| /* Validate the trust chain of a PKCS#7 message. |
| * |
| * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| */ |
| |
| #define pr_fmt(fmt) "PKCS7: "fmt |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/err.h> |
| #include <linux/asn1.h> |
| #include <linux/key.h> |
| #include <keys/asymmetric-type.h> |
| #include <crypto/public_key.h> |
| #include "pkcs7_parser.h" |
| |
| /** |
| * Check the trust on one PKCS#7 SignedInfo block. |
| */ |
| static int pkcs7_validate_trust_one(struct pkcs7_message *pkcs7, |
| struct pkcs7_signed_info *sinfo, |
| struct key *trust_keyring) |
| { |
| struct public_key_signature *sig = &sinfo->sig; |
| struct x509_certificate *x509, *last = NULL, *p; |
| struct key *key; |
| bool trusted; |
| int ret; |
| |
| kenter(",%u,", sinfo->index); |
| |
| if (sinfo->unsupported_crypto) { |
| kleave(" = -ENOPKG [cached]"); |
| return -ENOPKG; |
| } |
| |
| for (x509 = sinfo->signer; x509; x509 = x509->signer) { |
| if (x509->seen) { |
| if (x509->verified) { |
| trusted = x509->trusted; |
| goto verified; |
| } |
| kleave(" = -ENOKEY [cached]"); |
| return -ENOKEY; |
| } |
| x509->seen = true; |
| |
| /* Look to see if this certificate is present in the trusted |
| * keys. |
| */ |
| key = x509_request_asymmetric_key(trust_keyring, |
| x509->id, x509->skid, |
| false); |
| if (!IS_ERR(key)) { |
| /* One of the X.509 certificates in the PKCS#7 message |
| * is apparently the same as one we already trust. |
| * Verify that the trusted variant can also validate |
| * the signature on the descendant. |
| */ |
| pr_devel("sinfo %u: Cert %u as key %x\n", |
| sinfo->index, x509->index, key_serial(key)); |
| goto matched; |
| } |
| if (key == ERR_PTR(-ENOMEM)) |
| return -ENOMEM; |
| |
| /* Self-signed certificates form roots of their own, and if we |
| * don't know them, then we can't accept them. |
| */ |
| if (x509->next == x509) { |
| kleave(" = -ENOKEY [unknown self-signed]"); |
| return -ENOKEY; |
| } |
| |
| might_sleep(); |
| last = x509; |
| sig = &last->sig; |
| } |
| |
| /* No match - see if the root certificate has a signer amongst the |
| * trusted keys. |
| */ |
| if (last && (last->akid_id || last->akid_skid)) { |
| key = x509_request_asymmetric_key(trust_keyring, |
| last->akid_id, |
| last->akid_skid, |
| false); |
| if (!IS_ERR(key)) { |
| x509 = last; |
| pr_devel("sinfo %u: Root cert %u signer is key %x\n", |
| sinfo->index, x509->index, key_serial(key)); |
| goto matched; |
| } |
| if (PTR_ERR(key) != -ENOKEY) |
| return PTR_ERR(key); |
| } |
| |
| /* As a last resort, see if we have a trusted public key that matches |
| * the signed info directly. |
| */ |
| key = x509_request_asymmetric_key(trust_keyring, |
| sinfo->signing_cert_id, |
| NULL, |
| false); |
| if (!IS_ERR(key)) { |
| pr_devel("sinfo %u: Direct signer is key %x\n", |
| sinfo->index, key_serial(key)); |
| x509 = NULL; |
| goto matched; |
| } |
| if (PTR_ERR(key) != -ENOKEY) |
| return PTR_ERR(key); |
| |
| kleave(" = -ENOKEY [no backref]"); |
| return -ENOKEY; |
| |
| matched: |
| ret = verify_signature(key, sig); |
| trusted = test_bit(KEY_FLAG_TRUSTED, &key->flags); |
| key_put(key); |
| if (ret < 0) { |
| if (ret == -ENOMEM) |
| return ret; |
| kleave(" = -EKEYREJECTED [verify %d]", ret); |
| return -EKEYREJECTED; |
| } |
| |
| verified: |
| if (x509) { |
| x509->verified = true; |
| for (p = sinfo->signer; p != x509; p = p->signer) { |
| p->verified = true; |
| p->trusted = trusted; |
| } |
| } |
| sinfo->trusted = trusted; |
| kleave(" = 0"); |
| return 0; |
| } |
| |
| /** |
| * pkcs7_validate_trust - Validate PKCS#7 trust chain |
| * @pkcs7: The PKCS#7 certificate to validate |
| * @trust_keyring: Signing certificates to use as starting points |
| * @_trusted: Set to true if trustworth, false otherwise |
| * |
| * Validate that the certificate chain inside the PKCS#7 message intersects |
| * keys we already know and trust. |
| * |
| * Returns, in order of descending priority: |
| * |
| * (*) -EKEYREJECTED if a signature failed to match for which we have a valid |
| * key, or: |
| * |
| * (*) 0 if at least one signature chain intersects with the keys in the trust |
| * keyring, or: |
| * |
| * (*) -ENOPKG if a suitable crypto module couldn't be found for a check on a |
| * chain. |
| * |
| * (*) -ENOKEY if we couldn't find a match for any of the signature chains in |
| * the message. |
| * |
| * May also return -ENOMEM. |
| */ |
| int pkcs7_validate_trust(struct pkcs7_message *pkcs7, |
| struct key *trust_keyring, |
| bool *_trusted) |
| { |
| struct pkcs7_signed_info *sinfo; |
| struct x509_certificate *p; |
| int cached_ret = -ENOKEY; |
| int ret; |
| |
| for (p = pkcs7->certs; p; p = p->next) |
| p->seen = false; |
| |
| for (sinfo = pkcs7->signed_infos; sinfo; sinfo = sinfo->next) { |
| ret = pkcs7_validate_trust_one(pkcs7, sinfo, trust_keyring); |
| switch (ret) { |
| case -ENOKEY: |
| continue; |
| case -ENOPKG: |
| if (cached_ret == -ENOKEY) |
| cached_ret = -ENOPKG; |
| continue; |
| case 0: |
| *_trusted |= sinfo->trusted; |
| cached_ret = 0; |
| continue; |
| default: |
| return ret; |
| } |
| } |
| |
| return cached_ret; |
| } |
| EXPORT_SYMBOL_GPL(pkcs7_validate_trust); |