| /* |
| * Copyright © 2006-2007 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| */ |
| |
| #include <linux/dmi.h> |
| #include <linux/module.h> |
| #include <linux/input.h> |
| #include <linux/i2c.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/vgaarb.h> |
| #include <drm/drm_edid.h> |
| #include "drmP.h" |
| #include "intel_drv.h" |
| #include "i915_drm.h" |
| #include "i915_drv.h" |
| #include "i915_trace.h" |
| #include "drm_dp_helper.h" |
| #include "drm_crtc_helper.h" |
| #include <linux/dma_remapping.h> |
| |
| #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) |
| |
| bool intel_pipe_has_type(struct drm_crtc *crtc, int type); |
| static void intel_increase_pllclock(struct drm_crtc *crtc); |
| static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on); |
| |
| typedef struct { |
| /* given values */ |
| int n; |
| int m1, m2; |
| int p1, p2; |
| /* derived values */ |
| int dot; |
| int vco; |
| int m; |
| int p; |
| } intel_clock_t; |
| |
| typedef struct { |
| int min, max; |
| } intel_range_t; |
| |
| typedef struct { |
| int dot_limit; |
| int p2_slow, p2_fast; |
| } intel_p2_t; |
| |
| #define INTEL_P2_NUM 2 |
| typedef struct intel_limit intel_limit_t; |
| struct intel_limit { |
| intel_range_t dot, vco, n, m, m1, m2, p, p1; |
| intel_p2_t p2; |
| bool (* find_pll)(const intel_limit_t *, struct drm_crtc *, |
| int, int, intel_clock_t *, intel_clock_t *); |
| }; |
| |
| /* FDI */ |
| #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */ |
| |
| static bool |
| intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock); |
| static bool |
| intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock); |
| |
| static bool |
| intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock); |
| static bool |
| intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock); |
| |
| static bool |
| intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock); |
| |
| static inline u32 /* units of 100MHz */ |
| intel_fdi_link_freq(struct drm_device *dev) |
| { |
| if (IS_GEN5(dev)) { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2; |
| } else |
| return 27; |
| } |
| |
| static const intel_limit_t intel_limits_i8xx_dvo = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 930000, .max = 1400000 }, |
| .n = { .min = 3, .max = 16 }, |
| .m = { .min = 96, .max = 140 }, |
| .m1 = { .min = 18, .max = 26 }, |
| .m2 = { .min = 6, .max = 16 }, |
| .p = { .min = 4, .max = 128 }, |
| .p1 = { .min = 2, .max = 33 }, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 4, .p2_fast = 2 }, |
| .find_pll = intel_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_i8xx_lvds = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 930000, .max = 1400000 }, |
| .n = { .min = 3, .max = 16 }, |
| .m = { .min = 96, .max = 140 }, |
| .m1 = { .min = 18, .max = 26 }, |
| .m2 = { .min = 6, .max = 16 }, |
| .p = { .min = 4, .max = 128 }, |
| .p1 = { .min = 1, .max = 6 }, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 14, .p2_fast = 7 }, |
| .find_pll = intel_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_i9xx_sdvo = { |
| .dot = { .min = 20000, .max = 400000 }, |
| .vco = { .min = 1400000, .max = 2800000 }, |
| .n = { .min = 1, .max = 6 }, |
| .m = { .min = 70, .max = 120 }, |
| .m1 = { .min = 10, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 200000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| .find_pll = intel_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_i9xx_lvds = { |
| .dot = { .min = 20000, .max = 400000 }, |
| .vco = { .min = 1400000, .max = 2800000 }, |
| .n = { .min = 1, .max = 6 }, |
| .m = { .min = 70, .max = 120 }, |
| .m1 = { .min = 10, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 7, .max = 98 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 112000, |
| .p2_slow = 14, .p2_fast = 7 }, |
| .find_pll = intel_find_best_PLL, |
| }; |
| |
| |
| static const intel_limit_t intel_limits_g4x_sdvo = { |
| .dot = { .min = 25000, .max = 270000 }, |
| .vco = { .min = 1750000, .max = 3500000}, |
| .n = { .min = 1, .max = 4 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 17, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 10, .max = 30 }, |
| .p1 = { .min = 1, .max = 3}, |
| .p2 = { .dot_limit = 270000, |
| .p2_slow = 10, |
| .p2_fast = 10 |
| }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_g4x_hdmi = { |
| .dot = { .min = 22000, .max = 400000 }, |
| .vco = { .min = 1750000, .max = 3500000}, |
| .n = { .min = 1, .max = 4 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 16, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8}, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_g4x_single_channel_lvds = { |
| .dot = { .min = 20000, .max = 115000 }, |
| .vco = { .min = 1750000, .max = 3500000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 17, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 28, .max = 112 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 0, |
| .p2_slow = 14, .p2_fast = 14 |
| }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_g4x_dual_channel_lvds = { |
| .dot = { .min = 80000, .max = 224000 }, |
| .vco = { .min = 1750000, .max = 3500000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 17, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 14, .max = 42 }, |
| .p1 = { .min = 2, .max = 6 }, |
| .p2 = { .dot_limit = 0, |
| .p2_slow = 7, .p2_fast = 7 |
| }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_g4x_display_port = { |
| .dot = { .min = 161670, .max = 227000 }, |
| .vco = { .min = 1750000, .max = 3500000}, |
| .n = { .min = 1, .max = 2 }, |
| .m = { .min = 97, .max = 108 }, |
| .m1 = { .min = 0x10, .max = 0x12 }, |
| .m2 = { .min = 0x05, .max = 0x06 }, |
| .p = { .min = 10, .max = 20 }, |
| .p1 = { .min = 1, .max = 2}, |
| .p2 = { .dot_limit = 0, |
| .p2_slow = 10, .p2_fast = 10 }, |
| .find_pll = intel_find_pll_g4x_dp, |
| }; |
| |
| static const intel_limit_t intel_limits_pineview_sdvo = { |
| .dot = { .min = 20000, .max = 400000}, |
| .vco = { .min = 1700000, .max = 3500000 }, |
| /* Pineview's Ncounter is a ring counter */ |
| .n = { .min = 3, .max = 6 }, |
| .m = { .min = 2, .max = 256 }, |
| /* Pineview only has one combined m divider, which we treat as m2. */ |
| .m1 = { .min = 0, .max = 0 }, |
| .m2 = { .min = 0, .max = 254 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 200000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| .find_pll = intel_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_pineview_lvds = { |
| .dot = { .min = 20000, .max = 400000 }, |
| .vco = { .min = 1700000, .max = 3500000 }, |
| .n = { .min = 3, .max = 6 }, |
| .m = { .min = 2, .max = 256 }, |
| .m1 = { .min = 0, .max = 0 }, |
| .m2 = { .min = 0, .max = 254 }, |
| .p = { .min = 7, .max = 112 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 112000, |
| .p2_slow = 14, .p2_fast = 14 }, |
| .find_pll = intel_find_best_PLL, |
| }; |
| |
| /* Ironlake / Sandybridge |
| * |
| * We calculate clock using (register_value + 2) for N/M1/M2, so here |
| * the range value for them is (actual_value - 2). |
| */ |
| static const intel_limit_t intel_limits_ironlake_dac = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 5 }, |
| .m = { .min = 79, .max = 127 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_single_lvds = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 79, .max = 118 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 28, .max = 112 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 14, .p2_fast = 14 }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_dual_lvds = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 79, .max = 127 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 14, .max = 56 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 7, .p2_fast = 7 }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| /* LVDS 100mhz refclk limits. */ |
| static const intel_limit_t intel_limits_ironlake_single_lvds_100m = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 2 }, |
| .m = { .min = 79, .max = 126 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 28, .max = 112 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 14, .p2_fast = 14 }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 79, .max = 126 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 14, .max = 42 }, |
| .p1 = { .min = 2, .max = 6 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 7, .p2_fast = 7 }, |
| .find_pll = intel_g4x_find_best_PLL, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_display_port = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000}, |
| .n = { .min = 1, .max = 2 }, |
| .m = { .min = 81, .max = 90 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 10, .max = 20 }, |
| .p1 = { .min = 1, .max = 2}, |
| .p2 = { .dot_limit = 0, |
| .p2_slow = 10, .p2_fast = 10 }, |
| .find_pll = intel_find_pll_ironlake_dp, |
| }; |
| |
| static const intel_limit_t intel_limits_vlv_dac = { |
| .dot = { .min = 25000, .max = 270000 }, |
| .vco = { .min = 4000000, .max = 6000000 }, |
| .n = { .min = 1, .max = 7 }, |
| .m = { .min = 22, .max = 450 }, /* guess */ |
| .m1 = { .min = 2, .max = 3 }, |
| .m2 = { .min = 11, .max = 156 }, |
| .p = { .min = 10, .max = 30 }, |
| .p1 = { .min = 2, .max = 3 }, |
| .p2 = { .dot_limit = 270000, |
| .p2_slow = 2, .p2_fast = 20 }, |
| .find_pll = intel_vlv_find_best_pll, |
| }; |
| |
| static const intel_limit_t intel_limits_vlv_hdmi = { |
| .dot = { .min = 20000, .max = 165000 }, |
| .vco = { .min = 5994000, .max = 4000000 }, |
| .n = { .min = 1, .max = 7 }, |
| .m = { .min = 60, .max = 300 }, /* guess */ |
| .m1 = { .min = 2, .max = 3 }, |
| .m2 = { .min = 11, .max = 156 }, |
| .p = { .min = 10, .max = 30 }, |
| .p1 = { .min = 2, .max = 3 }, |
| .p2 = { .dot_limit = 270000, |
| .p2_slow = 2, .p2_fast = 20 }, |
| .find_pll = intel_vlv_find_best_pll, |
| }; |
| |
| static const intel_limit_t intel_limits_vlv_dp = { |
| .dot = { .min = 162000, .max = 270000 }, |
| .vco = { .min = 5994000, .max = 4000000 }, |
| .n = { .min = 1, .max = 7 }, |
| .m = { .min = 60, .max = 300 }, /* guess */ |
| .m1 = { .min = 2, .max = 3 }, |
| .m2 = { .min = 11, .max = 156 }, |
| .p = { .min = 10, .max = 30 }, |
| .p1 = { .min = 2, .max = 3 }, |
| .p2 = { .dot_limit = 270000, |
| .p2_slow = 2, .p2_fast = 20 }, |
| .find_pll = intel_vlv_find_best_pll, |
| }; |
| |
| u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg) |
| { |
| unsigned long flags; |
| u32 val = 0; |
| |
| spin_lock_irqsave(&dev_priv->dpio_lock, flags); |
| if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) { |
| DRM_ERROR("DPIO idle wait timed out\n"); |
| goto out_unlock; |
| } |
| |
| I915_WRITE(DPIO_REG, reg); |
| I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID | |
| DPIO_BYTE); |
| if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) { |
| DRM_ERROR("DPIO read wait timed out\n"); |
| goto out_unlock; |
| } |
| val = I915_READ(DPIO_DATA); |
| |
| out_unlock: |
| spin_unlock_irqrestore(&dev_priv->dpio_lock, flags); |
| return val; |
| } |
| |
| static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, |
| u32 val) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev_priv->dpio_lock, flags); |
| if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) { |
| DRM_ERROR("DPIO idle wait timed out\n"); |
| goto out_unlock; |
| } |
| |
| I915_WRITE(DPIO_DATA, val); |
| I915_WRITE(DPIO_REG, reg); |
| I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID | |
| DPIO_BYTE); |
| if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) |
| DRM_ERROR("DPIO write wait timed out\n"); |
| |
| out_unlock: |
| spin_unlock_irqrestore(&dev_priv->dpio_lock, flags); |
| } |
| |
| static void vlv_init_dpio(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| /* Reset the DPIO config */ |
| I915_WRITE(DPIO_CTL, 0); |
| POSTING_READ(DPIO_CTL); |
| I915_WRITE(DPIO_CTL, 1); |
| POSTING_READ(DPIO_CTL); |
| } |
| |
| static int intel_dual_link_lvds_callback(const struct dmi_system_id *id) |
| { |
| DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident); |
| return 1; |
| } |
| |
| static const struct dmi_system_id intel_dual_link_lvds[] = { |
| { |
| .callback = intel_dual_link_lvds_callback, |
| .ident = "Apple MacBook Pro (Core i5/i7 Series)", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."), |
| DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"), |
| }, |
| }, |
| { } /* terminating entry */ |
| }; |
| |
| static bool is_dual_link_lvds(struct drm_i915_private *dev_priv, |
| unsigned int reg) |
| { |
| unsigned int val; |
| |
| /* use the module option value if specified */ |
| if (i915_lvds_channel_mode > 0) |
| return i915_lvds_channel_mode == 2; |
| |
| if (dmi_check_system(intel_dual_link_lvds)) |
| return true; |
| |
| if (dev_priv->lvds_val) |
| val = dev_priv->lvds_val; |
| else { |
| /* BIOS should set the proper LVDS register value at boot, but |
| * in reality, it doesn't set the value when the lid is closed; |
| * we need to check "the value to be set" in VBT when LVDS |
| * register is uninitialized. |
| */ |
| val = I915_READ(reg); |
| if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED))) |
| val = dev_priv->bios_lvds_val; |
| dev_priv->lvds_val = val; |
| } |
| return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP; |
| } |
| |
| static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc, |
| int refclk) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| const intel_limit_t *limit; |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| if (is_dual_link_lvds(dev_priv, PCH_LVDS)) { |
| /* LVDS dual channel */ |
| if (refclk == 100000) |
| limit = &intel_limits_ironlake_dual_lvds_100m; |
| else |
| limit = &intel_limits_ironlake_dual_lvds; |
| } else { |
| if (refclk == 100000) |
| limit = &intel_limits_ironlake_single_lvds_100m; |
| else |
| limit = &intel_limits_ironlake_single_lvds; |
| } |
| } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || |
| HAS_eDP) |
| limit = &intel_limits_ironlake_display_port; |
| else |
| limit = &intel_limits_ironlake_dac; |
| |
| return limit; |
| } |
| |
| static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| const intel_limit_t *limit; |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| if (is_dual_link_lvds(dev_priv, LVDS)) |
| /* LVDS with dual channel */ |
| limit = &intel_limits_g4x_dual_channel_lvds; |
| else |
| /* LVDS with dual channel */ |
| limit = &intel_limits_g4x_single_channel_lvds; |
| } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) || |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) { |
| limit = &intel_limits_g4x_hdmi; |
| } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) { |
| limit = &intel_limits_g4x_sdvo; |
| } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { |
| limit = &intel_limits_g4x_display_port; |
| } else /* The option is for other outputs */ |
| limit = &intel_limits_i9xx_sdvo; |
| |
| return limit; |
| } |
| |
| static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk) |
| { |
| struct drm_device *dev = crtc->dev; |
| const intel_limit_t *limit; |
| |
| if (HAS_PCH_SPLIT(dev)) |
| limit = intel_ironlake_limit(crtc, refclk); |
| else if (IS_G4X(dev)) { |
| limit = intel_g4x_limit(crtc); |
| } else if (IS_PINEVIEW(dev)) { |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) |
| limit = &intel_limits_pineview_lvds; |
| else |
| limit = &intel_limits_pineview_sdvo; |
| } else if (IS_VALLEYVIEW(dev)) { |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) |
| limit = &intel_limits_vlv_dac; |
| else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) |
| limit = &intel_limits_vlv_hdmi; |
| else |
| limit = &intel_limits_vlv_dp; |
| } else if (!IS_GEN2(dev)) { |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) |
| limit = &intel_limits_i9xx_lvds; |
| else |
| limit = &intel_limits_i9xx_sdvo; |
| } else { |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) |
| limit = &intel_limits_i8xx_lvds; |
| else |
| limit = &intel_limits_i8xx_dvo; |
| } |
| return limit; |
| } |
| |
| /* m1 is reserved as 0 in Pineview, n is a ring counter */ |
| static void pineview_clock(int refclk, intel_clock_t *clock) |
| { |
| clock->m = clock->m2 + 2; |
| clock->p = clock->p1 * clock->p2; |
| clock->vco = refclk * clock->m / clock->n; |
| clock->dot = clock->vco / clock->p; |
| } |
| |
| static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock) |
| { |
| if (IS_PINEVIEW(dev)) { |
| pineview_clock(refclk, clock); |
| return; |
| } |
| clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); |
| clock->p = clock->p1 * clock->p2; |
| clock->vco = refclk * clock->m / (clock->n + 2); |
| clock->dot = clock->vco / clock->p; |
| } |
| |
| /** |
| * Returns whether any output on the specified pipe is of the specified type |
| */ |
| bool intel_pipe_has_type(struct drm_crtc *crtc, int type) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_encoder *encoder; |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| if (encoder->type == type) |
| return true; |
| |
| return false; |
| } |
| |
| #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) |
| /** |
| * Returns whether the given set of divisors are valid for a given refclk with |
| * the given connectors. |
| */ |
| |
| static bool intel_PLL_is_valid(struct drm_device *dev, |
| const intel_limit_t *limit, |
| const intel_clock_t *clock) |
| { |
| if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) |
| INTELPllInvalid("p1 out of range\n"); |
| if (clock->p < limit->p.min || limit->p.max < clock->p) |
| INTELPllInvalid("p out of range\n"); |
| if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) |
| INTELPllInvalid("m2 out of range\n"); |
| if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) |
| INTELPllInvalid("m1 out of range\n"); |
| if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev)) |
| INTELPllInvalid("m1 <= m2\n"); |
| if (clock->m < limit->m.min || limit->m.max < clock->m) |
| INTELPllInvalid("m out of range\n"); |
| if (clock->n < limit->n.min || limit->n.max < clock->n) |
| INTELPllInvalid("n out of range\n"); |
| if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) |
| INTELPllInvalid("vco out of range\n"); |
| /* XXX: We may need to be checking "Dot clock" depending on the multiplier, |
| * connector, etc., rather than just a single range. |
| */ |
| if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) |
| INTELPllInvalid("dot out of range\n"); |
| |
| return true; |
| } |
| |
| static bool |
| intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock) |
| |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| intel_clock_t clock; |
| int err = target; |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && |
| (I915_READ(LVDS)) != 0) { |
| /* |
| * For LVDS, if the panel is on, just rely on its current |
| * settings for dual-channel. We haven't figured out how to |
| * reliably set up different single/dual channel state, if we |
| * even can. |
| */ |
| if (is_dual_link_lvds(dev_priv, LVDS)) |
| clock.p2 = limit->p2.p2_fast; |
| else |
| clock.p2 = limit->p2.p2_slow; |
| } else { |
| if (target < limit->p2.dot_limit) |
| clock.p2 = limit->p2.p2_slow; |
| else |
| clock.p2 = limit->p2.p2_fast; |
| } |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; |
| clock.m1++) { |
| for (clock.m2 = limit->m2.min; |
| clock.m2 <= limit->m2.max; clock.m2++) { |
| /* m1 is always 0 in Pineview */ |
| if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev)) |
| break; |
| for (clock.n = limit->n.min; |
| clock.n <= limit->n.max; clock.n++) { |
| for (clock.p1 = limit->p1.min; |
| clock.p1 <= limit->p1.max; clock.p1++) { |
| int this_err; |
| |
| intel_clock(dev, refclk, &clock); |
| if (!intel_PLL_is_valid(dev, limit, |
| &clock)) |
| continue; |
| if (match_clock && |
| clock.p != match_clock->p) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err) { |
| *best_clock = clock; |
| err = this_err; |
| } |
| } |
| } |
| } |
| } |
| |
| return (err != target); |
| } |
| |
| static bool |
| intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| intel_clock_t clock; |
| int max_n; |
| bool found; |
| /* approximately equals target * 0.00585 */ |
| int err_most = (target >> 8) + (target >> 9); |
| found = false; |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| int lvds_reg; |
| |
| if (HAS_PCH_SPLIT(dev)) |
| lvds_reg = PCH_LVDS; |
| else |
| lvds_reg = LVDS; |
| if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) == |
| LVDS_CLKB_POWER_UP) |
| clock.p2 = limit->p2.p2_fast; |
| else |
| clock.p2 = limit->p2.p2_slow; |
| } else { |
| if (target < limit->p2.dot_limit) |
| clock.p2 = limit->p2.p2_slow; |
| else |
| clock.p2 = limit->p2.p2_fast; |
| } |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| max_n = limit->n.max; |
| /* based on hardware requirement, prefer smaller n to precision */ |
| for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { |
| /* based on hardware requirement, prefere larger m1,m2 */ |
| for (clock.m1 = limit->m1.max; |
| clock.m1 >= limit->m1.min; clock.m1--) { |
| for (clock.m2 = limit->m2.max; |
| clock.m2 >= limit->m2.min; clock.m2--) { |
| for (clock.p1 = limit->p1.max; |
| clock.p1 >= limit->p1.min; clock.p1--) { |
| int this_err; |
| |
| intel_clock(dev, refclk, &clock); |
| if (!intel_PLL_is_valid(dev, limit, |
| &clock)) |
| continue; |
| if (match_clock && |
| clock.p != match_clock->p) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err_most) { |
| *best_clock = clock; |
| err_most = this_err; |
| max_n = clock.n; |
| found = true; |
| } |
| } |
| } |
| } |
| } |
| return found; |
| } |
| |
| static bool |
| intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock) |
| { |
| struct drm_device *dev = crtc->dev; |
| intel_clock_t clock; |
| |
| if (target < 200000) { |
| clock.n = 1; |
| clock.p1 = 2; |
| clock.p2 = 10; |
| clock.m1 = 12; |
| clock.m2 = 9; |
| } else { |
| clock.n = 2; |
| clock.p1 = 1; |
| clock.p2 = 10; |
| clock.m1 = 14; |
| clock.m2 = 8; |
| } |
| intel_clock(dev, refclk, &clock); |
| memcpy(best_clock, &clock, sizeof(intel_clock_t)); |
| return true; |
| } |
| |
| /* DisplayPort has only two frequencies, 162MHz and 270MHz */ |
| static bool |
| intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock) |
| { |
| intel_clock_t clock; |
| if (target < 200000) { |
| clock.p1 = 2; |
| clock.p2 = 10; |
| clock.n = 2; |
| clock.m1 = 23; |
| clock.m2 = 8; |
| } else { |
| clock.p1 = 1; |
| clock.p2 = 10; |
| clock.n = 1; |
| clock.m1 = 14; |
| clock.m2 = 2; |
| } |
| clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2); |
| clock.p = (clock.p1 * clock.p2); |
| clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p; |
| clock.vco = 0; |
| memcpy(best_clock, &clock, sizeof(intel_clock_t)); |
| return true; |
| } |
| static bool |
| intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock) |
| { |
| u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2; |
| u32 m, n, fastclk; |
| u32 updrate, minupdate, fracbits, p; |
| unsigned long bestppm, ppm, absppm; |
| int dotclk, flag; |
| |
| flag = 0; |
| dotclk = target * 1000; |
| bestppm = 1000000; |
| ppm = absppm = 0; |
| fastclk = dotclk / (2*100); |
| updrate = 0; |
| minupdate = 19200; |
| fracbits = 1; |
| n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0; |
| bestm1 = bestm2 = bestp1 = bestp2 = 0; |
| |
| /* based on hardware requirement, prefer smaller n to precision */ |
| for (n = limit->n.min; n <= ((refclk) / minupdate); n++) { |
| updrate = refclk / n; |
| for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) { |
| for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) { |
| if (p2 > 10) |
| p2 = p2 - 1; |
| p = p1 * p2; |
| /* based on hardware requirement, prefer bigger m1,m2 values */ |
| for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) { |
| m2 = (((2*(fastclk * p * n / m1 )) + |
| refclk) / (2*refclk)); |
| m = m1 * m2; |
| vco = updrate * m; |
| if (vco >= limit->vco.min && vco < limit->vco.max) { |
| ppm = 1000000 * ((vco / p) - fastclk) / fastclk; |
| absppm = (ppm > 0) ? ppm : (-ppm); |
| if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) { |
| bestppm = 0; |
| flag = 1; |
| } |
| if (absppm < bestppm - 10) { |
| bestppm = absppm; |
| flag = 1; |
| } |
| if (flag) { |
| bestn = n; |
| bestm1 = m1; |
| bestm2 = m2; |
| bestp1 = p1; |
| bestp2 = p2; |
| flag = 0; |
| } |
| } |
| } |
| } |
| } |
| } |
| best_clock->n = bestn; |
| best_clock->m1 = bestm1; |
| best_clock->m2 = bestm2; |
| best_clock->p1 = bestp1; |
| best_clock->p2 = bestp2; |
| |
| return true; |
| } |
| |
| static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 frame, frame_reg = PIPEFRAME(pipe); |
| |
| frame = I915_READ(frame_reg); |
| |
| if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50)) |
| DRM_DEBUG_KMS("vblank wait timed out\n"); |
| } |
| |
| /** |
| * intel_wait_for_vblank - wait for vblank on a given pipe |
| * @dev: drm device |
| * @pipe: pipe to wait for |
| * |
| * Wait for vblank to occur on a given pipe. Needed for various bits of |
| * mode setting code. |
| */ |
| void intel_wait_for_vblank(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipestat_reg = PIPESTAT(pipe); |
| |
| if (INTEL_INFO(dev)->gen >= 5) { |
| ironlake_wait_for_vblank(dev, pipe); |
| return; |
| } |
| |
| /* Clear existing vblank status. Note this will clear any other |
| * sticky status fields as well. |
| * |
| * This races with i915_driver_irq_handler() with the result |
| * that either function could miss a vblank event. Here it is not |
| * fatal, as we will either wait upon the next vblank interrupt or |
| * timeout. Generally speaking intel_wait_for_vblank() is only |
| * called during modeset at which time the GPU should be idle and |
| * should *not* be performing page flips and thus not waiting on |
| * vblanks... |
| * Currently, the result of us stealing a vblank from the irq |
| * handler is that a single frame will be skipped during swapbuffers. |
| */ |
| I915_WRITE(pipestat_reg, |
| I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS); |
| |
| /* Wait for vblank interrupt bit to set */ |
| if (wait_for(I915_READ(pipestat_reg) & |
| PIPE_VBLANK_INTERRUPT_STATUS, |
| 50)) |
| DRM_DEBUG_KMS("vblank wait timed out\n"); |
| } |
| |
| /* |
| * intel_wait_for_pipe_off - wait for pipe to turn off |
| * @dev: drm device |
| * @pipe: pipe to wait for |
| * |
| * After disabling a pipe, we can't wait for vblank in the usual way, |
| * spinning on the vblank interrupt status bit, since we won't actually |
| * see an interrupt when the pipe is disabled. |
| * |
| * On Gen4 and above: |
| * wait for the pipe register state bit to turn off |
| * |
| * Otherwise: |
| * wait for the display line value to settle (it usually |
| * ends up stopping at the start of the next frame). |
| * |
| */ |
| void intel_wait_for_pipe_off(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| int reg = PIPECONF(pipe); |
| |
| /* Wait for the Pipe State to go off */ |
| if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, |
| 100)) |
| DRM_DEBUG_KMS("pipe_off wait timed out\n"); |
| } else { |
| u32 last_line, line_mask; |
| int reg = PIPEDSL(pipe); |
| unsigned long timeout = jiffies + msecs_to_jiffies(100); |
| |
| if (IS_GEN2(dev)) |
| line_mask = DSL_LINEMASK_GEN2; |
| else |
| line_mask = DSL_LINEMASK_GEN3; |
| |
| /* Wait for the display line to settle */ |
| do { |
| last_line = I915_READ(reg) & line_mask; |
| mdelay(5); |
| } while (((I915_READ(reg) & line_mask) != last_line) && |
| time_after(timeout, jiffies)); |
| if (time_after(jiffies, timeout)) |
| DRM_DEBUG_KMS("pipe_off wait timed out\n"); |
| } |
| } |
| |
| static const char *state_string(bool enabled) |
| { |
| return enabled ? "on" : "off"; |
| } |
| |
| /* Only for pre-ILK configs */ |
| static void assert_pll(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| int reg; |
| u32 val; |
| bool cur_state; |
| |
| reg = DPLL(pipe); |
| val = I915_READ(reg); |
| cur_state = !!(val & DPLL_VCO_ENABLE); |
| WARN(cur_state != state, |
| "PLL state assertion failure (expected %s, current %s)\n", |
| state_string(state), state_string(cur_state)); |
| } |
| #define assert_pll_enabled(d, p) assert_pll(d, p, true) |
| #define assert_pll_disabled(d, p) assert_pll(d, p, false) |
| |
| /* For ILK+ */ |
| static void assert_pch_pll(struct drm_i915_private *dev_priv, |
| struct intel_pch_pll *pll, |
| struct intel_crtc *crtc, |
| bool state) |
| { |
| u32 val; |
| bool cur_state; |
| |
| if (HAS_PCH_LPT(dev_priv->dev)) { |
| DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n"); |
| return; |
| } |
| |
| if (WARN (!pll, |
| "asserting PCH PLL %s with no PLL\n", state_string(state))) |
| return; |
| |
| val = I915_READ(pll->pll_reg); |
| cur_state = !!(val & DPLL_VCO_ENABLE); |
| WARN(cur_state != state, |
| "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n", |
| pll->pll_reg, state_string(state), state_string(cur_state), val); |
| |
| /* Make sure the selected PLL is correctly attached to the transcoder */ |
| if (crtc && HAS_PCH_CPT(dev_priv->dev)) { |
| u32 pch_dpll; |
| |
| pch_dpll = I915_READ(PCH_DPLL_SEL); |
| cur_state = pll->pll_reg == _PCH_DPLL_B; |
| if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state, |
| "PLL[%d] not attached to this transcoder %d: %08x\n", |
| cur_state, crtc->pipe, pch_dpll)) { |
| cur_state = !!(val >> (4*crtc->pipe + 3)); |
| WARN(cur_state != state, |
| "PLL[%d] not %s on this transcoder %d: %08x\n", |
| pll->pll_reg == _PCH_DPLL_B, |
| state_string(state), |
| crtc->pipe, |
| val); |
| } |
| } |
| } |
| #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true) |
| #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false) |
| |
| static void assert_fdi_tx(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| int reg; |
| u32 val; |
| bool cur_state; |
| |
| if (IS_HASWELL(dev_priv->dev)) { |
| /* On Haswell, DDI is used instead of FDI_TX_CTL */ |
| reg = DDI_FUNC_CTL(pipe); |
| val = I915_READ(reg); |
| cur_state = !!(val & PIPE_DDI_FUNC_ENABLE); |
| } else { |
| reg = FDI_TX_CTL(pipe); |
| val = I915_READ(reg); |
| cur_state = !!(val & FDI_TX_ENABLE); |
| } |
| WARN(cur_state != state, |
| "FDI TX state assertion failure (expected %s, current %s)\n", |
| state_string(state), state_string(cur_state)); |
| } |
| #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) |
| #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) |
| |
| static void assert_fdi_rx(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| int reg; |
| u32 val; |
| bool cur_state; |
| |
| if (IS_HASWELL(dev_priv->dev) && pipe > 0) { |
| DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n"); |
| return; |
| } else { |
| reg = FDI_RX_CTL(pipe); |
| val = I915_READ(reg); |
| cur_state = !!(val & FDI_RX_ENABLE); |
| } |
| WARN(cur_state != state, |
| "FDI RX state assertion failure (expected %s, current %s)\n", |
| state_string(state), state_string(cur_state)); |
| } |
| #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) |
| #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) |
| |
| static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| |
| /* ILK FDI PLL is always enabled */ |
| if (dev_priv->info->gen == 5) |
| return; |
| |
| /* On Haswell, DDI ports are responsible for the FDI PLL setup */ |
| if (IS_HASWELL(dev_priv->dev)) |
| return; |
| |
| reg = FDI_TX_CTL(pipe); |
| val = I915_READ(reg); |
| WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); |
| } |
| |
| static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| |
| if (IS_HASWELL(dev_priv->dev) && pipe > 0) { |
| DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n"); |
| return; |
| } |
| reg = FDI_RX_CTL(pipe); |
| val = I915_READ(reg); |
| WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n"); |
| } |
| |
| static void assert_panel_unlocked(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| int pp_reg, lvds_reg; |
| u32 val; |
| enum pipe panel_pipe = PIPE_A; |
| bool locked = true; |
| |
| if (HAS_PCH_SPLIT(dev_priv->dev)) { |
| pp_reg = PCH_PP_CONTROL; |
| lvds_reg = PCH_LVDS; |
| } else { |
| pp_reg = PP_CONTROL; |
| lvds_reg = LVDS; |
| } |
| |
| val = I915_READ(pp_reg); |
| if (!(val & PANEL_POWER_ON) || |
| ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS)) |
| locked = false; |
| |
| if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT) |
| panel_pipe = PIPE_B; |
| |
| WARN(panel_pipe == pipe && locked, |
| "panel assertion failure, pipe %c regs locked\n", |
| pipe_name(pipe)); |
| } |
| |
| void assert_pipe(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| int reg; |
| u32 val; |
| bool cur_state; |
| |
| /* if we need the pipe A quirk it must be always on */ |
| if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) |
| state = true; |
| |
| reg = PIPECONF(pipe); |
| val = I915_READ(reg); |
| cur_state = !!(val & PIPECONF_ENABLE); |
| WARN(cur_state != state, |
| "pipe %c assertion failure (expected %s, current %s)\n", |
| pipe_name(pipe), state_string(state), state_string(cur_state)); |
| } |
| |
| static void assert_plane(struct drm_i915_private *dev_priv, |
| enum plane plane, bool state) |
| { |
| int reg; |
| u32 val; |
| bool cur_state; |
| |
| reg = DSPCNTR(plane); |
| val = I915_READ(reg); |
| cur_state = !!(val & DISPLAY_PLANE_ENABLE); |
| WARN(cur_state != state, |
| "plane %c assertion failure (expected %s, current %s)\n", |
| plane_name(plane), state_string(state), state_string(cur_state)); |
| } |
| |
| #define assert_plane_enabled(d, p) assert_plane(d, p, true) |
| #define assert_plane_disabled(d, p) assert_plane(d, p, false) |
| |
| static void assert_planes_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| int reg, i; |
| u32 val; |
| int cur_pipe; |
| |
| /* Planes are fixed to pipes on ILK+ */ |
| if (HAS_PCH_SPLIT(dev_priv->dev)) { |
| reg = DSPCNTR(pipe); |
| val = I915_READ(reg); |
| WARN((val & DISPLAY_PLANE_ENABLE), |
| "plane %c assertion failure, should be disabled but not\n", |
| plane_name(pipe)); |
| return; |
| } |
| |
| /* Need to check both planes against the pipe */ |
| for (i = 0; i < 2; i++) { |
| reg = DSPCNTR(i); |
| val = I915_READ(reg); |
| cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> |
| DISPPLANE_SEL_PIPE_SHIFT; |
| WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe, |
| "plane %c assertion failure, should be off on pipe %c but is still active\n", |
| plane_name(i), pipe_name(pipe)); |
| } |
| } |
| |
| static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| bool enabled; |
| |
| if (HAS_PCH_LPT(dev_priv->dev)) { |
| DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n"); |
| return; |
| } |
| |
| val = I915_READ(PCH_DREF_CONTROL); |
| enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK | |
| DREF_SUPERSPREAD_SOURCE_MASK)); |
| WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n"); |
| } |
| |
| static void assert_transcoder_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| bool enabled; |
| |
| reg = TRANSCONF(pipe); |
| val = I915_READ(reg); |
| enabled = !!(val & TRANS_ENABLE); |
| WARN(enabled, |
| "transcoder assertion failed, should be off on pipe %c but is still active\n", |
| pipe_name(pipe)); |
| } |
| |
| static bool dp_pipe_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, u32 port_sel, u32 val) |
| { |
| if ((val & DP_PORT_EN) == 0) |
| return false; |
| |
| if (HAS_PCH_CPT(dev_priv->dev)) { |
| u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe); |
| u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg); |
| if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel) |
| return false; |
| } else { |
| if ((val & DP_PIPE_MASK) != (pipe << 30)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, u32 val) |
| { |
| if ((val & PORT_ENABLE) == 0) |
| return false; |
| |
| if (HAS_PCH_CPT(dev_priv->dev)) { |
| if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) |
| return false; |
| } else { |
| if ((val & TRANSCODER_MASK) != TRANSCODER(pipe)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, u32 val) |
| { |
| if ((val & LVDS_PORT_EN) == 0) |
| return false; |
| |
| if (HAS_PCH_CPT(dev_priv->dev)) { |
| if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) |
| return false; |
| } else { |
| if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, u32 val) |
| { |
| if ((val & ADPA_DAC_ENABLE) == 0) |
| return false; |
| if (HAS_PCH_CPT(dev_priv->dev)) { |
| if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) |
| return false; |
| } else { |
| if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe)) |
| return false; |
| } |
| return true; |
| } |
| |
| static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, int reg, u32 port_sel) |
| { |
| u32 val = I915_READ(reg); |
| WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val), |
| "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n", |
| reg, pipe_name(pipe)); |
| |
| WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0 |
| && (val & DP_PIPEB_SELECT), |
| "IBX PCH dp port still using transcoder B\n"); |
| } |
| |
| static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, int reg) |
| { |
| u32 val = I915_READ(reg); |
| WARN(hdmi_pipe_enabled(dev_priv, pipe, val), |
| "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n", |
| reg, pipe_name(pipe)); |
| |
| WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0 |
| && (val & SDVO_PIPE_B_SELECT), |
| "IBX PCH hdmi port still using transcoder B\n"); |
| } |
| |
| static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| |
| assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B); |
| assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C); |
| assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D); |
| |
| reg = PCH_ADPA; |
| val = I915_READ(reg); |
| WARN(adpa_pipe_enabled(dev_priv, pipe, val), |
| "PCH VGA enabled on transcoder %c, should be disabled\n", |
| pipe_name(pipe)); |
| |
| reg = PCH_LVDS; |
| val = I915_READ(reg); |
| WARN(lvds_pipe_enabled(dev_priv, pipe, val), |
| "PCH LVDS enabled on transcoder %c, should be disabled\n", |
| pipe_name(pipe)); |
| |
| assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB); |
| assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC); |
| assert_pch_hdmi_disabled(dev_priv, pipe, HDMID); |
| } |
| |
| /** |
| * intel_enable_pll - enable a PLL |
| * @dev_priv: i915 private structure |
| * @pipe: pipe PLL to enable |
| * |
| * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to |
| * make sure the PLL reg is writable first though, since the panel write |
| * protect mechanism may be enabled. |
| * |
| * Note! This is for pre-ILK only. |
| */ |
| static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| |
| /* No really, not for ILK+ */ |
| BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5); |
| |
| /* PLL is protected by panel, make sure we can write it */ |
| if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev)) |
| assert_panel_unlocked(dev_priv, pipe); |
| |
| reg = DPLL(pipe); |
| val = I915_READ(reg); |
| val |= DPLL_VCO_ENABLE; |
| |
| /* We do this three times for luck */ |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| udelay(150); /* wait for warmup */ |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| udelay(150); /* wait for warmup */ |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| udelay(150); /* wait for warmup */ |
| } |
| |
| /** |
| * intel_disable_pll - disable a PLL |
| * @dev_priv: i915 private structure |
| * @pipe: pipe PLL to disable |
| * |
| * Disable the PLL for @pipe, making sure the pipe is off first. |
| * |
| * Note! This is for pre-ILK only. |
| */ |
| static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| |
| /* Don't disable pipe A or pipe A PLLs if needed */ |
| if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE)) |
| return; |
| |
| /* Make sure the pipe isn't still relying on us */ |
| assert_pipe_disabled(dev_priv, pipe); |
| |
| reg = DPLL(pipe); |
| val = I915_READ(reg); |
| val &= ~DPLL_VCO_ENABLE; |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| } |
| |
| /* SBI access */ |
| static void |
| intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev_priv->dpio_lock, flags); |
| if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, |
| 100)) { |
| DRM_ERROR("timeout waiting for SBI to become ready\n"); |
| goto out_unlock; |
| } |
| |
| I915_WRITE(SBI_ADDR, |
| (reg << 16)); |
| I915_WRITE(SBI_DATA, |
| value); |
| I915_WRITE(SBI_CTL_STAT, |
| SBI_BUSY | |
| SBI_CTL_OP_CRWR); |
| |
| if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0, |
| 100)) { |
| DRM_ERROR("timeout waiting for SBI to complete write transaction\n"); |
| goto out_unlock; |
| } |
| |
| out_unlock: |
| spin_unlock_irqrestore(&dev_priv->dpio_lock, flags); |
| } |
| |
| static u32 |
| intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg) |
| { |
| unsigned long flags; |
| u32 value = 0; |
| |
| spin_lock_irqsave(&dev_priv->dpio_lock, flags); |
| if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, |
| 100)) { |
| DRM_ERROR("timeout waiting for SBI to become ready\n"); |
| goto out_unlock; |
| } |
| |
| I915_WRITE(SBI_ADDR, |
| (reg << 16)); |
| I915_WRITE(SBI_CTL_STAT, |
| SBI_BUSY | |
| SBI_CTL_OP_CRRD); |
| |
| if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0, |
| 100)) { |
| DRM_ERROR("timeout waiting for SBI to complete read transaction\n"); |
| goto out_unlock; |
| } |
| |
| value = I915_READ(SBI_DATA); |
| |
| out_unlock: |
| spin_unlock_irqrestore(&dev_priv->dpio_lock, flags); |
| return value; |
| } |
| |
| /** |
| * intel_enable_pch_pll - enable PCH PLL |
| * @dev_priv: i915 private structure |
| * @pipe: pipe PLL to enable |
| * |
| * The PCH PLL needs to be enabled before the PCH transcoder, since it |
| * drives the transcoder clock. |
| */ |
| static void intel_enable_pch_pll(struct intel_crtc *intel_crtc) |
| { |
| struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; |
| struct intel_pch_pll *pll; |
| int reg; |
| u32 val; |
| |
| /* PCH PLLs only available on ILK, SNB and IVB */ |
| BUG_ON(dev_priv->info->gen < 5); |
| pll = intel_crtc->pch_pll; |
| if (pll == NULL) |
| return; |
| |
| if (WARN_ON(pll->refcount == 0)) |
| return; |
| |
| DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n", |
| pll->pll_reg, pll->active, pll->on, |
| intel_crtc->base.base.id); |
| |
| /* PCH refclock must be enabled first */ |
| assert_pch_refclk_enabled(dev_priv); |
| |
| if (pll->active++ && pll->on) { |
| assert_pch_pll_enabled(dev_priv, pll, NULL); |
| return; |
| } |
| |
| DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg); |
| |
| reg = pll->pll_reg; |
| val = I915_READ(reg); |
| val |= DPLL_VCO_ENABLE; |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| udelay(200); |
| |
| pll->on = true; |
| } |
| |
| static void intel_disable_pch_pll(struct intel_crtc *intel_crtc) |
| { |
| struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; |
| struct intel_pch_pll *pll = intel_crtc->pch_pll; |
| int reg; |
| u32 val; |
| |
| /* PCH only available on ILK+ */ |
| BUG_ON(dev_priv->info->gen < 5); |
| if (pll == NULL) |
| return; |
| |
| if (WARN_ON(pll->refcount == 0)) |
| return; |
| |
| DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n", |
| pll->pll_reg, pll->active, pll->on, |
| intel_crtc->base.base.id); |
| |
| if (WARN_ON(pll->active == 0)) { |
| assert_pch_pll_disabled(dev_priv, pll, NULL); |
| return; |
| } |
| |
| if (--pll->active) { |
| assert_pch_pll_enabled(dev_priv, pll, NULL); |
| return; |
| } |
| |
| DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg); |
| |
| /* Make sure transcoder isn't still depending on us */ |
| assert_transcoder_disabled(dev_priv, intel_crtc->pipe); |
| |
| reg = pll->pll_reg; |
| val = I915_READ(reg); |
| val &= ~DPLL_VCO_ENABLE; |
| I915_WRITE(reg, val); |
| POSTING_READ(reg); |
| udelay(200); |
| |
| pll->on = false; |
| } |
| |
| static void intel_enable_transcoder(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| int reg; |
| u32 val, pipeconf_val; |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| |
| /* PCH only available on ILK+ */ |
| BUG_ON(dev_priv->info->gen < 5); |
| |
| /* Make sure PCH DPLL is enabled */ |
| assert_pch_pll_enabled(dev_priv, |
| to_intel_crtc(crtc)->pch_pll, |
| to_intel_crtc(crtc)); |
| |
| /* FDI must be feeding us bits for PCH ports */ |
| assert_fdi_tx_enabled(dev_priv, pipe); |
| assert_fdi_rx_enabled(dev_priv, pipe); |
| |
| if (IS_HASWELL(dev_priv->dev) && pipe > 0) { |
| DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n"); |
| return; |
| } |
| reg = TRANSCONF(pipe); |
| val = I915_READ(reg); |
| pipeconf_val = I915_READ(PIPECONF(pipe)); |
| |
| if (HAS_PCH_IBX(dev_priv->dev)) { |
| /* |
| * make the BPC in transcoder be consistent with |
| * that in pipeconf reg. |
| */ |
| val &= ~PIPE_BPC_MASK; |
| val |= pipeconf_val & PIPE_BPC_MASK; |
| } |
| |
| val &= ~TRANS_INTERLACE_MASK; |
| if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) |
| if (HAS_PCH_IBX(dev_priv->dev) && |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) |
| val |= TRANS_LEGACY_INTERLACED_ILK; |
| else |
| val |= TRANS_INTERLACED; |
| else |
| val |= TRANS_PROGRESSIVE; |
| |
| I915_WRITE(reg, val | TRANS_ENABLE); |
| if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100)) |
| DRM_ERROR("failed to enable transcoder %d\n", pipe); |
| } |
| |
| static void intel_disable_transcoder(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| |
| /* FDI relies on the transcoder */ |
| assert_fdi_tx_disabled(dev_priv, pipe); |
| assert_fdi_rx_disabled(dev_priv, pipe); |
| |
| /* Ports must be off as well */ |
| assert_pch_ports_disabled(dev_priv, pipe); |
| |
| reg = TRANSCONF(pipe); |
| val = I915_READ(reg); |
| val &= ~TRANS_ENABLE; |
| I915_WRITE(reg, val); |
| /* wait for PCH transcoder off, transcoder state */ |
| if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50)) |
| DRM_ERROR("failed to disable transcoder %d\n", pipe); |
| } |
| |
| /** |
| * intel_enable_pipe - enable a pipe, asserting requirements |
| * @dev_priv: i915 private structure |
| * @pipe: pipe to enable |
| * @pch_port: on ILK+, is this pipe driving a PCH port or not |
| * |
| * Enable @pipe, making sure that various hardware specific requirements |
| * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc. |
| * |
| * @pipe should be %PIPE_A or %PIPE_B. |
| * |
| * Will wait until the pipe is actually running (i.e. first vblank) before |
| * returning. |
| */ |
| static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, |
| bool pch_port) |
| { |
| int reg; |
| u32 val; |
| |
| /* |
| * A pipe without a PLL won't actually be able to drive bits from |
| * a plane. On ILK+ the pipe PLLs are integrated, so we don't |
| * need the check. |
| */ |
| if (!HAS_PCH_SPLIT(dev_priv->dev)) |
| assert_pll_enabled(dev_priv, pipe); |
| else { |
| if (pch_port) { |
| /* if driving the PCH, we need FDI enabled */ |
| assert_fdi_rx_pll_enabled(dev_priv, pipe); |
| assert_fdi_tx_pll_enabled(dev_priv, pipe); |
| } |
| /* FIXME: assert CPU port conditions for SNB+ */ |
| } |
| |
| reg = PIPECONF(pipe); |
| val = I915_READ(reg); |
| if (val & PIPECONF_ENABLE) |
| return; |
| |
| I915_WRITE(reg, val | PIPECONF_ENABLE); |
| intel_wait_for_vblank(dev_priv->dev, pipe); |
| } |
| |
| /** |
| * intel_disable_pipe - disable a pipe, asserting requirements |
| * @dev_priv: i915 private structure |
| * @pipe: pipe to disable |
| * |
| * Disable @pipe, making sure that various hardware specific requirements |
| * are met, if applicable, e.g. plane disabled, panel fitter off, etc. |
| * |
| * @pipe should be %PIPE_A or %PIPE_B. |
| * |
| * Will wait until the pipe has shut down before returning. |
| */ |
| static void intel_disable_pipe(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| |
| /* |
| * Make sure planes won't keep trying to pump pixels to us, |
| * or we might hang the display. |
| */ |
| assert_planes_disabled(dev_priv, pipe); |
| |
| /* Don't disable pipe A or pipe A PLLs if needed */ |
| if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE)) |
| return; |
| |
| reg = PIPECONF(pipe); |
| val = I915_READ(reg); |
| if ((val & PIPECONF_ENABLE) == 0) |
| return; |
| |
| I915_WRITE(reg, val & ~PIPECONF_ENABLE); |
| intel_wait_for_pipe_off(dev_priv->dev, pipe); |
| } |
| |
| /* |
| * Plane regs are double buffered, going from enabled->disabled needs a |
| * trigger in order to latch. The display address reg provides this. |
| */ |
| void intel_flush_display_plane(struct drm_i915_private *dev_priv, |
| enum plane plane) |
| { |
| I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane))); |
| I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane))); |
| } |
| |
| /** |
| * intel_enable_plane - enable a display plane on a given pipe |
| * @dev_priv: i915 private structure |
| * @plane: plane to enable |
| * @pipe: pipe being fed |
| * |
| * Enable @plane on @pipe, making sure that @pipe is running first. |
| */ |
| static void intel_enable_plane(struct drm_i915_private *dev_priv, |
| enum plane plane, enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| |
| /* If the pipe isn't enabled, we can't pump pixels and may hang */ |
| assert_pipe_enabled(dev_priv, pipe); |
| |
| reg = DSPCNTR(plane); |
| val = I915_READ(reg); |
| if (val & DISPLAY_PLANE_ENABLE) |
| return; |
| |
| I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE); |
| intel_flush_display_plane(dev_priv, plane); |
| intel_wait_for_vblank(dev_priv->dev, pipe); |
| } |
| |
| /** |
| * intel_disable_plane - disable a display plane |
| * @dev_priv: i915 private structure |
| * @plane: plane to disable |
| * @pipe: pipe consuming the data |
| * |
| * Disable @plane; should be an independent operation. |
| */ |
| static void intel_disable_plane(struct drm_i915_private *dev_priv, |
| enum plane plane, enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| |
| reg = DSPCNTR(plane); |
| val = I915_READ(reg); |
| if ((val & DISPLAY_PLANE_ENABLE) == 0) |
| return; |
| |
| I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE); |
| intel_flush_display_plane(dev_priv, plane); |
| intel_wait_for_vblank(dev_priv->dev, pipe); |
| } |
| |
| static void disable_pch_dp(struct drm_i915_private *dev_priv, |
| enum pipe pipe, int reg, u32 port_sel) |
| { |
| u32 val = I915_READ(reg); |
| if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) { |
| DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe); |
| I915_WRITE(reg, val & ~DP_PORT_EN); |
| } |
| } |
| |
| static void disable_pch_hdmi(struct drm_i915_private *dev_priv, |
| enum pipe pipe, int reg) |
| { |
| u32 val = I915_READ(reg); |
| if (hdmi_pipe_enabled(dev_priv, pipe, val)) { |
| DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n", |
| reg, pipe); |
| I915_WRITE(reg, val & ~PORT_ENABLE); |
| } |
| } |
| |
| /* Disable any ports connected to this transcoder */ |
| static void intel_disable_pch_ports(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| u32 reg, val; |
| |
| val = I915_READ(PCH_PP_CONTROL); |
| I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS); |
| |
| disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B); |
| disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C); |
| disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D); |
| |
| reg = PCH_ADPA; |
| val = I915_READ(reg); |
| if (adpa_pipe_enabled(dev_priv, pipe, val)) |
| I915_WRITE(reg, val & ~ADPA_DAC_ENABLE); |
| |
| reg = PCH_LVDS; |
| val = I915_READ(reg); |
| if (lvds_pipe_enabled(dev_priv, pipe, val)) { |
| DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val); |
| I915_WRITE(reg, val & ~LVDS_PORT_EN); |
| POSTING_READ(reg); |
| udelay(100); |
| } |
| |
| disable_pch_hdmi(dev_priv, pipe, HDMIB); |
| disable_pch_hdmi(dev_priv, pipe, HDMIC); |
| disable_pch_hdmi(dev_priv, pipe, HDMID); |
| } |
| |
| int |
| intel_pin_and_fence_fb_obj(struct drm_device *dev, |
| struct drm_i915_gem_object *obj, |
| struct intel_ring_buffer *pipelined) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 alignment; |
| int ret; |
| |
| switch (obj->tiling_mode) { |
| case I915_TILING_NONE: |
| if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) |
| alignment = 128 * 1024; |
| else if (INTEL_INFO(dev)->gen >= 4) |
| alignment = 4 * 1024; |
| else |
| alignment = 64 * 1024; |
| break; |
| case I915_TILING_X: |
| /* pin() will align the object as required by fence */ |
| alignment = 0; |
| break; |
| case I915_TILING_Y: |
| /* FIXME: Is this true? */ |
| DRM_ERROR("Y tiled not allowed for scan out buffers\n"); |
| return -EINVAL; |
| default: |
| BUG(); |
| } |
| |
| dev_priv->mm.interruptible = false; |
| ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined); |
| if (ret) |
| goto err_interruptible; |
| |
| /* Install a fence for tiled scan-out. Pre-i965 always needs a |
| * fence, whereas 965+ only requires a fence if using |
| * framebuffer compression. For simplicity, we always install |
| * a fence as the cost is not that onerous. |
| */ |
| ret = i915_gem_object_get_fence(obj); |
| if (ret) |
| goto err_unpin; |
| |
| i915_gem_object_pin_fence(obj); |
| |
| dev_priv->mm.interruptible = true; |
| return 0; |
| |
| err_unpin: |
| i915_gem_object_unpin(obj); |
| err_interruptible: |
| dev_priv->mm.interruptible = true; |
| return ret; |
| } |
| |
| void intel_unpin_fb_obj(struct drm_i915_gem_object *obj) |
| { |
| i915_gem_object_unpin_fence(obj); |
| i915_gem_object_unpin(obj); |
| } |
| |
| /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel |
| * is assumed to be a power-of-two. */ |
| static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y, |
| unsigned int bpp, |
| unsigned int pitch) |
| { |
| int tile_rows, tiles; |
| |
| tile_rows = *y / 8; |
| *y %= 8; |
| tiles = *x / (512/bpp); |
| *x %= 512/bpp; |
| |
| return tile_rows * pitch * 8 + tiles * 4096; |
| } |
| |
| static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb, |
| int x, int y) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_framebuffer *intel_fb; |
| struct drm_i915_gem_object *obj; |
| int plane = intel_crtc->plane; |
| unsigned long linear_offset; |
| u32 dspcntr; |
| u32 reg; |
| |
| switch (plane) { |
| case 0: |
| case 1: |
| break; |
| default: |
| DRM_ERROR("Can't update plane %d in SAREA\n", plane); |
| return -EINVAL; |
| } |
| |
| intel_fb = to_intel_framebuffer(fb); |
| obj = intel_fb->obj; |
| |
| reg = DSPCNTR(plane); |
| dspcntr = I915_READ(reg); |
| /* Mask out pixel format bits in case we change it */ |
| dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; |
| switch (fb->bits_per_pixel) { |
| case 8: |
| dspcntr |= DISPPLANE_8BPP; |
| break; |
| case 16: |
| if (fb->depth == 15) |
| dspcntr |= DISPPLANE_15_16BPP; |
| else |
| dspcntr |= DISPPLANE_16BPP; |
| break; |
| case 24: |
| case 32: |
| dspcntr |= DISPPLANE_32BPP_NO_ALPHA; |
| break; |
| default: |
| DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel); |
| return -EINVAL; |
| } |
| if (INTEL_INFO(dev)->gen >= 4) { |
| if (obj->tiling_mode != I915_TILING_NONE) |
| dspcntr |= DISPPLANE_TILED; |
| else |
| dspcntr &= ~DISPPLANE_TILED; |
| } |
| |
| I915_WRITE(reg, dspcntr); |
| |
| linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8); |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| intel_crtc->dspaddr_offset = |
| gen4_compute_dspaddr_offset_xtiled(&x, &y, |
| fb->bits_per_pixel / 8, |
| fb->pitches[0]); |
| linear_offset -= intel_crtc->dspaddr_offset; |
| } else { |
| intel_crtc->dspaddr_offset = linear_offset; |
| } |
| |
| DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n", |
| obj->gtt_offset, linear_offset, x, y, fb->pitches[0]); |
| I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); |
| if (INTEL_INFO(dev)->gen >= 4) { |
| I915_MODIFY_DISPBASE(DSPSURF(plane), |
| obj->gtt_offset + intel_crtc->dspaddr_offset); |
| I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); |
| I915_WRITE(DSPLINOFF(plane), linear_offset); |
| } else |
| I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset); |
| POSTING_READ(reg); |
| |
| return 0; |
| } |
| |
| static int ironlake_update_plane(struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, int x, int y) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_framebuffer *intel_fb; |
| struct drm_i915_gem_object *obj; |
| int plane = intel_crtc->plane; |
| unsigned long linear_offset; |
| u32 dspcntr; |
| u32 reg; |
| |
| switch (plane) { |
| case 0: |
| case 1: |
| case 2: |
| break; |
| default: |
| DRM_ERROR("Can't update plane %d in SAREA\n", plane); |
| return -EINVAL; |
| } |
| |
| intel_fb = to_intel_framebuffer(fb); |
| obj = intel_fb->obj; |
| |
| reg = DSPCNTR(plane); |
| dspcntr = I915_READ(reg); |
| /* Mask out pixel format bits in case we change it */ |
| dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; |
| switch (fb->bits_per_pixel) { |
| case 8: |
| dspcntr |= DISPPLANE_8BPP; |
| break; |
| case 16: |
| if (fb->depth != 16) |
| return -EINVAL; |
| |
| dspcntr |= DISPPLANE_16BPP; |
| break; |
| case 24: |
| case 32: |
| if (fb->depth == 24) |
| dspcntr |= DISPPLANE_32BPP_NO_ALPHA; |
| else if (fb->depth == 30) |
| dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA; |
| else |
| return -EINVAL; |
| break; |
| default: |
| DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel); |
| return -EINVAL; |
| } |
| |
| if (obj->tiling_mode != I915_TILING_NONE) |
| dspcntr |= DISPPLANE_TILED; |
| else |
| dspcntr &= ~DISPPLANE_TILED; |
| |
| /* must disable */ |
| dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; |
| |
| I915_WRITE(reg, dspcntr); |
| |
| linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8); |
| intel_crtc->dspaddr_offset = |
| gen4_compute_dspaddr_offset_xtiled(&x, &y, |
| fb->bits_per_pixel / 8, |
| fb->pitches[0]); |
| linear_offset -= intel_crtc->dspaddr_offset; |
| |
| DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n", |
| obj->gtt_offset, linear_offset, x, y, fb->pitches[0]); |
| I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); |
| I915_MODIFY_DISPBASE(DSPSURF(plane), |
| obj->gtt_offset + intel_crtc->dspaddr_offset); |
| I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); |
| I915_WRITE(DSPLINOFF(plane), linear_offset); |
| POSTING_READ(reg); |
| |
| return 0; |
| } |
| |
| /* Assume fb object is pinned & idle & fenced and just update base pointers */ |
| static int |
| intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, |
| int x, int y, enum mode_set_atomic state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (dev_priv->display.disable_fbc) |
| dev_priv->display.disable_fbc(dev); |
| intel_increase_pllclock(crtc); |
| |
| return dev_priv->display.update_plane(crtc, fb, x, y); |
| } |
| |
| static int |
| intel_finish_fb(struct drm_framebuffer *old_fb) |
| { |
| struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj; |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| bool was_interruptible = dev_priv->mm.interruptible; |
| int ret; |
| |
| wait_event(dev_priv->pending_flip_queue, |
| atomic_read(&dev_priv->mm.wedged) || |
| atomic_read(&obj->pending_flip) == 0); |
| |
| /* Big Hammer, we also need to ensure that any pending |
| * MI_WAIT_FOR_EVENT inside a user batch buffer on the |
| * current scanout is retired before unpinning the old |
| * framebuffer. |
| * |
| * This should only fail upon a hung GPU, in which case we |
| * can safely continue. |
| */ |
| dev_priv->mm.interruptible = false; |
| ret = i915_gem_object_finish_gpu(obj); |
| dev_priv->mm.interruptible = was_interruptible; |
| |
| return ret; |
| } |
| |
| static int |
| intel_pipe_set_base(struct drm_crtc *crtc, int x, int y, |
| struct drm_framebuffer *old_fb) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_master_private *master_priv; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int ret; |
| |
| /* no fb bound */ |
| if (!crtc->fb) { |
| DRM_ERROR("No FB bound\n"); |
| return 0; |
| } |
| |
| if(intel_crtc->plane > dev_priv->num_pipe) { |
| DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n", |
| intel_crtc->plane, |
| dev_priv->num_pipe); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&dev->struct_mutex); |
| ret = intel_pin_and_fence_fb_obj(dev, |
| to_intel_framebuffer(crtc->fb)->obj, |
| NULL); |
| if (ret != 0) { |
| mutex_unlock(&dev->struct_mutex); |
| DRM_ERROR("pin & fence failed\n"); |
| return ret; |
| } |
| |
| if (old_fb) |
| intel_finish_fb(old_fb); |
| |
| ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y); |
| if (ret) { |
| intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj); |
| mutex_unlock(&dev->struct_mutex); |
| DRM_ERROR("failed to update base address\n"); |
| return ret; |
| } |
| |
| if (old_fb) { |
| intel_wait_for_vblank(dev, intel_crtc->pipe); |
| intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj); |
| } |
| |
| intel_update_fbc(dev); |
| mutex_unlock(&dev->struct_mutex); |
| |
| if (!dev->primary->master) |
| return 0; |
| |
| master_priv = dev->primary->master->driver_priv; |
| if (!master_priv->sarea_priv) |
| return 0; |
| |
| if (intel_crtc->pipe) { |
| master_priv->sarea_priv->pipeB_x = x; |
| master_priv->sarea_priv->pipeB_y = y; |
| } else { |
| master_priv->sarea_priv->pipeA_x = x; |
| master_priv->sarea_priv->pipeA_y = y; |
| } |
| |
| return 0; |
| } |
| |
| static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpa_ctl; |
| |
| DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock); |
| dpa_ctl = I915_READ(DP_A); |
| dpa_ctl &= ~DP_PLL_FREQ_MASK; |
| |
| if (clock < 200000) { |
| u32 temp; |
| dpa_ctl |= DP_PLL_FREQ_160MHZ; |
| /* workaround for 160Mhz: |
| 1) program 0x4600c bits 15:0 = 0x8124 |
| 2) program 0x46010 bit 0 = 1 |
| 3) program 0x46034 bit 24 = 1 |
| 4) program 0x64000 bit 14 = 1 |
| */ |
| temp = I915_READ(0x4600c); |
| temp &= 0xffff0000; |
| I915_WRITE(0x4600c, temp | 0x8124); |
| |
| temp = I915_READ(0x46010); |
| I915_WRITE(0x46010, temp | 1); |
| |
| temp = I915_READ(0x46034); |
| I915_WRITE(0x46034, temp | (1 << 24)); |
| } else { |
| dpa_ctl |= DP_PLL_FREQ_270MHZ; |
| } |
| I915_WRITE(DP_A, dpa_ctl); |
| |
| POSTING_READ(DP_A); |
| udelay(500); |
| } |
| |
| static void intel_fdi_normal_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp; |
| |
| /* enable normal train */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (IS_IVYBRIDGE(dev)) { |
| temp &= ~FDI_LINK_TRAIN_NONE_IVB; |
| temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; |
| } |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_NORMAL_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_NONE; |
| } |
| I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); |
| |
| /* wait one idle pattern time */ |
| POSTING_READ(reg); |
| udelay(1000); |
| |
| /* IVB wants error correction enabled */ |
| if (IS_IVYBRIDGE(dev)) |
| I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | |
| FDI_FE_ERRC_ENABLE); |
| } |
| |
| static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 flags = I915_READ(SOUTH_CHICKEN1); |
| |
| flags |= FDI_PHASE_SYNC_OVR(pipe); |
| I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */ |
| flags |= FDI_PHASE_SYNC_EN(pipe); |
| I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */ |
| POSTING_READ(SOUTH_CHICKEN1); |
| } |
| |
| /* The FDI link training functions for ILK/Ibexpeak. */ |
| static void ironlake_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| u32 reg, temp, tries; |
| |
| /* FDI needs bits from pipe & plane first */ |
| assert_pipe_enabled(dev_priv, pipe); |
| assert_plane_enabled(dev_priv, plane); |
| |
| /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit |
| for train result */ |
| reg = FDI_RX_IMR(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_RX_SYMBOL_LOCK; |
| temp &= ~FDI_RX_BIT_LOCK; |
| I915_WRITE(reg, temp); |
| I915_READ(reg); |
| udelay(150); |
| |
| /* enable CPU FDI TX and PCH FDI RX */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(7 << 19); |
| temp |= (intel_crtc->fdi_lanes - 1) << 19; |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| I915_WRITE(reg, temp | FDI_TX_ENABLE); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| I915_WRITE(reg, temp | FDI_RX_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| /* Ironlake workaround, enable clock pointer after FDI enable*/ |
| if (HAS_PCH_IBX(dev)) { |
| I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); |
| I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | |
| FDI_RX_PHASE_SYNC_POINTER_EN); |
| } |
| |
| reg = FDI_RX_IIR(pipe); |
| for (tries = 0; tries < 5; tries++) { |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if ((temp & FDI_RX_BIT_LOCK)) { |
| DRM_DEBUG_KMS("FDI train 1 done.\n"); |
| I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); |
| break; |
| } |
| } |
| if (tries == 5) |
| DRM_ERROR("FDI train 1 fail!\n"); |
| |
| /* Train 2 */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| reg = FDI_RX_IIR(pipe); |
| for (tries = 0; tries < 5; tries++) { |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if (temp & FDI_RX_SYMBOL_LOCK) { |
| I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); |
| DRM_DEBUG_KMS("FDI train 2 done.\n"); |
| break; |
| } |
| } |
| if (tries == 5) |
| DRM_ERROR("FDI train 2 fail!\n"); |
| |
| DRM_DEBUG_KMS("FDI train done\n"); |
| |
| } |
| |
| static const int snb_b_fdi_train_param[] = { |
| FDI_LINK_TRAIN_400MV_0DB_SNB_B, |
| FDI_LINK_TRAIN_400MV_6DB_SNB_B, |
| FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, |
| FDI_LINK_TRAIN_800MV_0DB_SNB_B, |
| }; |
| |
| /* The FDI link training functions for SNB/Cougarpoint. */ |
| static void gen6_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp, i, retry; |
| |
| /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit |
| for train result */ |
| reg = FDI_RX_IMR(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_RX_SYMBOL_LOCK; |
| temp &= ~FDI_RX_BIT_LOCK; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| /* enable CPU FDI TX and PCH FDI RX */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(7 << 19); |
| temp |= (intel_crtc->fdi_lanes - 1) << 19; |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| /* SNB-B */ |
| temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; |
| I915_WRITE(reg, temp | FDI_TX_ENABLE); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| } |
| I915_WRITE(reg, temp | FDI_RX_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| if (HAS_PCH_CPT(dev)) |
| cpt_phase_pointer_enable(dev, pipe); |
| |
| for (i = 0; i < 4; i++) { |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= snb_b_fdi_train_param[i]; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(500); |
| |
| for (retry = 0; retry < 5; retry++) { |
| reg = FDI_RX_IIR(pipe); |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| if (temp & FDI_RX_BIT_LOCK) { |
| I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); |
| DRM_DEBUG_KMS("FDI train 1 done.\n"); |
| break; |
| } |
| udelay(50); |
| } |
| if (retry < 5) |
| break; |
| } |
| if (i == 4) |
| DRM_ERROR("FDI train 1 fail!\n"); |
| |
| /* Train 2 */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| if (IS_GEN6(dev)) { |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| /* SNB-B */ |
| temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; |
| } |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| } |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| for (i = 0; i < 4; i++) { |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= snb_b_fdi_train_param[i]; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(500); |
| |
| for (retry = 0; retry < 5; retry++) { |
| reg = FDI_RX_IIR(pipe); |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| if (temp & FDI_RX_SYMBOL_LOCK) { |
| I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); |
| DRM_DEBUG_KMS("FDI train 2 done.\n"); |
| break; |
| } |
| udelay(50); |
| } |
| if (retry < 5) |
| break; |
| } |
| if (i == 4) |
| DRM_ERROR("FDI train 2 fail!\n"); |
| |
| DRM_DEBUG_KMS("FDI train done.\n"); |
| } |
| |
| /* Manual link training for Ivy Bridge A0 parts */ |
| static void ivb_manual_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp, i; |
| |
| /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit |
| for train result */ |
| reg = FDI_RX_IMR(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_RX_SYMBOL_LOCK; |
| temp &= ~FDI_RX_BIT_LOCK; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| /* enable CPU FDI TX and PCH FDI RX */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(7 << 19); |
| temp |= (intel_crtc->fdi_lanes - 1) << 19; |
| temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); |
| temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; |
| temp |= FDI_COMPOSITE_SYNC; |
| I915_WRITE(reg, temp | FDI_TX_ENABLE); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_AUTO; |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; |
| temp |= FDI_COMPOSITE_SYNC; |
| I915_WRITE(reg, temp | FDI_RX_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| if (HAS_PCH_CPT(dev)) |
| cpt_phase_pointer_enable(dev, pipe); |
| |
| for (i = 0; i < 4; i++) { |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= snb_b_fdi_train_param[i]; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(500); |
| |
| reg = FDI_RX_IIR(pipe); |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if (temp & FDI_RX_BIT_LOCK || |
| (I915_READ(reg) & FDI_RX_BIT_LOCK)) { |
| I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); |
| DRM_DEBUG_KMS("FDI train 1 done.\n"); |
| break; |
| } |
| } |
| if (i == 4) |
| DRM_ERROR("FDI train 1 fail!\n"); |
| |
| /* Train 2 */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE_IVB; |
| temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| for (i = 0; i < 4; i++) { |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= snb_b_fdi_train_param[i]; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(500); |
| |
| reg = FDI_RX_IIR(pipe); |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if (temp & FDI_RX_SYMBOL_LOCK) { |
| I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); |
| DRM_DEBUG_KMS("FDI train 2 done.\n"); |
| break; |
| } |
| } |
| if (i == 4) |
| DRM_ERROR("FDI train 2 fail!\n"); |
| |
| DRM_DEBUG_KMS("FDI train done.\n"); |
| } |
| |
| static void ironlake_fdi_pll_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp; |
| |
| /* Write the TU size bits so error detection works */ |
| I915_WRITE(FDI_RX_TUSIZE1(pipe), |
| I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); |
| |
| /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~((0x7 << 19) | (0x7 << 16)); |
| temp |= (intel_crtc->fdi_lanes - 1) << 19; |
| temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11; |
| I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(200); |
| |
| /* Switch from Rawclk to PCDclk */ |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp | FDI_PCDCLK); |
| |
| POSTING_READ(reg); |
| udelay(200); |
| |
| /* On Haswell, the PLL configuration for ports and pipes is handled |
| * separately, as part of DDI setup */ |
| if (!IS_HASWELL(dev)) { |
| /* Enable CPU FDI TX PLL, always on for Ironlake */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| if ((temp & FDI_TX_PLL_ENABLE) == 0) { |
| I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(100); |
| } |
| } |
| } |
| |
| static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 flags = I915_READ(SOUTH_CHICKEN1); |
| |
| flags &= ~(FDI_PHASE_SYNC_EN(pipe)); |
| I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */ |
| flags &= ~(FDI_PHASE_SYNC_OVR(pipe)); |
| I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */ |
| POSTING_READ(SOUTH_CHICKEN1); |
| } |
| static void ironlake_fdi_disable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp; |
| |
| /* disable CPU FDI tx and PCH FDI rx */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp & ~FDI_TX_ENABLE); |
| POSTING_READ(reg); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(0x7 << 16); |
| temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11; |
| I915_WRITE(reg, temp & ~FDI_RX_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(100); |
| |
| /* Ironlake workaround, disable clock pointer after downing FDI */ |
| if (HAS_PCH_IBX(dev)) { |
| I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); |
| I915_WRITE(FDI_RX_CHICKEN(pipe), |
| I915_READ(FDI_RX_CHICKEN(pipe) & |
| ~FDI_RX_PHASE_SYNC_POINTER_EN)); |
| } else if (HAS_PCH_CPT(dev)) { |
| cpt_phase_pointer_disable(dev, pipe); |
| } |
| |
| /* still set train pattern 1 */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| } |
| /* BPC in FDI rx is consistent with that in PIPECONF */ |
| temp &= ~(0x07 << 16); |
| temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(100); |
| } |
| |
| static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| |
| if (crtc->fb == NULL) |
| return; |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_finish_fb(crtc->fb); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| static bool intel_crtc_driving_pch(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_encoder *encoder; |
| |
| /* |
| * If there's a non-PCH eDP on this crtc, it must be DP_A, and that |
| * must be driven by its own crtc; no sharing is possible. |
| */ |
| for_each_encoder_on_crtc(dev, crtc, encoder) { |
| |
| /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell |
| * CPU handles all others */ |
| if (IS_HASWELL(dev)) { |
| /* It is still unclear how this will work on PPT, so throw up a warning */ |
| WARN_ON(!HAS_PCH_LPT(dev)); |
| |
| if (encoder->type == DRM_MODE_ENCODER_DAC) { |
| DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n"); |
| return true; |
| } else { |
| DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n", |
| encoder->type); |
| return false; |
| } |
| } |
| |
| switch (encoder->type) { |
| case INTEL_OUTPUT_EDP: |
| if (!intel_encoder_is_pch_edp(&encoder->base)) |
| return false; |
| continue; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Program iCLKIP clock to the desired frequency */ |
| static void lpt_program_iclkip(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 divsel, phaseinc, auxdiv, phasedir = 0; |
| u32 temp; |
| |
| /* It is necessary to ungate the pixclk gate prior to programming |
| * the divisors, and gate it back when it is done. |
| */ |
| I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); |
| |
| /* Disable SSCCTL */ |
| intel_sbi_write(dev_priv, SBI_SSCCTL6, |
| intel_sbi_read(dev_priv, SBI_SSCCTL6) | |
| SBI_SSCCTL_DISABLE); |
| |
| /* 20MHz is a corner case which is out of range for the 7-bit divisor */ |
| if (crtc->mode.clock == 20000) { |
| auxdiv = 1; |
| divsel = 0x41; |
| phaseinc = 0x20; |
| } else { |
| /* The iCLK virtual clock root frequency is in MHz, |
| * but the crtc->mode.clock in in KHz. To get the divisors, |
| * it is necessary to divide one by another, so we |
| * convert the virtual clock precision to KHz here for higher |
| * precision. |
| */ |
| u32 iclk_virtual_root_freq = 172800 * 1000; |
| u32 iclk_pi_range = 64; |
| u32 desired_divisor, msb_divisor_value, pi_value; |
| |
| desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock); |
| msb_divisor_value = desired_divisor / iclk_pi_range; |
| pi_value = desired_divisor % iclk_pi_range; |
| |
| auxdiv = 0; |
| divsel = msb_divisor_value - 2; |
| phaseinc = pi_value; |
| } |
| |
| /* This should not happen with any sane values */ |
| WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & |
| ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); |
| WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & |
| ~SBI_SSCDIVINTPHASE_INCVAL_MASK); |
| |
| DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", |
| crtc->mode.clock, |
| auxdiv, |
| divsel, |
| phasedir, |
| phaseinc); |
| |
| /* Program SSCDIVINTPHASE6 */ |
| temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6); |
| temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; |
| temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); |
| temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; |
| temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); |
| temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); |
| temp |= SBI_SSCDIVINTPHASE_PROPAGATE; |
| |
| intel_sbi_write(dev_priv, |
| SBI_SSCDIVINTPHASE6, |
| temp); |
| |
| /* Program SSCAUXDIV */ |
| temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6); |
| temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); |
| temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); |
| intel_sbi_write(dev_priv, |
| SBI_SSCAUXDIV6, |
| temp); |
| |
| |
| /* Enable modulator and associated divider */ |
| temp = intel_sbi_read(dev_priv, SBI_SSCCTL6); |
| temp &= ~SBI_SSCCTL_DISABLE; |
| intel_sbi_write(dev_priv, |
| SBI_SSCCTL6, |
| temp); |
| |
| /* Wait for initialization time */ |
| udelay(24); |
| |
| I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); |
| } |
| |
| /* |
| * Enable PCH resources required for PCH ports: |
| * - PCH PLLs |
| * - FDI training & RX/TX |
| * - update transcoder timings |
| * - DP transcoding bits |
| * - transcoder |
| */ |
| static void ironlake_pch_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp; |
| |
| assert_transcoder_disabled(dev_priv, pipe); |
| |
| /* For PCH output, training FDI link */ |
| dev_priv->display.fdi_link_train(crtc); |
| |
| intel_enable_pch_pll(intel_crtc); |
| |
| if (HAS_PCH_LPT(dev)) { |
| DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n"); |
| lpt_program_iclkip(crtc); |
| } else if (HAS_PCH_CPT(dev)) { |
| u32 sel; |
| |
| temp = I915_READ(PCH_DPLL_SEL); |
| switch (pipe) { |
| default: |
| case 0: |
| temp |= TRANSA_DPLL_ENABLE; |
| sel = TRANSA_DPLLB_SEL; |
| break; |
| case 1: |
| temp |= TRANSB_DPLL_ENABLE; |
| sel = TRANSB_DPLLB_SEL; |
| break; |
| case 2: |
| temp |= TRANSC_DPLL_ENABLE; |
| sel = TRANSC_DPLLB_SEL; |
| break; |
| } |
| if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B) |
| temp |= sel; |
| else |
| temp &= ~sel; |
| I915_WRITE(PCH_DPLL_SEL, temp); |
| } |
| |
| /* set transcoder timing, panel must allow it */ |
| assert_panel_unlocked(dev_priv, pipe); |
| I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe))); |
| I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe))); |
| I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe))); |
| |
| I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe))); |
| I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe))); |
| I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe))); |
| I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe))); |
| |
| if (!IS_HASWELL(dev)) |
| intel_fdi_normal_train(crtc); |
| |
| /* For PCH DP, enable TRANS_DP_CTL */ |
| if (HAS_PCH_CPT(dev) && |
| (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) { |
| u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5; |
| reg = TRANS_DP_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(TRANS_DP_PORT_SEL_MASK | |
| TRANS_DP_SYNC_MASK | |
| TRANS_DP_BPC_MASK); |
| temp |= (TRANS_DP_OUTPUT_ENABLE | |
| TRANS_DP_ENH_FRAMING); |
| temp |= bpc << 9; /* same format but at 11:9 */ |
| |
| if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC) |
| temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; |
| if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC) |
| temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; |
| |
| switch (intel_trans_dp_port_sel(crtc)) { |
| case PCH_DP_B: |
| temp |= TRANS_DP_PORT_SEL_B; |
| break; |
| case PCH_DP_C: |
| temp |= TRANS_DP_PORT_SEL_C; |
| break; |
| case PCH_DP_D: |
| temp |= TRANS_DP_PORT_SEL_D; |
| break; |
| default: |
| DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n"); |
| temp |= TRANS_DP_PORT_SEL_B; |
| break; |
| } |
| |
| I915_WRITE(reg, temp); |
| } |
| |
| intel_enable_transcoder(dev_priv, pipe); |
| } |
| |
| static void intel_put_pch_pll(struct intel_crtc *intel_crtc) |
| { |
| struct intel_pch_pll *pll = intel_crtc->pch_pll; |
| |
| if (pll == NULL) |
| return; |
| |
| if (pll->refcount == 0) { |
| WARN(1, "bad PCH PLL refcount\n"); |
| return; |
| } |
| |
| --pll->refcount; |
| intel_crtc->pch_pll = NULL; |
| } |
| |
| static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp) |
| { |
| struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; |
| struct intel_pch_pll *pll; |
| int i; |
| |
| pll = intel_crtc->pch_pll; |
| if (pll) { |
| DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n", |
| intel_crtc->base.base.id, pll->pll_reg); |
| goto prepare; |
| } |
| |
| if (HAS_PCH_IBX(dev_priv->dev)) { |
| /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */ |
| i = intel_crtc->pipe; |
| pll = &dev_priv->pch_plls[i]; |
| |
| DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n", |
| intel_crtc->base.base.id, pll->pll_reg); |
| |
| goto found; |
| } |
| |
| for (i = 0; i < dev_priv->num_pch_pll; i++) { |
| pll = &dev_priv->pch_plls[i]; |
| |
| /* Only want to check enabled timings first */ |
| if (pll->refcount == 0) |
| continue; |
| |
| if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) && |
| fp == I915_READ(pll->fp0_reg)) { |
| DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n", |
| intel_crtc->base.base.id, |
| pll->pll_reg, pll->refcount, pll->active); |
| |
| goto found; |
| } |
| } |
| |
| /* Ok no matching timings, maybe there's a free one? */ |
| for (i = 0; i < dev_priv->num_pch_pll; i++) { |
| pll = &dev_priv->pch_plls[i]; |
| if (pll->refcount == 0) { |
| DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n", |
| intel_crtc->base.base.id, pll->pll_reg); |
| goto found; |
| } |
| } |
| |
| return NULL; |
| |
| found: |
| intel_crtc->pch_pll = pll; |
| pll->refcount++; |
| DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe); |
| prepare: /* separate function? */ |
| DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg); |
| |
| /* Wait for the clocks to stabilize before rewriting the regs */ |
| I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE); |
| POSTING_READ(pll->pll_reg); |
| udelay(150); |
| |
| I915_WRITE(pll->fp0_reg, fp); |
| I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE); |
| pll->on = false; |
| return pll; |
| } |
| |
| void intel_cpt_verify_modeset(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe); |
| u32 temp; |
| |
| temp = I915_READ(dslreg); |
| udelay(500); |
| if (wait_for(I915_READ(dslreg) != temp, 5)) { |
| /* Without this, mode sets may fail silently on FDI */ |
| I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS); |
| udelay(250); |
| I915_WRITE(tc2reg, 0); |
| if (wait_for(I915_READ(dslreg) != temp, 5)) |
| DRM_ERROR("mode set failed: pipe %d stuck\n", pipe); |
| } |
| } |
| |
| static void ironlake_crtc_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| u32 temp; |
| bool is_pch_port; |
| |
| if (intel_crtc->active) |
| return; |
| |
| intel_crtc->active = true; |
| intel_update_watermarks(dev); |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| temp = I915_READ(PCH_LVDS); |
| if ((temp & LVDS_PORT_EN) == 0) |
| I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN); |
| } |
| |
| is_pch_port = intel_crtc_driving_pch(crtc); |
| |
| if (is_pch_port) |
| ironlake_fdi_pll_enable(crtc); |
| else |
| ironlake_fdi_disable(crtc); |
| |
| /* Enable panel fitting for LVDS */ |
| if (dev_priv->pch_pf_size && |
| (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) { |
| /* Force use of hard-coded filter coefficients |
| * as some pre-programmed values are broken, |
| * e.g. x201. |
| */ |
| I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); |
| I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos); |
| I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size); |
| } |
| |
| /* |
| * On ILK+ LUT must be loaded before the pipe is running but with |
| * clocks enabled |
| */ |
| intel_crtc_load_lut(crtc); |
| |
| intel_enable_pipe(dev_priv, pipe, is_pch_port); |
| intel_enable_plane(dev_priv, plane, pipe); |
| |
| if (is_pch_port) |
| ironlake_pch_enable(crtc); |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_update_fbc(dev); |
| mutex_unlock(&dev->struct_mutex); |
| |
| intel_crtc_update_cursor(crtc, true); |
| } |
| |
| static void ironlake_crtc_disable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| u32 reg, temp; |
| |
| if (!intel_crtc->active) |
| return; |
| |
| intel_crtc_wait_for_pending_flips(crtc); |
| drm_vblank_off(dev, pipe); |
| intel_crtc_update_cursor(crtc, false); |
| |
| intel_disable_plane(dev_priv, plane, pipe); |
| |
| if (dev_priv->cfb_plane == plane) |
| intel_disable_fbc(dev); |
| |
| intel_disable_pipe(dev_priv, pipe); |
| |
| /* Disable PF */ |
| I915_WRITE(PF_CTL(pipe), 0); |
| I915_WRITE(PF_WIN_SZ(pipe), 0); |
| |
| ironlake_fdi_disable(crtc); |
| |
| /* This is a horrible layering violation; we should be doing this in |
| * the connector/encoder ->prepare instead, but we don't always have |
| * enough information there about the config to know whether it will |
| * actually be necessary or just cause undesired flicker. |
| */ |
| intel_disable_pch_ports(dev_priv, pipe); |
| |
| intel_disable_transcoder(dev_priv, pipe); |
| |
| if (HAS_PCH_CPT(dev)) { |
| /* disable TRANS_DP_CTL */ |
| reg = TRANS_DP_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK); |
| temp |= TRANS_DP_PORT_SEL_NONE; |
| I915_WRITE(reg, temp); |
| |
| /* disable DPLL_SEL */ |
| temp = I915_READ(PCH_DPLL_SEL); |
| switch (pipe) { |
| case 0: |
| temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL); |
| break; |
| case 1: |
| temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL); |
| break; |
| case 2: |
| /* C shares PLL A or B */ |
| temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL); |
| break; |
| default: |
| BUG(); /* wtf */ |
| } |
| I915_WRITE(PCH_DPLL_SEL, temp); |
| } |
| |
| /* disable PCH DPLL */ |
| intel_disable_pch_pll(intel_crtc); |
| |
| /* Switch from PCDclk to Rawclk */ |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp & ~FDI_PCDCLK); |
| |
| /* Disable CPU FDI TX PLL */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(100); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); |
| |
| /* Wait for the clocks to turn off. */ |
| POSTING_READ(reg); |
| udelay(100); |
| |
| intel_crtc->active = false; |
| intel_update_watermarks(dev); |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_update_fbc(dev); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| |
| /* XXX: When our outputs are all unaware of DPMS modes other than off |
| * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. |
| */ |
| switch (mode) { |
| case DRM_MODE_DPMS_ON: |
| case DRM_MODE_DPMS_STANDBY: |
| case DRM_MODE_DPMS_SUSPEND: |
| DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane); |
| ironlake_crtc_enable(crtc); |
| break; |
| |
| case DRM_MODE_DPMS_OFF: |
| DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane); |
| ironlake_crtc_disable(crtc); |
| break; |
| } |
| } |
| |
| static void ironlake_crtc_off(struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| intel_put_pch_pll(intel_crtc); |
| } |
| |
| static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable) |
| { |
| if (!enable && intel_crtc->overlay) { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| mutex_lock(&dev->struct_mutex); |
| dev_priv->mm.interruptible = false; |
| (void) intel_overlay_switch_off(intel_crtc->overlay); |
| dev_priv->mm.interruptible = true; |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| /* Let userspace switch the overlay on again. In most cases userspace |
| * has to recompute where to put it anyway. |
| */ |
| } |
| |
| static void i9xx_crtc_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| |
| if (intel_crtc->active) |
| return; |
| |
| intel_crtc->active = true; |
| intel_update_watermarks(dev); |
| |
| intel_enable_pll(dev_priv, pipe); |
| intel_enable_pipe(dev_priv, pipe, false); |
| intel_enable_plane(dev_priv, plane, pipe); |
| |
| intel_crtc_load_lut(crtc); |
| intel_update_fbc(dev); |
| |
| /* Give the overlay scaler a chance to enable if it's on this pipe */ |
| intel_crtc_dpms_overlay(intel_crtc, true); |
| intel_crtc_update_cursor(crtc, true); |
| } |
| |
| static void i9xx_crtc_disable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| |
| if (!intel_crtc->active) |
| return; |
| |
| /* Give the overlay scaler a chance to disable if it's on this pipe */ |
| intel_crtc_wait_for_pending_flips(crtc); |
| drm_vblank_off(dev, pipe); |
| intel_crtc_dpms_overlay(intel_crtc, false); |
| intel_crtc_update_cursor(crtc, false); |
| |
| if (dev_priv->cfb_plane == plane) |
| intel_disable_fbc(dev); |
| |
| intel_disable_plane(dev_priv, plane, pipe); |
| intel_disable_pipe(dev_priv, pipe); |
| intel_disable_pll(dev_priv, pipe); |
| |
| intel_crtc->active = false; |
| intel_update_fbc(dev); |
| intel_update_watermarks(dev); |
| } |
| |
| static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode) |
| { |
| /* XXX: When our outputs are all unaware of DPMS modes other than off |
| * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. |
| */ |
| switch (mode) { |
| case DRM_MODE_DPMS_ON: |
| case DRM_MODE_DPMS_STANDBY: |
| case DRM_MODE_DPMS_SUSPEND: |
| i9xx_crtc_enable(crtc); |
| break; |
| case DRM_MODE_DPMS_OFF: |
| i9xx_crtc_disable(crtc); |
| break; |
| } |
| } |
| |
| static void i9xx_crtc_off(struct drm_crtc *crtc) |
| { |
| } |
| |
| /** |
| * Sets the power management mode of the pipe and plane. |
| */ |
| static void intel_crtc_dpms(struct drm_crtc *crtc, int mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_master_private *master_priv; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| bool enabled; |
| |
| if (intel_crtc->dpms_mode == mode) |
| return; |
| |
| intel_crtc->dpms_mode = mode; |
| |
| dev_priv->display.dpms(crtc, mode); |
| |
| if (!dev->primary->master) |
| return; |
| |
| master_priv = dev->primary->master->driver_priv; |
| if (!master_priv->sarea_priv) |
| return; |
| |
| enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF; |
| |
| switch (pipe) { |
| case 0: |
| master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0; |
| master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0; |
| break; |
| case 1: |
| master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0; |
| master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0; |
| break; |
| default: |
| DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe)); |
| break; |
| } |
| } |
| |
| static void intel_crtc_disable(struct drm_crtc *crtc) |
| { |
| struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF); |
| dev_priv->display.off(crtc); |
| |
| assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane); |
| assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe); |
| |
| if (crtc->fb) { |
| mutex_lock(&dev->struct_mutex); |
| intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| } |
| |
| /* Prepare for a mode set. |
| * |
| * Note we could be a lot smarter here. We need to figure out which outputs |
| * will be enabled, which disabled (in short, how the config will changes) |
| * and perform the minimum necessary steps to accomplish that, e.g. updating |
| * watermarks, FBC configuration, making sure PLLs are programmed correctly, |
| * panel fitting is in the proper state, etc. |
| */ |
| static void i9xx_crtc_prepare(struct drm_crtc *crtc) |
| { |
| i9xx_crtc_disable(crtc); |
| } |
| |
| static void i9xx_crtc_commit(struct drm_crtc *crtc) |
| { |
| i9xx_crtc_enable(crtc); |
| } |
| |
| static void ironlake_crtc_prepare(struct drm_crtc *crtc) |
| { |
| ironlake_crtc_disable(crtc); |
| } |
| |
| static void ironlake_crtc_commit(struct drm_crtc *crtc) |
| { |
| ironlake_crtc_enable(crtc); |
| } |
| |
| void intel_encoder_prepare(struct drm_encoder *encoder) |
| { |
| struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; |
| /* lvds has its own version of prepare see intel_lvds_prepare */ |
| encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF); |
| } |
| |
| void intel_encoder_commit(struct drm_encoder *encoder) |
| { |
| struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; |
| struct drm_device *dev = encoder->dev; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); |
| |
| /* lvds has its own version of commit see intel_lvds_commit */ |
| encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON); |
| |
| if (HAS_PCH_CPT(dev)) |
| intel_cpt_verify_modeset(dev, intel_crtc->pipe); |
| } |
| |
| void intel_encoder_destroy(struct drm_encoder *encoder) |
| { |
| struct intel_encoder *intel_encoder = to_intel_encoder(encoder); |
| |
| drm_encoder_cleanup(encoder); |
| kfree(intel_encoder); |
| } |
| |
| static bool intel_crtc_mode_fixup(struct drm_crtc *crtc, |
| const struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| |
| if (HAS_PCH_SPLIT(dev)) { |
| /* FDI link clock is fixed at 2.7G */ |
| if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4) |
| return false; |
| } |
| |
| /* All interlaced capable intel hw wants timings in frames. Note though |
| * that intel_lvds_mode_fixup does some funny tricks with the crtc |
| * timings, so we need to be careful not to clobber these.*/ |
| if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET)) |
| drm_mode_set_crtcinfo(adjusted_mode, 0); |
| |
| return true; |
| } |
| |
| static int valleyview_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 400000; /* FIXME */ |
| } |
| |
| static int i945_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 400000; |
| } |
| |
| static int i915_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 333000; |
| } |
| |
| static int i9xx_misc_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 200000; |
| } |
| |
| static int i915gm_get_display_clock_speed(struct drm_device *dev) |
| { |
| u16 gcfgc = 0; |
| |
| pci_read_config_word(dev->pdev, GCFGC, &gcfgc); |
| |
| if (gcfgc & GC_LOW_FREQUENCY_ENABLE) |
| return 133000; |
| else { |
| switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { |
| case GC_DISPLAY_CLOCK_333_MHZ: |
| return 333000; |
| default: |
| case GC_DISPLAY_CLOCK_190_200_MHZ: |
| return 190000; |
| } |
| } |
| } |
| |
| static int i865_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 266000; |
| } |
| |
| static int i855_get_display_clock_speed(struct drm_device *dev) |
| { |
| u16 hpllcc = 0; |
| /* Assume that the hardware is in the high speed state. This |
| * should be the default. |
| */ |
| switch (hpllcc & GC_CLOCK_CONTROL_MASK) { |
| case GC_CLOCK_133_200: |
| case GC_CLOCK_100_200: |
| return 200000; |
| case GC_CLOCK_166_250: |
| return 250000; |
| case GC_CLOCK_100_133: |
| return 133000; |
| } |
| |
| /* Shouldn't happen */ |
| return 0; |
| } |
| |
| static int i830_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 133000; |
| } |
| |
| struct fdi_m_n { |
| u32 tu; |
| u32 gmch_m; |
| u32 gmch_n; |
| u32 link_m; |
| u32 link_n; |
| }; |
| |
| static void |
| fdi_reduce_ratio(u32 *num, u32 *den) |
| { |
| while (*num > 0xffffff || *den > 0xffffff) { |
| *num >>= 1; |
| *den >>= 1; |
| } |
| } |
| |
| static void |
| ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock, |
| int link_clock, struct fdi_m_n *m_n) |
| { |
| m_n->tu = 64; /* default size */ |
| |
| /* BUG_ON(pixel_clock > INT_MAX / 36); */ |
| m_n->gmch_m = bits_per_pixel * pixel_clock; |
| m_n->gmch_n = link_clock * nlanes * 8; |
| fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); |
| |
| m_n->link_m = pixel_clock; |
| m_n->link_n = link_clock; |
| fdi_reduce_ratio(&m_n->link_m, &m_n->link_n); |
| } |
| |
| static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) |
| { |
| if (i915_panel_use_ssc >= 0) |
| return i915_panel_use_ssc != 0; |
| return dev_priv->lvds_use_ssc |
| && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); |
| } |
| |
| /** |
| * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send |
| * @crtc: CRTC structure |
| * @mode: requested mode |
| * |
| * A pipe may be connected to one or more outputs. Based on the depth of the |
| * attached framebuffer, choose a good color depth to use on the pipe. |
| * |
| * If possible, match the pipe depth to the fb depth. In some cases, this |
| * isn't ideal, because the connected output supports a lesser or restricted |
| * set of depths. Resolve that here: |
| * LVDS typically supports only 6bpc, so clamp down in that case |
| * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc |
| * Displays may support a restricted set as well, check EDID and clamp as |
| * appropriate. |
| * DP may want to dither down to 6bpc to fit larger modes |
| * |
| * RETURNS: |
| * Dithering requirement (i.e. false if display bpc and pipe bpc match, |
| * true if they don't match). |
| */ |
| static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc, |
| unsigned int *pipe_bpp, |
| struct drm_display_mode *mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_connector *connector; |
| struct intel_encoder *intel_encoder; |
| unsigned int display_bpc = UINT_MAX, bpc; |
| |
| /* Walk the encoders & connectors on this crtc, get min bpc */ |
| for_each_encoder_on_crtc(dev, crtc, intel_encoder) { |
| |
| if (intel_encoder->type == INTEL_OUTPUT_LVDS) { |
| unsigned int lvds_bpc; |
| |
| if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == |
| LVDS_A3_POWER_UP) |
| lvds_bpc = 8; |
| else |
| lvds_bpc = 6; |
| |
| if (lvds_bpc < display_bpc) { |
| DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc); |
| display_bpc = lvds_bpc; |
| } |
| continue; |
| } |
| |
| /* Not one of the known troublemakers, check the EDID */ |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| head) { |
| if (connector->encoder != &intel_encoder->base) |
| continue; |
| |
| /* Don't use an invalid EDID bpc value */ |
| if (connector->display_info.bpc && |
| connector->display_info.bpc < display_bpc) { |
| DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc); |
| display_bpc = connector->display_info.bpc; |
| } |
| } |
| |
| /* |
| * HDMI is either 12 or 8, so if the display lets 10bpc sneak |
| * through, clamp it down. (Note: >12bpc will be caught below.) |
| */ |
| if (intel_encoder->type == INTEL_OUTPUT_HDMI) { |
| if (display_bpc > 8 && display_bpc < 12) { |
| DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n"); |
| display_bpc = 12; |
| } else { |
| DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n"); |
| display_bpc = 8; |
| } |
| } |
| } |
| |
| if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) { |
| DRM_DEBUG_KMS("Dithering DP to 6bpc\n"); |
| display_bpc = 6; |
| } |
| |
| /* |
| * We could just drive the pipe at the highest bpc all the time and |
| * enable dithering as needed, but that costs bandwidth. So choose |
| * the minimum value that expresses the full color range of the fb but |
| * also stays within the max display bpc discovered above. |
| */ |
| |
| switch (crtc->fb->depth) { |
| case 8: |
| bpc = 8; /* since we go through a colormap */ |
| break; |
| case 15: |
| case 16: |
| bpc = 6; /* min is 18bpp */ |
| break; |
| case 24: |
| bpc = 8; |
| break; |
| case 30: |
| bpc = 10; |
| break; |
| case 48: |
| bpc = 12; |
| break; |
| default: |
| DRM_DEBUG("unsupported depth, assuming 24 bits\n"); |
| bpc = min((unsigned int)8, display_bpc); |
| break; |
| } |
| |
| display_bpc = min(display_bpc, bpc); |
| |
| DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n", |
| bpc, display_bpc); |
| |
| *pipe_bpp = display_bpc * 3; |
| |
| return display_bpc != bpc; |
| } |
| |
| static int vlv_get_refclk(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int refclk = 27000; /* for DP & HDMI */ |
| |
| return 100000; /* only one validated so far */ |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) { |
| refclk = 96000; |
| } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| if (intel_panel_use_ssc(dev_priv)) |
| refclk = 100000; |
| else |
| refclk = 96000; |
| } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) { |
| refclk = 100000; |
| } |
| |
| return refclk; |
| } |
| |
| static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int refclk; |
| |
| if (IS_VALLEYVIEW(dev)) { |
| refclk = vlv_get_refclk(crtc); |
| } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && |
| intel_panel_use_ssc(dev_priv) && num_connectors < 2) { |
| refclk = dev_priv->lvds_ssc_freq * 1000; |
| DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n", |
| refclk / 1000); |
| } else if (!IS_GEN2(dev)) { |
| refclk = 96000; |
| } else { |
| refclk = 48000; |
| } |
| |
| return refclk; |
| } |
| |
| static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode, |
| intel_clock_t *clock) |
| { |
| /* SDVO TV has fixed PLL values depend on its clock range, |
| this mirrors vbios setting. */ |
| if (adjusted_mode->clock >= 100000 |
| && adjusted_mode->clock < 140500) { |
| clock->p1 = 2; |
| clock->p2 = 10; |
| clock->n = 3; |
| clock->m1 = 16; |
| clock->m2 = 8; |
| } else if (adjusted_mode->clock >= 140500 |
| && adjusted_mode->clock <= 200000) { |
| clock->p1 = 1; |
| clock->p2 = 10; |
| clock->n = 6; |
| clock->m1 = 12; |
| clock->m2 = 8; |
| } |
| } |
| |
| static void i9xx_update_pll_dividers(struct drm_crtc *crtc, |
| intel_clock_t *clock, |
| intel_clock_t *reduced_clock) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 fp, fp2 = 0; |
| |
| if (IS_PINEVIEW(dev)) { |
| fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2; |
| if (reduced_clock) |
| fp2 = (1 << reduced_clock->n) << 16 | |
| reduced_clock->m1 << 8 | reduced_clock->m2; |
| } else { |
| fp = clock->n << 16 | clock->m1 << 8 | clock->m2; |
| if (reduced_clock) |
| fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 | |
| reduced_clock->m2; |
| } |
| |
| I915_WRITE(FP0(pipe), fp); |
| |
| intel_crtc->lowfreq_avail = false; |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && |
| reduced_clock && i915_powersave) { |
| I915_WRITE(FP1(pipe), fp2); |
| intel_crtc->lowfreq_avail = true; |
| } else { |
| I915_WRITE(FP1(pipe), fp); |
| } |
| } |
| |
| static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 temp; |
| |
| temp = I915_READ(LVDS); |
| temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; |
| if (pipe == 1) { |
| temp |= LVDS_PIPEB_SELECT; |
| } else { |
| temp &= ~LVDS_PIPEB_SELECT; |
| } |
| /* set the corresponsding LVDS_BORDER bit */ |
| temp |= dev_priv->lvds_border_bits; |
| /* Set the B0-B3 data pairs corresponding to whether we're going to |
| * set the DPLLs for dual-channel mode or not. |
| */ |
| if (clock->p2 == 7) |
| temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; |
| else |
| temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); |
| |
| /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) |
| * appropriately here, but we need to look more thoroughly into how |
| * panels behave in the two modes. |
| */ |
| /* set the dithering flag on LVDS as needed */ |
| if (INTEL_INFO(dev)->gen >= 4) { |
| if (dev_priv->lvds_dither) |
| temp |= LVDS_ENABLE_DITHER; |
| else |
| temp &= ~LVDS_ENABLE_DITHER; |
| } |
| temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY); |
| if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC) |
| temp |= LVDS_HSYNC_POLARITY; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC) |
| temp |= LVDS_VSYNC_POLARITY; |
| I915_WRITE(LVDS, temp); |
| } |
| |
| static void vlv_update_pll(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode, |
| intel_clock_t *clock, intel_clock_t *reduced_clock, |
| int refclk, int num_connectors) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 dpll, mdiv, pdiv; |
| u32 bestn, bestm1, bestm2, bestp1, bestp2; |
| bool is_hdmi; |
| |
| is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI); |
| |
| bestn = clock->n; |
| bestm1 = clock->m1; |
| bestm2 = clock->m2; |
| bestp1 = clock->p1; |
| bestp2 = clock->p2; |
| |
| /* Enable DPIO clock input */ |
| dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV | |
| DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV; |
| I915_WRITE(DPLL(pipe), dpll); |
| POSTING_READ(DPLL(pipe)); |
| |
| mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); |
| mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); |
| mdiv |= ((bestn << DPIO_N_SHIFT)); |
| mdiv |= (1 << DPIO_POST_DIV_SHIFT); |
| mdiv |= (1 << DPIO_K_SHIFT); |
| mdiv |= DPIO_ENABLE_CALIBRATION; |
| intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv); |
| |
| intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000); |
| |
| pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) | |
| (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) | |
| (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT); |
| intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv); |
| |
| intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051); |
| |
| dpll |= DPLL_VCO_ENABLE; |
| I915_WRITE(DPLL(pipe), dpll); |
| POSTING_READ(DPLL(pipe)); |
| if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) |
| DRM_ERROR("DPLL %d failed to lock\n", pipe); |
| |
| if (is_hdmi) { |
| u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode); |
| |
| if (temp > 1) |
| temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; |
| else |
| temp = 0; |
| |
| I915_WRITE(DPLL_MD(pipe), temp); |
| POSTING_READ(DPLL_MD(pipe)); |
| } |
| |
| intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */ |
| } |
| |
| static void i9xx_update_pll(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode, |
| intel_clock_t *clock, intel_clock_t *reduced_clock, |
| int num_connectors) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 dpll; |
| bool is_sdvo; |
| |
| is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) || |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI); |
| |
| dpll = DPLL_VGA_MODE_DIS; |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) |
| dpll |= DPLLB_MODE_LVDS; |
| else |
| dpll |= DPLLB_MODE_DAC_SERIAL; |
| if (is_sdvo) { |
| int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); |
| if (pixel_multiplier > 1) { |
| if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) |
| dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; |
| } |
| dpll |= DPLL_DVO_HIGH_SPEED; |
| } |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) |
| dpll |= DPLL_DVO_HIGH_SPEED; |
| |
| /* compute bitmask from p1 value */ |
| if (IS_PINEVIEW(dev)) |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; |
| else { |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| if (IS_G4X(dev) && reduced_clock) |
| dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; |
| } |
| switch (clock->p2) { |
| case 5: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; |
| break; |
| case 7: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; |
| break; |
| case 10: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; |
| break; |
| case 14: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; |
| break; |
| } |
| if (INTEL_INFO(dev)->gen >= 4) |
| dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); |
| |
| if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT)) |
| dpll |= PLL_REF_INPUT_TVCLKINBC; |
| else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT)) |
| /* XXX: just matching BIOS for now */ |
| /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ |
| dpll |= 3; |
| else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && |
| intel_panel_use_ssc(dev_priv) && num_connectors < 2) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| dpll |= DPLL_VCO_ENABLE; |
| I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE); |
| POSTING_READ(DPLL(pipe)); |
| udelay(150); |
| |
| /* The LVDS pin pair needs to be on before the DPLLs are enabled. |
| * This is an exception to the general rule that mode_set doesn't turn |
| * things on. |
| */ |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) |
| intel_update_lvds(crtc, clock, adjusted_mode); |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) |
| intel_dp_set_m_n(crtc, mode, adjusted_mode); |
| |
| I915_WRITE(DPLL(pipe), dpll); |
| |
| /* Wait for the clocks to stabilize. */ |
| POSTING_READ(DPLL(pipe)); |
| udelay(150); |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| u32 temp = 0; |
| if (is_sdvo) { |
| temp = intel_mode_get_pixel_multiplier(adjusted_mode); |
| if (temp > 1) |
| temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; |
| else |
| temp = 0; |
| } |
| I915_WRITE(DPLL_MD(pipe), temp); |
| } else { |
| /* The pixel multiplier can only be updated once the |
| * DPLL is enabled and the clocks are stable. |
| * |
| * So write it again. |
| */ |
| I915_WRITE(DPLL(pipe), dpll); |
| } |
| } |
| |
| static void i8xx_update_pll(struct drm_crtc *crtc, |
| struct drm_display_mode *adjusted_mode, |
| intel_clock_t *clock, |
| int num_connectors) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 dpll; |
| |
| dpll = DPLL_VGA_MODE_DIS; |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| } else { |
| if (clock->p1 == 2) |
| dpll |= PLL_P1_DIVIDE_BY_TWO; |
| else |
| dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| if (clock->p2 == 4) |
| dpll |= PLL_P2_DIVIDE_BY_4; |
| } |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT)) |
| /* XXX: just matching BIOS for now */ |
| /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ |
| dpll |= 3; |
| else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && |
| intel_panel_use_ssc(dev_priv) && num_connectors < 2) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| dpll |= DPLL_VCO_ENABLE; |
| I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE); |
| POSTING_READ(DPLL(pipe)); |
| udelay(150); |
| |
| I915_WRITE(DPLL(pipe), dpll); |
| |
| /* Wait for the clocks to stabilize. */ |
| POSTING_READ(DPLL(pipe)); |
| udelay(150); |
| |
| /* The LVDS pin pair needs to be on before the DPLLs are enabled. |
| * This is an exception to the general rule that mode_set doesn't turn |
| * things on. |
| */ |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) |
| intel_update_lvds(crtc, clock, adjusted_mode); |
| |
| /* The pixel multiplier can only be updated once the |
| * DPLL is enabled and the clocks are stable. |
| * |
| * So write it again. |
| */ |
| I915_WRITE(DPLL(pipe), dpll); |
| } |
| |
| static int i9xx_crtc_mode_set(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode, |
| int x, int y, |
| struct drm_framebuffer *old_fb) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| int refclk, num_connectors = 0; |
| intel_clock_t clock, reduced_clock; |
| u32 dspcntr, pipeconf, vsyncshift; |
| bool ok, has_reduced_clock = false, is_sdvo = false; |
| bool is_lvds = false, is_tv = false, is_dp = false; |
| struct intel_encoder *encoder; |
| const intel_limit_t *limit; |
| int ret; |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) { |
| switch (encoder->type) { |
| case INTEL_OUTPUT_LVDS: |
| is_lvds = true; |
| break; |
| case INTEL_OUTPUT_SDVO: |
| case INTEL_OUTPUT_HDMI: |
| is_sdvo = true; |
| if (encoder->needs_tv_clock) |
| is_tv = true; |
| break; |
| case INTEL_OUTPUT_TVOUT: |
| is_tv = true; |
| break; |
| case INTEL_OUTPUT_DISPLAYPORT: |
| is_dp = true; |
| break; |
| } |
| |
| num_connectors++; |
| } |
| |
| refclk = i9xx_get_refclk(crtc, num_connectors); |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. The returned values represent the clock equation: |
| * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. |
| */ |
| limit = intel_limit(crtc, refclk); |
| ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL, |
| &clock); |
| if (!ok) { |
| DRM_ERROR("Couldn't find PLL settings for mode!\n"); |
| return -EINVAL; |
| } |
| |
| /* Ensure that the cursor is valid for the new mode before changing... */ |
| intel_crtc_update_cursor(crtc, true); |
| |
| if (is_lvds && dev_priv->lvds_downclock_avail) { |
| /* |
| * Ensure we match the reduced clock's P to the target clock. |
| * If the clocks don't match, we can't switch the display clock |
| * by using the FP0/FP1. In such case we will disable the LVDS |
| * downclock feature. |
| */ |
| has_reduced_clock = limit->find_pll(limit, crtc, |
| dev_priv->lvds_downclock, |
| refclk, |
| &clock, |
| &reduced_clock); |
| } |
| |
| if (is_sdvo && is_tv) |
| i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock); |
| |
| i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ? |
| &reduced_clock : NULL); |
| |
| if (IS_GEN2(dev)) |
| i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors); |
| else if (IS_VALLEYVIEW(dev)) |
| vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL, |
| refclk, num_connectors); |
| else |
| i9xx_update_pll(crtc, mode, adjusted_mode, &clock, |
| has_reduced_clock ? &reduced_clock : NULL, |
| num_connectors); |
| |
| /* setup pipeconf */ |
| pipeconf = I915_READ(PIPECONF(pipe)); |
| |
| /* Set up the display plane register */ |
| dspcntr = DISPPLANE_GAMMA_ENABLE; |
| |
| if (pipe == 0) |
| dspcntr &= ~DISPPLANE_SEL_PIPE_MASK; |
| else |
| dspcntr |= DISPPLANE_SEL_PIPE_B; |
| |
| if (pipe == 0 && INTEL_INFO(dev)->gen < 4) { |
| /* Enable pixel doubling when the dot clock is > 90% of the (display) |
| * core speed. |
| * |
| * XXX: No double-wide on 915GM pipe B. Is that the only reason for the |
| * pipe == 0 check? |
| */ |
| if (mode->clock > |
| dev_priv->display.get_display_clock_speed(dev) * 9 / 10) |
| pipeconf |= PIPECONF_DOUBLE_WIDE; |
| else |
| pipeconf &= ~PIPECONF_DOUBLE_WIDE; |
| } |
| |
| /* default to 8bpc */ |
| pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN); |
| if (is_dp) { |
| if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) { |
| pipeconf |= PIPECONF_BPP_6 | |
| PIPECONF_DITHER_EN | |
| PIPECONF_DITHER_TYPE_SP; |
| } |
| } |
| |
| DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); |
| drm_mode_debug_printmodeline(mode); |
| |
| if (HAS_PIPE_CXSR(dev)) { |
| if (intel_crtc->lowfreq_avail) { |
| DRM_DEBUG_KMS("enabling CxSR downclocking\n"); |
| pipeconf |= PIPECONF_CXSR_DOWNCLOCK; |
| } else { |
| DRM_DEBUG_KMS("disabling CxSR downclocking\n"); |
| pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK; |
| } |
| } |
| |
| pipeconf &= ~PIPECONF_INTERLACE_MASK; |
| if (!IS_GEN2(dev) && |
| adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { |
| pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; |
| /* the chip adds 2 halflines automatically */ |
| adjusted_mode->crtc_vtotal -= 1; |
| adjusted_mode->crtc_vblank_end -= 1; |
| vsyncshift = adjusted_mode->crtc_hsync_start |
| - adjusted_mode->crtc_htotal/2; |
| } else { |
| pipeconf |= PIPECONF_PROGRESSIVE; |
| vsyncshift = 0; |
| } |
| |
| if (!IS_GEN3(dev)) |
| I915_WRITE(VSYNCSHIFT(pipe), vsyncshift); |
| |
| I915_WRITE(HTOTAL(pipe), |
| (adjusted_mode->crtc_hdisplay - 1) | |
| ((adjusted_mode->crtc_htotal - 1) << 16)); |
| I915_WRITE(HBLANK(pipe), |
| (adjusted_mode->crtc_hblank_start - 1) | |
| ((adjusted_mode->crtc_hblank_end - 1) << 16)); |
| I915_WRITE(HSYNC(pipe), |
| (adjusted_mode->crtc_hsync_start - 1) | |
| ((adjusted_mode->crtc_hsync_end - 1) << 16)); |
| |
| I915_WRITE(VTOTAL(pipe), |
| (adjusted_mode->crtc_vdisplay - 1) | |
| ((adjusted_mode->crtc_vtotal - 1) << 16)); |
| I915_WRITE(VBLANK(pipe), |
| (adjusted_mode->crtc_vblank_start - 1) | |
| ((adjusted_mode->crtc_vblank_end - 1) << 16)); |
| I915_WRITE(VSYNC(pipe), |
| (adjusted_mode->crtc_vsync_start - 1) | |
| ((adjusted_mode->crtc_vsync_end - 1) << 16)); |
| |
| /* pipesrc and dspsize control the size that is scaled from, |
| * which should always be the user's requested size. |
| */ |
| I915_WRITE(DSPSIZE(plane), |
| ((mode->vdisplay - 1) << 16) | |
| (mode->hdisplay - 1)); |
| I915_WRITE(DSPPOS(plane), 0); |
| I915_WRITE(PIPESRC(pipe), |
| ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); |
| |
| I915_WRITE(PIPECONF(pipe), pipeconf); |
| POSTING_READ(PIPECONF(pipe)); |
| intel_enable_pipe(dev_priv, pipe, false); |
| |
| intel_wait_for_vblank(dev, pipe); |
| |
| I915_WRITE(DSPCNTR(plane), dspcntr); |
| POSTING_READ(DSPCNTR(plane)); |
| |
| ret = intel_pipe_set_base(crtc, x, y, old_fb); |
| |
| intel_update_watermarks(dev); |
| |
| return ret; |
| } |
| |
| /* |
| * Initialize reference clocks when the driver loads |
| */ |
| void ironlake_init_pch_refclk(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_mode_config *mode_config = &dev->mode_config; |
| struct intel_encoder *encoder; |
| u32 temp; |
| bool has_lvds = false; |
| bool has_cpu_edp = false; |
| bool has_pch_edp = false; |
| bool has_panel = false; |
| bool has_ck505 = false; |
| bool can_ssc = false; |
| |
| /* We need to take the global config into account */ |
| list_for_each_entry(encoder, &mode_config->encoder_list, |
| base.head) { |
| switch (encoder->type) { |
| case INTEL_OUTPUT_LVDS: |
| has_panel = true; |
| has_lvds = true; |
| break; |
| case INTEL_OUTPUT_EDP: |
| has_panel = true; |
| if (intel_encoder_is_pch_edp(&encoder->base)) |
| has_pch_edp = true; |
| else |
| has_cpu_edp = true; |
| break; |
| } |
| } |
| |
| if (HAS_PCH_IBX(dev)) { |
| has_ck505 = dev_priv->display_clock_mode; |
| can_ssc = has_ck505; |
| } else { |
| has_ck505 = false; |
| can_ssc = true; |
| } |
| |
| DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n", |
| has_panel, has_lvds, has_pch_edp, has_cpu_edp, |
| has_ck505); |
| |
| /* Ironlake: try to setup display ref clock before DPLL |
| * enabling. This is only under driver's control after |
| * PCH B stepping, previous chipset stepping should be |
| * ignoring this setting. |
| */ |
| temp = I915_READ(PCH_DREF_CONTROL); |
| /* Always enable nonspread source */ |
| temp &= ~DREF_NONSPREAD_SOURCE_MASK; |
| |
| if (has_ck505) |
| temp |= DREF_NONSPREAD_CK505_ENABLE; |
| else |
| temp |= DREF_NONSPREAD_SOURCE_ENABLE; |
| |
| if (has_panel) { |
| temp &= ~DREF_SSC_SOURCE_MASK; |
| temp |= DREF_SSC_SOURCE_ENABLE; |
| |
| /* SSC must be turned on before enabling the CPU output */ |
| if (intel_panel_use_ssc(dev_priv) && can_ssc) { |
| DRM_DEBUG_KMS("Using SSC on panel\n"); |
| temp |= DREF_SSC1_ENABLE; |
| } else |
| temp &= ~DREF_SSC1_ENABLE; |
| |
| /* Get SSC going before enabling the outputs */ |
| I915_WRITE(PCH_DREF_CONTROL, temp); |
| POSTING_READ(PCH_DREF_CONTROL); |
| udelay(200); |
| |
| temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK; |
| |
| /* Enable CPU source on CPU attached eDP */ |
| if (has_cpu_edp) { |
| if (intel_panel_use_ssc(dev_priv) && can_ssc) { |
| DRM_DEBUG_KMS("Using SSC on eDP\n"); |
| temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; |
| } |
| else |
| temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; |
| } else |
| temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE; |
| |
| I915_WRITE(PCH_DREF_CONTROL, temp); |
| POSTING_READ(PCH_DREF_CONTROL); |
| udelay(200); |
| } else { |
| DRM_DEBUG_KMS("Disabling SSC entirely\n"); |
| |
| temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK; |
| |
| /* Turn off CPU output */ |
| temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE; |
| |
| I915_WRITE(PCH_DREF_CONTROL, temp); |
| POSTING_READ(PCH_DREF_CONTROL); |
| udelay(200); |
| |
| /* Turn off the SSC source */ |
| temp &= ~DREF_SSC_SOURCE_MASK; |
| temp |= DREF_SSC_SOURCE_DISABLE; |
| |
| /* Turn off SSC1 */ |
| temp &= ~ DREF_SSC1_ENABLE; |
| |
| I915_WRITE(PCH_DREF_CONTROL, temp); |
| POSTING_READ(PCH_DREF_CONTROL); |
| udelay(200); |
| } |
| } |
| |
| static int ironlake_get_refclk(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *encoder; |
| struct intel_encoder *edp_encoder = NULL; |
| int num_connectors = 0; |
| bool is_lvds = false; |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) { |
| switch (encoder->type) { |
| case INTEL_OUTPUT_LVDS: |
| is_lvds = true; |
| break; |
| case INTEL_OUTPUT_EDP: |
| edp_encoder = encoder; |
| break; |
| } |
| num_connectors++; |
| } |
| |
| if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) { |
| DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n", |
| dev_priv->lvds_ssc_freq); |
| return dev_priv->lvds_ssc_freq * 1000; |
| } |
| |
| return 120000; |
| } |
| |
| static int ironlake_crtc_mode_set(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode, |
| int x, int y, |
| struct drm_framebuffer *old_fb) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| int refclk, num_connectors = 0; |
| intel_clock_t clock, reduced_clock; |
| u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf; |
| bool ok, has_reduced_clock = false, is_sdvo = false; |
| bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false; |
| struct intel_encoder *encoder, *edp_encoder = NULL; |
| const intel_limit_t *limit; |
| int ret; |
| struct fdi_m_n m_n = {0}; |
| u32 temp; |
| int target_clock, pixel_multiplier, lane, link_bw, factor; |
| unsigned int pipe_bpp; |
| bool dither; |
| bool is_cpu_edp = false, is_pch_edp = false; |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) { |
| switch (encoder->type) { |
| case INTEL_OUTPUT_LVDS: |
| is_lvds = true; |
| break; |
| case INTEL_OUTPUT_SDVO: |
| case INTEL_OUTPUT_HDMI: |
| is_sdvo = true; |
| if (encoder->needs_tv_clock) |
| is_tv = true; |
| break; |
| case INTEL_OUTPUT_TVOUT: |
| is_tv = true; |
| break; |
| case INTEL_OUTPUT_ANALOG: |
| is_crt = true; |
| break; |
| case INTEL_OUTPUT_DISPLAYPORT: |
| is_dp = true; |
| break; |
| case INTEL_OUTPUT_EDP: |
| is_dp = true; |
| if (intel_encoder_is_pch_edp(&encoder->base)) |
| is_pch_edp = true; |
| else |
| is_cpu_edp = true; |
| edp_encoder = encoder; |
| break; |
| } |
| |
| num_connectors++; |
| } |
| |
| refclk = ironlake_get_refclk(crtc); |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. The returned values represent the clock equation: |
| * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. |
| */ |
| limit = intel_limit(crtc, refclk); |
| ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL, |
| &clock); |
| if (!ok) { |
| DRM_ERROR("Couldn't find PLL settings for mode!\n"); |
| return -EINVAL; |
| } |
| |
| /* Ensure that the cursor is valid for the new mode before changing... */ |
| intel_crtc_update_cursor(crtc, true); |
| |
| if (is_lvds && dev_priv->lvds_downclock_avail) { |
| /* |
| * Ensure we match the reduced clock's P to the target clock. |
| * If the clocks don't match, we can't switch the display clock |
| * by using the FP0/FP1. In such case we will disable the LVDS |
| * downclock feature. |
| */ |
| has_reduced_clock = limit->find_pll(limit, crtc, |
| dev_priv->lvds_downclock, |
| refclk, |
| &clock, |
| &reduced_clock); |
| } |
| |
| if (is_sdvo && is_tv) |
| i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock); |
| |
| |
| /* FDI link */ |
| pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); |
| lane = 0; |
| /* CPU eDP doesn't require FDI link, so just set DP M/N |
| according to current link config */ |
| if (is_cpu_edp) { |
| intel_edp_link_config(edp_encoder, &lane, &link_bw); |
| } else { |
| /* FDI is a binary signal running at ~2.7GHz, encoding |
| * each output octet as 10 bits. The actual frequency |
| * is stored as a divider into a 100MHz clock, and the |
| * mode pixel clock is stored in units of 1KHz. |
| * Hence the bw of each lane in terms of the mode signal |
| * is: |
| */ |
| link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10; |
| } |
| |
| /* [e]DP over FDI requires target mode clock instead of link clock. */ |
| if (edp_encoder) |
| target_clock = intel_edp_target_clock(edp_encoder, mode); |
| else if (is_dp) |
| target_clock = mode->clock; |
| else |
| target_clock = adjusted_mode->clock; |
| |
| /* determine panel color depth */ |
| temp = I915_READ(PIPECONF(pipe)); |
| temp &= ~PIPE_BPC_MASK; |
| dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode); |
| switch (pipe_bpp) { |
| case 18: |
| temp |= PIPE_6BPC; |
| break; |
| case 24: |
| temp |= PIPE_8BPC; |
| break; |
| case 30: |
| temp |= PIPE_10BPC; |
| break; |
| case 36: |
| temp |= PIPE_12BPC; |
| break; |
| default: |
| WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n", |
| pipe_bpp); |
| temp |= PIPE_8BPC; |
| pipe_bpp = 24; |
| break; |
| } |
| |
| intel_crtc->bpp = pipe_bpp; |
| I915_WRITE(PIPECONF(pipe), temp); |
| |
| if (!lane) { |
| /* |
| * Account for spread spectrum to avoid |
| * oversubscribing the link. Max center spread |
| * is 2.5%; use 5% for safety's sake. |
| */ |
| u32 bps = target_clock * intel_crtc->bpp * 21 / 20; |
| lane = bps / (link_bw * 8) + 1; |
| } |
| |
| intel_crtc->fdi_lanes = lane; |
| |
| if (pixel_multiplier > 1) |
| link_bw *= pixel_multiplier; |
| ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, |
| &m_n); |
| |
| fp = clock.n << 16 | clock.m1 << 8 | clock.m2; |
| if (has_reduced_clock) |
| fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 | |
| reduced_clock.m2; |
| |
| /* Enable autotuning of the PLL clock (if permissible) */ |
| factor = 21; |
| if (is_lvds) { |
| if ((intel_panel_use_ssc(dev_priv) && |
| dev_priv->lvds_ssc_freq == 100) || |
| (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP) |
| factor = 25; |
| } else if (is_sdvo && is_tv) |
| factor = 20; |
| |
| if (clock.m < factor * clock.n) |
| fp |= FP_CB_TUNE; |
| |
| dpll = 0; |
| |
| if (is_lvds) |
| dpll |= DPLLB_MODE_LVDS; |
| else |
| dpll |= DPLLB_MODE_DAC_SERIAL; |
| if (is_sdvo) { |
| int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); |
| if (pixel_multiplier > 1) { |
| dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; |
| } |
| dpll |= DPLL_DVO_HIGH_SPEED; |
| } |
| if (is_dp && !is_cpu_edp) |
| dpll |= DPLL_DVO_HIGH_SPEED; |
| |
| /* compute bitmask from p1 value */ |
| dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| /* also FPA1 */ |
| dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; |
| |
| switch (clock.p2) { |
| case 5: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; |
| break; |
| case 7: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; |
| break; |
| case 10: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; |
| break; |
| case 14: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; |
| break; |
| } |
| |
| if (is_sdvo && is_tv) |
| dpll |= PLL_REF_INPUT_TVCLKINBC; |
| else if (is_tv) |
| /* XXX: just matching BIOS for now */ |
| /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ |
| dpll |= 3; |
| else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| /* setup pipeconf */ |
| pipeconf = I915_READ(PIPECONF(pipe)); |
| |
| /* Set up the display plane register */ |
| dspcntr = DISPPLANE_GAMMA_ENABLE; |
| |
| DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe); |
| drm_mode_debug_printmodeline(mode); |
| |
| /* CPU eDP is the only output that doesn't need a PCH PLL of its own on |
| * pre-Haswell/LPT generation */ |
| if (HAS_PCH_LPT(dev)) { |
| DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n", |
| pipe); |
| } else if (!is_cpu_edp) { |
| struct intel_pch_pll *pll; |
| |
| pll = intel_get_pch_pll(intel_crtc, dpll, fp); |
| if (pll == NULL) { |
| DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n", |
| pipe); |
| return -EINVAL; |
| } |
| } else |
| intel_put_pch_pll(intel_crtc); |
| |
| /* The LVDS pin pair needs to be on before the DPLLs are enabled. |
| * This is an exception to the general rule that mode_set doesn't turn |
| * things on. |
| */ |
| if (is_lvds) { |
| temp = I915_READ(PCH_LVDS); |
| temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~PORT_TRANS_SEL_MASK; |
| temp |= PORT_TRANS_SEL_CPT(pipe); |
| } else { |
| if (pipe == 1) |
| temp |= LVDS_PIPEB_SELECT; |
| else |
| temp &= ~LVDS_PIPEB_SELECT; |
| } |
| |
| /* set the corresponsding LVDS_BORDER bit */ |
| temp |= dev_priv->lvds_border_bits; |
| /* Set the B0-B3 data pairs corresponding to whether we're going to |
| * set the DPLLs for dual-channel mode or not. |
| */ |
| if (clock.p2 == 7) |
| temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; |
| else |
| temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); |
| |
| /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) |
| * appropriately here, but we need to look more thoroughly into how |
| * panels behave in the two modes. |
| */ |
| temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY); |
| if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC) |
| temp |= LVDS_HSYNC_POLARITY; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC) |
| temp |= LVDS_VSYNC_POLARITY; |
| I915_WRITE(PCH_LVDS, temp); |
| } |
| |
| pipeconf &= ~PIPECONF_DITHER_EN; |
| pipeconf &= ~PIPECONF_DITHER_TYPE_MASK; |
| if ((is_lvds && dev_priv->lvds_dither) || dither) { |
| pipeconf |= PIPECONF_DITHER_EN; |
| pipeconf |= PIPECONF_DITHER_TYPE_SP; |
| } |
| if (is_dp && !is_cpu_edp) { |
| intel_dp_set_m_n(crtc, mode, adjusted_mode); |
| } else { |
| /* For non-DP output, clear any trans DP clock recovery setting.*/ |
| I915_WRITE(TRANSDATA_M1(pipe), 0); |
| I915_WRITE(TRANSDATA_N1(pipe), 0); |
| I915_WRITE(TRANSDPLINK_M1(pipe), 0); |
| I915_WRITE(TRANSDPLINK_N1(pipe), 0); |
| } |
| |
| if (intel_crtc->pch_pll) { |
| I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll); |
| |
| /* Wait for the clocks to stabilize. */ |
| POSTING_READ(intel_crtc->pch_pll->pll_reg); |
| udelay(150); |
| |
| /* The pixel multiplier can only be updated once the |
| * DPLL is enabled and the clocks are stable. |
| * |
| * So write it again. |
| */ |
| I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll); |
| } |
| |
| intel_crtc->lowfreq_avail = false; |
| if (intel_crtc->pch_pll) { |
| if (is_lvds && has_reduced_clock && i915_powersave) { |
| I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2); |
| intel_crtc->lowfreq_avail = true; |
| } else { |
| I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp); |
| } |
| } |
| |
| pipeconf &= ~PIPECONF_INTERLACE_MASK; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { |
| pipeconf |= PIPECONF_INTERLACED_ILK; |
| /* the chip adds 2 halflines automatically */ |
| adjusted_mode->crtc_vtotal -= 1; |
| adjusted_mode->crtc_vblank_end -= 1; |
| I915_WRITE(VSYNCSHIFT(pipe), |
| adjusted_mode->crtc_hsync_start |
| - adjusted_mode->crtc_htotal/2); |
| } else { |
| pipeconf |= PIPECONF_PROGRESSIVE; |
| I915_WRITE(VSYNCSHIFT(pipe), 0); |
| } |
| |
| I915_WRITE(HTOTAL(pipe), |
| (adjusted_mode->crtc_hdisplay - 1) | |
| ((adjusted_mode->crtc_htotal - 1) << 16)); |
| I915_WRITE(HBLANK(pipe), |
| (adjusted_mode->crtc_hblank_start - 1) | |
| ((adjusted_mode->crtc_hblank_end - 1) << 16)); |
| I915_WRITE(HSYNC(pipe), |
| (adjusted_mode->crtc_hsync_start - 1) | |
| ((adjusted_mode->crtc_hsync_end - 1) << 16)); |
| |
| I915_WRITE(VTOTAL(pipe), |
| (adjusted_mode->crtc_vdisplay - 1) | |
| ((adjusted_mode->crtc_vtotal - 1) << 16)); |
| I915_WRITE(VBLANK(pipe), |
| (adjusted_mode->crtc_vblank_start - 1) | |
| ((adjusted_mode->crtc_vblank_end - 1) << 16)); |
| I915_WRITE(VSYNC(pipe), |
| (adjusted_mode->crtc_vsync_start - 1) | |
| ((adjusted_mode->crtc_vsync_end - 1) << 16)); |
| |
| /* pipesrc controls the size that is scaled from, which should |
| * always be the user's requested size. |
| */ |
| I915_WRITE(PIPESRC(pipe), |
| ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); |
| |
| I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m); |
| I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n); |
| I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m); |
| I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n); |
| |
| if (is_cpu_edp) |
| ironlake_set_pll_edp(crtc, adjusted_mode->clock); |
| |
| I915_WRITE(PIPECONF(pipe), pipeconf); |
| POSTING_READ(PIPECONF(pipe)); |
| |
| intel_wait_for_vblank(dev, pipe); |
| |
| I915_WRITE(DSPCNTR(plane), dspcntr); |
| POSTING_READ(DSPCNTR(plane)); |
| |
| ret = intel_pipe_set_base(crtc, x, y, old_fb); |
| |
| intel_update_watermarks(dev); |
| |
| intel_update_linetime_watermarks(dev, pipe, adjusted_mode); |
| |
| return ret; |
| } |
| |
| static int intel_crtc_mode_set(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode, |
| int x, int y, |
| struct drm_framebuffer *old_fb) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int ret; |
| |
| drm_vblank_pre_modeset(dev, pipe); |
| |
| ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode, |
| x, y, old_fb); |
| drm_vblank_post_modeset(dev, pipe); |
| |
| if (ret) |
| intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF; |
| else |
| intel_crtc->dpms_mode = DRM_MODE_DPMS_ON; |
| |
| return ret; |
| } |
| |
| static bool intel_eld_uptodate(struct drm_connector *connector, |
| int reg_eldv, uint32_t bits_eldv, |
| int reg_elda, uint32_t bits_elda, |
| int reg_edid) |
| { |
| struct drm_i915_private *dev_priv = connector->dev->dev_private; |
| uint8_t *eld = connector->eld; |
| uint32_t i; |
| |
| i = I915_READ(reg_eldv); |
| i &= bits_eldv; |
| |
| if (!eld[0]) |
| return !i; |
| |
| if (!i) |
| return false; |
| |
| i = I915_READ(reg_elda); |
| i &= ~bits_elda; |
| I915_WRITE(reg_elda, i); |
| |
| for (i = 0; i < eld[2]; i++) |
| if (I915_READ(reg_edid) != *((uint32_t *)eld + i)) |
| return false; |
| |
| return true; |
| } |
| |
| static void g4x_write_eld(struct drm_connector *connector, |
| struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = connector->dev->dev_private; |
| uint8_t *eld = connector->eld; |
| uint32_t eldv; |
| uint32_t len; |
| uint32_t i; |
| |
| i = I915_READ(G4X_AUD_VID_DID); |
| |
| if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL) |
| eldv = G4X_ELDV_DEVCL_DEVBLC; |
| else |
| eldv = G4X_ELDV_DEVCTG; |
| |
| if (intel_eld_uptodate(connector, |
| G4X_AUD_CNTL_ST, eldv, |
| G4X_AUD_CNTL_ST, G4X_ELD_ADDR, |
| G4X_HDMIW_HDMIEDID)) |
| return; |
| |
| i = I915_READ(G4X_AUD_CNTL_ST); |
| i &= ~(eldv | G4X_ELD_ADDR); |
| len = (i >> 9) & 0x1f; /* ELD buffer size */ |
| I915_WRITE(G4X_AUD_CNTL_ST, i); |
| |
| if (!eld[0]) |
| return; |
| |
| len = min_t(uint8_t, eld[2], len); |
| DRM_DEBUG_DRIVER("ELD size %d\n", len); |
| for (i = 0; i < len; i++) |
| I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i)); |
| |
| i = I915_READ(G4X_AUD_CNTL_ST); |
| i |= eldv; |
| I915_WRITE(G4X_AUD_CNTL_ST, i); |
| } |
| |
| static void ironlake_write_eld(struct drm_connector *connector, |
| struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = connector->dev->dev_private; |
| uint8_t *eld = connector->eld; |
| uint32_t eldv; |
| uint32_t i; |
| int len; |
| int hdmiw_hdmiedid; |
| int aud_config; |
| int aud_cntl_st; |
| int aud_cntrl_st2; |
| |
| if (HAS_PCH_IBX(connector->dev)) { |
| hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A; |
| aud_config = IBX_AUD_CONFIG_A; |
| aud_cntl_st = IBX_AUD_CNTL_ST_A; |
| aud_cntrl_st2 = IBX_AUD_CNTL_ST2; |
| } else { |
| hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A; |
| aud_config = CPT_AUD_CONFIG_A; |
| aud_cntl_st = CPT_AUD_CNTL_ST_A; |
| aud_cntrl_st2 = CPT_AUD_CNTRL_ST2; |
| } |
| |
| i = to_intel_crtc(crtc)->pipe; |
| hdmiw_hdmiedid += i * 0x100; |
| aud_cntl_st += i * 0x100; |
| aud_config += i * 0x100; |
| |
| DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i)); |
| |
| i = I915_READ(aud_cntl_st); |
| i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */ |
| if (!i) { |
| DRM_DEBUG_DRIVER("Audio directed to unknown port\n"); |
| /* operate blindly on all ports */ |
| eldv = IBX_ELD_VALIDB; |
| eldv |= IBX_ELD_VALIDB << 4; |
| eldv |= IBX_ELD_VALIDB << 8; |
| } else { |
| DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i); |
| eldv = IBX_ELD_VALIDB << ((i - 1) * 4); |
| } |
| |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { |
| DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n"); |
| eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */ |
| I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */ |
| } else |
| I915_WRITE(aud_config, 0); |
| |
| if (intel_eld_uptodate(connector, |
| aud_cntrl_st2, eldv, |
| aud_cntl_st, IBX_ELD_ADDRESS, |
| hdmiw_hdmiedid)) |
| return; |
| |
| i = I915_READ(aud_cntrl_st2); |
| i &= ~eldv; |
| I915_WRITE(aud_cntrl_st2, i); |
| |
| if (!eld[0]) |
| return; |
| |
| i = I915_READ(aud_cntl_st); |
| i &= ~IBX_ELD_ADDRESS; |
| I915_WRITE(aud_cntl_st, i); |
| |
| len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */ |
| DRM_DEBUG_DRIVER("ELD size %d\n", len); |
| for (i = 0; i < len; i++) |
| I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i)); |
| |
| i = I915_READ(aud_cntrl_st2); |
| i |= eldv; |
| I915_WRITE(aud_cntrl_st2, i); |
| } |
| |
| void intel_write_eld(struct drm_encoder *encoder, |
| struct drm_display_mode *mode) |
| { |
| struct drm_crtc *crtc = encoder->crtc; |
| struct drm_connector *connector; |
| struct drm_device *dev = encoder->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| connector = drm_select_eld(encoder, mode); |
| if (!connector) |
| return; |
| |
| DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", |
| connector->base.id, |
| drm_get_connector_name(connector), |
| connector->encoder->base.id, |
| drm_get_encoder_name(connector->encoder)); |
| |
| connector->eld[6] = drm_av_sync_delay(connector, mode) / 2; |
| |
| if (dev_priv->display.write_eld) |
| dev_priv->display.write_eld(connector, crtc); |
| } |
| |
| /** Loads the palette/gamma unit for the CRTC with the prepared values */ |
| void intel_crtc_load_lut(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int palreg = PALETTE(intel_crtc->pipe); |
| int i; |
| |
| /* The clocks have to be on to load the palette. */ |
| if (!crtc->enabled || !intel_crtc->active) |
| return; |
| |
| /* use legacy palette for Ironlake */ |
| if (HAS_PCH_SPLIT(dev)) |
| palreg = LGC_PALETTE(intel_crtc->pipe); |
| |
| for (i = 0; i < 256; i++) { |
| I915_WRITE(palreg + 4 * i, |
| (intel_crtc->lut_r[i] << 16) | |
| (intel_crtc->lut_g[i] << 8) | |
| intel_crtc->lut_b[i]); |
| } |
| } |
| |
| static void i845_update_cursor(struct drm_crtc *crtc, u32 base) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| bool visible = base != 0; |
| u32 cntl; |
| |
| if (intel_crtc->cursor_visible == visible) |
| return; |
| |
| cntl = I915_READ(_CURACNTR); |
| if (visible) { |
| /* On these chipsets we can only modify the base whilst |
| * the cursor is disabled. |
| */ |
| I915_WRITE(_CURABASE, base); |
| |
| cntl &= ~(CURSOR_FORMAT_MASK); |
| /* XXX width must be 64, stride 256 => 0x00 << 28 */ |
| cntl |= CURSOR_ENABLE | |
| CURSOR_GAMMA_ENABLE | |
| CURSOR_FORMAT_ARGB; |
| } else |
| cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE); |
| I915_WRITE(_CURACNTR, cntl); |
| |
| intel_crtc->cursor_visible = visible; |
| } |
| |
| static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| bool visible = base != 0; |
| |
| if (intel_crtc->cursor_visible != visible) { |
| uint32_t cntl = I915_READ(CURCNTR(pipe)); |
| if (base) { |
| cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT); |
| cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; |
| cntl |= pipe << 28; /* Connect to correct pipe */ |
| } else { |
| cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE); |
| cntl |= CURSOR_MODE_DISABLE; |
| } |
| I915_WRITE(CURCNTR(pipe), cntl); |
| |
| intel_crtc->cursor_visible = visible; |
| } |
| /* and commit changes on next vblank */ |
| I915_WRITE(CURBASE(pipe), base); |
| } |
| |
| static void ivb_update_cursor(struct drm_crtc *crtc, u32 base) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| bool visible = base != 0; |
| |
| if (intel_crtc->cursor_visible != visible) { |
| uint32_t cntl = I915_READ(CURCNTR_IVB(pipe)); |
| if (base) { |
| cntl &= ~CURSOR_MODE; |
| cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; |
| } else { |
| cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE); |
| cntl |= CURSOR_MODE_DISABLE; |
| } |
| I915_WRITE(CURCNTR_IVB(pipe), cntl); |
| |
| intel_crtc->cursor_visible = visible; |
| } |
| /* and commit changes on next vblank */ |
| I915_WRITE(CURBASE_IVB(pipe), base); |
| } |
| |
| /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */ |
| static void intel_crtc_update_cursor(struct drm_crtc *crtc, |
| bool on) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int x = intel_crtc->cursor_x; |
| int y = intel_crtc->cursor_y; |
| u32 base, pos; |
| bool visible; |
| |
| pos = 0; |
| |
| if (on && crtc->enabled && crtc->fb) { |
| base = intel_crtc->cursor_addr; |
| if (x > (int) crtc->fb->width) |
| base = 0; |
| |
| if (y > (int) crtc->fb->height) |
| base = 0; |
| } else |
| base = 0; |
| |
| if (x < 0) { |
| if (x + intel_crtc->cursor_width < 0) |
| base = 0; |
| |
| pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; |
| x = -x; |
| } |
| pos |= x << CURSOR_X_SHIFT; |
| |
| if (y < 0) { |
| if (y + intel_crtc->cursor_height < 0) |
| base = 0; |
| |
| pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; |
| y = -y; |
| } |
| pos |= y << CURSOR_Y_SHIFT; |
| |
| visible = base != 0; |
| if (!visible && !intel_crtc->cursor_visible) |
| return; |
| |
| if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) { |
| I915_WRITE(CURPOS_IVB(pipe), pos); |
| ivb_update_cursor(crtc, base); |
| } else { |
| I915_WRITE(CURPOS(pipe), pos); |
| if (IS_845G(dev) || IS_I865G(dev)) |
| i845_update_cursor(crtc, base); |
| else |
| i9xx_update_cursor(crtc, base); |
| } |
| } |
| |
| static int intel_crtc_cursor_set(struct drm_crtc *crtc, |
| struct drm_file *file, |
| uint32_t handle, |
| uint32_t width, uint32_t height) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_i915_gem_object *obj; |
| uint32_t addr; |
| int ret; |
| |
| DRM_DEBUG_KMS("\n"); |
| |
| /* if we want to turn off the cursor ignore width and height */ |
| if (!handle) { |
| DRM_DEBUG_KMS("cursor off\n"); |
| addr = 0; |
| obj = NULL; |
| mutex_lock(&dev->struct_mutex); |
| goto finish; |
| } |
| |
| /* Currently we only support 64x64 cursors */ |
| if (width != 64 || height != 64) { |
| DRM_ERROR("we currently only support 64x64 cursors\n"); |
| return -EINVAL; |
| } |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); |
| if (&obj->base == NULL) |
| return -ENOENT; |
| |
| if (obj->base.size < width * height * 4) { |
| DRM_ERROR("buffer is to small\n"); |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| /* we only need to pin inside GTT if cursor is non-phy */ |
| mutex_lock(&dev->struct_mutex); |
| if (!dev_priv->info->cursor_needs_physical) { |
| if (obj->tiling_mode) { |
| DRM_ERROR("cursor cannot be tiled\n"); |
| ret = -EINVAL; |
| goto fail_locked; |
| } |
| |
| ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL); |
| if (ret) { |
| DRM_ERROR("failed to move cursor bo into the GTT\n"); |
| goto fail_locked; |
| } |
| |
| ret = i915_gem_object_put_fence(obj); |
| if (ret) { |
| DRM_ERROR("failed to release fence for cursor"); |
| goto fail_unpin; |
| } |
| |
| addr = obj->gtt_offset; |
| } else { |
| int align = IS_I830(dev) ? 16 * 1024 : 256; |
| ret = i915_gem_attach_phys_object(dev, obj, |
| (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1, |
| align); |
| if (ret) { |
| DRM_ERROR("failed to attach phys object\n"); |
| goto fail_locked; |
| } |
| addr = obj->phys_obj->handle->busaddr; |
| } |
| |
| if (IS_GEN2(dev)) |
| I915_WRITE(CURSIZE, (height << 12) | width); |
| |
| finish: |
| if (intel_crtc->cursor_bo) { |
| if (dev_priv->info->cursor_needs_physical) { |
| if (intel_crtc->cursor_bo != obj) |
| i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo); |
| } else |
| i915_gem_object_unpin(intel_crtc->cursor_bo); |
| drm_gem_object_unreference(&intel_crtc->cursor_bo->base); |
| } |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| intel_crtc->cursor_addr = addr; |
| intel_crtc->cursor_bo = obj; |
| intel_crtc->cursor_width = width; |
| intel_crtc->cursor_height = height; |
| |
| intel_crtc_update_cursor(crtc, true); |
| |
| return 0; |
| fail_unpin: |
| i915_gem_object_unpin(obj); |
| fail_locked: |
| mutex_unlock(&dev->struct_mutex); |
| fail: |
| drm_gem_object_unreference_unlocked(&obj->base); |
| return ret; |
| } |
| |
| static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| intel_crtc->cursor_x = x; |
| intel_crtc->cursor_y = y; |
| |
| intel_crtc_update_cursor(crtc, true); |
| |
| return 0; |
| } |
| |
| /** Sets the color ramps on behalf of RandR */ |
| void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green, |
| u16 blue, int regno) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| intel_crtc->lut_r[regno] = red >> 8; |
| intel_crtc->lut_g[regno] = green >> 8; |
| intel_crtc->lut_b[regno] = blue >> 8; |
| } |
| |
| void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green, |
| u16 *blue, int regno) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| *red = intel_crtc->lut_r[regno] << 8; |
| *green = intel_crtc->lut_g[regno] << 8; |
| *blue = intel_crtc->lut_b[regno] << 8; |
| } |
| |
| static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, |
| u16 *blue, uint32_t start, uint32_t size) |
| { |
| int end = (start + size > 256) ? 256 : start + size, i; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| for (i = start; i < end; i++) { |
| intel_crtc->lut_r[i] = red[i] >> 8; |
| intel_crtc->lut_g[i] = green[i] >> 8; |
| intel_crtc->lut_b[i] = blue[i] >> 8; |
| } |
| |
| intel_crtc_load_lut(crtc); |
| } |
| |
| /** |
| * Get a pipe with a simple mode set on it for doing load-based monitor |
| * detection. |
| * |
| * It will be up to the load-detect code to adjust the pipe as appropriate for |
| * its requirements. The pipe will be connected to no other encoders. |
| * |
| * Currently this code will only succeed if there is a pipe with no encoders |
| * configured for it. In the future, it could choose to temporarily disable |
| * some outputs to free up a pipe for its use. |
| * |
| * \return crtc, or NULL if no pipes are available. |
| */ |
| |
| /* VESA 640x480x72Hz mode to set on the pipe */ |
| static struct drm_display_mode load_detect_mode = { |
| DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, |
| 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), |
| }; |
| |
| static struct drm_framebuffer * |
| intel_framebuffer_create(struct drm_device *dev, |
| struct drm_mode_fb_cmd2 *mode_cmd, |
| struct drm_i915_gem_object *obj) |
| { |
| struct intel_framebuffer *intel_fb; |
| int ret; |
| |
| intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); |
| if (!intel_fb) { |
| drm_gem_object_unreference_unlocked(&obj->base); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj); |
| if (ret) { |
| drm_gem_object_unreference_unlocked(&obj->base); |
| kfree(intel_fb); |
| return ERR_PTR(ret); |
| } |
| |
| return &intel_fb->base; |
| } |
| |
| static u32 |
| intel_framebuffer_pitch_for_width(int width, int bpp) |
| { |
| u32 pitch = DIV_ROUND_UP(width * bpp, 8); |
| return ALIGN(pitch, 64); |
| } |
| |
| static u32 |
| intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp) |
| { |
| u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp); |
| return ALIGN(pitch * mode->vdisplay, PAGE_SIZE); |
| } |
| |
| static struct drm_framebuffer * |
| intel_framebuffer_create_for_mode(struct drm_device *dev, |
| struct drm_display_mode *mode, |
| int depth, int bpp) |
| { |
| struct drm_i915_gem_object *obj; |
| struct drm_mode_fb_cmd2 mode_cmd; |
| |
| obj = i915_gem_alloc_object(dev, |
| intel_framebuffer_size_for_mode(mode, bpp)); |
| if (obj == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| mode_cmd.width = mode->hdisplay; |
| mode_cmd.height = mode->vdisplay; |
| mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width, |
| bpp); |
| mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth); |
| |
| return intel_framebuffer_create(dev, &mode_cmd, obj); |
| } |
| |
| static struct drm_framebuffer * |
| mode_fits_in_fbdev(struct drm_device *dev, |
| struct drm_display_mode *mode) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj; |
| struct drm_framebuffer *fb; |
| |
| if (dev_priv->fbdev == NULL) |
| return NULL; |
| |
| obj = dev_priv->fbdev->ifb.obj; |
| if (obj == NULL) |
| return NULL; |
| |
| fb = &dev_priv->fbdev->ifb.base; |
| if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay, |
| fb->bits_per_pixel)) |
| return NULL; |
| |
| if (obj->base.size < mode->vdisplay * fb->pitches[0]) |
| return NULL; |
| |
| return fb; |
| } |
| |
| bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder, |
| struct drm_connector *connector, |
| struct drm_display_mode *mode, |
| struct intel_load_detect_pipe *old) |
| { |
| struct intel_crtc *intel_crtc; |
| struct drm_crtc *possible_crtc; |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_crtc *crtc = NULL; |
| struct drm_device *dev = encoder->dev; |
| struct drm_framebuffer *old_fb; |
| int i = -1; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", |
| connector->base.id, drm_get_connector_name(connector), |
| encoder->base.id, drm_get_encoder_name(encoder)); |
| |
| /* |
| * Algorithm gets a little messy: |
| * |
| * - if the connector already has an assigned crtc, use it (but make |
| * sure it's on first) |
| * |
| * - try to find the first unused crtc that can drive this connector, |
| * and use that if we find one |
| */ |
| |
| /* See if we already have a CRTC for this connector */ |
| if (encoder->crtc) { |
| crtc = encoder->crtc; |
| |
| intel_crtc = to_intel_crtc(crtc); |
| old->dpms_mode = intel_crtc->dpms_mode; |
| old->load_detect_temp = false; |
| |
| /* Make sure the crtc and connector are running */ |
| if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) { |
| struct drm_encoder_helper_funcs *encoder_funcs; |
| struct drm_crtc_helper_funcs *crtc_funcs; |
| |
| crtc_funcs = crtc->helper_private; |
| crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); |
| |
| encoder_funcs = encoder->helper_private; |
| encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON); |
| } |
| |
| return true; |
| } |
| |
| /* Find an unused one (if possible) */ |
| list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) { |
| i++; |
| if (!(encoder->possible_crtcs & (1 << i))) |
| continue; |
| if (!possible_crtc->enabled) { |
| crtc = possible_crtc; |
| break; |
| } |
| } |
| |
| /* |
| * If we didn't find an unused CRTC, don't use any. |
| */ |
| if (!crtc) { |
| DRM_DEBUG_KMS("no pipe available for load-detect\n"); |
| return false; |
| } |
| |
| encoder->crtc = crtc; |
| connector->encoder = encoder; |
| |
| intel_crtc = to_intel_crtc(crtc); |
| old->dpms_mode = intel_crtc->dpms_mode; |
| old->load_detect_temp = true; |
| old->release_fb = NULL; |
| |
| if (!mode) |
| mode = &load_detect_mode; |
| |
| old_fb = crtc->fb; |
| |
| /* We need a framebuffer large enough to accommodate all accesses |
| * that the plane may generate whilst we perform load detection. |
| * We can not rely on the fbcon either being present (we get called |
| * during its initialisation to detect all boot displays, or it may |
| * not even exist) or that it is large enough to satisfy the |
| * requested mode. |
| */ |
| crtc->fb = mode_fits_in_fbdev(dev, mode); |
| if (crtc->fb == NULL) { |
| DRM_DEBUG_KMS("creating tmp fb for load-detection\n"); |
| crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32); |
| old->release_fb = crtc->fb; |
| } else |
| DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n"); |
| if (IS_ERR(crtc->fb)) { |
| DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n"); |
| crtc->fb = old_fb; |
| return false; |
| } |
| |
| if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) { |
| DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); |
| if (old->release_fb) |
| old->release_fb->funcs->destroy(old->release_fb); |
| crtc->fb = old_fb; |
| return false; |
| } |
| |
| /* let the connector get through one full cycle before testing */ |
| intel_wait_for_vblank(dev, intel_crtc->pipe); |
| |
| return true; |
| } |
| |
| void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder, |
| struct drm_connector *connector, |
| struct intel_load_detect_pipe *old) |
| { |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_device *dev = encoder->dev; |
| struct drm_crtc *crtc = encoder->crtc; |
| struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; |
| struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", |
| connector->base.id, drm_get_connector_name(connector), |
| encoder->base.id, drm_get_encoder_name(encoder)); |
| |
| if (old->load_detect_temp) { |
| connector->encoder = NULL; |
| drm_helper_disable_unused_functions(dev); |
| |
| if (old->release_fb) |
| old->release_fb->funcs->destroy(old->release_fb); |
| |
| return; |
| } |
| |
| /* Switch crtc and encoder back off if necessary */ |
| if (old->dpms_mode != DRM_MODE_DPMS_ON) { |
| encoder_funcs->dpms(encoder, old->dpms_mode); |
| crtc_funcs->dpms(crtc, old->dpms_mode); |
| } |
| } |
| |
| /* Returns the clock of the currently programmed mode of the given pipe. */ |
| static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 dpll = I915_READ(DPLL(pipe)); |
| u32 fp; |
| intel_clock_t clock; |
| |
| if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) |
| fp = I915_READ(FP0(pipe)); |
| else |
| fp = I915_READ(FP1(pipe)); |
| |
| clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; |
| if (IS_PINEVIEW(dev)) { |
| clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; |
| clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| } else { |
| clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; |
| clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| } |
| |
| if (!IS_GEN2(dev)) { |
| if (IS_PINEVIEW(dev)) |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); |
| else |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT); |
| |
| switch (dpll & DPLL_MODE_MASK) { |
| case DPLLB_MODE_DAC_SERIAL: |
| clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? |
| 5 : 10; |
| break; |
| case DPLLB_MODE_LVDS: |
| clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? |
| 7 : 14; |
| break; |
| default: |
| DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " |
| "mode\n", (int)(dpll & DPLL_MODE_MASK)); |
| return 0; |
| } |
| |
| /* XXX: Handle the 100Mhz refclk */ |
| intel_clock(dev, 96000, &clock); |
| } else { |
| bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN); |
| |
| if (is_lvds) { |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT); |
| clock.p2 = 14; |
| |
| if ((dpll & PLL_REF_INPUT_MASK) == |
| PLLB_REF_INPUT_SPREADSPECTRUMIN) { |
| /* XXX: might not be 66MHz */ |
| intel_clock(dev, 66000, &clock); |
| } else |
| intel_clock(dev, 48000, &clock); |
| } else { |
| if (dpll & PLL_P1_DIVIDE_BY_TWO) |
| clock.p1 = 2; |
| else { |
| clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; |
| } |
| if (dpll & PLL_P2_DIVIDE_BY_4) |
| clock.p2 = 4; |
| else |
| clock.p2 = 2; |
| |
| intel_clock(dev, 48000, &clock); |
| } |
| } |
| |
| /* XXX: It would be nice to validate the clocks, but we can't reuse |
| * i830PllIsValid() because it relies on the xf86_config connector |
| * configuration being accurate, which it isn't necessarily. |
| */ |
| |
| return clock.dot; |
| } |
| |
| /** Returns the currently programmed mode of the given pipe. */ |
| struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev, |
| struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| struct drm_display_mode *mode; |
| int htot = I915_READ(HTOTAL(pipe)); |
| int hsync = I915_READ(HSYNC(pipe)); |
| int vtot = I915_READ(VTOTAL(pipe)); |
| int vsync = I915_READ(VSYNC(pipe)); |
| |
| mode = kzalloc(sizeof(*mode), GFP_KERNEL); |
| if (!mode) |
| return NULL; |
| |
| mode->clock = intel_crtc_clock_get(dev, crtc); |
| mode->hdisplay = (htot & 0xffff) + 1; |
| mode->htotal = ((htot & 0xffff0000) >> 16) + 1; |
| mode->hsync_start = (hsync & 0xffff) + 1; |
| mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; |
| mode->vdisplay = (vtot & 0xffff) + 1; |
| mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; |
| mode->vsync_start = (vsync & 0xffff) + 1; |
| mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; |
| |
| drm_mode_set_name(mode); |
| |
| return mode; |
| } |
| |
| #define GPU_IDLE_TIMEOUT 500 /* ms */ |
| |
| /* When this timer fires, we've been idle for awhile */ |
| static void intel_gpu_idle_timer(unsigned long arg) |
| { |
| struct drm_device *dev = (struct drm_device *)arg; |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| |
| if (!list_empty(&dev_priv->mm.active_list)) { |
| /* Still processing requests, so just re-arm the timer. */ |
| mod_timer(&dev_priv->idle_timer, jiffies + |
| msecs_to_jiffies(GPU_IDLE_TIMEOUT)); |
| return; |
| } |
| |
| dev_priv->busy = false; |
| queue_work(dev_priv->wq, &dev_priv->idle_work); |
| } |
| |
| #define CRTC_IDLE_TIMEOUT 1000 /* ms */ |
| |
| static void intel_crtc_idle_timer(unsigned long arg) |
| { |
| struct intel_crtc *intel_crtc = (struct intel_crtc *)arg; |
| struct drm_crtc *crtc = &intel_crtc->base; |
| drm_i915_private_t *dev_priv = crtc->dev->dev_private; |
| struct intel_framebuffer *intel_fb; |
| |
| intel_fb = to_intel_framebuffer(crtc->fb); |
| if (intel_fb && intel_fb->obj->active) { |
| /* The framebuffer is still being accessed by the GPU. */ |
| mod_timer(&intel_crtc->idle_timer, jiffies + |
| msecs_to_jiffies(CRTC_IDLE_TIMEOUT)); |
| return; |
| } |
| |
| intel_crtc->busy = false; |
| queue_work(dev_priv->wq, &dev_priv->idle_work); |
| } |
| |
| static void intel_increase_pllclock(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int dpll_reg = DPLL(pipe); |
| int dpll; |
| |
| if (HAS_PCH_SPLIT(dev)) |
| return; |
| |
| if (!dev_priv->lvds_downclock_avail) |
| return; |
| |
| dpll = I915_READ(dpll_reg); |
| if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) { |
| DRM_DEBUG_DRIVER("upclocking LVDS\n"); |
| |
| assert_panel_unlocked(dev_priv, pipe); |
| |
| dpll &= ~DISPLAY_RATE_SELECT_FPA1; |
| I915_WRITE(dpll_reg, dpll); |
| intel_wait_for_vblank(dev, pipe); |
| |
| dpll = I915_READ(dpll_reg); |
| if (dpll & DISPLAY_RATE_SELECT_FPA1) |
| DRM_DEBUG_DRIVER("failed to upclock LVDS!\n"); |
| } |
| |
| /* Schedule downclock */ |
| mod_timer(&intel_crtc->idle_timer, jiffies + |
| msecs_to_jiffies(CRTC_IDLE_TIMEOUT)); |
| } |
| |
| static void intel_decrease_pllclock(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| if (HAS_PCH_SPLIT(dev)) |
| return; |
| |
| if (!dev_priv->lvds_downclock_avail) |
| return; |
| |
| /* |
| * Since this is called by a timer, we should never get here in |
| * the manual case. |
| */ |
| if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) { |
| int pipe = intel_crtc->pipe; |
| int dpll_reg = DPLL(pipe); |
| int dpll; |
| |
| DRM_DEBUG_DRIVER("downclocking LVDS\n"); |
| |
| assert_panel_unlocked(dev_priv, pipe); |
| |
| dpll = I915_READ(dpll_reg); |
| dpll |= DISPLAY_RATE_SELECT_FPA1; |
| I915_WRITE(dpll_reg, dpll); |
| intel_wait_for_vblank(dev, pipe); |
| dpll = I915_READ(dpll_reg); |
| if (!(dpll & DISPLAY_RATE_SELECT_FPA1)) |
| DRM_DEBUG_DRIVER("failed to downclock LVDS!\n"); |
| } |
| |
| } |
| |
| /** |
| * intel_idle_update - adjust clocks for idleness |
| * @work: work struct |
| * |
| * Either the GPU or display (or both) went idle. Check the busy status |
| * here and adjust the CRTC and GPU clocks as necessary. |
| */ |
| static void intel_idle_update(struct work_struct *work) |
| { |
| drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t, |
| idle_work); |
| struct drm_device *dev = dev_priv->dev; |
| struct drm_crtc *crtc; |
| struct intel_crtc *intel_crtc; |
| |
| if (!i915_powersave) |
| return; |
| |
| mutex_lock(&dev->struct_mutex); |
| |
| i915_update_gfx_val(dev_priv); |
| |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| /* Skip inactive CRTCs */ |
| if (!crtc->fb) |
| continue; |
| |
| intel_crtc = to_intel_crtc(crtc); |
| if (!intel_crtc->busy) |
| intel_decrease_pllclock(crtc); |
| } |
| |
| |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| /** |
| * intel_mark_busy - mark the GPU and possibly the display busy |
| * @dev: drm device |
| * @obj: object we're operating on |
| * |
| * Callers can use this function to indicate that the GPU is busy processing |
| * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout |
| * buffer), we'll also mark the display as busy, so we know to increase its |
| * clock frequency. |
| */ |
| void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = NULL; |
| struct intel_framebuffer *intel_fb; |
| struct intel_crtc *intel_crtc; |
| |
| if (!drm_core_check_feature(dev, DRIVER_MODESET)) |
| return; |
| |
| if (!dev_priv->busy) { |
| intel_sanitize_pm(dev); |
| dev_priv->busy = true; |
| } else |
| mod_timer(&dev_priv->idle_timer, jiffies + |
| msecs_to_jiffies(GPU_IDLE_TIMEOUT)); |
| |
| if (obj == NULL) |
| return; |
| |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| if (!crtc->fb) |
| continue; |
| |
| intel_crtc = to_intel_crtc(crtc); |
| intel_fb = to_intel_framebuffer(crtc->fb); |
| if (intel_fb->obj == obj) { |
| if (!intel_crtc->busy) { |
| /* Non-busy -> busy, upclock */ |
| intel_increase_pllclock(crtc); |
| intel_crtc->busy = true; |
| } else { |
| /* Busy -> busy, put off timer */ |
| mod_timer(&intel_crtc->idle_timer, jiffies + |
| msecs_to_jiffies(CRTC_IDLE_TIMEOUT)); |
| } |
| } |
| } |
| } |
| |
| static void intel_crtc_destroy(struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_device *dev = crtc->dev; |
| struct intel_unpin_work *work; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| work = intel_crtc->unpin_work; |
| intel_crtc->unpin_work = NULL; |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| |
| if (work) { |
| cancel_work_sync(&work->work); |
| kfree(work); |
| } |
| |
| drm_crtc_cleanup(crtc); |
| |
| kfree(intel_crtc); |
| } |
| |
| static void intel_unpin_work_fn(struct work_struct *__work) |
| { |
| struct intel_unpin_work *work = |
| container_of(__work, struct intel_unpin_work, work); |
| |
| mutex_lock(&work->dev->struct_mutex); |
| intel_unpin_fb_obj(work->old_fb_obj); |
| drm_gem_object_unreference(&work->pending_flip_obj->base); |
| drm_gem_object_unreference(&work->old_fb_obj->base); |
| |
| intel_update_fbc(work->dev); |
| mutex_unlock(&work->dev->struct_mutex); |
| kfree(work); |
| } |
| |
| static void do_intel_finish_page_flip(struct drm_device *dev, |
| struct drm_crtc *crtc) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_unpin_work *work; |
| struct drm_i915_gem_object *obj; |
| struct drm_pending_vblank_event *e; |
| struct timeval tnow, tvbl; |
| unsigned long flags; |
| |
| /* Ignore early vblank irqs */ |
| if (intel_crtc == NULL) |
| return; |
| |
| do_gettimeofday(&tnow); |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| work = intel_crtc->unpin_work; |
| if (work == NULL || !work->pending) { |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| return; |
| } |
| |
| intel_crtc->unpin_work = NULL; |
| |
| if (work->event) { |
| e = work->event; |
| e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl); |
| |
| /* Called before vblank count and timestamps have |
| * been updated for the vblank interval of flip |
| * completion? Need to increment vblank count and |
| * add one videorefresh duration to returned timestamp |
| * to account for this. We assume this happened if we |
| * get called over 0.9 frame durations after the last |
| * timestamped vblank. |
| * |
| * This calculation can not be used with vrefresh rates |
| * below 5Hz (10Hz to be on the safe side) without |
| * promoting to 64 integers. |
| */ |
| if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) > |
| 9 * crtc->framedur_ns) { |
| e->event.sequence++; |
| tvbl = ns_to_timeval(timeval_to_ns(&tvbl) + |
| crtc->framedur_ns); |
| } |
| |
| e->event.tv_sec = tvbl.tv_sec; |
| e->event.tv_usec = tvbl.tv_usec; |
| |
| list_add_tail(&e->base.link, |
| &e->base.file_priv->event_list); |
| wake_up_interruptible(&e->base.file_priv->event_wait); |
| } |
| |
| drm_vblank_put(dev, intel_crtc->pipe); |
| |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| |
| obj = work->old_fb_obj; |
| |
| atomic_clear_mask(1 << intel_crtc->plane, |
| &obj->pending_flip.counter); |
| if (atomic_read(&obj->pending_flip) == 0) |
| wake_up(&dev_priv->pending_flip_queue); |
| |
| schedule_work(&work->work); |
| |
| trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj); |
| } |
| |
| void intel_finish_page_flip(struct drm_device *dev, int pipe) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| |
| do_intel_finish_page_flip(dev, crtc); |
| } |
| |
| void intel_finish_page_flip_plane(struct drm_device *dev, int plane) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane]; |
| |
| do_intel_finish_page_flip(dev, crtc); |
| } |
| |
| void intel_prepare_page_flip(struct drm_device *dev, int plane) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| if (intel_crtc->unpin_work) { |
| if ((++intel_crtc->unpin_work->pending) > 1) |
| DRM_ERROR("Prepared flip multiple times\n"); |
| } else { |
| DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n"); |
| } |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| |
| static int intel_gen2_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| u32 flip_mask; |
| struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; |
| int ret; |
| |
| ret = intel_pin_and_fence_fb_obj(dev, obj, ring); |
| if (ret) |
| goto err; |
| |
| ret = intel_ring_begin(ring, 6); |
| if (ret) |
| goto err_unpin; |
| |
| /* Can't queue multiple flips, so wait for the previous |
| * one to finish before executing the next. |
| */ |
| if (intel_crtc->plane) |
| flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; |
| else |
| flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; |
| intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_emit(ring, MI_DISPLAY_FLIP | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| intel_ring_emit(ring, fb->pitches[0]); |
| intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset); |
| intel_ring_emit(ring, 0); /* aux display base address, unused */ |
| intel_ring_advance(ring); |
| return 0; |
| |
| err_unpin: |
| intel_unpin_fb_obj(obj); |
| err: |
| return ret; |
| } |
| |
| static int intel_gen3_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| u32 flip_mask; |
| struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; |
| int ret; |
| |
| ret = intel_pin_and_fence_fb_obj(dev, obj, ring); |
| if (ret) |
| goto err; |
| |
| ret = intel_ring_begin(ring, 6); |
| if (ret) |
| goto err_unpin; |
| |
| if (intel_crtc->plane) |
| flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; |
| else |
| flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; |
| intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| intel_ring_emit(ring, fb->pitches[0]); |
| intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset); |
| intel_ring_emit(ring, MI_NOOP); |
| |
| intel_ring_advance(ring); |
| return 0; |
| |
| err_unpin: |
| intel_unpin_fb_obj(obj); |
| err: |
| return ret; |
| } |
| |
| static int intel_gen4_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| uint32_t pf, pipesrc; |
| struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; |
| int ret; |
| |
| ret = intel_pin_and_fence_fb_obj(dev, obj, ring); |
| if (ret) |
| goto err; |
| |
| ret = intel_ring_begin(ring, 4); |
| if (ret) |
| goto err_unpin; |
| |
| /* i965+ uses the linear or tiled offsets from the |
| * Display Registers (which do not change across a page-flip) |
| * so we need only reprogram the base address. |
| */ |
| intel_ring_emit(ring, MI_DISPLAY_FLIP | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| intel_ring_emit(ring, fb->pitches[0]); |
| intel_ring_emit(ring, |
| (obj->gtt_offset + intel_crtc->dspaddr_offset) | |
| obj->tiling_mode); |
| |
| /* XXX Enabling the panel-fitter across page-flip is so far |
| * untested on non-native modes, so ignore it for now. |
| * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE; |
| */ |
| pf = 0; |
| pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; |
| intel_ring_emit(ring, pf | pipesrc); |
| intel_ring_advance(ring); |
| return 0; |
| |
| err_unpin: |
| intel_unpin_fb_obj(obj); |
| err: |
| return ret; |
| } |
| |
| static int intel_gen6_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; |
| uint32_t pf, pipesrc; |
| int ret; |
| |
| ret = intel_pin_and_fence_fb_obj(dev, obj, ring); |
| if (ret) |
| goto err; |
| |
| ret = intel_ring_begin(ring, 4); |
| if (ret) |
| goto err_unpin; |
| |
| intel_ring_emit(ring, MI_DISPLAY_FLIP | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode); |
| intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset); |
| |
| /* Contrary to the suggestions in the documentation, |
| * "Enable Panel Fitter" does not seem to be required when page |
| * flipping with a non-native mode, and worse causes a normal |
| * modeset to fail. |
| * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE; |
| */ |
| pf = 0; |
| pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; |
| intel_ring_emit(ring, pf | pipesrc); |
| intel_ring_advance(ring); |
| return 0; |
| |
| err_unpin: |
| intel_unpin_fb_obj(obj); |
| err: |
| return ret; |
| } |
| |
| /* |
| * On gen7 we currently use the blit ring because (in early silicon at least) |
| * the render ring doesn't give us interrpts for page flip completion, which |
| * means clients will hang after the first flip is queued. Fortunately the |
| * blit ring generates interrupts properly, so use it instead. |
| */ |
| static int intel_gen7_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_ring_buffer *ring = &dev_priv->ring[BCS]; |
| uint32_t plane_bit = 0; |
| int ret; |
| |
| ret = intel_pin_and_fence_fb_obj(dev, obj, ring); |
| if (ret) |
| goto err; |
| |
| switch(intel_crtc->plane) { |
| case PLANE_A: |
| plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A; |
| break; |
| case PLANE_B: |
| plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B; |
| break; |
| case PLANE_C: |
| plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C; |
| break; |
| default: |
| WARN_ONCE(1, "unknown plane in flip command\n"); |
| ret = -ENODEV; |
| goto err; |
| } |
| |
| ret = intel_ring_begin(ring, 4); |
| if (ret) |
| goto err_unpin; |
| |
| intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit); |
| intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode)); |
| intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset); |
| intel_ring_emit(ring, (MI_NOOP)); |
| intel_ring_advance(ring); |
| return 0; |
| |
| err_unpin: |
| intel_unpin_fb_obj(obj); |
| err: |
| return ret; |
| } |
| |
| static int intel_default_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj) |
| { |
| return -ENODEV; |
| } |
| |
| static int intel_crtc_page_flip(struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_pending_vblank_event *event) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_framebuffer *intel_fb; |
| struct drm_i915_gem_object *obj; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_unpin_work *work; |
| unsigned long flags; |
| int ret; |
| |
| /* Can't change pixel format via MI display flips. */ |
| if (fb->pixel_format != crtc->fb->pixel_format) |
| return -EINVAL; |
| |
| /* |
| * TILEOFF/LINOFF registers can't be changed via MI display flips. |
| * Note that pitch changes could also affect these register. |
| */ |
| if (INTEL_INFO(dev)->gen > 3 && |
| (fb->offsets[0] != crtc->fb->offsets[0] || |
| fb->pitches[0] != crtc->fb->pitches[0])) |
| return -EINVAL; |
| |
| work = kzalloc(sizeof *work, GFP_KERNEL); |
| if (work == NULL) |
| return -ENOMEM; |
| |
| work->event = event; |
| work->dev = crtc->dev; |
| intel_fb = to_intel_framebuffer(crtc->fb); |
| work->old_fb_obj = intel_fb->obj; |
| INIT_WORK(&work->work, intel_unpin_work_fn); |
| |
| ret = drm_vblank_get(dev, intel_crtc->pipe); |
| if (ret) |
| goto free_work; |
| |
| /* We borrow the event spin lock for protecting unpin_work */ |
| spin_lock_irqsave(&dev->event_lock, flags); |
| if (intel_crtc->unpin_work) { |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| kfree(work); |
| drm_vblank_put(dev, intel_crtc->pipe); |
| |
| DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); |
| return -EBUSY; |
| } |
| intel_crtc->unpin_work = work; |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| |
| intel_fb = to_intel_framebuffer(fb); |
| obj = intel_fb->obj; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| goto cleanup; |
| |
| /* Reference the objects for the scheduled work. */ |
| drm_gem_object_reference(&work->old_fb_obj->base); |
| drm_gem_object_reference(&obj->base); |
| |
| crtc->fb = fb; |
| |
| work->pending_flip_obj = obj; |
| |
| work->enable_stall_check = true; |
| |
| /* Block clients from rendering to the new back buffer until |
| * the flip occurs and the object is no longer visible. |
| */ |
| atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip); |
| |
| ret = dev_priv->display.queue_flip(dev, crtc, fb, obj); |
| if (ret) |
| goto cleanup_pending; |
| |
| intel_disable_fbc(dev); |
| intel_mark_busy(dev, obj); |
| mutex_unlock(&dev->struct_mutex); |
| |
| trace_i915_flip_request(intel_crtc->plane, obj); |
| |
| return 0; |
| |
| cleanup_pending: |
| atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip); |
| drm_gem_object_unreference(&work->old_fb_obj->base); |
| drm_gem_object_unreference(&obj->base); |
| mutex_unlock(&dev->struct_mutex); |
| |
| cleanup: |
| spin_lock_irqsave(&dev->event_lock, flags); |
| intel_crtc->unpin_work = NULL; |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| |
| drm_vblank_put(dev, intel_crtc->pipe); |
| free_work: |
| kfree(work); |
| |
| return ret; |
| } |
| |
| static void intel_sanitize_modesetting(struct drm_device *dev, |
| int pipe, int plane) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 reg, val; |
| int i; |
| |
| /* Clear any frame start delays used for debugging left by the BIOS */ |
| for_each_pipe(i) { |
| reg = PIPECONF(i); |
| I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); |
| } |
| |
| if (HAS_PCH_SPLIT(dev)) |
| return; |
| |
| /* Who knows what state these registers were left in by the BIOS or |
| * grub? |
| * |
| * If we leave the registers in a conflicting state (e.g. with the |
| * display plane reading from the other pipe than the one we intend |
| * to use) then when we attempt to teardown the active mode, we will |
| * not disable the pipes and planes in the correct order -- leaving |
| * a plane reading from a disabled pipe and possibly leading to |
| * undefined behaviour. |
| */ |
| |
| reg = DSPCNTR(plane); |
| val = I915_READ(reg); |
| |
| if ((val & DISPLAY_PLANE_ENABLE) == 0) |
| return; |
| if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe) |
| return; |
| |
| /* This display plane is active and attached to the other CPU pipe. */ |
| pipe = !pipe; |
| |
| /* Disable the plane and wait for it to stop reading from the pipe. */ |
| intel_disable_plane(dev_priv, plane, pipe); |
| intel_disable_pipe(dev_priv, pipe); |
| } |
| |
| static void intel_crtc_reset(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| /* Reset flags back to the 'unknown' status so that they |
| * will be correctly set on the initial modeset. |
| */ |
| intel_crtc->dpms_mode = -1; |
| |
| /* We need to fix up any BIOS configuration that conflicts with |
| * our expectations. |
| */ |
| intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane); |
| } |
| |
| static struct drm_crtc_helper_funcs intel_helper_funcs = { |
| .dpms = intel_crtc_dpms, |
| .mode_fixup = intel_crtc_mode_fixup, |
| .mode_set = intel_crtc_mode_set, |
| .mode_set_base = intel_pipe_set_base, |
| .mode_set_base_atomic = intel_pipe_set_base_atomic, |
| .load_lut = intel_crtc_load_lut, |
| .disable = intel_crtc_disable, |
| }; |
| |
| static const struct drm_crtc_funcs intel_crtc_funcs = { |
| .reset = intel_crtc_reset, |
| .cursor_set = intel_crtc_cursor_set, |
| .cursor_move = intel_crtc_cursor_move, |
| .gamma_set = intel_crtc_gamma_set, |
| .set_config = drm_crtc_helper_set_config, |
| .destroy = intel_crtc_destroy, |
| .page_flip = intel_crtc_page_flip, |
| }; |
| |
| static void intel_pch_pll_init(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| int i; |
| |
| if (dev_priv->num_pch_pll == 0) { |
| DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n"); |
| return; |
| } |
| |
| for (i = 0; i < dev_priv->num_pch_pll; i++) { |
| dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i); |
| dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i); |
| dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i); |
| } |
| } |
| |
| static void intel_crtc_init(struct drm_device *dev, int pipe) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc; |
| int i; |
| |
| intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); |
| if (intel_crtc == NULL) |
| return; |
| |
| drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs); |
| |
| drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256); |
| for (i = 0; i < 256; i++) { |
| intel_crtc->lut_r[i] = i; |
| intel_crtc->lut_g[i] = i; |
| intel_crtc->lut_b[i] = i; |
| } |
| |
| /* Swap pipes & planes for FBC on pre-965 */ |
| intel_crtc->pipe = pipe; |
| intel_crtc->plane = pipe; |
| if (IS_MOBILE(dev) && IS_GEN3(dev)) { |
| DRM_DEBUG_KMS("swapping pipes & planes for FBC\n"); |
| intel_crtc->plane = !pipe; |
| } |
| |
| BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || |
| dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL); |
| dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base; |
| dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base; |
| |
| intel_crtc_reset(&intel_crtc->base); |
| intel_crtc->active = true; /* force the pipe off on setup_init_config */ |
| intel_crtc->bpp = 24; /* default for pre-Ironlake */ |
| |
| if (HAS_PCH_SPLIT(dev)) { |
| intel_helper_funcs.prepare = ironlake_crtc_prepare; |
| intel_helper_funcs.commit = ironlake_crtc_commit; |
| } else { |
| intel_helper_funcs.prepare = i9xx_crtc_prepare; |
| intel_helper_funcs.commit = i9xx_crtc_commit; |
| } |
| |
| drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); |
| |
| intel_crtc->busy = false; |
| |
| setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer, |
| (unsigned long)intel_crtc); |
| } |
| |
| int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; |
| struct drm_mode_object *drmmode_obj; |
| struct intel_crtc *crtc; |
| |
| if (!drm_core_check_feature(dev, DRIVER_MODESET)) |
| return -ENODEV; |
| |
| drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id, |
| DRM_MODE_OBJECT_CRTC); |
| |
| if (!drmmode_obj) { |
| DRM_ERROR("no such CRTC id\n"); |
| return -EINVAL; |
| } |
| |
| crtc = to_intel_crtc(obj_to_crtc(drmmode_obj)); |
| pipe_from_crtc_id->pipe = crtc->pipe; |
| |
| return 0; |
| } |
| |
| static int intel_encoder_clones(struct drm_device *dev, int type_mask) |
| { |
| struct intel_encoder *encoder; |
| int index_mask = 0; |
| int entry = 0; |
| |
| list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { |
| if (type_mask & encoder->clone_mask) |
| index_mask |= (1 << entry); |
| entry++; |
| } |
| |
| return index_mask; |
| } |
| |
| static bool has_edp_a(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!IS_MOBILE(dev)) |
| return false; |
| |
| if ((I915_READ(DP_A) & DP_DETECTED) == 0) |
| return false; |
| |
| if (IS_GEN5(dev) && |
| (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE)) |
| return false; |
| |
| return true; |
| } |
| |
| static void intel_setup_outputs(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *encoder; |
| bool dpd_is_edp = false; |
| bool has_lvds; |
| |
| has_lvds = intel_lvds_init(dev); |
| if (!has_lvds && !HAS_PCH_SPLIT(dev)) { |
| /* disable the panel fitter on everything but LVDS */ |
| I915_WRITE(PFIT_CONTROL, 0); |
| } |
| |
| if (HAS_PCH_SPLIT(dev)) { |
| dpd_is_edp = intel_dpd_is_edp(dev); |
| |
| if (has_edp_a(dev)) |
| intel_dp_init(dev, DP_A); |
| |
| if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED)) |
| intel_dp_init(dev, PCH_DP_D); |
| } |
| |
| intel_crt_init(dev); |
| |
| if (IS_HASWELL(dev)) { |
| int found; |
| |
| /* Haswell uses DDI functions to detect digital outputs */ |
| found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED; |
| /* DDI A only supports eDP */ |
| if (found) |
| intel_ddi_init(dev, PORT_A); |
| |
| /* DDI B, C and D detection is indicated by the SFUSE_STRAP |
| * register */ |
| found = I915_READ(SFUSE_STRAP); |
| |
| if (found & SFUSE_STRAP_DDIB_DETECTED) |
| intel_ddi_init(dev, PORT_B); |
| if (found & SFUSE_STRAP_DDIC_DETECTED) |
| intel_ddi_init(dev, PORT_C); |
| if (found & SFUSE_STRAP_DDID_DETECTED) |
| intel_ddi_init(dev, PORT_D); |
| } else if (HAS_PCH_SPLIT(dev)) { |
| int found; |
| |
| if (I915_READ(HDMIB) & PORT_DETECTED) { |
| /* PCH SDVOB multiplex with HDMIB */ |
| found = intel_sdvo_init(dev, PCH_SDVOB, true); |
| if (!found) |
| intel_hdmi_init(dev, HDMIB); |
| if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) |
| intel_dp_init(dev, PCH_DP_B); |
| } |
| |
| if (I915_READ(HDMIC) & PORT_DETECTED) |
| intel_hdmi_init(dev, HDMIC); |
| |
| if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED) |
| intel_hdmi_init(dev, HDMID); |
| |
| if (I915_READ(PCH_DP_C) & DP_DETECTED) |
| intel_dp_init(dev, PCH_DP_C); |
| |
| if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED)) |
| intel_dp_init(dev, PCH_DP_D); |
| } else if (IS_VALLEYVIEW(dev)) { |
| int found; |
| |
| if (I915_READ(SDVOB) & PORT_DETECTED) { |
| /* SDVOB multiplex with HDMIB */ |
| found = intel_sdvo_init(dev, SDVOB, true); |
| if (!found) |
| intel_hdmi_init(dev, SDVOB); |
| if (!found && (I915_READ(DP_B) & DP_DETECTED)) |
| intel_dp_init(dev, DP_B); |
| } |
| |
| if (I915_READ(SDVOC) & PORT_DETECTED) |
| intel_hdmi_init(dev, SDVOC); |
| |
| /* Shares lanes with HDMI on SDVOC */ |
| if (I915_READ(DP_C) & DP_DETECTED) |
| intel_dp_init(dev, DP_C); |
| } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) { |
| bool found = false; |
| |
| if (I915_READ(SDVOB) & SDVO_DETECTED) { |
| DRM_DEBUG_KMS("probing SDVOB\n"); |
| found = intel_sdvo_init(dev, SDVOB, true); |
| if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) { |
| DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); |
| intel_hdmi_init(dev, SDVOB); |
| } |
| |
| if (!found && SUPPORTS_INTEGRATED_DP(dev)) { |
| DRM_DEBUG_KMS("probing DP_B\n"); |
| intel_dp_init(dev, DP_B); |
| } |
| } |
| |
| /* Before G4X SDVOC doesn't have its own detect register */ |
| |
| if (I915_READ(SDVOB) & SDVO_DETECTED) { |
| DRM_DEBUG_KMS("probing SDVOC\n"); |
| found = intel_sdvo_init(dev, SDVOC, false); |
| } |
| |
| if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) { |
| |
| if (SUPPORTS_INTEGRATED_HDMI(dev)) { |
| DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); |
| intel_hdmi_init(dev, SDVOC); |
| } |
| if (SUPPORTS_INTEGRATED_DP(dev)) { |
| DRM_DEBUG_KMS("probing DP_C\n"); |
| intel_dp_init(dev, DP_C); |
| } |
| } |
| |
| if (SUPPORTS_INTEGRATED_DP(dev) && |
| (I915_READ(DP_D) & DP_DETECTED)) { |
| DRM_DEBUG_KMS("probing DP_D\n"); |
| intel_dp_init(dev, DP_D); |
| } |
| } else if (IS_GEN2(dev)) |
| intel_dvo_init(dev); |
| |
| if (SUPPORTS_TV(dev)) |
| intel_tv_init(dev); |
| |
| list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { |
| encoder->base.possible_crtcs = encoder->crtc_mask; |
| encoder->base.possible_clones = |
| intel_encoder_clones(dev, encoder->clone_mask); |
| } |
| |
| /* disable all the possible outputs/crtcs before entering KMS mode */ |
| drm_helper_disable_unused_functions(dev); |
| |
| if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) |
| ironlake_init_pch_refclk(dev); |
| } |
| |
| static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) |
| { |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| |
| drm_framebuffer_cleanup(fb); |
| drm_gem_object_unreference_unlocked(&intel_fb->obj->base); |
| |
| kfree(intel_fb); |
| } |
| |
| static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, |
| struct drm_file *file, |
| unsigned int *handle) |
| { |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| struct drm_i915_gem_object *obj = intel_fb->obj; |
| |
| return drm_gem_handle_create(file, &obj->base, handle); |
| } |
| |
| static const struct drm_framebuffer_funcs intel_fb_funcs = { |
| .destroy = intel_user_framebuffer_destroy, |
| .create_handle = intel_user_framebuffer_create_handle, |
| }; |
| |
| int intel_framebuffer_init(struct drm_device *dev, |
| struct intel_framebuffer *intel_fb, |
| struct drm_mode_fb_cmd2 *mode_cmd, |
| struct drm_i915_gem_object *obj) |
| { |
| int ret; |
| |
| if (obj->tiling_mode == I915_TILING_Y) |
| return -EINVAL; |
| |
| if (mode_cmd->pitches[0] & 63) |
| return -EINVAL; |
| |
| switch (mode_cmd->pixel_format) { |
| case DRM_FORMAT_RGB332: |
| case DRM_FORMAT_RGB565: |
| case DRM_FORMAT_XRGB8888: |
| case DRM_FORMAT_XBGR8888: |
| case DRM_FORMAT_ARGB8888: |
| case DRM_FORMAT_XRGB2101010: |
| case DRM_FORMAT_ARGB2101010: |
| /* RGB formats are common across chipsets */ |
| break; |
| case DRM_FORMAT_YUYV: |
| case DRM_FORMAT_UYVY: |
| case DRM_FORMAT_YVYU: |
| case DRM_FORMAT_VYUY: |
| break; |
| default: |
| DRM_DEBUG_KMS("unsupported pixel format %u\n", |
| mode_cmd->pixel_format); |
| return -EINVAL; |
| } |
| |
| ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs); |
| if (ret) { |
| DRM_ERROR("framebuffer init failed %d\n", ret); |
| return ret; |
| } |
| |
| drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd); |
| intel_fb->obj = obj; |
| return 0; |
| } |
| |
| static struct drm_framebuffer * |
| intel_user_framebuffer_create(struct drm_device *dev, |
| struct drm_file *filp, |
| struct drm_mode_fb_cmd2 *mode_cmd) |
| { |
| struct drm_i915_gem_object *obj; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, filp, |
| mode_cmd->handles[0])); |
| if (&obj->base == NULL) |
| return ERR_PTR(-ENOENT); |
| |
| return intel_framebuffer_create(dev, mode_cmd, obj); |
| } |
| |
| static const struct drm_mode_config_funcs intel_mode_funcs = { |
| .fb_create = intel_user_framebuffer_create, |
| .output_poll_changed = intel_fb_output_poll_changed, |
| }; |
| |
| /* Set up chip specific display functions */ |
| static void intel_init_display(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| /* We always want a DPMS function */ |
| if (HAS_PCH_SPLIT(dev)) { |
| dev_priv->display.dpms = ironlake_crtc_dpms; |
| dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set; |
| dev_priv->display.off = ironlake_crtc_off; |
| dev_priv->display.update_plane = ironlake_update_plane; |
| } else { |
| dev_priv->display.dpms = i9xx_crtc_dpms; |
| dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set; |
| dev_priv->display.off = i9xx_crtc_off; |
| dev_priv->display.update_plane = i9xx_update_plane; |
| } |
| |
| /* Returns the core display clock speed */ |
| if (IS_VALLEYVIEW(dev)) |
| dev_priv->display.get_display_clock_speed = |
| valleyview_get_display_clock_speed; |
| else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev))) |
| dev_priv->display.get_display_clock_speed = |
| i945_get_display_clock_speed; |
| else if (IS_I915G(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i915_get_display_clock_speed; |
| else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i9xx_misc_get_display_clock_speed; |
| else if (IS_I915GM(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i915gm_get_display_clock_speed; |
| else if (IS_I865G(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i865_get_display_clock_speed; |
| else if (IS_I85X(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i855_get_display_clock_speed; |
| else /* 852, 830 */ |
| dev_priv->display.get_display_clock_speed = |
| i830_get_display_clock_speed; |
| |
| if (HAS_PCH_SPLIT(dev)) { |
| if (IS_GEN5(dev)) { |
| dev_priv->display.fdi_link_train = ironlake_fdi_link_train; |
| dev_priv->display.write_eld = ironlake_write_eld; |
| } else if (IS_GEN6(dev)) { |
| dev_priv->display.fdi_link_train = gen6_fdi_link_train; |
| dev_priv->display.write_eld = ironlake_write_eld; |
| } else if (IS_IVYBRIDGE(dev)) { |
| /* FIXME: detect B0+ stepping and use auto training */ |
| dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; |
| dev_priv->display.write_eld = ironlake_write_eld; |
| } else if (IS_HASWELL(dev)) { |
| dev_priv->display.fdi_link_train = hsw_fdi_link_train; |
| dev_priv->display.write_eld = ironlake_write_eld; |
| } else |
| dev_priv->display.update_wm = NULL; |
| } else if (IS_G4X(dev)) { |
| dev_priv->display.write_eld = g4x_write_eld; |
| } |
| |
| /* Default just returns -ENODEV to indicate unsupported */ |
| dev_priv->display.queue_flip = intel_default_queue_flip; |
| |
| switch (INTEL_INFO(dev)->gen) { |
| case 2: |
| dev_priv->display.queue_flip = intel_gen2_queue_flip; |
| break; |
| |
| case 3: |
| dev_priv->display.queue_flip = intel_gen3_queue_flip; |
| break; |
| |
| case 4: |
| case 5: |
| dev_priv->display.queue_flip = intel_gen4_queue_flip; |
| break; |
| |
| case 6: |
| dev_priv->display.queue_flip = intel_gen6_queue_flip; |
| break; |
| case 7: |
| dev_priv->display.queue_flip = intel_gen7_queue_flip; |
| break; |
| } |
| } |
| |
| /* |
| * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend, |
| * resume, or other times. This quirk makes sure that's the case for |
| * affected systems. |
| */ |
| static void quirk_pipea_force(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| dev_priv->quirks |= QUIRK_PIPEA_FORCE; |
| DRM_INFO("applying pipe a force quirk\n"); |
| } |
| |
| /* |
| * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason |
| */ |
| static void quirk_ssc_force_disable(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE; |
| DRM_INFO("applying lvds SSC disable quirk\n"); |
| } |
| |
| /* |
| * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight |
| * brightness value |
| */ |
| static void quirk_invert_brightness(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS; |
| DRM_INFO("applying inverted panel brightness quirk\n"); |
| } |
| |
| struct intel_quirk { |
| int device; |
| int subsystem_vendor; |
| int subsystem_device; |
| void (*hook)(struct drm_device *dev); |
| }; |
| |
| static struct intel_quirk intel_quirks[] = { |
| /* HP Mini needs pipe A force quirk (LP: #322104) */ |
| { 0x27ae, 0x103c, 0x361a, quirk_pipea_force }, |
| |
| /* Thinkpad R31 needs pipe A force quirk */ |
| { 0x3577, 0x1014, 0x0505, quirk_pipea_force }, |
| /* Toshiba Protege R-205, S-209 needs pipe A force quirk */ |
| { 0x2592, 0x1179, 0x0001, quirk_pipea_force }, |
| |
| /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */ |
| { 0x3577, 0x1014, 0x0513, quirk_pipea_force }, |
| /* ThinkPad X40 needs pipe A force quirk */ |
| |
| /* ThinkPad T60 needs pipe A force quirk (bug #16494) */ |
| { 0x2782, 0x17aa, 0x201a, quirk_pipea_force }, |
| |
| /* 855 & before need to leave pipe A & dpll A up */ |
| { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, |
| { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, |
| |
| /* Lenovo U160 cannot use SSC on LVDS */ |
| { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable }, |
| |
| /* Sony Vaio Y cannot use SSC on LVDS */ |
| { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable }, |
| |
| /* Acer Aspire 5734Z must invert backlight brightness */ |
| { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness }, |
| }; |
| |
| static void intel_init_quirks(struct drm_device *dev) |
| { |
| struct pci_dev *d = dev->pdev; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) { |
| struct intel_quirk *q = &intel_quirks[i]; |
| |
| if (d->device == q->device && |
| (d->subsystem_vendor == q->subsystem_vendor || |
| q->subsystem_vendor == PCI_ANY_ID) && |
| (d->subsystem_device == q->subsystem_device || |
| q->subsystem_device == PCI_ANY_ID)) |
| q->hook(dev); |
| } |
| } |
| |
| /* Disable the VGA plane that we never use */ |
| static void i915_disable_vga(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u8 sr1; |
| u32 vga_reg; |
| |
| if (HAS_PCH_SPLIT(dev)) |
| vga_reg = CPU_VGACNTRL; |
| else |
| vga_reg = VGACNTRL; |
| |
| vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); |
| outb(SR01, VGA_SR_INDEX); |
| sr1 = inb(VGA_SR_DATA); |
| outb(sr1 | 1<<5, VGA_SR_DATA); |
| vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); |
| udelay(300); |
| |
| I915_WRITE(vga_reg, VGA_DISP_DISABLE); |
| POSTING_READ(vga_reg); |
| } |
| |
| void intel_modeset_init_hw(struct drm_device *dev) |
| { |
| /* We attempt to init the necessary power wells early in the initialization |
| * time, so the subsystems that expect power to be enabled can work. |
| */ |
| intel_init_power_wells(dev); |
| |
| intel_prepare_ddi(dev); |
| |
| intel_init_clock_gating(dev); |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_enable_gt_powersave(dev); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| void intel_modeset_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int i, ret; |
| |
| drm_mode_config_init(dev); |
| |
| dev->mode_config.min_width = 0; |
| dev->mode_config.min_height = 0; |
| |
| dev->mode_config.preferred_depth = 24; |
| dev->mode_config.prefer_shadow = 1; |
| |
| dev->mode_config.funcs = &intel_mode_funcs; |
| |
| intel_init_quirks(dev); |
| |
| intel_init_pm(dev); |
| |
| intel_init_display(dev); |
| |
| if (IS_GEN2(dev)) { |
| dev->mode_config.max_width = 2048; |
| dev->mode_config.max_height = 2048; |
| } else if (IS_GEN3(dev)) { |
| dev->mode_config.max_width = 4096; |
| dev->mode_config.max_height = 4096; |
| } else { |
| dev->mode_config.max_width = 8192; |
| dev->mode_config.max_height = 8192; |
| } |
| dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr; |
| |
| DRM_DEBUG_KMS("%d display pipe%s available.\n", |
| dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : ""); |
| |
| for (i = 0; i < dev_priv->num_pipe; i++) { |
| intel_crtc_init(dev, i); |
| ret = intel_plane_init(dev, i); |
| if (ret) |
| DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret); |
| } |
| |
| intel_pch_pll_init(dev); |
| |
| /* Just disable it once at startup */ |
| i915_disable_vga(dev); |
| intel_setup_outputs(dev); |
| |
| INIT_WORK(&dev_priv->idle_work, intel_idle_update); |
| setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer, |
| (unsigned long)dev); |
| } |
| |
| void intel_modeset_gem_init(struct drm_device *dev) |
| { |
| intel_modeset_init_hw(dev); |
| |
| intel_setup_overlay(dev); |
| } |
| |
| void intel_modeset_cleanup(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| struct intel_crtc *intel_crtc; |
| |
| drm_kms_helper_poll_fini(dev); |
| mutex_lock(&dev->struct_mutex); |
| |
| intel_unregister_dsm_handler(); |
| |
| |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| /* Skip inactive CRTCs */ |
| if (!crtc->fb) |
| continue; |
| |
| intel_crtc = to_intel_crtc(crtc); |
| intel_increase_pllclock(crtc); |
| } |
| |
| intel_disable_fbc(dev); |
| |
| intel_disable_gt_powersave(dev); |
| |
| ironlake_teardown_rc6(dev); |
| |
| if (IS_VALLEYVIEW(dev)) |
| vlv_init_dpio(dev); |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| /* Disable the irq before mode object teardown, for the irq might |
| * enqueue unpin/hotplug work. */ |
| drm_irq_uninstall(dev); |
| cancel_work_sync(&dev_priv->hotplug_work); |
| cancel_work_sync(&dev_priv->rps_work); |
| |
| /* flush any delayed tasks or pending work */ |
| flush_scheduled_work(); |
| |
| /* Shut off idle work before the crtcs get freed. */ |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| intel_crtc = to_intel_crtc(crtc); |
| del_timer_sync(&intel_crtc->idle_timer); |
| } |
| del_timer_sync(&dev_priv->idle_timer); |
| cancel_work_sync(&dev_priv->idle_work); |
| |
| drm_mode_config_cleanup(dev); |
| } |
| |
| /* |
| * Return which encoder is currently attached for connector. |
| */ |
| struct drm_encoder *intel_best_encoder(struct drm_connector *connector) |
| { |
| return &intel_attached_encoder(connector)->base; |
| } |
| |
| void intel_connector_attach_encoder(struct intel_connector *connector, |
| struct intel_encoder *encoder) |
| { |
| connector->encoder = encoder; |
| drm_mode_connector_attach_encoder(&connector->base, |
| &encoder->base); |
| } |
| |
| /* |
| * set vga decode state - true == enable VGA decode |
| */ |
| int intel_modeset_vga_set_state(struct drm_device *dev, bool state) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u16 gmch_ctrl; |
| |
| pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl); |
| if (state) |
| gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; |
| else |
| gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; |
| pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl); |
| return 0; |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| #include <linux/seq_file.h> |
| |
| struct intel_display_error_state { |
| struct intel_cursor_error_state { |
| u32 control; |
| u32 position; |
| u32 base; |
| u32 size; |
| } cursor[2]; |
| |
| struct intel_pipe_error_state { |
| u32 conf; |
| u32 source; |
| |
| u32 htotal; |
| u32 hblank; |
| u32 hsync; |
| u32 vtotal; |
| u32 vblank; |
| u32 vsync; |
| } pipe[2]; |
| |
| struct intel_plane_error_state { |
| u32 control; |
| u32 stride; |
| u32 size; |
| u32 pos; |
| u32 addr; |
| u32 surface; |
| u32 tile_offset; |
| } plane[2]; |
| }; |
| |
| struct intel_display_error_state * |
| intel_display_capture_error_state(struct drm_device *dev) |
| { |
| drm_i915_private_t *dev_priv = dev->dev_private; |
| struct intel_display_error_state *error; |
| int i; |
| |
| error = kmalloc(sizeof(*error), GFP_ATOMIC); |
| if (error == NULL) |
| return NULL; |
| |
| for (i = 0; i < 2; i++) { |
| error->cursor[i].control = I915_READ(CURCNTR(i)); |
| error->cursor[i].position = I915_READ(CURPOS(i)); |
| error->cursor[i].base = I915_READ(CURBASE(i)); |
| |
| error->plane[i].control = I915_READ(DSPCNTR(i)); |
| error->plane[i].stride = I915_READ(DSPSTRIDE(i)); |
| error->plane[i].size = I915_READ(DSPSIZE(i)); |
| error->plane[i].pos = I915_READ(DSPPOS(i)); |
| error->plane[i].addr = I915_READ(DSPADDR(i)); |
| if (INTEL_INFO(dev)->gen >= 4) { |
| error->plane[i].surface = I915_READ(DSPSURF(i)); |
| error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); |
| } |
| |
| error->pipe[i].conf = I915_READ(PIPECONF(i)); |
| error->pipe[i].source = I915_READ(PIPESRC(i)); |
| error->pipe[i].htotal = I915_READ(HTOTAL(i)); |
| error->pipe[i].hblank = I915_READ(HBLANK(i)); |
| error->pipe[i].hsync = I915_READ(HSYNC(i)); |
| error->pipe[i].vtotal = I915_READ(VTOTAL(i)); |
| error->pipe[i].vblank = I915_READ(VBLANK(i)); |
| error->pipe[i].vsync = I915_READ(VSYNC(i)); |
| } |
| |
| return error; |
| } |
| |
| void |
| intel_display_print_error_state(struct seq_file *m, |
| struct drm_device *dev, |
| struct intel_display_error_state *error) |
| { |
| int i; |
| |
| for (i = 0; i < 2; i++) { |
| seq_printf(m, "Pipe [%d]:\n", i); |
| seq_printf(m, " CONF: %08x\n", error->pipe[i].conf); |
| seq_printf(m, " SRC: %08x\n", error->pipe[i].source); |
| seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal); |
| seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank); |
| seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync); |
| seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal); |
| seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank); |
| seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync); |
| |
| seq_printf(m, "Plane [%d]:\n", i); |
| seq_printf(m, " CNTR: %08x\n", error->plane[i].control); |
| seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride); |
| seq_printf(m, " SIZE: %08x\n", error->plane[i].size); |
| seq_printf(m, " POS: %08x\n", error->plane[i].pos); |
| seq_printf(m, " ADDR: %08x\n", error->plane[i].addr); |
| if (INTEL_INFO(dev)->gen >= 4) { |
| seq_printf(m, " SURF: %08x\n", error->plane[i].surface); |
| seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); |
| } |
| |
| seq_printf(m, "Cursor [%d]:\n", i); |
| seq_printf(m, " CNTR: %08x\n", error->cursor[i].control); |
| seq_printf(m, " POS: %08x\n", error->cursor[i].position); |
| seq_printf(m, " BASE: %08x\n", error->cursor[i].base); |
| } |
| } |
| #endif |