| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| * |
| * This file shares the implementation of the userspace memcpy and |
| * the kernel's memcpy, copy_to_user and copy_from_user. |
| */ |
| |
| #include <arch/chip.h> |
| |
| #if CHIP_HAS_WH64() || defined(MEMCPY_TEST_WH64) |
| #define MEMCPY_USE_WH64 |
| #endif |
| |
| |
| #include <linux/linkage.h> |
| |
| /* On TILE64, we wrap these functions via arch/tile/lib/memcpy_tile64.c */ |
| #if !CHIP_HAS_COHERENT_LOCAL_CACHE() |
| #define memcpy __memcpy_asm |
| #define __copy_to_user_inatomic __copy_to_user_inatomic_asm |
| #define __copy_from_user_inatomic __copy_from_user_inatomic_asm |
| #define __copy_from_user_zeroing __copy_from_user_zeroing_asm |
| #endif |
| |
| #define IS_MEMCPY 0 |
| #define IS_COPY_FROM_USER 1 |
| #define IS_COPY_FROM_USER_ZEROING 2 |
| #define IS_COPY_TO_USER -1 |
| |
| .section .text.memcpy_common, "ax" |
| .align 64 |
| |
| /* Use this to preface each bundle that can cause an exception so |
| * the kernel can clean up properly. The special cleanup code should |
| * not use these, since it knows what it is doing. |
| */ |
| #define EX \ |
| .pushsection __ex_table, "a"; \ |
| .word 9f, memcpy_common_fixup; \ |
| .popsection; \ |
| 9 |
| |
| |
| /* __copy_from_user_inatomic takes the kernel target address in r0, |
| * the user source in r1, and the bytes to copy in r2. |
| * It returns the number of uncopiable bytes (hopefully zero) in r0. |
| */ |
| ENTRY(__copy_from_user_inatomic) |
| .type __copy_from_user_inatomic, @function |
| FEEDBACK_ENTER_EXPLICIT(__copy_from_user_inatomic, \ |
| .text.memcpy_common, \ |
| .Lend_memcpy_common - __copy_from_user_inatomic) |
| { movei r29, IS_COPY_FROM_USER; j memcpy_common } |
| .size __copy_from_user_inatomic, . - __copy_from_user_inatomic |
| |
| /* __copy_from_user_zeroing is like __copy_from_user_inatomic, but |
| * any uncopiable bytes are zeroed in the target. |
| */ |
| ENTRY(__copy_from_user_zeroing) |
| .type __copy_from_user_zeroing, @function |
| FEEDBACK_REENTER(__copy_from_user_inatomic) |
| { movei r29, IS_COPY_FROM_USER_ZEROING; j memcpy_common } |
| .size __copy_from_user_zeroing, . - __copy_from_user_zeroing |
| |
| /* __copy_to_user_inatomic takes the user target address in r0, |
| * the kernel source in r1, and the bytes to copy in r2. |
| * It returns the number of uncopiable bytes (hopefully zero) in r0. |
| */ |
| ENTRY(__copy_to_user_inatomic) |
| .type __copy_to_user_inatomic, @function |
| FEEDBACK_REENTER(__copy_from_user_inatomic) |
| { movei r29, IS_COPY_TO_USER; j memcpy_common } |
| .size __copy_to_user_inatomic, . - __copy_to_user_inatomic |
| |
| ENTRY(memcpy) |
| .type memcpy, @function |
| FEEDBACK_REENTER(__copy_from_user_inatomic) |
| { movei r29, IS_MEMCPY } |
| .size memcpy, . - memcpy |
| /* Fall through */ |
| |
| .type memcpy_common, @function |
| memcpy_common: |
| /* On entry, r29 holds one of the IS_* macro values from above. */ |
| |
| |
| /* r0 is the dest, r1 is the source, r2 is the size. */ |
| |
| /* Save aside original dest so we can return it at the end. */ |
| { sw sp, lr; move r23, r0; or r4, r0, r1 } |
| |
| /* Check for an empty size. */ |
| { bz r2, .Ldone; andi r4, r4, 3 } |
| |
| /* Save aside original values in case of a fault. */ |
| { move r24, r1; move r25, r2 } |
| move r27, lr |
| |
| /* Check for an unaligned source or dest. */ |
| { bnz r4, .Lcopy_unaligned_maybe_many; addli r4, r2, -256 } |
| |
| .Lcheck_aligned_copy_size: |
| /* If we are copying < 256 bytes, branch to simple case. */ |
| { blzt r4, .Lcopy_8_check; slti_u r8, r2, 8 } |
| |
| /* Copying >= 256 bytes, so jump to complex prefetching loop. */ |
| { andi r6, r1, 63; j .Lcopy_many } |
| |
| /* |
| * |
| * Aligned 4 byte at a time copy loop |
| * |
| */ |
| |
| .Lcopy_8_loop: |
| /* Copy two words at a time to hide load latency. */ |
| EX: { lw r3, r1; addi r1, r1, 4; slti_u r8, r2, 16 } |
| EX: { lw r4, r1; addi r1, r1, 4 } |
| EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 } |
| EX: { sw r0, r4; addi r0, r0, 4; addi r2, r2, -4 } |
| .Lcopy_8_check: |
| { bzt r8, .Lcopy_8_loop; slti_u r4, r2, 4 } |
| |
| /* Copy odd leftover word, if any. */ |
| { bnzt r4, .Lcheck_odd_stragglers } |
| EX: { lw r3, r1; addi r1, r1, 4 } |
| EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 } |
| |
| .Lcheck_odd_stragglers: |
| { bnz r2, .Lcopy_unaligned_few } |
| |
| .Ldone: |
| /* For memcpy return original dest address, else zero. */ |
| { mz r0, r29, r23; jrp lr } |
| |
| |
| /* |
| * |
| * Prefetching multiple cache line copy handler (for large transfers). |
| * |
| */ |
| |
| /* Copy words until r1 is cache-line-aligned. */ |
| .Lalign_loop: |
| EX: { lw r3, r1; addi r1, r1, 4 } |
| { andi r6, r1, 63 } |
| EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 } |
| .Lcopy_many: |
| { bnzt r6, .Lalign_loop; addi r9, r0, 63 } |
| |
| { addi r3, r1, 60; andi r9, r9, -64 } |
| |
| #ifdef MEMCPY_USE_WH64 |
| /* No need to prefetch dst, we'll just do the wh64 |
| * right before we copy a line. |
| */ |
| #endif |
| |
| EX: { lw r5, r3; addi r3, r3, 64; movei r4, 1 } |
| /* Intentionally stall for a few cycles to leave L2 cache alone. */ |
| { bnzt zero, .; move r27, lr } |
| EX: { lw r6, r3; addi r3, r3, 64 } |
| /* Intentionally stall for a few cycles to leave L2 cache alone. */ |
| { bnzt zero, . } |
| EX: { lw r7, r3; addi r3, r3, 64 } |
| #ifndef MEMCPY_USE_WH64 |
| /* Prefetch the dest */ |
| /* Intentionally stall for a few cycles to leave L2 cache alone. */ |
| { bnzt zero, . } |
| /* Use a real load to cause a TLB miss if necessary. We aren't using |
| * r28, so this should be fine. |
| */ |
| EX: { lw r28, r9; addi r9, r9, 64 } |
| /* Intentionally stall for a few cycles to leave L2 cache alone. */ |
| { bnzt zero, . } |
| { prefetch r9; addi r9, r9, 64 } |
| /* Intentionally stall for a few cycles to leave L2 cache alone. */ |
| { bnzt zero, . } |
| { prefetch r9; addi r9, r9, 64 } |
| #endif |
| /* Intentionally stall for a few cycles to leave L2 cache alone. */ |
| { bz zero, .Lbig_loop2 } |
| |
| /* On entry to this loop: |
| * - r0 points to the start of dst line 0 |
| * - r1 points to start of src line 0 |
| * - r2 >= (256 - 60), only the first time the loop trips. |
| * - r3 contains r1 + 128 + 60 [pointer to end of source line 2] |
| * This is our prefetch address. When we get near the end |
| * rather than prefetching off the end this is changed to point |
| * to some "safe" recently loaded address. |
| * - r5 contains *(r1 + 60) [i.e. last word of source line 0] |
| * - r6 contains *(r1 + 64 + 60) [i.e. last word of source line 1] |
| * - r9 contains ((r0 + 63) & -64) |
| * [start of next dst cache line.] |
| */ |
| |
| .Lbig_loop: |
| { jal .Lcopy_line2; add r15, r1, r2 } |
| |
| .Lbig_loop2: |
| /* Copy line 0, first stalling until r5 is ready. */ |
| EX: { move r12, r5; lw r16, r1 } |
| { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 } |
| /* Prefetch several lines ahead. */ |
| EX: { lw r5, r3; addi r3, r3, 64 } |
| { jal .Lcopy_line } |
| |
| /* Copy line 1, first stalling until r6 is ready. */ |
| EX: { move r12, r6; lw r16, r1 } |
| { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 } |
| /* Prefetch several lines ahead. */ |
| EX: { lw r6, r3; addi r3, r3, 64 } |
| { jal .Lcopy_line } |
| |
| /* Copy line 2, first stalling until r7 is ready. */ |
| EX: { move r12, r7; lw r16, r1 } |
| { bz r4, .Lcopy_8_check; slti_u r8, r2, 8 } |
| /* Prefetch several lines ahead. */ |
| EX: { lw r7, r3; addi r3, r3, 64 } |
| /* Use up a caches-busy cycle by jumping back to the top of the |
| * loop. Might as well get it out of the way now. |
| */ |
| { j .Lbig_loop } |
| |
| |
| /* On entry: |
| * - r0 points to the destination line. |
| * - r1 points to the source line. |
| * - r3 is the next prefetch address. |
| * - r9 holds the last address used for wh64. |
| * - r12 = WORD_15 |
| * - r16 = WORD_0. |
| * - r17 == r1 + 16. |
| * - r27 holds saved lr to restore. |
| * |
| * On exit: |
| * - r0 is incremented by 64. |
| * - r1 is incremented by 64, unless that would point to a word |
| * beyond the end of the source array, in which case it is redirected |
| * to point to an arbitrary word already in the cache. |
| * - r2 is decremented by 64. |
| * - r3 is unchanged, unless it points to a word beyond the |
| * end of the source array, in which case it is redirected |
| * to point to an arbitrary word already in the cache. |
| * Redirecting is OK since if we are that close to the end |
| * of the array we will not come back to this subroutine |
| * and use the contents of the prefetched address. |
| * - r4 is nonzero iff r2 >= 64. |
| * - r9 is incremented by 64, unless it points beyond the |
| * end of the last full destination cache line, in which |
| * case it is redirected to a "safe address" that can be |
| * clobbered (sp - 64) |
| * - lr contains the value in r27. |
| */ |
| |
| /* r26 unused */ |
| |
| .Lcopy_line: |
| /* TODO: when r3 goes past the end, we would like to redirect it |
| * to prefetch the last partial cache line (if any) just once, for the |
| * benefit of the final cleanup loop. But we don't want to |
| * prefetch that line more than once, or subsequent prefetches |
| * will go into the RTF. But then .Lbig_loop should unconditionally |
| * branch to top of loop to execute final prefetch, and its |
| * nop should become a conditional branch. |
| */ |
| |
| /* We need two non-memory cycles here to cover the resources |
| * used by the loads initiated by the caller. |
| */ |
| { add r15, r1, r2 } |
| .Lcopy_line2: |
| { slt_u r13, r3, r15; addi r17, r1, 16 } |
| |
| /* NOTE: this will stall for one cycle as L1 is busy. */ |
| |
| /* Fill second L1D line. */ |
| EX: { lw r17, r17; addi r1, r1, 48; mvz r3, r13, r1 } /* r17 = WORD_4 */ |
| |
| #ifdef MEMCPY_TEST_WH64 |
| /* Issue a fake wh64 that clobbers the destination words |
| * with random garbage, for testing. |
| */ |
| { movei r19, 64; crc32_32 r10, r2, r9 } |
| .Lwh64_test_loop: |
| EX: { sw r9, r10; addi r9, r9, 4; addi r19, r19, -4 } |
| { bnzt r19, .Lwh64_test_loop; crc32_32 r10, r10, r19 } |
| #elif CHIP_HAS_WH64() |
| /* Prepare destination line for writing. */ |
| EX: { wh64 r9; addi r9, r9, 64 } |
| #else |
| /* Prefetch dest line */ |
| { prefetch r9; addi r9, r9, 64 } |
| #endif |
| /* Load seven words that are L1D hits to cover wh64 L2 usage. */ |
| |
| /* Load the three remaining words from the last L1D line, which |
| * we know has already filled the L1D. |
| */ |
| EX: { lw r4, r1; addi r1, r1, 4; addi r20, r1, 16 } /* r4 = WORD_12 */ |
| EX: { lw r8, r1; addi r1, r1, 4; slt_u r13, r20, r15 }/* r8 = WORD_13 */ |
| EX: { lw r11, r1; addi r1, r1, -52; mvz r20, r13, r1 } /* r11 = WORD_14 */ |
| |
| /* Load the three remaining words from the first L1D line, first |
| * stalling until it has filled by "looking at" r16. |
| */ |
| EX: { lw r13, r1; addi r1, r1, 4; move zero, r16 } /* r13 = WORD_1 */ |
| EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_2 */ |
| EX: { lw r15, r1; addi r1, r1, 8; addi r10, r0, 60 } /* r15 = WORD_3 */ |
| |
| /* Load second word from the second L1D line, first |
| * stalling until it has filled by "looking at" r17. |
| */ |
| EX: { lw r19, r1; addi r1, r1, 4; move zero, r17 } /* r19 = WORD_5 */ |
| |
| /* Store last word to the destination line, potentially dirtying it |
| * for the first time, which keeps the L2 busy for two cycles. |
| */ |
| EX: { sw r10, r12 } /* store(WORD_15) */ |
| |
| /* Use two L1D hits to cover the sw L2 access above. */ |
| EX: { lw r10, r1; addi r1, r1, 4 } /* r10 = WORD_6 */ |
| EX: { lw r12, r1; addi r1, r1, 4 } /* r12 = WORD_7 */ |
| |
| /* Fill third L1D line. */ |
| EX: { lw r18, r1; addi r1, r1, 4 } /* r18 = WORD_8 */ |
| |
| /* Store first L1D line. */ |
| EX: { sw r0, r16; addi r0, r0, 4; add r16, r0, r2 } /* store(WORD_0) */ |
| EX: { sw r0, r13; addi r0, r0, 4; andi r16, r16, -64 } /* store(WORD_1) */ |
| EX: { sw r0, r14; addi r0, r0, 4; slt_u r16, r9, r16 } /* store(WORD_2) */ |
| #ifdef MEMCPY_USE_WH64 |
| EX: { sw r0, r15; addi r0, r0, 4; addi r13, sp, -64 } /* store(WORD_3) */ |
| #else |
| /* Back up the r9 to a cache line we are already storing to |
| * if it gets past the end of the dest vector. Strictly speaking, |
| * we don't need to back up to the start of a cache line, but it's free |
| * and tidy, so why not? |
| */ |
| EX: { sw r0, r15; addi r0, r0, 4; andi r13, r0, -64 } /* store(WORD_3) */ |
| #endif |
| /* Store second L1D line. */ |
| EX: { sw r0, r17; addi r0, r0, 4; mvz r9, r16, r13 }/* store(WORD_4) */ |
| EX: { sw r0, r19; addi r0, r0, 4 } /* store(WORD_5) */ |
| EX: { sw r0, r10; addi r0, r0, 4 } /* store(WORD_6) */ |
| EX: { sw r0, r12; addi r0, r0, 4 } /* store(WORD_7) */ |
| |
| EX: { lw r13, r1; addi r1, r1, 4; move zero, r18 } /* r13 = WORD_9 */ |
| EX: { lw r14, r1; addi r1, r1, 4 } /* r14 = WORD_10 */ |
| EX: { lw r15, r1; move r1, r20 } /* r15 = WORD_11 */ |
| |
| /* Store third L1D line. */ |
| EX: { sw r0, r18; addi r0, r0, 4 } /* store(WORD_8) */ |
| EX: { sw r0, r13; addi r0, r0, 4 } /* store(WORD_9) */ |
| EX: { sw r0, r14; addi r0, r0, 4 } /* store(WORD_10) */ |
| EX: { sw r0, r15; addi r0, r0, 4 } /* store(WORD_11) */ |
| |
| /* Store rest of fourth L1D line. */ |
| EX: { sw r0, r4; addi r0, r0, 4 } /* store(WORD_12) */ |
| { |
| EX: sw r0, r8 /* store(WORD_13) */ |
| addi r0, r0, 4 |
| /* Will r2 be > 64 after we subtract 64 below? */ |
| shri r4, r2, 7 |
| } |
| { |
| EX: sw r0, r11 /* store(WORD_14) */ |
| addi r0, r0, 8 |
| /* Record 64 bytes successfully copied. */ |
| addi r2, r2, -64 |
| } |
| |
| { jrp lr; move lr, r27 } |
| |
| /* Convey to the backtrace library that the stack frame is size |
| * zero, and the real return address is on the stack rather than |
| * in 'lr'. |
| */ |
| { info 8 } |
| |
| .align 64 |
| .Lcopy_unaligned_maybe_many: |
| /* Skip the setup overhead if we aren't copying many bytes. */ |
| { slti_u r8, r2, 20; sub r4, zero, r0 } |
| { bnzt r8, .Lcopy_unaligned_few; andi r4, r4, 3 } |
| { bz r4, .Ldest_is_word_aligned; add r18, r1, r2 } |
| |
| /* |
| * |
| * unaligned 4 byte at a time copy handler. |
| * |
| */ |
| |
| /* Copy single bytes until r0 == 0 mod 4, so we can store words. */ |
| .Lalign_dest_loop: |
| EX: { lb_u r3, r1; addi r1, r1, 1; addi r4, r4, -1 } |
| EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } |
| { bnzt r4, .Lalign_dest_loop; andi r3, r1, 3 } |
| |
| /* If source and dest are now *both* aligned, do an aligned copy. */ |
| { bz r3, .Lcheck_aligned_copy_size; addli r4, r2, -256 } |
| |
| .Ldest_is_word_aligned: |
| |
| #if CHIP_HAS_DWORD_ALIGN() |
| EX: { andi r8, r0, 63; lwadd_na r6, r1, 4} |
| { slti_u r9, r2, 64; bz r8, .Ldest_is_L2_line_aligned } |
| |
| /* This copies unaligned words until either there are fewer |
| * than 4 bytes left to copy, or until the destination pointer |
| * is cache-aligned, whichever comes first. |
| * |
| * On entry: |
| * - r0 is the next store address. |
| * - r1 points 4 bytes past the load address corresponding to r0. |
| * - r2 >= 4 |
| * - r6 is the next aligned word loaded. |
| */ |
| .Lcopy_unaligned_src_words: |
| EX: { lwadd_na r7, r1, 4; slti_u r8, r2, 4 + 4 } |
| /* stall */ |
| { dword_align r6, r7, r1; slti_u r9, r2, 64 + 4 } |
| EX: { swadd r0, r6, 4; addi r2, r2, -4 } |
| { bnz r8, .Lcleanup_unaligned_words; andi r8, r0, 63 } |
| { bnzt r8, .Lcopy_unaligned_src_words; move r6, r7 } |
| |
| /* On entry: |
| * - r0 is the next store address. |
| * - r1 points 4 bytes past the load address corresponding to r0. |
| * - r2 >= 4 (# of bytes left to store). |
| * - r6 is the next aligned src word value. |
| * - r9 = (r2 < 64U). |
| * - r18 points one byte past the end of source memory. |
| */ |
| .Ldest_is_L2_line_aligned: |
| |
| { |
| /* Not a full cache line remains. */ |
| bnz r9, .Lcleanup_unaligned_words |
| move r7, r6 |
| } |
| |
| /* r2 >= 64 */ |
| |
| /* Kick off two prefetches, but don't go past the end. */ |
| { addi r3, r1, 63 - 4; addi r8, r1, 64 + 63 - 4 } |
| { prefetch r3; move r3, r8; slt_u r8, r8, r18 } |
| { mvz r3, r8, r1; addi r8, r3, 64 } |
| { prefetch r3; move r3, r8; slt_u r8, r8, r18 } |
| { mvz r3, r8, r1; movei r17, 0 } |
| |
| .Lcopy_unaligned_line: |
| /* Prefetch another line. */ |
| { prefetch r3; addi r15, r1, 60; addi r3, r3, 64 } |
| /* Fire off a load of the last word we are about to copy. */ |
| EX: { lw_na r15, r15; slt_u r8, r3, r18 } |
| |
| EX: { mvz r3, r8, r1; wh64 r0 } |
| |
| /* This loop runs twice. |
| * |
| * On entry: |
| * - r17 is even before the first iteration, and odd before |
| * the second. It is incremented inside the loop. Encountering |
| * an even value at the end of the loop makes it stop. |
| */ |
| .Lcopy_half_an_unaligned_line: |
| EX: { |
| /* Stall until the last byte is ready. In the steady state this |
| * guarantees all words to load below will be in the L2 cache, which |
| * avoids shunting the loads to the RTF. |
| */ |
| move zero, r15 |
| lwadd_na r7, r1, 16 |
| } |
| EX: { lwadd_na r11, r1, 12 } |
| EX: { lwadd_na r14, r1, -24 } |
| EX: { lwadd_na r8, r1, 4 } |
| EX: { lwadd_na r9, r1, 4 } |
| EX: { |
| lwadd_na r10, r1, 8 |
| /* r16 = (r2 < 64), after we subtract 32 from r2 below. */ |
| slti_u r16, r2, 64 + 32 |
| } |
| EX: { lwadd_na r12, r1, 4; addi r17, r17, 1 } |
| EX: { lwadd_na r13, r1, 8; dword_align r6, r7, r1 } |
| EX: { swadd r0, r6, 4; dword_align r7, r8, r1 } |
| EX: { swadd r0, r7, 4; dword_align r8, r9, r1 } |
| EX: { swadd r0, r8, 4; dword_align r9, r10, r1 } |
| EX: { swadd r0, r9, 4; dword_align r10, r11, r1 } |
| EX: { swadd r0, r10, 4; dword_align r11, r12, r1 } |
| EX: { swadd r0, r11, 4; dword_align r12, r13, r1 } |
| EX: { swadd r0, r12, 4; dword_align r13, r14, r1 } |
| EX: { swadd r0, r13, 4; addi r2, r2, -32 } |
| { move r6, r14; bbst r17, .Lcopy_half_an_unaligned_line } |
| |
| { bzt r16, .Lcopy_unaligned_line; move r7, r6 } |
| |
| /* On entry: |
| * - r0 is the next store address. |
| * - r1 points 4 bytes past the load address corresponding to r0. |
| * - r2 >= 0 (# of bytes left to store). |
| * - r7 is the next aligned src word value. |
| */ |
| .Lcleanup_unaligned_words: |
| /* Handle any trailing bytes. */ |
| { bz r2, .Lcopy_unaligned_done; slti_u r8, r2, 4 } |
| { bzt r8, .Lcopy_unaligned_src_words; move r6, r7 } |
| |
| /* Move r1 back to the point where it corresponds to r0. */ |
| { addi r1, r1, -4 } |
| |
| #else /* !CHIP_HAS_DWORD_ALIGN() */ |
| |
| /* Compute right/left shift counts and load initial source words. */ |
| { andi r5, r1, -4; andi r3, r1, 3 } |
| EX: { lw r6, r5; addi r5, r5, 4; shli r3, r3, 3 } |
| EX: { lw r7, r5; addi r5, r5, 4; sub r4, zero, r3 } |
| |
| /* Load and store one word at a time, using shifts and ORs |
| * to correct for the misaligned src. |
| */ |
| .Lcopy_unaligned_src_loop: |
| { shr r6, r6, r3; shl r8, r7, r4 } |
| EX: { lw r7, r5; or r8, r8, r6; move r6, r7 } |
| EX: { sw r0, r8; addi r0, r0, 4; addi r2, r2, -4 } |
| { addi r5, r5, 4; slti_u r8, r2, 8 } |
| { bzt r8, .Lcopy_unaligned_src_loop; addi r1, r1, 4 } |
| |
| { bz r2, .Lcopy_unaligned_done } |
| #endif /* !CHIP_HAS_DWORD_ALIGN() */ |
| |
| /* Fall through */ |
| |
| /* |
| * |
| * 1 byte at a time copy handler. |
| * |
| */ |
| |
| .Lcopy_unaligned_few: |
| EX: { lb_u r3, r1; addi r1, r1, 1 } |
| EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } |
| { bnzt r2, .Lcopy_unaligned_few } |
| |
| .Lcopy_unaligned_done: |
| |
| /* For memcpy return original dest address, else zero. */ |
| { mz r0, r29, r23; jrp lr } |
| |
| .Lend_memcpy_common: |
| .size memcpy_common, .Lend_memcpy_common - memcpy_common |
| |
| .section .fixup,"ax" |
| memcpy_common_fixup: |
| .type memcpy_common_fixup, @function |
| |
| /* Skip any bytes we already successfully copied. |
| * r2 (num remaining) is correct, but r0 (dst) and r1 (src) |
| * may not be quite right because of unrolling and prefetching. |
| * So we need to recompute their values as the address just |
| * after the last byte we are sure was successfully loaded and |
| * then stored. |
| */ |
| |
| /* Determine how many bytes we successfully copied. */ |
| { sub r3, r25, r2 } |
| |
| /* Add this to the original r0 and r1 to get their new values. */ |
| { add r0, r23, r3; add r1, r24, r3 } |
| |
| { bzt r29, memcpy_fixup_loop } |
| { blzt r29, copy_to_user_fixup_loop } |
| |
| copy_from_user_fixup_loop: |
| /* Try copying the rest one byte at a time, expecting a load fault. */ |
| .Lcfu: { lb_u r3, r1; addi r1, r1, 1 } |
| { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } |
| { bnzt r2, copy_from_user_fixup_loop } |
| |
| .Lcopy_from_user_fixup_zero_remainder: |
| { bbs r29, 2f } /* low bit set means IS_COPY_FROM_USER */ |
| /* byte-at-a-time loop faulted, so zero the rest. */ |
| { move r3, r2; bz r2, 2f /* should be impossible, but handle it. */ } |
| 1: { sb r0, zero; addi r0, r0, 1; addi r3, r3, -1 } |
| { bnzt r3, 1b } |
| 2: move lr, r27 |
| { move r0, r2; jrp lr } |
| |
| copy_to_user_fixup_loop: |
| /* Try copying the rest one byte at a time, expecting a store fault. */ |
| { lb_u r3, r1; addi r1, r1, 1 } |
| .Lctu: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } |
| { bnzt r2, copy_to_user_fixup_loop } |
| .Lcopy_to_user_fixup_done: |
| move lr, r27 |
| { move r0, r2; jrp lr } |
| |
| memcpy_fixup_loop: |
| /* Try copying the rest one byte at a time. We expect a disastrous |
| * fault to happen since we are in fixup code, but let it happen. |
| */ |
| { lb_u r3, r1; addi r1, r1, 1 } |
| { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 } |
| { bnzt r2, memcpy_fixup_loop } |
| /* This should be unreachable, we should have faulted again. |
| * But be paranoid and handle it in case some interrupt changed |
| * the TLB or something. |
| */ |
| move lr, r27 |
| { move r0, r23; jrp lr } |
| |
| .size memcpy_common_fixup, . - memcpy_common_fixup |
| |
| .section __ex_table,"a" |
| .word .Lcfu, .Lcopy_from_user_fixup_zero_remainder |
| .word .Lctu, .Lcopy_to_user_fixup_done |