blob: 8832f8ec158342ac305b603e0bd30d4353687fe3 [file] [log] [blame]
/*
* Copyright © 2008-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/prefetch.h>
#include "i915_drv.h"
static const char *i915_fence_get_driver_name(struct fence *fence)
{
return "i915";
}
static const char *i915_fence_get_timeline_name(struct fence *fence)
{
/* Timelines are bound by eviction to a VM. However, since
* we only have a global seqno at the moment, we only have
* a single timeline. Note that each timeline will have
* multiple execution contexts (fence contexts) as we allow
* engines within a single timeline to execute in parallel.
*/
return "global";
}
static bool i915_fence_signaled(struct fence *fence)
{
return i915_gem_request_completed(to_request(fence));
}
static bool i915_fence_enable_signaling(struct fence *fence)
{
if (i915_fence_signaled(fence))
return false;
intel_engine_enable_signaling(to_request(fence));
return true;
}
static signed long i915_fence_wait(struct fence *fence,
bool interruptible,
signed long timeout_jiffies)
{
s64 timeout_ns, *timeout;
int ret;
if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT) {
timeout_ns = jiffies_to_nsecs(timeout_jiffies);
timeout = &timeout_ns;
} else {
timeout = NULL;
}
ret = i915_wait_request(to_request(fence),
interruptible, timeout,
NO_WAITBOOST);
if (ret == -ETIME)
return 0;
if (ret < 0)
return ret;
if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT)
timeout_jiffies = nsecs_to_jiffies(timeout_ns);
return timeout_jiffies;
}
static void i915_fence_value_str(struct fence *fence, char *str, int size)
{
snprintf(str, size, "%u", fence->seqno);
}
static void i915_fence_timeline_value_str(struct fence *fence, char *str,
int size)
{
snprintf(str, size, "%u",
intel_engine_get_seqno(to_request(fence)->engine));
}
static void i915_fence_release(struct fence *fence)
{
struct drm_i915_gem_request *req = to_request(fence);
kmem_cache_free(req->i915->requests, req);
}
const struct fence_ops i915_fence_ops = {
.get_driver_name = i915_fence_get_driver_name,
.get_timeline_name = i915_fence_get_timeline_name,
.enable_signaling = i915_fence_enable_signaling,
.signaled = i915_fence_signaled,
.wait = i915_fence_wait,
.release = i915_fence_release,
.fence_value_str = i915_fence_value_str,
.timeline_value_str = i915_fence_timeline_value_str,
};
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
struct drm_file *file)
{
struct drm_i915_private *dev_private;
struct drm_i915_file_private *file_priv;
WARN_ON(!req || !file || req->file_priv);
if (!req || !file)
return -EINVAL;
if (req->file_priv)
return -EINVAL;
dev_private = req->i915;
file_priv = file->driver_priv;
spin_lock(&file_priv->mm.lock);
req->file_priv = file_priv;
list_add_tail(&req->client_list, &file_priv->mm.request_list);
spin_unlock(&file_priv->mm.lock);
return 0;
}
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
struct drm_i915_file_private *file_priv = request->file_priv;
if (!file_priv)
return;
spin_lock(&file_priv->mm.lock);
list_del(&request->client_list);
request->file_priv = NULL;
spin_unlock(&file_priv->mm.lock);
}
void i915_gem_retire_noop(struct i915_gem_active *active,
struct drm_i915_gem_request *request)
{
/* Space left intentionally blank */
}
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
struct i915_gem_active *active, *next;
trace_i915_gem_request_retire(request);
list_del(&request->link);
/* We know the GPU must have read the request to have
* sent us the seqno + interrupt, so use the position
* of tail of the request to update the last known position
* of the GPU head.
*
* Note this requires that we are always called in request
* completion order.
*/
list_del(&request->ring_link);
request->ring->last_retired_head = request->postfix;
/* Walk through the active list, calling retire on each. This allows
* objects to track their GPU activity and mark themselves as idle
* when their *last* active request is completed (updating state
* tracking lists for eviction, active references for GEM, etc).
*
* As the ->retire() may free the node, we decouple it first and
* pass along the auxiliary information (to avoid dereferencing
* the node after the callback).
*/
list_for_each_entry_safe(active, next, &request->active_list, link) {
/* In microbenchmarks or focusing upon time inside the kernel,
* we may spend an inordinate amount of time simply handling
* the retirement of requests and processing their callbacks.
* Of which, this loop itself is particularly hot due to the
* cache misses when jumping around the list of i915_gem_active.
* So we try to keep this loop as streamlined as possible and
* also prefetch the next i915_gem_active to try and hide
* the likely cache miss.
*/
prefetchw(next);
INIT_LIST_HEAD(&active->link);
RCU_INIT_POINTER(active->request, NULL);
active->retire(active, request);
}
i915_gem_request_remove_from_client(request);
if (request->previous_context) {
if (i915.enable_execlists)
intel_lr_context_unpin(request->previous_context,
request->engine);
}
i915_gem_context_put(request->ctx);
i915_gem_request_put(request);
}
void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *engine = req->engine;
struct drm_i915_gem_request *tmp;
lockdep_assert_held(&req->i915->drm.struct_mutex);
GEM_BUG_ON(list_empty(&req->link));
do {
tmp = list_first_entry(&engine->request_list,
typeof(*tmp), link);
i915_gem_request_retire(tmp);
} while (tmp != req);
}
static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
{
struct i915_gpu_error *error = &dev_priv->gpu_error;
if (i915_terminally_wedged(error))
return -EIO;
if (i915_reset_in_progress(error)) {
/* Non-interruptible callers can't handle -EAGAIN, hence return
* -EIO unconditionally for these.
*/
if (!dev_priv->mm.interruptible)
return -EIO;
return -EAGAIN;
}
return 0;
}
static int i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
{
struct intel_engine_cs *engine;
int ret;
/* Carefully retire all requests without writing to the rings */
for_each_engine(engine, dev_priv) {
ret = intel_engine_idle(engine,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_LOCKED);
if (ret)
return ret;
}
i915_gem_retire_requests(dev_priv);
/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
while (intel_kick_waiters(dev_priv) ||
intel_kick_signalers(dev_priv))
yield();
}
/* Finally reset hw state */
for_each_engine(engine, dev_priv)
intel_engine_init_seqno(engine, seqno);
return 0;
}
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
struct drm_i915_private *dev_priv = to_i915(dev);
int ret;
if (seqno == 0)
return -EINVAL;
/* HWS page needs to be set less than what we
* will inject to ring
*/
ret = i915_gem_init_seqno(dev_priv, seqno - 1);
if (ret)
return ret;
dev_priv->next_seqno = seqno;
return 0;
}
static int i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
{
/* reserve 0 for non-seqno */
if (unlikely(dev_priv->next_seqno == 0)) {
int ret;
ret = i915_gem_init_seqno(dev_priv, 0);
if (ret)
return ret;
dev_priv->next_seqno = 1;
}
*seqno = dev_priv->next_seqno++;
return 0;
}
static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
struct drm_i915_gem_request *request =
container_of(fence, typeof(*request), submit);
/* Will be called from irq-context when using foreign DMA fences */
switch (state) {
case FENCE_COMPLETE:
request->engine->last_submitted_seqno = request->fence.seqno;
request->engine->submit_request(request);
break;
case FENCE_FREE:
break;
}
return NOTIFY_DONE;
}
/**
* i915_gem_request_alloc - allocate a request structure
*
* @engine: engine that we wish to issue the request on.
* @ctx: context that the request will be associated with.
* This can be NULL if the request is not directly related to
* any specific user context, in which case this function will
* choose an appropriate context to use.
*
* Returns a pointer to the allocated request if successful,
* or an error code if not.
*/
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
struct i915_gem_context *ctx)
{
struct drm_i915_private *dev_priv = engine->i915;
struct drm_i915_gem_request *req;
u32 seqno;
int ret;
/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
* EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
* and restart.
*/
ret = i915_gem_check_wedge(dev_priv);
if (ret)
return ERR_PTR(ret);
/* Move the oldest request to the slab-cache (if not in use!) */
req = list_first_entry_or_null(&engine->request_list,
typeof(*req), link);
if (req && i915_gem_request_completed(req))
i915_gem_request_retire(req);
/* Beware: Dragons be flying overhead.
*
* We use RCU to look up requests in flight. The lookups may
* race with the request being allocated from the slab freelist.
* That is the request we are writing to here, may be in the process
* of being read by __i915_gem_active_get_rcu(). As such,
* we have to be very careful when overwriting the contents. During
* the RCU lookup, we change chase the request->engine pointer,
* read the request->fence.seqno and increment the reference count.
*
* The reference count is incremented atomically. If it is zero,
* the lookup knows the request is unallocated and complete. Otherwise,
* it is either still in use, or has been reallocated and reset
* with fence_init(). This increment is safe for release as we check
* that the request we have a reference to and matches the active
* request.
*
* Before we increment the refcount, we chase the request->engine
* pointer. We must not call kmem_cache_zalloc() or else we set
* that pointer to NULL and cause a crash during the lookup. If
* we see the request is completed (based on the value of the
* old engine and seqno), the lookup is complete and reports NULL.
* If we decide the request is not completed (new engine or seqno),
* then we grab a reference and double check that it is still the
* active request - which it won't be and restart the lookup.
*
* Do not use kmem_cache_zalloc() here!
*/
req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
if (!req)
return ERR_PTR(-ENOMEM);
ret = i915_gem_get_seqno(dev_priv, &seqno);
if (ret)
goto err;
spin_lock_init(&req->lock);
fence_init(&req->fence,
&i915_fence_ops,
&req->lock,
engine->fence_context,
seqno);
i915_sw_fence_init(&req->submit, submit_notify);
INIT_LIST_HEAD(&req->active_list);
req->i915 = dev_priv;
req->engine = engine;
req->ctx = i915_gem_context_get(ctx);
/* No zalloc, must clear what we need by hand */
req->previous_context = NULL;
req->file_priv = NULL;
req->batch = NULL;
/*
* Reserve space in the ring buffer for all the commands required to
* eventually emit this request. This is to guarantee that the
* i915_add_request() call can't fail. Note that the reserve may need
* to be redone if the request is not actually submitted straight
* away, e.g. because a GPU scheduler has deferred it.
*/
req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
if (i915.enable_execlists)
ret = intel_logical_ring_alloc_request_extras(req);
else
ret = intel_ring_alloc_request_extras(req);
if (ret)
goto err_ctx;
/* Record the position of the start of the request so that
* should we detect the updated seqno part-way through the
* GPU processing the request, we never over-estimate the
* position of the head.
*/
req->head = req->ring->tail;
return req;
err_ctx:
i915_gem_context_put(ctx);
err:
kmem_cache_free(dev_priv->requests, req);
return ERR_PTR(ret);
}
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
struct drm_i915_gem_request *from)
{
int idx, ret;
GEM_BUG_ON(to == from);
if (to->engine == from->engine)
return 0;
idx = intel_engine_sync_index(from->engine, to->engine);
if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
return 0;
trace_i915_gem_ring_sync_to(to, from);
if (!i915.semaphores) {
if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
ret = i915_sw_fence_await_dma_fence(&to->submit,
&from->fence, 0,
GFP_KERNEL);
if (ret < 0)
return ret;
}
} else {
ret = to->engine->semaphore.sync_to(to, from);
if (ret)
return ret;
}
from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
return 0;
}
/**
* i915_gem_request_await_object - set this request to (async) wait upon a bo
*
* @to: request we are wishing to use
* @obj: object which may be in use on another ring.
*
* This code is meant to abstract object synchronization with the GPU.
* Conceptually we serialise writes between engines inside the GPU.
* We only allow one engine to write into a buffer at any time, but
* multiple readers. To ensure each has a coherent view of memory, we must:
*
* - If there is an outstanding write request to the object, the new
* request must wait for it to complete (either CPU or in hw, requests
* on the same ring will be naturally ordered).
*
* - If we are a write request (pending_write_domain is set), the new
* request must wait for outstanding read requests to complete.
*
* Returns 0 if successful, else propagates up the lower layer error.
*/
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
struct drm_i915_gem_object *obj,
bool write)
{
struct i915_gem_active *active;
unsigned long active_mask;
int idx;
if (write) {
active_mask = i915_gem_object_get_active(obj);
active = obj->last_read;
} else {
active_mask = 1;
active = &obj->last_write;
}
for_each_active(active_mask, idx) {
struct drm_i915_gem_request *request;
int ret;
request = i915_gem_active_peek(&active[idx],
&obj->base.dev->struct_mutex);
if (!request)
continue;
ret = i915_gem_request_await_request(to, request);
if (ret)
return ret;
}
return 0;
}
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
dev_priv->gt.active_engines |= intel_engine_flag(engine);
if (dev_priv->gt.awake)
return;
intel_runtime_pm_get_noresume(dev_priv);
dev_priv->gt.awake = true;
intel_enable_gt_powersave(dev_priv);
i915_update_gfx_val(dev_priv);
if (INTEL_GEN(dev_priv) >= 6)
gen6_rps_busy(dev_priv);
queue_delayed_work(dev_priv->wq,
&dev_priv->gt.retire_work,
round_jiffies_up_relative(HZ));
}
/*
* NB: This function is not allowed to fail. Doing so would mean the the
* request is not being tracked for completion but the work itself is
* going to happen on the hardware. This would be a Bad Thing(tm).
*/
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
{
struct intel_engine_cs *engine = request->engine;
struct intel_ring *ring = request->ring;
struct drm_i915_gem_request *prev;
u32 request_start;
u32 reserved_tail;
int ret;
trace_i915_gem_request_add(request);
/*
* To ensure that this call will not fail, space for its emissions
* should already have been reserved in the ring buffer. Let the ring
* know that it is time to use that space up.
*/
request_start = ring->tail;
reserved_tail = request->reserved_space;
request->reserved_space = 0;
/*
* Emit any outstanding flushes - execbuf can fail to emit the flush
* after having emitted the batchbuffer command. Hence we need to fix
* things up similar to emitting the lazy request. The difference here
* is that the flush _must_ happen before the next request, no matter
* what.
*/
if (flush_caches) {
ret = engine->emit_flush(request, EMIT_FLUSH);
/* Not allowed to fail! */
WARN(ret, "engine->emit_flush() failed: %d!\n", ret);
}
/* Record the position of the start of the breadcrumb so that
* should we detect the updated seqno part-way through the
* GPU processing the request, we never over-estimate the
* position of the ring's HEAD.
*/
request->postfix = ring->tail;
/* Not allowed to fail! */
ret = engine->emit_request(request);
WARN(ret, "(%s)->emit_request failed: %d!\n", engine->name, ret);
/* Sanity check that the reserved size was large enough. */
ret = ring->tail - request_start;
if (ret < 0)
ret += ring->size;
WARN_ONCE(ret > reserved_tail,
"Not enough space reserved (%d bytes) "
"for adding the request (%d bytes)\n",
reserved_tail, ret);
/* Seal the request and mark it as pending execution. Note that
* we may inspect this state, without holding any locks, during
* hangcheck. Hence we apply the barrier to ensure that we do not
* see a more recent value in the hws than we are tracking.
*/
prev = i915_gem_active_raw(&engine->last_request,
&request->i915->drm.struct_mutex);
if (prev)
i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
&request->submitq);
request->emitted_jiffies = jiffies;
request->previous_seqno = engine->last_pending_seqno;
engine->last_pending_seqno = request->fence.seqno;
i915_gem_active_set(&engine->last_request, request);
list_add_tail(&request->link, &engine->request_list);
list_add_tail(&request->ring_link, &ring->request_list);
i915_gem_mark_busy(engine);
local_bh_disable();
i915_sw_fence_commit(&request->submit);
local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
}
static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
if (list_empty(&wait->task_list))
__add_wait_queue(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}
static unsigned long local_clock_us(unsigned int *cpu)
{
unsigned long t;
/* Cheaply and approximately convert from nanoseconds to microseconds.
* The result and subsequent calculations are also defined in the same
* approximate microseconds units. The principal source of timing
* error here is from the simple truncation.
*
* Note that local_clock() is only defined wrt to the current CPU;
* the comparisons are no longer valid if we switch CPUs. Instead of
* blocking preemption for the entire busywait, we can detect the CPU
* switch and use that as indicator of system load and a reason to
* stop busywaiting, see busywait_stop().
*/
*cpu = get_cpu();
t = local_clock() >> 10;
put_cpu();
return t;
}
static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
unsigned int this_cpu;
if (time_after(local_clock_us(&this_cpu), timeout))
return true;
return this_cpu != cpu;
}
bool __i915_spin_request(const struct drm_i915_gem_request *req,
int state, unsigned long timeout_us)
{
unsigned int cpu;
/* When waiting for high frequency requests, e.g. during synchronous
* rendering split between the CPU and GPU, the finite amount of time
* required to set up the irq and wait upon it limits the response
* rate. By busywaiting on the request completion for a short while we
* can service the high frequency waits as quick as possible. However,
* if it is a slow request, we want to sleep as quickly as possible.
* The tradeoff between waiting and sleeping is roughly the time it
* takes to sleep on a request, on the order of a microsecond.
*/
timeout_us += local_clock_us(&cpu);
do {
if (i915_gem_request_completed(req))
return true;
if (signal_pending_state(state, current))
break;
if (busywait_stop(timeout_us, cpu))
break;
cpu_relax_lowlatency();
} while (!need_resched());
return false;
}
/**
* i915_wait_request - wait until execution of request has finished
* @req: duh!
* @flags: how to wait
* @timeout: in - how long to wait (NULL forever); out - how much time remaining
* @rps: client to charge for RPS boosting
*
* Note: It is of utmost importance that the passed in seqno and reset_counter
* values have been read by the caller in an smp safe manner. Where read-side
* locks are involved, it is sufficient to read the reset_counter before
* unlocking the lock that protects the seqno. For lockless tricks, the
* reset_counter _must_ be read before, and an appropriate smp_rmb must be
* inserted.
*
* Returns 0 if the request was found within the alloted time. Else returns the
* errno with remaining time filled in timeout argument.
*/
int i915_wait_request(struct drm_i915_gem_request *req,
unsigned int flags,
s64 *timeout,
struct intel_rps_client *rps)
{
const int state = flags & I915_WAIT_INTERRUPTIBLE ?
TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
DEFINE_WAIT(reset);
struct intel_wait wait;
unsigned long timeout_remain;
int ret = 0;
might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
GEM_BUG_ON(!!lockdep_is_held(&req->i915->drm.struct_mutex) !=
!!(flags & I915_WAIT_LOCKED));
#endif
if (i915_gem_request_completed(req))
return 0;
timeout_remain = MAX_SCHEDULE_TIMEOUT;
if (timeout) {
if (WARN_ON(*timeout < 0))
return -EINVAL;
if (*timeout == 0)
return -ETIME;
/* Record current time in case interrupted, or wedged */
timeout_remain = nsecs_to_jiffies_timeout(*timeout);
*timeout += ktime_get_raw_ns();
}
trace_i915_gem_request_wait_begin(req);
/* This client is about to stall waiting for the GPU. In many cases
* this is undesirable and limits the throughput of the system, as
* many clients cannot continue processing user input/output whilst
* blocked. RPS autotuning may take tens of milliseconds to respond
* to the GPU load and thus incurs additional latency for the client.
* We can circumvent that by promoting the GPU frequency to maximum
* before we wait. This makes the GPU throttle up much more quickly
* (good for benchmarks and user experience, e.g. window animations),
* but at a cost of spending more power processing the workload
* (bad for battery). Not all clients even want their results
* immediately and for them we should just let the GPU select its own
* frequency to maximise efficiency. To prevent a single client from
* forcing the clocks too high for the whole system, we only allow
* each client to waitboost once in a busy period.
*/
if (IS_RPS_CLIENT(rps) && INTEL_GEN(req->i915) >= 6)
gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
/* Optimistic short spin before touching IRQs */
if (i915_spin_request(req, state, 5))
goto complete;
set_current_state(state);
if (flags & I915_WAIT_LOCKED)
add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
intel_wait_init(&wait, req->fence.seqno);
if (intel_engine_add_wait(req->engine, &wait))
/* In order to check that we haven't missed the interrupt
* as we enabled it, we need to kick ourselves to do a
* coherent check on the seqno before we sleep.
*/
goto wakeup;
for (;;) {
if (signal_pending_state(state, current)) {
ret = -ERESTARTSYS;
break;
}
timeout_remain = io_schedule_timeout(timeout_remain);
if (timeout_remain == 0) {
ret = -ETIME;
break;
}
if (intel_wait_complete(&wait))
break;
set_current_state(state);
wakeup:
/* Carefully check if the request is complete, giving time
* for the seqno to be visible following the interrupt.
* We also have to check in case we are kicked by the GPU
* reset in order to drop the struct_mutex.
*/
if (__i915_request_irq_complete(req))
break;
/* If the GPU is hung, and we hold the lock, reset the GPU
* and then check for completion. On a full reset, the engine's
* HW seqno will be advanced passed us and we are complete.
* If we do a partial reset, we have to wait for the GPU to
* resume and update the breadcrumb.
*
* If we don't hold the mutex, we can just wait for the worker
* to come along and update the breadcrumb (either directly
* itself, or indirectly by recovering the GPU).
*/
if (flags & I915_WAIT_LOCKED &&
i915_reset_in_progress(&req->i915->gpu_error)) {
__set_current_state(TASK_RUNNING);
i915_reset(req->i915);
reset_wait_queue(&req->i915->gpu_error.wait_queue,
&reset);
continue;
}
/* Only spin if we know the GPU is processing this request */
if (i915_spin_request(req, state, 2))
break;
}
intel_engine_remove_wait(req->engine, &wait);
if (flags & I915_WAIT_LOCKED)
remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
__set_current_state(TASK_RUNNING);
complete:
trace_i915_gem_request_wait_end(req);
if (timeout) {
*timeout -= ktime_get_raw_ns();
if (*timeout < 0)
*timeout = 0;
/*
* Apparently ktime isn't accurate enough and occasionally has a
* bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
* things up to make the test happy. We allow up to 1 jiffy.
*
* This is a regrssion from the timespec->ktime conversion.
*/
if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
*timeout = 0;
}
if (IS_RPS_USER(rps) &&
req->fence.seqno == req->engine->last_submitted_seqno) {
/* The GPU is now idle and this client has stalled.
* Since no other client has submitted a request in the
* meantime, assume that this client is the only one
* supplying work to the GPU but is unable to keep that
* work supplied because it is waiting. Since the GPU is
* then never kept fully busy, RPS autoclocking will
* keep the clocks relatively low, causing further delays.
* Compensate by giving the synchronous client credit for
* a waitboost next time.
*/
spin_lock(&req->i915->rps.client_lock);
list_del_init(&rps->link);
spin_unlock(&req->i915->rps.client_lock);
}
return ret;
}
static bool engine_retire_requests(struct intel_engine_cs *engine)
{
struct drm_i915_gem_request *request, *next;
list_for_each_entry_safe(request, next, &engine->request_list, link) {
if (!i915_gem_request_completed(request))
return false;
i915_gem_request_retire(request);
}
return true;
}
void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
unsigned int tmp;
lockdep_assert_held(&dev_priv->drm.struct_mutex);
if (dev_priv->gt.active_engines == 0)
return;
GEM_BUG_ON(!dev_priv->gt.awake);
for_each_engine_masked(engine, dev_priv, dev_priv->gt.active_engines, tmp)
if (engine_retire_requests(engine))
dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
if (dev_priv->gt.active_engines == 0)
queue_delayed_work(dev_priv->wq,
&dev_priv->gt.idle_work,
msecs_to_jiffies(100));
}