 	int status_change = 0; | 
 |  | 
 | 	BUG_ON(!aup->phy_dev); | 
 |  | 
 | 	spin_lock_irqsave(&aup->lock, flags); | 
 |  | 
 | 	if (phydev->link && (aup->old_speed != phydev->speed)) { | 
 | 		// speed changed | 
 |  | 
 | 		switch(phydev->speed) { | 
 | 		case SPEED_10: | 
 | 		case SPEED_100: | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_WARNING | 
 | 			       "%s: Speed (%d) is not 10/100 ???\n", | 
 | 			       dev->name, phydev->speed); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		aup->old_speed = phydev->speed; | 
 |  | 
 | 		status_change = 1; | 
 | 	} | 
 |  | 
 | 	if (phydev->link && (aup->old_duplex != phydev->duplex)) { | 
 | 		// duplex mode changed | 
 |  | 
 | 		/* switching duplex mode requires to disable rx and tx! */ | 
 | 		hard_stop(dev); | 
 |  | 
 | 		if (DUPLEX_FULL == phydev->duplex) | 
 | 			aup->mac->control = ((aup->mac->control | 
 | 					     | MAC_FULL_DUPLEX) | 
 | 					     & ~MAC_DISABLE_RX_OWN); | 
 | 		else | 
 | 			aup->mac->control = ((aup->mac->control | 
 | 					      & ~MAC_FULL_DUPLEX) | 
 | 					     | MAC_DISABLE_RX_OWN); | 
 | 		au_sync_delay(1); | 
 |  | 
 | 		enable_rx_tx(dev); | 
 | 		aup->old_duplex = phydev->duplex; | 
 |  | 
 | 		status_change = 1; | 
 | 	} | 
 |  | 
 | 	if(phydev->link != aup->old_link) { | 
 | 		// link state changed | 
 |  | 
 | 		if (!phydev->link) { | 
 | 			/* link went down */ | 
 | 			aup->old_speed = 0; | 
 | 			aup->old_duplex = -1; | 
 | 		} | 
 |  | 
 | 		aup->old_link = phydev->link; | 
 | 		status_change = 1; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&aup->lock, flags); | 
 |  | 
 | 	if (status_change) { | 
 | 		if (phydev->link) | 
 | 			printk(KERN_INFO "%s: link up (%d/%s)\n", | 
 | 			       dev->name, phydev->speed, | 
 | 			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); | 
 | 		else | 
 | 			printk(KERN_INFO "%s: link down\n", dev->name); | 
 | 	} | 
 | } | 
 |  | 
 | static int au1000_open(struct net_device *dev) | 
 | { | 
 | 	int retval; | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk("%s: open: dev=%p\n", dev->name, dev); | 
 |  | 
 | 	if ((retval = request_irq(dev->irq, &au1000_interrupt, 0, | 
 | 					dev->name, dev))) { | 
 | 		printk(KERN_ERR "%s: unable to get IRQ %d\n", | 
 | 				dev->name, dev->irq); | 
 | 		return retval; | 
 | 	} | 
 |  | 
 | 	if ((retval = au1000_init(dev))) { | 
 | 		printk(KERN_ERR "%s: error in au1000_init\n", dev->name); | 
 | 		free_irq(dev->irq, dev); | 
 | 		return retval; | 
 | 	} | 
 |  | 
 | 	if (aup->phy_dev) { | 
 | 		/* cause the PHY state machine to schedule a link state check */ | 
 | 		aup->phy_dev->state = PHY_CHANGELINK; | 
 | 		phy_start(aup->phy_dev); | 
 | 	} | 
 |  | 
 | 	netif_start_queue(dev); | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk("%s: open: Initialization done.\n", dev->name); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int au1000_close(struct net_device *dev) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct au1000_private *const aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk("%s: close: dev=%p\n", dev->name, dev); | 
 |  | 
 | 	if (aup->phy_dev) | 
 | 		phy_stop(aup->phy_dev); | 
 |  | 
 | 	spin_lock_irqsave(&aup->lock, flags); | 
 |  | 
 | 	reset_mac_unlocked (dev); | 
 |  | 
 | 	/* stop the device */ | 
 | 	netif_stop_queue(dev); | 
 |  | 
 | 	/* disable the interrupt */ | 
 | 	free_irq(dev->irq, dev); | 
 | 	spin_unlock_irqrestore(&aup->lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __exit au1000_cleanup_module(void) | 
 | { | 
 | 	int i, j; | 
 | 	struct net_device *dev; | 
 | 	struct au1000_private *aup; | 
 |  | 
 | 	for (i = 0; i < num_ifs; i++) { | 
 | 		dev = iflist[i].dev; | 
 | 		if (dev) { | 
 | 			aup = (struct au1000_private *) dev->priv; | 
 | 			unregister_netdev(dev); | 
 | 			mdiobus_unregister(aup->mii_bus); | 
 | 			mdiobus_free(aup->mii_bus); | 
 | 			for (j = 0; j < NUM_RX_DMA; j++) | 
 | 				if (aup->rx_db_inuse[j]) | 
 | 					ReleaseDB(aup, aup->rx_db_inuse[j]); | 
 | 			for (j = 0; j < NUM_TX_DMA; j++) | 
 | 				if (aup->tx_db_inuse[j]) | 
 | 					ReleaseDB(aup, aup->tx_db_inuse[j]); | 
 |  			dma_free_noncoherent(NULL, MAX_BUF_SIZE * | 
 |  					     (NUM_TX_BUFFS + NUM_RX_BUFFS), | 
 |  					     (void *)aup->vaddr, aup->dma_addr); | 
 |  			release_mem_region(dev->base_addr, MAC_IOSIZE); | 
 |  			release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4); | 
 | 			free_netdev(dev); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void update_tx_stats(struct net_device *dev, u32 status) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	struct net_device_stats *ps = &dev->stats; | 
 |  | 
 | 	if (status & TX_FRAME_ABORTED) { | 
 | 		if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) { | 
 | 			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { | 
 | 				/* any other tx errors are only valid | 
 | 				 * in half duplex mode */ | 
 | 				ps->tx_errors++; | 
 | 				ps->tx_aborted_errors++; | 
 | 			} | 
 | 		} | 
 | 		else { | 
 | 			ps->tx_errors++; | 
 | 			ps->tx_aborted_errors++; | 
 | 			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) | 
 | 				ps->tx_carrier_errors++; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Called from the interrupt service routine to acknowledge | 
 |  * the TX DONE bits.  This is a must if the irq is setup as | 
 |  * edge triggered. | 
 |  */ | 
 | static void au1000_tx_ack(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	volatile tx_dma_t *ptxd; | 
 |  | 
 | 	ptxd = aup->tx_dma_ring[aup->tx_tail]; | 
 |  | 
 | 	while (ptxd->buff_stat & TX_T_DONE) { | 
 | 		update_tx_stats(dev, ptxd->status); | 
 | 		ptxd->buff_stat &= ~TX_T_DONE; | 
 | 		ptxd->len = 0; | 
 | 		au_sync(); | 
 |  | 
 | 		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); | 
 | 		ptxd = aup->tx_dma_ring[aup->tx_tail]; | 
 |  | 
 | 		if (aup->tx_full) { | 
 | 			aup->tx_full = 0; | 
 | 			netif_wake_queue(dev); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Au1000 transmit routine. | 
 |  */ | 
 | static int au1000_tx(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	struct net_device_stats *ps = &dev->stats; | 
 | 	volatile tx_dma_t *ptxd; | 
 | 	u32 buff_stat; | 
 | 	db_dest_t *pDB; | 
 | 	int i; | 
 |  | 
 | 	if (au1000_debug > 5) | 
 | 		printk("%s: tx: aup %x len=%d, data=%p, head %d\n", | 
 | 				dev->name, (unsigned)aup, skb->len, | 
 | 				skb->data, aup->tx_head); | 
 |  | 
 | 	ptxd = aup->tx_dma_ring[aup->tx_head]; | 
 | 	buff_stat = ptxd->buff_stat; | 
 | 	if (buff_stat & TX_DMA_ENABLE) { | 
 | 		/* We've wrapped around and the transmitter is still busy */ | 
 | 		netif_stop_queue(dev); | 
 | 		aup->tx_full = 1; | 
 | 		return 1; | 
 | 	} | 
 | 	else if (buff_stat & TX_T_DONE) { | 
 | 		update_tx_stats(dev, ptxd->status); | 
 | 		ptxd->len = 0; | 
 | 	} | 
 |  | 
 | 	if (aup->tx_full) { | 
 | 		aup->tx_full = 0; | 
 | 		netif_wake_queue(dev); | 
 | 	} | 
 |  | 
 | 	pDB = aup->tx_db_inuse[aup->tx_head]; | 
 | 	skb_copy_from_linear_data(skb, pDB->vaddr, skb->len); | 
 | 	if (skb->len < ETH_ZLEN) { | 
 | 		for (i=skb->len; i<ETH_ZLEN; i++) { | 
 | 			((char *)pDB->vaddr)[i] = 0; | 
 | 		} | 
 | 		ptxd->len = ETH_ZLEN; | 
 | 	} | 
 | 	else | 
 | 		ptxd->len = skb->len; | 
 |  | 
 | 	ps->tx_packets++; | 
 | 	ps->tx_bytes += ptxd->len; | 
 |  | 
 | 	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; | 
 | 	au_sync(); | 
 | 	dev_kfree_skb(skb); | 
 | 	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); | 
 | 	dev->trans_start = jiffies; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void update_rx_stats(struct net_device *dev, u32 status) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	struct net_device_stats *ps = &dev->stats; | 
 |  | 
 | 	ps->rx_packets++; | 
 | 	if (status & RX_MCAST_FRAME) | 
 | 		ps->multicast++; | 
 |  | 
 | 	if (status & RX_ERROR) { | 
 | 		ps->rx_errors++; | 
 | 		if (status & RX_MISSED_FRAME) | 
 | 			ps->rx_missed_errors++; | 
 | 		if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR)) | 
 | 			ps->rx_length_errors++; | 
 | 		if (status & RX_CRC_ERROR) | 
 | 			ps->rx_crc_errors++; | 
 | 		if (status & RX_COLL) | 
 | 			ps->collisions++; | 
 | 	} | 
 | 	else | 
 | 		ps->rx_bytes += status & RX_FRAME_LEN_MASK; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Au1000 receive routine. | 
 |  */ | 
 | static int au1000_rx(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	struct sk_buff *skb; | 
 | 	volatile rx_dma_t *prxd; | 
 | 	u32 buff_stat, status; | 
 | 	db_dest_t *pDB; | 
 | 	u32	frmlen; | 
 |  | 
 | 	if (au1000_debug > 5) | 
 | 		printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head); | 
 |  | 
 | 	prxd = aup->rx_dma_ring[aup->rx_head]; | 
 | 	buff_stat = prxd->buff_stat; | 
 | 	while (buff_stat & RX_T_DONE)  { | 
 | 		status = prxd->status; | 
 | 		pDB = aup->rx_db_inuse[aup->rx_head]; | 
 | 		update_rx_stats(dev, status); | 
 | 		if (!(status & RX_ERROR))  { | 
 |  | 
 | 			/* good frame */ | 
 | 			frmlen = (status & RX_FRAME_LEN_MASK); | 
 | 			frmlen -= 4; /* Remove FCS */ | 
 | 			skb = dev_alloc_skb(frmlen + 2); | 
 | 			if (skb == NULL) { | 
 | 				printk(KERN_ERR | 
 | 				       "%s: Memory squeeze, dropping packet.\n", | 
 | 				       dev->name); | 
 | 				dev->stats.rx_dropped++; | 
 | 				continue; | 
 | 			} | 
 | 			skb_reserve(skb, 2);	/* 16 byte IP header align */ | 
 | 			skb_copy_to_linear_data(skb, | 
 | 				(unsigned char *)pDB->vaddr, frmlen); | 
 | 			skb_put(skb, frmlen); | 
 | 			skb->protocol = eth_type_trans(skb, dev); | 
 | 			netif_rx(skb);	/* pass the packet to upper layers */ | 
 | 		} | 
 | 		else { | 
 | 			if (au1000_debug > 4) { | 
 | 				if (status & RX_MISSED_FRAME) | 
 | 					printk("rx miss\n"); | 
 | 				if (status & RX_WDOG_TIMER) | 
 | 					printk("rx wdog\n"); | 
 | 				if (status & RX_RUNT) | 
 | 					printk("rx runt\n"); | 
 | 				if (status & RX_OVERLEN) | 
 | 					printk("rx overlen\n"); | 
 | 				if (status & RX_COLL) | 
 | 					printk("rx coll\n"); | 
 | 				if (status & RX_MII_ERROR) | 
 | 					printk("rx mii error\n"); | 
 | 				if (status & RX_CRC_ERROR) | 
 | 					printk("rx crc error\n"); | 
 | 				if (status & RX_LEN_ERROR) | 
 | 					printk("rx len error\n"); | 
 | 				if (status & RX_U_CNTRL_FRAME) | 
 | 					printk("rx u control frame\n"); | 
 | 				if (status & RX_MISSED_FRAME) | 
 | 					printk("rx miss\n"); | 
 | 			} | 
 | 		} | 
 | 		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); | 
 | 		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); | 
 | 		au_sync(); | 
 |  | 
 | 		/* next descriptor */ | 
 | 		prxd = aup->rx_dma_ring[aup->rx_head]; | 
 | 		buff_stat = prxd->buff_stat; | 
 | 		dev->last_rx = jiffies; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Au1000 interrupt service routine. | 
 |  */ | 
 | static irqreturn_t au1000_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct net_device *dev = dev_id; | 
 |  | 
 | 	/* Handle RX interrupts first to minimize chance of overrun */ | 
 |  | 
 | 	au1000_rx(dev); | 
 | 	au1000_tx_ack(dev); | 
 | 	return IRQ_RETVAL(1); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * The Tx ring has been full longer than the watchdog timeout | 
 |  * value. The transmitter must be hung? | 
 |  */ | 
 | static void au1000_tx_timeout(struct net_device *dev) | 
 | { | 
 | 	printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev); | 
 | 	reset_mac(dev); | 
 | 	au1000_init(dev); | 
 | 	dev->trans_start = jiffies; | 
 | 	netif_wake_queue(dev); | 
 | } | 
 |  | 
 | static void set_rx_mode(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags); | 
 |  | 
 | 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */ | 
 | 		aup->mac->control |= MAC_PROMISCUOUS; | 
 | 	} else if ((dev->flags & IFF_ALLMULTI)  || | 
 | 			   dev->mc_count > MULTICAST_FILTER_LIMIT) { | 
 | 		aup->mac->control |= MAC_PASS_ALL_MULTI; | 
 | 		aup->mac->control &= ~MAC_PROMISCUOUS; | 
 | 		printk(KERN_INFO "%s: Pass all multicast\n", dev->name); | 
 | 	} else { | 
 | 		int i; | 
 | 		struct dev_mc_list *mclist; | 
 | 		u32 mc_filter[2];	/* Multicast hash filter */ | 
 |  | 
 | 		mc_filter[1] = mc_filter[0] = 0; | 
 | 		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; | 
 | 			 i++, mclist = mclist->next) { | 
 | 			set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26, | 
 | 					(long *)mc_filter); | 
 | 		} | 
 | 		aup->mac->multi_hash_high = mc_filter[1]; | 
 | 		aup->mac->multi_hash_low = mc_filter[0]; | 
 | 		aup->mac->control &= ~MAC_PROMISCUOUS; | 
 | 		aup->mac->control |= MAC_HASH_MODE; | 
 | 	} | 
 | } | 
 |  | 
 | static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 |  | 
 | 	if (!netif_running(dev)) return -EINVAL; | 
 |  | 
 | 	if (!aup->phy_dev) return -EINVAL; // PHY not controllable | 
 |  | 
 | 	return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd); | 
 | } | 
 |  | 
 | module_init(au1000_init_module); | 
 | module_exit(au1000_cleanup_module); |